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Single-cell genomics, combined with advanced AI models,
hold transformative potential for understanding complex bio-
logical processes in plants. This article reviews deep-learning
approaches in single-cell genomics, focusing on foundation
models, a type of large-scale, pretrained, multi-purpose
generative AI models. We explore how these models, such as
Generative Pre-trained Transformers (GPT), Bidirectional
Encoder Representations from Transformers (BERT), and
other Transformer-based architectures, are applied to extract
meaningful biological insights from diverse single-cell data-
sets. These models address challenges in plant single-cell
genomics, including improved cell-type annotation, gene
network modeling, and multi-omics integration. Moreover, we
assess the use of Generative Adversarial Networks (GANs)
and diffusion models, focusing on their capacity to generate
high-fidelity synthetic single-cell data, mitigate dropout events,
and handle data sparsity and imbalance. Together, these AI-
driven approaches hold immense potential to enhance
research in plant genomics, facilitating discoveries in crop
resilience, productivity, and stress adaptation.
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Advancements and challenges of single-
cell data in plants
Single-cell RNA sequencing (scRNA-seq) capabilities
have grown exponentially over the past decade, signifi-
cantly increasing the number of cells that can be
processed within a single experiment [1]. This
www.sciencedirect.com
technology advances agriculture by uncovering key genes
and cellular processes across plants. It reveals genes for
nitrogen fixation in soybean nodules [2], identifies su-
berin regulation for drought tolerance in tomato and
Arabidopsis [3], informs leaf development patterns in

Brassica rapa [4], enhances yield strategies by elucidating
maize ear development [5], and uncovers xylem diversity
in woody plants [6]. These discoveries have the potential
to drive improvements in crop resilience and productivity.

However, plant-specific challenges persist, such as rigid
cell walls that complicate cell isolation and protoplast
generation. The diversity in cell sizes and types in plant
tissues further hinders efficient capture and compre-
hensive representation in experiments. Additionally,
plant single-cell genomics faces unique hurdles

including (1) limited datasets (as compared to human/
mouse), (2) high data sparsity with many zero mea-
surements, (3) under-represented cell types in complex
tissues, and (4) complexity in determining orthologous
genes across species.
Addressing the hurdles through foundation
models
To overcome these challenges, researchers are turning to

foundation models - advanced deep learning frameworks
trained on vast datasets that can be fine-tuned for a wide
range of tasks [7]. These models act as adaptable plat-
forms for AI applications, offering scalability and flexi-
bility across multiple domains, including plant biology
[7]. Although training foundation models requires large
datasets, significant computational resources, and
specialized expertise, their versatility makes them
transformative once established [8]. By adapting suc-
cessful AI models from biomedical research (Figure 1),
pre-trained on extensive datasets, the transformative

potential of foundation models can be harnessed to
address the current gaps in plant genomics, offering
more precise and comprehensive solutions to complex
plant data analysis challenges.
Leveraging various single-cell analysis
tasks with GPT
GPT (Generative Pre-trained Transformer) models,
which are foundation models and Large Language
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Figure 1

This figure illustrates the applications of GPT (GPTCelltype, scGPT), BERT (scBERT, CANAL, TOSICA, Geneformer), other Transformer models
(DeepMAPS, scFoundation), GAN (cscGAN, scIGAN, scGGAN), and diffusion models (stDiff) in various single-cell analysis tasks. These tasks include
clustering (grouping cells based on similar gene expression), cell type classification (identifying cell types based on gene markers), trajectory inference
(tracking the progression of cells through different states), batch correction (removing technical variation between datasets), gene network inference
(revealing interactions between genes), perturbation prediction (predicting how gene expression changes under different conditions), multi-omics inte-
gration (combining different types of molecular data for a comprehensive view of cellular processes), and spatial transcriptomics (mapping gene
expression to specific locations within tissues, providing spatial context). Each model - represented by a specific color: green for GPT, yellow for BERT,
blue for other Transformers, purple for GANs, and gray for diffusion models - is marked with a dot next to each task box to indicate its applicability. The
figure summarizes model applications as described in their original papers.

2 Genome studies and molecular genetics 2024
Models (LLMs), use a decoder-only transformer archi-
tecture. This architecture generates data autore-
gressively, meaning it predicts each element based on

previous ones, which enhances interpretability. In
single-cell analysis, GPT models are used for various
tasks including integration, synthetic data generation,
and annotation (Figure 1). These models have been
adapted for single-cell applications through imple-
mentations like GPTCelltype and scGPT.

GPTCelltype [9] leverages GPT-4’s capacity of under-
standing natural language to automatically annotate cell
types based on marker gene names and biomedical text.
It integrates into single-cell analysis workflows like

Seurat via an R package, enabling interactive annotation
refinement for cell clusters. In contrast, scGPT [10] is
designed to handle numerical gene expression data from
scRNA-seq datasets. Pre-trained on 33 million human
Current Opinion in Plant Biology 2024, 82:102666
cells (Figure 2), it addresses various tasks such as cell-
type annotation, multi-batch and multi-omics integra-
tion, genetic perturbation prediction, and gene network

inference. With its decoder-only transformer architec-
ture, scGPT generates synthetic gene expression pro-
files by making structured and biologically meaningful
predictions based on previous elements in the dataset,
rather than arbitrary outputs, reducing the risk of hal-
lucinations seen in free-form text models like ChatGPT.

In plant research, GPTCelltype can be adapted by fine-
tuning, which involves retraining the pre-trained model
on plant-specific texts like botanical literature, plant
gene databases, or plant gene markers. It can handle

text-based biological knowledge, useful for annotating
plant cell types based on gene markers and literature.
On the other hand, scGPTrequires fine-tuning on large
plant scRNA-seq datasets to capture plant-specific gene
www.sciencedirect.com
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Figure 2

This figure displays the number of parameters in the models, represented by the pink bar chart on the left, and the number of cells in the models, shown
by the orange bar chart on the right, both above the horizontal line. Below the horizontal line, the bar chart illustrates the number of plant cells in each
plant dataset paper, with the red box highlighting the total number of plant cells used in all these studies.
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expression patterns. Fine-tuning is more efficient than
building a model from scratch, as it leverages the general
patterns already captured by the pre-trained model. It

adjusts the existing architecture to incorporate plant-
specific features, enhancing performance on plant-
related tasks. However, scGPT’s large size (51M pa-
rameters) and complexity make it computationally
demanding, requiring significant resources and exten-
sive fine-tuning for specialized tasks.
Annotating single-cell cluster with BERT
BERT (Bidirectional Encoder Representations from
Transformers) models use an encoder-only transformer
architecture, focusing on processing and understanding
existing data rather than generating new outputs.
Unlike GPT, which uses autoregressive pretraining,
BERT employs masked language model pretraining,
www.sciencedirect.com
learning bidirectionally to produce representations or
classifications (Table 1).

In single-cell analysis, models like scBERT [11]
enhance cell-type annotation in scRNA-seq data by
leveraging this encoder-only architecture. It involves
self-supervised pretraining to learn gene interaction
patterns from large-scale data, followed by supervised
fine-tuning for cell type prediction. scBERTcan handle
numerous gene inputs without relying on highly variable
genes or dimensionality reduction, maintaining gene-
level resolution and interpretability. However, Khan
and colleagues [12] highlight scBERT’s limitations with
imbalanced cell-type distributions and suggest a

subsampling technique to address these limitations.

Adapting scBERT model, CANAL [13] is designed to
continually annotate cell types in scRNA-seq data. To
Current Opinion in Plant Biology 2024, 82:102666
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Table 1

Definitions.

Model Type Architecture Training Approach Data Processing Example Models Link

GPT Decoder-only architecture
that generates data
autoregressively

Self-supervised pretraining Processes data
sequentially, predicting
each element based on
previous ones

scGPT, GPTCelltype https://github.com/bowang-lab/
scGPT

BERT Encoder-only architecture
with self-attention
mechanisms

Masked language modeling Processes data
bidirectionally,
understanding context from
all tokens

scBERT, CANAL, TOSICA,
Geneformer

https://github.com/
TencentAILabHealthcare/scBERT
https://github.com/aster-ww/
CANAL-torch
https://github.com/JackieHanLab/
TOSICA
https://huggingface.co/ctheodoris/
Geneformer

Encoder-decoder Combines encoder and
decoder for sequence-to-
sequence tasks

Seq2seq pretraining Encodes input into a latent
representation and decodes
output

scFoundation https://github.com/biomap-
research/scFoundation

Graph-based Transformer adapted for
graph-structured data

Graph-based attention Handles structured, graph-
based data with attention to
relationships

DeepMAPS https://github.com/OSU-BMBL/
deepmaps

GAN Generator-discriminator
framework

Adversarial training
(generator vs. discriminator)

Generates data in parallel
from random noise

cscGAN, scIGAN, scGGAN https://github.com/imsb-uke/
scGAN
https://github.com/xuyungang/
scIGANs
https://www.sdu-idea.cn/codes.
php?name=scGGAN

Diffusion model Iteratively denoises data
through probabilistic
modeling

Progressive denoising to
approximate data
distributions

Sequentially removes noise
to generate data closer to
the original distribution

stDiff https://github.com/fdu-wangfeilab/
stDiff
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prevent knowledge loss when learning new data,
CANAL saves examples of rare cell types to review later
and compares older and newer outputs to maintain
important information while still learning new things.
This allows CANAL to continuously expand its anno-
tation capabilities.

Another encoder-only transformer TOSICA [14] is

applied for annotating cell types in scRNA-seq data.
Unlike scBERT, which uses self-supervised pretraining,
TOSICA is trained directly on labeled data without
pretraining. While CANAL emphasizes continuous
learning, TOSICA excels in one-time annotation. It
effectively handles batch effects without needing
explicit batch information, offering interpretable in-
sights at both gene and pathway levels, making it useful
for trajectory analysis and dataset integration.

Geneformer [15] (40M parameters, 30M cells) dem-

onstrates superior performance in cell type annotation
and gene function prediction over other single-cell
transcriptomics LLMs [16], including scBERT (5M
parameters, 1M cells), due to their larger model sizes
and extensive pre-training data (Figure 2). Geneformer
also surpasses scGPT due to ranking genes based on
importance, which enhances its ability to prioritize
distinguishing genes while minimizing the effects of
housekeeping genes and technical artifacts.

These pre-trained models, initially trained on human

cells, can be fine-tuned for plant studies to improve cell-
type annotation in plant scRNA-seq datasets. As
encoder-only models, they specialize in understanding
and annotating existing data without the ability to
generate new data like GAN or scGPT, making them
particularly well-suited for clustering and classification
tasks in single-cell RNA-seq data (Figure 1).
Enhancing single-cell and multi-omics
analysis with other transformer [17]
architectures
Building on transformer models’ capabilities in analyzing
single-cell data, DeepMAPS [18] uses a heterogeneous
graph transformer (HGT) to infer cell-type-specific
networks from scMulti-omics data. Unlike encoder-
only or decoder-only transformer architectures, HGT
integrates multiple data types, making it ideal for
inferring complex biological networks from multi-modal
data. HGT can be applied to multi-omics plant data,
such as scRNA-seq and scATAC-seq, to uncover how

different plant cell types interact and regulate gene
expression in response to environmental factors like
drought, nutrient fluctuations, or pathogen attacks.

Recently published, scFoundation [19] is a large
pretrained model based on over 50 million scRNA-seq
www.sciencedirect.com
profiles. With an asymmetric encoder-decoder trans-
former-like architecture and 100 million parameters, it
captures complex geneegene relationships across
diverse cell types and states, excelling in tasks such as
gene expression enhancement, cell-type annotation,
drug response prediction, perturbation prediction, and
gene regulation networks (Figure 1). However, since
scFoundation is pretrained on human data, capturing

plant-specific gene interactions would require signifi-
cant retraining on plant datasets, and this process de-
mands substantial computational resources.
Solving single-cell data limitation and
sparsity with GANs
Most traditional Generative Adversarial Network
(GAN)models are not foundation models, but they offer
solutions for data sparsity in single-cell analysis by
generating synthetic data (Table 1). For example,
cscGAN [20] generates specific cell types on demand,
useful for augmenting sparse populations. scIGANs [21]
employed a CNN-based GAN to impute data by
generating synthetic cells, balancing performance be-
tween major and rare cell populations. scGGAN [22]
integrates Graph Convolutional Networks with GANs,

considering gene expression as controlled by related
genes and using both single-cell and bulk RNA-seq data
to construct a comprehensive gene relation network.

These GANmodels are useful for imputing missing data
and generating synthetic plant cell data in scRNA-seq
datasets, especially when dealing with high dropout
rates or rare cell types. They can augment small datasets
to balance cell-type representation. However, GANs can
be difficult to train and can suffer from mode collapse,
where the generator produces limited diversity in
output. They are not pre-trained and typically need to

be trained from scratch for each new dataset. To eval-
uate the quality of synthetic data, real and synthetic
datasets can be compared using UMAP or t-SNE for
clustering, gene expression correlations, gene distribu-
tion patterns, or online tools such as Root Cell Atlas
[23], Single Cell Expression Atlas [24], and Cella [25].
Enhancing spatial transcriptome data with
diffusion models
The diffusion model stDiff [26] enhances spatial tran-
scriptomics (ST) data by imputing missing gene ex-
pressions using relationships learned from scRNA-seq
data. This model employs two Markov processes: one
adds noise to gene expression data, while the other
denoises it to recover the missing portions. By inte-
grating scRNA-seq and spatial data, stDiff preserves

spatial structures and accurately reconstructs gene
expression patterns. This approach is particularly useful
for addressing the limitations in plant spatial tran-
scriptomics (Figure 1).
Current Opinion in Plant Biology 2024, 82:102666
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Opportunities and challenges for
foundation models in plant genomics
Recent plant studies have generated many single-cell
data to understand genetic perturbation, cell-type
classification, and developmental trajectories. Shahan
et al. [27] mapped over 110,000 Arabidopsis root cells,
revealing changes in cell identity due to SHORTROOT
and SCARECROW mutations. Another study [28]
investigated 210,000 Arabidopsis root cells for Brassi-
nosteroid responses, identifying HAT7 and GTL1 as key
regulators of root cell elongation and confirming the
cortex’s role in hormone-mediated cell expansion.
scBERT might be particularly useful for annotating cell

types in these mid-sized datasets, while scGPTcould be
applied for multi-batch integration and gene network
inference. In larger datasets, such as the study by Lee
et al. [29] which profiled 800,000 single-nucleus data
across various organs and developmental stages, models
like scGPT or scFoundation are ideal for fine-tuning to
predict cell types and analyze more complex gene re-
lationships. Beyond Arabidopsis, a tomato roots study
[30] profiled over 20,000 cells to investigate suberin’s
role in drought tolerance, identifying a novel cell type
called exodermis which is absent in Arabidopsis. It

would be interesting to explore how to apply foundation
models trained in Arabidopsis to identify novel cell
types in other plant species. However, the effectiveness
of this cross-species application remains an open
research question, with a main challenge being the need
to create common gene names across species.

GAN and diffusion models improve scRNA-seq data
resolution, particularly for lowly expressed genes,
benefiting plant biologists using single-nucleus
sequencing instead of protoplast-based methods.

These models improve gene detection in emerging
spatial transcriptome technologies for plants. For
example, Serrano and colleagues [31] used single-
nucleus and spatial RNA sequencing to study the sym-
biosis between Medicago truncatula and the fungus
Rhizophagus irregularis, revealing distinct transcriptomic
profiles in various root cell types. Zhu et al. [32]
employed scRNA-seq on 11,000 Arabidopsis thaliana leaf
cells, along with confocal imaging, to study responses to
Pseudomonas syringae infection, identifying a progression
from immune to susceptible host cell states. Utilizing

diffusion models like stDiff could expand the size of
spatial single-cell data, enhancing our understanding of
plantepathogen interactions.

Li and colleagues [33] explored the MIA biosynthetic
pathway in Catharanthus roseus, revealing gene clusters,
duplications, and chromatin interactions using multi-
omics approaches. With scRNA-seq, cell-type-specific
gene expression and metabolomics lead to the discovery
of a reductase for bis-indole alkaloid production. Some
metabolic genes are undetectable by scRNA-seq, but
Current Opinion in Plant Biology 2024, 82:102666
GAN models could address this limitation. Farmer et al.
[34] employed single-nucleus RNA and ATAC
sequencing in Arabidopsis roots, discovering new cell
subtypes and linking chromatin accessibility to gene
activity. A maize study [35] used scATAC-seq and
scRNA-seq on 72,090 nuclei, revealing human selection
and retrotransposons’ effects on the CRE landscape.
These studies could benefit from DeepMAPs which

enhance multi-omics analyses in plants or GAN and
GPTmodels by increasing dataset sizes, improving gene
expression detection, and facilitating cross-species gene
function predictions.

While the natural language processing capabilities of
models like ChatGPT can be fine-tuned for plant cell-
type annotation, it is unclear how to implement this
due to the unknown amount of plant science literature
in its original training. Foundation models trained on
human and mouse gene expression also face challenges

when applied to plants due to differences in gene
names. One solution is transfer learning with gene
ortholog groups to translate gene names across species.
This approach enables pre-trained models to adapt
efficiently by retraining only specific layers with plant-
specific data. This solution requires improving gene
family functional annotation and establishing association
of the individual family members with the specific
pathways or the reactions in the model plants for
important evolutionary clade. One such example is the
curated S-domain subfamily of receptor-like kinases in

rice [36]. Such analysis is crucial to be performed in
other important plant clades. Another option is fine-
tuning the entire model on plant-specific data, using
ortholog groups to bridge shared functions across spe-
cies. Lastly, a specialized approach is to train a new
model from scratch using exclusively plant data,
ensuring that the model learns plant biology directly
without relying on knowledge from human or
mouse data.
Conclusions and future directions
Many AI tools have been developed for biomedical
research in the past few years. Applying foundation
models could significantly enhance single-cell data
availability and extend their applications to various plant
species, improving our understanding of biological pro-
cesses in plants and eventually leading to improved crop

production. Beyond single-cell genomics, foundation
models have been applied in genotyping and pheno-
typing analysis as well. For example, foundation models
for sequence homology search [37], genome annotation
[38], data mining [39,40], and image analysis [41] have
surpassed the traditional machine learning models.
Notably, the ability to perform “few-shot” and “zero-
shot” learning, where models make accurate predictions
with minimal or no task-specific data, is a unique
advantage of new foundation models. In the coming
www.sciencedirect.com
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years, adopting foundation models from other domains
offers major opportunities for plant science. Expert
curation of gene families and gold-standard sets of gene
functions, such as gene ontology and plant ontology
[42], are urgently needed to help fine-tune these novel
foundation models for plants. These capacities hold
great promise to democratize advanced AI use in both
plant biology research and agriculture production.
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