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ABSTRACT

Diet profoundly influences the composition of an animal's microbiome, especially in
holometabolous insects, offering a valuable model to explore the impact of diet on gut microbiome
dynamics throughout metamorphosis. Here, we use monarch butterflies (Danaus plexippus),
specialist herbivores that feed as larvae on many species of chemically well-defined milkweed
plants (Asclepias sp.), to investigate the impacts of development and diet on the composition of
the gut microbial community. While a few microbial taxa are conserved across life stages of
monarchs, the microbiome appears to be highly dynamic throughout the life cycle. Microbial
diversity gradually diminishes throughout the larval instars, ultimately reaching its lowest point
during the pupal stage and then recovering again in the adult stage. The microbial composition
then undergoes a substantial shift upon the transition from pupa to adult, with female adults having
significantly different microbial communities than the eggs that they lay, indicating limited
evidence for vertical transmission of gut microbiota. While diet did not significantly impact overall
microbial composition, our results suggest that fourth instar larvae exhibit higher microbial
diversity when consuming milkweed with high concentrations of toxic cardenolide
phytochemicals. This study underscores how diet and developmental stage collectively shape the

monarch's gut microbiota.
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INTRODUCTION

Like most animal and plants, insects form symbiotic relationships with microbial
communities. The microbial residents can be seamlessly integrated into insect biology and
ecology, and microbes play an essential role in the lives of the majority of insect species (Douglas,
2022). Insect gut microbes, for example, affect insect development (Sommer and Béckhed, 2013;
Lietal.,2023), digestion (Marcobal et al., 2011; Brune, 2014), behavior (Heijtz et al., 2011; Wong
et al., 2017) detoxification of harmful substances (Berasategui et al., 2017; Siddiqui et al., 2022)
and defense against natural enemies (Piel, 2002; Ramirez ef al., 2014). Gut microbiota function
relies on the specific composition of microbes, which is composed of beneficial symbionts, as well
as pathogens and commensals (Dillon and Dillon, 2004). Several factors influence composition,
including insect host species, environmental conditions, genetics, social interactions, immune
responses, maternal transmission, diet and exposure to antibiotics (Douglas, 2011; Hasan and
Yang, 2019). While less explored, insect development also influences the composition and

function of the gut microbiota (Pernice et al., 2014; Hammer and Moran, 2019).

For microbes, the insect gut can be a hostile environment. This may especially be the case
for holometabolous insects, which undergo complete metamorphosis through egg, larval, pupal,
and adult stages. Each developmental transition involves shedding of the cuticle (ecdysis) and
often substantial turnover and transformation of the inner gut cuticle (foregut and hindgut)
(Cracraft and Donoghue, 2004). As such, metamorphosis may radically remodel the morphology,
biochemistry and chemical attributes of the digestive system (Engel and Moran, 2013).
Consequently, in early developmental stages, the gut microbiomes of insects undergo ecological

succession and turnover, during which bacteria establish colonies, engage in cooperative
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interactions and compete for spatial dominance (Hammer and Moran, 2019; Figueiredo and
Kramer, 2020). These dynamics eventually result in the establishment of a more stable microbial
community in the adult stage, often differing significantly from that in the larval stages (Hu et al.,
2013; Zhang et al., 2018; Augustinos et al., 2019; Wang et al., 2019, 2023; Yao et al., 2019; Xue

etal.,2021; Lietal., 2022,2023).

In conjunction with developmental metamorphosis, alterations in diet can exert significant
influence on the gut microbiota, leading to the elimination of certain microbes and the promotion
of others (Luo et al., 2021; Brunetti et al., 2022). The profound impact of diet on the gut
microbiome has been observed in numerous insects, including Indian fruit flies (4nastrepha
obliqua) (Cardenas-Hernandez et al., 2023), cereal leaf beetles (Oulema melanopus) (Wielkopolan
etal.,2021), rainbow stag beetles (Phalacrognathus muelleri) (M. Wang et al., 2020), dung beetles
(Copris incertus) (Suarez-Moo et al., 2020), and European firebugs (Pyrrhocoris apterus)
(Sudakaran et al., 2012). Furthermore, the synergistic effect of diet and life stage has been
observed in several lepidopteran species, where the two feeding stages (larva and adult) have
drastically different diets—generally, solid plant foliage for larvae and liquid nectar for adults—
resulting in distinct microbial communities (Hammer ef al., 2014; Phalnikar et al., 2018; Gohl et

al., 2022).

Lepidoptera usually have simple guts, comprising a midgut protected by a peritrophic
matrix, which fosters a relatively uncomplicated and nonspecific microbiome (Paniagua Voirol et
al., 2018; Mason, 2020). Despite this simplicity, gut microbial communities in lepidopteran

species vary not only across species but also between populations, individuals, and even sexes
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(Chen et al., 2016; Staudacher et al., 2016; Paniagua Voirol et al., 2018; X. Wang et al., 2020; Fu
et al., 2023). Some of this variation is driven by diet, and particularly larval host plant diet, which
can vary both within and between insect species. For several lepidopteran species, alternative
larval diets lead to the colonization of distinct gut communities (Broderick et al., 2004, 2004;
Pinto-Tomas et al., 2011; Staudacher et al., 2016; Whitaker et al., 2016; Phalnikar et al., 2018).
While some of this variation may be imposed by nutritional differences, it may also result from
changes in plant phytochemistry, particularly for insect species that sequester and accumulate toxic
secondary metabolites from plants. These metabolites, including alkaloids, phenolics, and cardiac
glycosides, impose not only dietary challenges to their microbiota but also select for survival and
detoxification in close proximity to these poisonous chemicals (Shikano et al., 2017). Despite the
potential importance of life stage and diet in shaping the microbiota of lepidopteran species, studies

to test their combined effects remain lacking (Smilanich and Muchoney, 2022).

Here, we focus on how developmental stage and larval diet influence gut microbiome
composition of a specialized butterfly that has been a model for studies of herbivore-plant
interactions, secondary metabolite sequestration, migration, and disease ecology (Ehrlich and
Raven, 1964; Bradley and Altizer, 2005; de Roode et al., 2008; Agrawal et al., 2009; Zhan et al.,
2011; Gowler et al., 2015). Monarch butterfly (Danaus plexippus) caterpillars are specialist
herbivores, feeding exclusively on milkweed plants (mostly in the genus Asclepias). Milkweed
species vary in their concentrations of cardenolides, toxic secondary chemicals that monarchs can
sequester to make themselves unpalatable to predators (Brower and Calvert, 1985; Holzinger et
al., 1992; Martin et al., 1992). High-cardenolide diet also provide protection against the virulent

protozoan parasite Ophryocystis elektroscirrha (Hoogshagen et al., 2023), and infected monarchs
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preferentially oviposit on high-cardenolide plants, reducing infection in their offspring (Lefévre et
al., 2010, 2012). Consuming cardenolides boosts monarch butterfly survival against the parasite
but simultaneously suppresses their immunity, as evidenced by decreased melanization,
phenoloxidase activity, hemocyte numbers, and downregulation of immunity-related genes (Tan
et al., 2019; Decker et al., 2021). This dual effect may involve direct toxicity to the parasite, but
the suppression of the pathogen could also be driven by alteration to the microbiota, as observed
in other lepidopterans, such as common buckeyes (Junonia coenia) (Smilanich et al., 2018) and

Melissa blue butterflies (Plebejus melissa) (Yoon et al., 2019).

Until now, there have been limited efforts to understand the diversity and composition of
monarchs’ microbiota. Recent comparisons of microbiota of second instar monarch larvae feeding
on different plants (4. curassavica and A. syriaca), revealed no host plant-related differences in
microbial diversity but did reveal differences in microbial composition (Hansen and Enders, 2022).
The study also highlighted the similarity between the microbiota of the second instar larvae and
the rhizosphere microbiome of milkweed plants, suggesting an environmental influence on
monarch gut microbiota. Beyond these findings, there is a knowledge gap as to how monarch

microbiota change during and across life stages and how diet influences these changes.

Here, we characterize gut microbial communities and quantify bacterial load across the
monarch lifecycle, encompassing parental adults (Fi) and their offspring eggs, all larval instars,
pupae, and offspring adults (F2), as well as larval frass. We reared larval monarchs on two species
of milkweeds that vary widely in their concentrations of cardenolides but are similar in nutrient

content: low-cardenolide 4. incarnata and high-cardenolide 4. curassavica (Tao et al., 2014). In
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light of other studies on lepidopteran species conducted thus far, we discuss the significance of our
findings, indicating the role of the environment and host plant chemicals in shaping the monarch’s

gut microbial community.

RESULTS

Membership of the Monarch Gut Microbiome

After quality filtering and preprocessing, we obtained 3,352,317 reads representing 1319
ASVs from a total of 160 samples, including 11 egg samples (20 eggs/sample), 105 larval guts, 21
larval frass samples, 9 pupal guts, and 14 adult guts (see Figure 1 and Table S1 for sampling
scheme). Filtering out Archaea, mitochondria, and chloroplast sequences resulted in 1071
remaining ASVs representing the bacterial microbiota. Dominant families were Acetobacteracae,
Alcaligenaceae, Bacillaceae, Brevibacillaceae, Enterococcaceae and Erwiniaceac. Of note,
Acetobacteraceae and Alcaligenaceae were common in adults but rare in all other life stages, while

Enterobacteriaceae and Erwiniaceae dominated the immature stages (Figure 2A).

Considering all life stages, a strain of Enterobacter was the most prevalent ASV in our
dataset, present in all egg samples (11/11) and majority of larval (104/105), frass (20/21), and
pupal (8/9) samples, albeit often at low relative abundance. The relative abundance of
Enterobacter sp. increases in the later larval instars and becomes dominant during the pupal stage.

This strain also exhibited high prevalence, though low relative abundance, in adult samples (12/14).

Pantoea sp. is also highly prevalent and extremely abundant, making it very dominant

especially across immature stages samples (Figure 2B-C). It was detected in all eggs (11/11) and
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the majority of larval (98/105), frass (21/21), and pupal samples (5/9), but was relatively rare in

adults (7/14).

In fifth instar larvae, while many microbial taxa observed in previous instars seem to be
lost or present in a very low abundance almost all samples show a high abundance of either
Enterobacter sp., Pantoea sp., or a co-occurrence of both, with one strain often dominating the
other. Additionally, a few samples exhibit a high abundance of Enterococcus sp. (3/22) (Figure

2B). This pattern is also observed in frass samples from fifth instar larvae.

Asaia appear characteristic of the adult microbiota. In all adults (F; and F»), three strain
belonging to the genus Asaia (Family Acetobacteraceae) was consistently observed, irrespective
of sex (Figure 2B-C). Asaia spl. prevalence was notably lower in eggs (5/11), larvae (27/105),
frass (1/21), and pupae (2/9), with very low relative abundance when detected. This suggests that
this strain may persist, albeit in reduced numbers, throughout the developmental life cycle.
Additionally, it may be acquired by adults from the environment, thus increasing its relative
abundance and our ability to detect it in adult life stages. Asaia sp2. and Enterococcus sp. were

two other dominant taxa found in adults (Figure 2B).

Changes in Microbial Community Composition and Diversity across the Monarch Lifecyle
For comparative analysis of microbial communities across various life stages and diets,

samples were rarefied to 700 reads per sample, leading to a reduced data set of 105 samples (Table

S1B) with a total of 672 ASVs. There was a significant effect of monarch life stage on the

composition of their microbial communities based on Bray-Curtis dissimilarity (PERMANOVA
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with 10,000 permutations; p < 0.001, R? = 0.26). According to Adonis pairwise comparison, no
significant difference was observed between the gut microbial communities of larvae and eggs.
However, pupae and adult butterflies possessed their own distinguishable communities, albeit with
slight overlap with that of other development stages (Table 1A, Figure 3A). This dissimilarity is
evident, with statistical support, when comparing F1 female adults and their oviposited eggs
(PERMANOVA with 10,000 permutations; p < 0.001, R? = 0.54; Figure 3D). No significant
difference was found between female and male adults (PERMANOVA with 10,000 permutations;
p =0.342, R? = 0.08) nor between F; and F; adults (PERMANOVA with 10,000 permutations; p
= 0.932, R? = 0.04). Taken together, these results emphasize differences between the microbial

community composition of mature stages (adults) and immature stages (eggs and larvae).

The DESeq?2 results (Table S2) show that strains with a mean abundance over 30, including
Enterobacter sp., Asaia sp., and Pantoea sp., exhibit significant differences across life stages,
underscoring the role of these strains in shaping microbial community shifts (Figure 2). In addition,
the presence, absence, and changing abundance of less abundant strains (with mean abundance
between 25-30 reads) also contribute to the distinctiveness of microbial profiles at certain life
stages (Figure S2-S5, Table S2). Notably, there is a significant higher abundance of Pantoea sp.,
Enterobacter sp., Bacillus sp., Enterococcus spl and Paenibacillus, and Staphylococcus genus in
egg and larval samples compared to adults (Figure S2). During the transition to the pupal stage,
Enterobacter sp. becomes dominant. Moreover, pupae have significantly lower abundances of
Bacillus sp., Staphylococcus sp., and Paenibacillus sp. compared to larvae, and lower abundance
of Asaia sp. compared to adults. In the adult stage, the genus Asaia is dominant, with Enterococcus

sp2 and Serratia sp. also present to a lesser extent (Figure S2).
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Bray-Curtis dissimilarity testing revealed non-significant community differences among
larval instars (PERMANOVA with 10,000 permutations; p = 0.12, R? = 0.07). Adonis pairwise
comparisons indicated that significant dissimilarities were observed only in the fifth instar, which
differed significantly from all instars except the fourth (Table 1B, Fig 3B). The emergence of very
low abundance of Serratia sp. and the increasing abundance of Enterobacter sp. in the fourth and

fifth instars could explain the differences observed between later and earlier instars (Figure S2).

To better understand whether the bacterial communities within larval frass reflect those in
larval guts and/or predict those in pupal guts, we compared the microbial community composition
of frass excreted by fifth instars close to pupation to that of late fifth instar larvae and pupae
(PERMANOVA with 10,000 permutations; p < 0.001, R* = 0.18, see Figure 3D). There was
apparent overlap between the larval frass and larval gut community compositions (Adonis pairwise
comparison, 10,000 permutations; p = 0.7, R? = 0.02). The fifth instar larvae share the same
dominant strains as the frass, but with different abundances (Figure S4). There were significant
differences between the microbial communities of larval frass and pupae (Adonis pairwise
comparison, 10,000 permutations; p =0.001, R*=0.41), which is consistent with the fact that there
were also significant differences between the microbial communities of fifth instar larvae and
pupae (Adonis pairwise comparison, 10,000 permutations; p = 0.003, R? = 0.38). In the pupal
stage, some larva-specific strains, such as Bacillus sp and Paenibacillus, as well as the genus
Staphylococcus, are lost. However, a few adult-specific strains, such as Enterococcus spl and

Asaia sp3, appear (Figure S2-S4).
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The measurement of microbial Shannon diversity revealed a pattern wherein eggs exhibit
high diversity (Figure 4A). However, it is important to note that egg samples were pooled, so their
diversity cannot be independently compared with other stages. Microbial diversity fluctuated
throughout the larval stages but tended to decrease overall from the first instar to the fifth instar
(Figure 4B), reaching a minimum in the pupal stage and then recovering in adults (Figure 4A).
While this pattern of changing microbial diversity is visually evident in the graphs, comparison of
Shannon diversity by pairwise post-hoc tests indicated that these differences in diversity were only
significant for comparisons between pupa and F; adults (Table 1A) and between third and fifth
instar larvae (Table 1B). Consistent with Shannon diversity, the results for bacterial richness
exhibit a similar pattern. Pairwise comparisons of bacterial richness indicate that pupae have the
lowest richness, which is significantly different from that of larval instars (Table 1A). However,
no significant differences were observed in microbial richness among any of the larval instars

(Table 1B).

Influence of Host Plant Diet on the Larval Gut Microbiome

When considering all larval instars, host plant diet had no significant effect on the
community composition of gut microbiomes (PERMANOVA with 10,000 permutations; p =
0.110, R? = 0.05; Figure 3C). The analysis of Shannon diversity among developmental stages
comparing host plants was conducted using the Kruskal-Wallis test. Shannon diversity did not
show a significant difference between larvae fed on 4. curassavica and A. incarnata (p = 0.1 Figure

4C). However, when considering individual larval instars, fourth instar larvae fed on A.

11
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curassavica had more diverse gut microbiomes than those fed on A. incarnata (Figure 4C; Table

10).

DESeq2 analysis indicates that none of the strains show significant differences in
abundance between larval stages when comparing the two diet groups, with a threshold of mean
abundance set at 25. However, visual examination of their microbial profiles reveals some
descriptive differences between the two groups, such as variation in microbial prevalence,
although these differences are not statistically significant (Figures 2B and S3). For example, larvae
feeding on A. incarnata appear to exhibit a higher prevalence of Pantoea sp across all stages
(expect third instar), with an apparent increase in Asaia sp during the first and second instars. In
contrast, larvae feeding on A4. curassavica tend to show a greater dominance of Enterococcus sp
and Paenibacillus sp2 in the later stages, particularly the fifth instar. Additionally, Massilia sp is

consistently present in all larval instars of the 4. curassavica group but absent in the 4. incarnata

group.

Overall Microbial Densities

The quantification of 16S V4 rRNA copy numbers was conducted for all life stages
individually, including each egg sample (rather than pooling of 20 eggs per sample). The results
revealed a significant difference in 16S rRNA copy numbers across different life stages (one-way
ANOVA, F=5.346, p <0.001; see Figure 5A). Further pairwise comparisons indicated significant
differences between the egg and all other life stages, with the eggs exhibiting the lowest bacterial
abundance (Figure 5A, Table 1D).When focusing on larvae, quantification of 16S copy number

revealed a significant difference among instars (one-way ANOVA, F = 4.126, p = 0.004), with

12
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significantly lower bacterial abundances in the first instar compared to the second, third, and fifth

instars (Table 1E; Figure 5C).

There was no significant difference in bacterial load among larval instars based on the
larval milkweed diet (one-way ANOVA, F = 1.048, p = 0.308; Figure 5D). However, when
comparing each instar separately, first instar larvae fed on A. curassavica had a lower bacterial
load compared to those fed on 4. incarnata (Table 1C). Additionally, when comparing the bacterial
load between fifth instar guts, fifth instar frass samples, and pupal guts, we found that the bacterial
load in frass samples was significantly higher than that in larval and pupal gut samples (one-way
ANOVA, F=12.95, p <0.001; Figure 5D). There was no significant difference between pupal gut

and frass samples (T-test, p = 0.91).

DISCUSSION

High fluctuations in microbial composition and diversity among individual lepidopterans
(Robinson ef al., 2010; Hammer ef al., 2014; Minard et al., 2019) and other insects (Gupta and
Nair, 2020; Muratore ef al., 2020; Suenami et al., 2023) emphasize the need for robust and ample
sampling in microbiota research. Our study, based on 160 samples from eggs, larvae (including
frass), pupae, and adults, serves as a robust case study, allowing a comprehensive exploration of
microbial shifts and diversity patterns in monarchs with relation to two key potential drivers of
microbiota composition: host development and host diet. We find that both developmental stage,
and diet influence key measures of microbiota composition, diversity, and abundance in this

tractable animal model.

Overall pattern of microbial diversity across monarch development

13
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In monarchs, the most apparent influence of microbiome development is that composition
of adult gut microbial communities differ from those of all other life stages. These differences
likely are driven by the drastic dietary shift that comes with adulthood, from feeding on milkweed
foliage as larvae to feeding on liquid (here, sucrose solution) as adults. This has been seen in other
lepidoptera, including Western bean cutworms, (Striacosta albicosta) (Ayayee et al., 2022),
European corn borers (Ostrinia nubilalis) (Belda et al., 2011), domesticated silkworms (Bombyx
mori) (Chen et al., 2018) and red postmen (Heliconius erato) (Hammer et al., 2014). Consistent
with the hypothesis that dietary shifts drive changes in the microbiota, similar shifts are not seen
in species where adults do not feed, such as the Indianmeal moth (Plodia interpunctella)
(Mereghetti et al., 2019).

Patterns of changes in microbial community diversity across lepidopteran development
differ across species. Several previous studies of lepidopteran microbiome diversity have revealed
a ‘U-Shaped’ pattern of diversity, with diversity decreasing from egg to pupal stages before
recovery upon maturation to adult. This trend has been reported for the European corn borer (Belda
etal.,2011), the Western bean cutworm, (Ayayee et al., 2022) and the Fall armyworm (Spodoptera
frugiperda) (Fu et al., 2023). However, some lepidopterans exhibit a different pattern, in which
diversity tends to drop in adulthood, as seen in the domesticated silkworm (Chen ef al., 2018),
Oriental fruit moth (Grapholita molesta) (X. Wang et al., 2020) and greater wax moth (Galleria

mellonella) (Gohl et al., 2022).

For monarch’s gut microbiome, our data exhibit a general U-shaped pattern of diversity, wherein

the lowest diversity is observed in pupae (Figure 3). However, caution is needed when interpreting
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the diversity of eggs compared to other stages. Each egg sample consisted of a pool of 20

individuals, potentially introducing a bias toward increasing diversity in these samples.

A focus on eggs

In contrast to Kingsley (1972), who suggested that monarchs lack egg microbiota, our research
reveals that monarch eggs do indeed host bacteria. This difference is not surprising, as Kingsley
used culture-based methods to quantify microbes, whereas we used sequencing to capture both
culturable and unculturable microbes. However, the source of these microbes is not clear. The first
common assumption is that all or part of this microbiota is maternally transferred to eggs, as
reported in some lepidopteran species (Freitak et al., 2014; Mereghetti ef al., 2019). This is often
indicated by the similarity between the microbiota compositions of female adults and eggs, and
the presence of common microbial taxa, a phenomenon observed in various species, including
silkworms (Chen ef al., 2018), greater wax moths (Gohl et al., 2022), beet armyworms (Gao et al.,
2019) and fall armyworms (Fu et al., 2023). It has also been observed through experimental study
of the transmission of fluorescently tagged bacteria; in one such study, labeled Enterococcus were
consistently observed in all life stages and generations of Egyptian cotton leafworm (Spodoptera
littoralis) (Teh et al., 2016). In contrast, other studies have found environmental transmission to
be more important than maternal transfer, such as in S. albicosta, where the microbiota of eggs are
very similar to those on leaves of their corn host plant (Ayayee et al., 2022). Our findings indicate
that monarch egg-associated communities, primarily dominated by Erwiniaceae and
Enterobacteriaceae, exhibit greater similarity to larval gut communities than those of their mothers.
This suggests that environmental acquisition may be common. This observation may also account

for the low microbial load in monarch eggs compare to other stages (Table 1D). We did, however,
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find that Enterobacter sp., was consistently present across all stages (although in low relative
abundance, especially in egg and larva stages), suggesting potential vertical transmission
throughout the dynamics monarch lifecycle. Additionally, Pantoea sp., prevalent in the egg, larval,
and pupal stages at high relative abundance, and Asaia spl., prevalent in the adult stages, were
both found in all other stages, albeit at low frequency of occurrence and relative abundance.
Altogether, these findings suggest the existence of a prevalent microbiome whose members’

abundances change with the developmental and dietary shift associated with adulthood.

Across larval instars

As monarch larvae progress through five instar stages, they dramatically increase in size and
consume more food, likely creating a different niche for bacterial intake and growth. As such,
drastic changes between microbial communities of early and later larval instars have been shown
in several lepidopteran case studies (Mason and Raffa, 2014; Chen et al., 2018; Gohl et al., 2022).
However, our findings reveal a nuanced picture. While the microbial community composition of
monarch larval guts appears to remain relatively stable throughout larval development (Figure 3B),
we observed contrasting trends in microbial diversity and abundance (Figure 4B and 5C).
Specifically, microbial diversity tends to decrease, while microbial abundance tends to increase
from the first to the fifth larval instar. It is noteworthy that these changes occur gradually and,
when considering the broader context, are statistically supported only between the first and fifth

Instars.

Fifth instar larvae excrete large amounts of frass before morphing into pupae, which may partly

explain the overall reduction in gut microbial diversity observed in fifth instar larvae (Figure 4).
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Frass samples contained a higher microbial load compared to fifth instar larvae and other stages,
possibly due to the frass environment being less stringent and more conducive to microbial
proliferation than the gut environment. The microbial composition of frass may also provide
insights into the level of dependency of gut microbiota on diet and environment. For instance, the
frass of the Melissa blue butterfly includes microbiota that significantly differs from larval
microbiota and is more similar to plant microbial communities (Chaturvedi et al., 2017). This
suggests a higher stability and lesser dependence on diet for the Melissa blue microbiota compared
to monarchs, where the microbial community found in frass resembles that of the gut. Future work,
of course, should assess the microbial communities of milkweed plants for comparison to the

microbial communities associated with monarchs across their lifecycle.

The final steps: from pupa to adult

In almost all existing lepidopteran studies, the lowest diversity of microbiota is observed
in pupae (Johnston and Rolff, 2015; Phalnikar ez al., 2018). This could be explained by the purging
of gut contents before pupation, the drastic reorganization of body tissues and the non-feeding
state of this life stage. Upon enclosing, most adult lepidoptera begin to feed, which is expected to
lead to changes in microbial composition and increases in both diversity and abundance. In our
study, pupae had the lowest diversity of gut microbes, with a shift in microbial community from
that of larvae characterized by a dominance of Enterobacter sp over Pantoea sp (Figure 2C). As
expected, diversity recovered in adults. This increase in diversity is in tandem with a change in
composition (Figure 3A), and may be driven by increases in the abundance of specific taxa, such
as three strains of Asaia. Since Asaia is common in plant nectars (Lenaerts et al., 2017; Bassene

et al., 2020), as well as in insects that feed on sugary nectar and plant sap ((Bassene et al., 2020)
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(Gonella et al., 2012, 2012; Li et al., 2019) and even in several lepidopterans (Robinson et al.,
2010; Gao et al., 2019; X. Wang et al., 2020), a substantial part of this shift may be driven by
differences in the nutritional composition of leaves and sugary liquids (Shao et al., 2024). While
in our study adults were fed a diet consisting only of sugar, in natural populations, adults feed on
various nectars, and are therefore expected to have different compositions and diversity of

microbiota.

The effect of plant diet, with a focus on plant chemistry

Even though the composition of lepidopteran’s prevalent microbiota can exhibit
independence from diet (Whitaker et al., 2016), certain lepidopteran species display notable
variations in microbiota composition when consuming different host plant diets. Examples include
corn earworm (Helicoverpa zea) (Jones et al., 2019), cotton leafworm (Spodoptera littoralis) and
cotton bollworm (Helicoverpa armigera) (Tang et al., 2012) and European gypsy moth (Lymantria
dispar) (Mason et al., 2015). This trend becomes more pronounced when multiple generations of
insects are exposed to a controlled diet, as seen in rice leaffolder (Cnaphalocrocis medinalis)
feeding on either rice or maize (Yang et al., 2022), and S. /ittoralis larvae feeding on either cabbage

or cotton (Roy et al., 2023).

Our results indicate that the gut microbiota of fourth instar larvae feeding on A.
curassavica, which contains higher concentrations of cardenolides, are more diverse than those of
individuals feeding on A. incarnata. Additionally, first instar larvae feeding on A. curassavica
exhibited significantly lower microbial abundance compared to those feeding on A4. incarnata (Fig

5D). Changes in the presence of particular strains or the prevalence of common strains due to the
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feeding groups are also detectable; for instance, Massilia sp is present only in the 4. curassavica
group, while Pantoea sp shows a higher prevalence in the 4. incarnata group (Figure S3).Since
the milkweed species used here are similar in nutrients but differ greatly in toxic cardenolides (Tao
etal.,2016), it is possible that the chemical properties of these plants contribute to slight alterations
in gut microbial diversity and composition. In a similar study comparing the influence of different
milkweed species (4. syriaca and A. curassavica) on the microbiota of second instar monarch
larvae, caterpillars feeding on these plants exhibited similar microbial diversity but different
microbial composition (Hansen and Enders, 2022). The study reported different dominant bacterial
families than we observed in our study, and identified Enterobacteriaceae as a rare family (Hansen
and Enders, 2022). In contrast, Enterobacteriaceae, which includes the genera Enterobacter and
Pantoea, was the most prevalent family in our dataset. Variability in findings may stem from
differences in study design, original monarch populations, and plant species. Our study design
included plants growing in the same soil sample, which may contribute to greater similarity in the
microbial environment of the two groups. Additionally, this suggests that other unknown factors
might influence the shaping of the monarch's microbiome. These results highlight the need for
more comprehensive studies in controlled environments to elucidate the underlying mechanisms
and emphasize the necessity of studying microbiomes across diverse populations to obtain a clearer

picture.

In conclusion, our study significantly advances our understanding of the dynamic
monarch gut microbiome by characterizing microbial communities, quantifying bacterial loads
across developmental stages, identifying prevalent microbiota, and assessing the impact of

alternative larval diets. We found that adults, eggs/larvae, and pupae form three distinct microbial
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communities, with pupae exhibiting the lowest diversity and adults the highest. Our findings
suggest that while environmental factors influence microbiota shifts, certain microbial taxa may
persist, indicating potential maternal transfer and maintenance within the monarch population.
Furthermore, diets rich in cardenolides have the potential to reduce bacterial loads in early larval
development and to increase gut microbiome diversity in later larval stages. Further studies are
needed to determine the transmission route of monarch microbes, how monarch microbiota varies
in nature and the importance of the microbiota for monarch life history traits and protection against

pathogens (Smilanich et al., 2018).

MATERIALS AND METHODS

Insect rearing

The monarchs used in this study were descendants of individuals collected from St Marks,
Florida, US. Several generations had been lab reared prior to this experiment. To minimize the
possibility of carryover effects from the parental diet, ten adult individuals from four lineages were
fed on sterile 20% sucrose solution, a common lab diet; these adults are referred to hereafter as the
P generation. P adults were mated with the opposite sex of another lineage. Once mated, five P
females of the same lineage were placed in a single butterfly cage (two cages per lineage)
maintained in the greenhouse and oviposited on either milkweed food plant species, A. incarnata
or A. curassavica. Their eggs (the F1 generation) were collected and once hatched, the larvae were
fed on either of the two host plants and reared to adulthood. F; adults were fed sterile 20% sucrose
solution and placed in a single butterfly cage (two cages per lineage) maintained in the greenhouse.
They were ovipositing on either one of two milkweed species, A. incarnata or A. curassavica.

Oviposited eggs, recorded to be collected from either 4. incarnata or A. curassavica, seeded the
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F> generation, which is the focus of our study. F» eggs were then moved to individual plastic,
lidded cups, where they were placed on leaves of either greenhouse grown A. incarnata or A.
curassavica. Once the eggs hatched, leaves were replaced daily. Similar to P and F, F» adults from
both diets were again placed in a single cage and provided with a sterile 20% sucrose solution.
“Overall, there were four F» diet treatments differing in the plant species fed to larvae of their
parents (F1) and to them (F2) when they were larvae. The four treatments included: (1) Fi and F»
both fed on 4. incarnata (n = 27); (2) F1 fed on A4. incarnata, and F» fed on 4. curassavica (n =
27); (3) F1 and F2> both fed on A. curassavica (n =29); and (4) F1 fed on A. curassavica, and F, fed

on A. incarnata (n = 22) (see Figure 1 and Table S1.A).”

Sample collection and gut dissections

We collected parental F; adults after oviposition. Resulting F» offspring, once hatched, fed
on either greenhouse grown A. incarnata or A. curassavica. F» individuals were collected at all
developmental stages (egg, larva, pupa, and sucrose-fed adults). Due to the difficulty of extracting
DNA from individual eggs, the egg samples consisted of a pool of 20 eggs each. Sample sizes for
each developmental stages are indicated in Figure 1. From all larval instars, larvae were
euthanized with CO., then whole bodies were surface-sterilized with 95% molecular grade ethanol
for three minutes. Then, we dissected out guts of second, third, fourth and fifth instars for further
analysis; first instars were not dissected because of their small size, which prevented removal of
the gut from the rest of the animal tissue. Seven-day old pupae were handled similarly to later
larval instars though not euthanized. For adults, we clipped off the wings at the thorax, then surface
sterilized as described for larvae. Guts from larvae, pupae and adults were dissected with sterile
instruments and immediately frozen. In addition, to test if larval frass microbial communities are

reflective of their gut microbial communities, we collected frass excreted on sterilized Petri dishes
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from 21 fifth instar F»> larvae (12 fed on A. curassavica and 9 fed on A. incarnata). Each frass
sample consisted of five frass pellets. Frass samples were not surface-sterilized. All samples were

frozen at -80° until DNA extraction.

Gut Microbiome Community Profiling

DNA was extracted using the Qiagen DNeasy PowerSoil kit, following the manufacturer’s
protocols. Extractions were sent to the University of Michigan’s Center for Microbial Systems for
PCR amplification, amplicon library preparation, and high-throughput 16S rRNA sequencing. The
16S rRNA gene was amplified with barcoded dual-indexed primers 515F and 806R specific to the
V4 region. The PCR cycle consisted of two min at 95°C, followed by 30 cycles of 95°C for 20 s,
55°C for 15 s, and 72°C for five min, followed by 72°C for 10 min. PCR reactions were
normalized, pooled, and quantified for amplicon library preparation. Libraries were sequenced on
an [llumina MiSeq platform with 250bp paired ends. A mock community was co-sequenced
(ZymoBIOMICS™ Microbial Community DNA Standard) to determine the sequencing error rate,
which was 0.0082%.

Raw bacterial sequences were processed and analyzed in qiime2 v 2019.7 (Hall and Beiko,
2018). Once the primers were removed the reads were merged and trimmed, sequences less than
250bp or greater that 289bp in length were removed from analysis. Quality filtering was performed
using DADA2 (Callahan et al., 2016) and subsequently a Bayesian V4 specific classifier was
designed to taxonomically identify the amplicon sequence variants (ASV’s) using the SILVA v132
reference database (Quast ef al., 2013). Visualizations and all statistical tests of sequence data were
performed in R v4.2.1 (R Core Team, 2022) using packages phyloseq (McMurdie and Holmes,

2013), vegan (Dixon, 2003), pairwiseAdonis v0.4 (Martinez Arbizu, 2020), and giime2R (Bisanz,
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2018). For generating figures and conducting statistical analysis, and particularly to minimize the
effect of sample size bias, samples were normalized to 700 reads per sample, resulting in a
reduction of sample size (Table S1). Based on the rarefaction curve plot generated in R using
phyvloseq and vegan packages (Figure S1), rarefying to 700 reads indicates a negligible loss of
diversity. The curves show that increasing sequencing depth beyond 700 reads yields few new
types of ASVs, suggesting that rarefying to 700 reads is sufficient for detecting high-abundance

microbial taxa.

Analysis of Community Structure and Diversity

For the analysis of taxonomic composition of each sample, the ASV’s in the datasets were
classified using a qiime2 V4 classifier. Bray-Curtis distances between all communities were
calculated and the significance of clustering at the community level was tested for both metrics
using the Adonis function implemented in the VEGAN package, including taxonomy, life stage
and diet as possible variables. The PERMANOVA (Permutational Multivariate Analysis of
Variance) non-parametric test implemented in R was used to assess differences in microbial
community composition between developmental stages (egg, larva, pupa, and adult). The primary
objective was to understand broader microbial dynamics throughout the life cycle, addressing
questions such as how microbial diversity changes between stages, indications of plausible vertical
transmission and/or environmental acquisition. For the focused analysis on larval instars,
PERMANOVA examined differences across the five larval instars to monitor progressive changes
and identify potential microbial shifts linked to larval development stages. To identify strains
driving these differences, DESeq2 (R package) (Love et al., 2014) was used for differential

abundance analysis, performing pairwise comparisons between developmental stages and filtering
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significant results with a p-value cutoff of <0.05. Strains with a baseMean (average abundance)
greater than 25 were included in order to focus on biologically relevant features, excluding low-
abundance strains.

Microbial diversity within each sample was estimated using the Shannon diversity index at
the ASV level, calculated with the 'phyloseq' package in R. Due to the non-normal distribution of
the data, as determined by Shapiro-Wilk test implemented in R (p > 0.05), non-parametric tests
were employed for comparisons. The analysis of Shannon diversity among developmental stages
was conducted using the Kruskal-Wallis test to assess overall differences in Shannon diversity
values among groups. Subsequently, pairwise post-hoc tests with Holm correction were performed
to identify specific differences between pairs of developmental stages. In addition to Shannon
diversity, bacterial richness was also estimated to provide a more comprehensive understanding of
the microbial community structure. Using both Shannon diversity and bacterial richness allows us
to capture the complexity of the microbial community (richness and evenness) as well as the actual
number of distinct microbial taxa. Bacterial richness was estimated by counting the number of
observed ASVs within each sample, also using the 'phyloseq' package in R. Similar to the Shannon
diversity analysis, the richness data were tested for normality using the Shapiro-Wilk test, and due
to non-normal distribution, non-parametric tests were applied. For the larval stages, the Kruskal-
Wallis test was used to evaluate overall differences in observed richness among larval instars,
followed by pairwise Wilcoxon tests with Holm correction to identify specific differences between

pairs of larval instars.

Quantitative PCR and Analysis of Bacterial Load
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To determine differences in bacterial sequence abundance between developmental stages
and larval instars fed on 4. incarnata and A. curassavica, mean copy numbers of 16S rRNA genes
in a subset of samples were estimated using qPCR (n = 138). Each sample was amplified in
triplicate, except for four samples amplified in duplicate due to lack of DNA, with the same 16S
rRNA primers used for PCR amplification (515F and 806R). Primers and reaction conditions are
described in (Cariveau et al., 2014). Standard curves were calculated using purified genomic E.
coli DH10B cells (ThermoFisher Scientific). To calculate the starting copy number for the standard
curve, we used the copy number calculator for real time PCR (Science Primer online platform,
www.scienceprimer.com) and generated the standard curve in relation to the serial dilution of 1:10.
The standard copy number started at 1.6 x10!! and was diluted down to ~1.6 x 10*. No samples
were considered out of range. The estimated mean absolute copy number across triplicates, and in
four cases duplicates, was used for analysis of bacterial load. To estimate individual samples from
pooled egg samples, the 16S rRNA copy numbers were initially divided by 20. Subsequently, the
log10 values of each resulting sample were calculated. These logl0 values were then utilized for
statistical analysis. Shapiro-Wilk normality tests did not reject the null hypothesis, indicating that
the data approximated a normal distribution (p > 0.05). Therefore, parametric tests were employed
for comparison. Specifically, One-way ANOVA followed by T-tests with corrected p-values using
the Holm method were used to assess differences in bacterial loads among developmental stages,

larval instars, and diets.

Data Availability

Raw sequence reads are available on NBCI’s Sequence Read Archive under project

PRINAg16827.
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Figure 1. Schematic of experimental design, depicting the diets received for each group in
colored circles (red for 4. curassavica and pink for A. incarnata). The numbers within each
circle represent the sample size for microbial metabarcoding. F» diet treatments include (1) F;
and F2 on 4. incarnata (n=27), (2) F1 parent on A. incarnata and F; offspring on 4. curassavica
(n=27), (3) F1 and F> on 4. curassavica (n =29), and (4) F1 parent on 4. curassavica and F»
offspring on A. incarnata (n = 22). Frass samples (not shown in figure) were collected from
fifth instar larvae, and each egg sample consists of a pool of 20 eggs.
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Figure 2. Microbial community composition across developmental stages, A. based on top 25
most abundant families, and B. based on the top strains (ASVs) with a mean abundance of over
0.1% across all samples. For the top 20 strains, see Figure S2. Monarch larvae were reared on
two host plants, A. incarnata and A. curassavica. Larvae are indicated by instar (1% to 5™).
With the exception of egg samples, which were pooled, each column represents the microbial
community within the gut of one individual. C. Mean abundance of selected strains across
developmental stages (strain colors as in B).
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Figure 3. Comparative analysis of gut microbial community variations (PERMANOVA with
10,000 permutations: p < 0.05): A. Across all developmental stages, revealing differences in
the composition of adult butterfly gut communities compared to other life stages. Except for
eggs, which are pools of whole eggs, all samples are from single individuals, and all larval
stages (first to fifth) are considered together. Eggs and first instars are based microbial
community profiling of whole individuals, while all other life stages are based on gut tissue
only. B. Across the five larval instars. C. Between two larval feeding diets, considering all
larval stages together. D. Between eggs and their F; female parent. Notably, the gut microbial
communities of female adults differ from those of their oviposited eggs, with parents being Fi
female adults fed sterile 20% sucrose water before dissection, and egg samples consisting of a
pool of 20 eggs each. E. Between the gut and frass microbial communities of the fifth instar
larva and pupa, showing overall overlap and similarity.
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Figure 4. Shannon diversity of the microbial community across A. All developmental stages,
including larvae (1st to 5th) analyzed collectively, with each point representing one sample
(pools of 20 eggs per egg sample, whole individual first instars, and individual guts for all other
life stages). B. Larval instars, considering those fed on both milkweed species, revealing higher
diversity in earlier instars. C. Larval instars based on their diets, distinguishing between A.
curassavica (high cardenolides) and A4. incarnata (low cardenolides).
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Figure 5. Bacterial abundance across developmental stages, as estimated by quantitative
PCR. A. Egg samples (20 eggs per sample) have fewer bacteria than individual guts of other
developmental stages. All larval instars combined for this comparison. B. Larval frass samples
have more bacteria than larval and pupal guts. C. First instar guts have fewer bacteria than
other larval instars. D. Larval diet does not affect microbial abundance across larval instars.
Red dots (left) are larvae fed 4. curassavica, and pink (right) are larvae fed A. incarnata. Points
represent individual samples, and horizontal bars represent means.
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