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ABSTRACT  42 

Diet profoundly influences the composition of an animal's microbiome, especially in 43 

holometabolous insects, offering a valuable model to explore the impact of diet on gut microbiome 44 

dynamics throughout metamorphosis. Here, we use monarch butterflies (Danaus plexippus), 45 

specialist herbivores that feed as larvae on many species of chemically well-defined milkweed 46 

plants (Asclepias sp.), to investigate the impacts of development and diet on the composition of 47 

the gut microbial community. While a few microbial taxa are conserved across life stages of 48 

monarchs, the microbiome appears to be highly dynamic throughout the life cycle. Microbial 49 

diversity gradually diminishes throughout the larval instars, ultimately reaching its lowest point 50 

during the pupal stage and then recovering again in the adult stage. The microbial composition 51 

then undergoes a substantial shift upon the transition from pupa to adult, with female adults having 52 

significantly different microbial communities than the eggs that they lay, indicating limited 53 

evidence for vertical transmission of gut microbiota. While diet did not significantly impact overall 54 

microbial composition, our results suggest that fourth instar larvae exhibit higher microbial 55 

diversity when consuming milkweed with high concentrations of toxic cardenolide 56 

phytochemicals. This study underscores how diet and developmental stage collectively shape the 57 

monarch's gut microbiota. 58 

  59 



 

 3 
 
 

INTRODUCTION 60 

Like most animal and plants, insects form symbiotic relationships with microbial 61 

communities.  The microbial residents can be seamlessly integrated into insect biology and 62 

ecology, and microbes play an essential role in the lives of the majority of insect species (Douglas, 63 

2022). Insect gut microbes, for example, affect insect development (Sommer and Bäckhed, 2013; 64 

Li et al., 2023), digestion (Marcobal et al., 2011; Brune, 2014), behavior (Heijtz et al., 2011; Wong 65 

et al., 2017) detoxification of harmful substances (Berasategui et al., 2017; Siddiqui et al., 2022) 66 

and defense against natural enemies (Piel, 2002; Ramirez et al., 2014). Gut microbiota function 67 

relies on the specific composition of microbes, which is composed of beneficial symbionts, as well 68 

as pathogens and commensals (Dillon and Dillon, 2004). Several factors influence composition, 69 

including insect host species, environmental conditions, genetics, social interactions, immune 70 

responses, maternal transmission, diet and exposure to antibiotics (Douglas, 2011; Hasan and 71 

Yang, 2019). While less explored, insect development also influences the composition and 72 

function of the gut microbiota (Pernice et al., 2014; Hammer and Moran, 2019). 73 

 74 

For microbes, the insect gut can be a hostile environment. This may especially be the case 75 

for holometabolous insects, which undergo complete metamorphosis through egg, larval, pupal, 76 

and adult stages. Each developmental transition involves shedding of the cuticle (ecdysis) and 77 

often substantial turnover and transformation of the inner gut cuticle (foregut and hindgut) 78 

(Cracraft and Donoghue, 2004). As such, metamorphosis may radically remodel the morphology, 79 

biochemistry and chemical attributes of the digestive system (Engel and Moran, 2013). 80 

Consequently, in early developmental stages, the gut microbiomes of insects undergo ecological 81 

succession and turnover, during which bacteria establish colonies, engage in cooperative 82 
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interactions and compete for spatial dominance (Hammer and Moran, 2019; Figueiredo and 83 

Kramer, 2020). These dynamics eventually result in the establishment of a more stable microbial 84 

community in the adult stage, often differing significantly from that in the larval stages (Hu et al., 85 

2013; Zhang et al., 2018; Augustinos et al., 2019; Wang et al., 2019, 2023; Yao et al., 2019; Xue 86 

et al., 2021; Li et al., 2022, 2023).  87 

 88 

In conjunction with developmental metamorphosis, alterations in diet can exert significant 89 

influence on the gut microbiota, leading to the elimination of certain microbes and the promotion 90 

of others (Luo et al., 2021; Brunetti et al., 2022). The profound impact of diet on the gut 91 

microbiome has been observed in numerous insects, including Indian fruit flies (Anastrepha 92 

obliqua) (Cárdenas-Hernández et al., 2023), cereal leaf beetles (Oulema melanopus) (Wielkopolan 93 

et al., 2021), rainbow stag beetles (Phalacrognathus muelleri) (M. Wang et al., 2020), dung beetles 94 

(Copris incertus) (Suárez-Moo et al., 2020), and European firebugs (Pyrrhocoris apterus) 95 

(Sudakaran et al., 2012). Furthermore, the synergistic effect of diet and life stage has been 96 

observed in several lepidopteran species, where the two feeding stages (larva and adult) have 97 

drastically different diets—generally, solid plant foliage for larvae and liquid nectar for adults—98 

resulting in distinct microbial communities (Hammer et al., 2014; Phalnikar et al., 2018; Gohl et 99 

al., 2022). 100 

 101 

Lepidoptera usually have simple guts, comprising a midgut protected by a peritrophic 102 

matrix, which fosters a relatively uncomplicated and nonspecific microbiome (Paniagua Voirol et 103 

al., 2018; Mason, 2020). Despite this simplicity, gut microbial communities in lepidopteran 104 

species vary not only across species but also between populations, individuals, and even sexes 105 
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(Chen et al., 2016; Staudacher et al., 2016; Paniagua Voirol et al., 2018; X. Wang et al., 2020; Fu 106 

et al., 2023). Some of this variation is driven by diet, and particularly larval host plant diet, which 107 

can vary both within and between insect species. For several lepidopteran species, alternative 108 

larval diets lead to the colonization of distinct gut communities (Broderick et al., 2004, 2004; 109 

Pinto-Tomás et al., 2011; Staudacher et al., 2016; Whitaker et al., 2016; Phalnikar et al., 2018).  110 

While some of this variation may be imposed by nutritional differences, it may also result from 111 

changes in plant phytochemistry, particularly for insect species that sequester and accumulate toxic 112 

secondary metabolites from plants. These metabolites, including alkaloids, phenolics, and cardiac 113 

glycosides, impose not only dietary challenges to their microbiota but also select for survival and 114 

detoxification in close proximity to these poisonous chemicals (Shikano et al., 2017). Despite the 115 

potential importance of life stage and diet in shaping the microbiota of lepidopteran species, studies 116 

to test their combined effects remain lacking (Smilanich and Muchoney, 2022).    117 

 118 

Here, we focus on how developmental stage and larval diet influence gut microbiome 119 

composition of a specialized butterfly that has been a model for studies of herbivore-plant 120 

interactions, secondary metabolite sequestration, migration, and disease ecology (Ehrlich and 121 

Raven, 1964; Bradley and Altizer, 2005; de Roode et al., 2008; Agrawal et al., 2009; Zhan et al., 122 

2011; Gowler et al., 2015). Monarch butterfly (Danaus plexippus) caterpillars are specialist 123 

herbivores, feeding exclusively on milkweed plants (mostly in the genus Asclepias). Milkweed 124 

species vary in their concentrations of cardenolides, toxic secondary chemicals that monarchs can 125 

sequester to make themselves unpalatable to predators (Brower and Calvert, 1985; Holzinger et 126 

al., 1992; Martin et al., 1992). High-cardenolide diet also provide protection against the virulent 127 

protozoan parasite Ophryocystis elektroscirrha (Hoogshagen et al., 2023), and infected monarchs 128 
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preferentially oviposit on high-cardenolide plants, reducing infection in their offspring (Lefèvre et 129 

al., 2010, 2012). Consuming cardenolides boosts monarch butterfly survival against the parasite 130 

but simultaneously suppresses their immunity, as evidenced by decreased melanization, 131 

phenoloxidase activity, hemocyte numbers, and downregulation of immunity-related genes (Tan 132 

et al., 2019; Decker et al., 2021). This dual effect may involve direct toxicity to the parasite, but 133 

the suppression of the pathogen could also be driven by alteration to the microbiota, as observed 134 

in other lepidopterans, such as common buckeyes (Junonia coenia) (Smilanich et al., 2018) and 135 

Melissa blue butterflies (Plebejus melissa) (Yoon et al., 2019).  136 

 137 

Until now, there have been limited efforts to understand the diversity and composition of 138 

monarchs’ microbiota. Recent comparisons of microbiota of second instar monarch larvae feeding 139 

on different plants (A. curassavica and A. syriaca), revealed no host plant-related differences in 140 

microbial diversity but did reveal differences in microbial composition (Hansen and Enders, 2022). 141 

The study also highlighted the similarity between the microbiota of the second instar larvae and 142 

the rhizosphere microbiome of milkweed plants, suggesting an environmental influence on 143 

monarch gut microbiota. Beyond these findings, there is a knowledge gap as to how monarch 144 

microbiota change during and across life stages and how diet influences these changes. 145 

 146 

 Here, we characterize gut microbial communities and quantify bacterial load across the 147 

monarch lifecycle, encompassing parental adults (F1) and their offspring eggs, all larval instars, 148 

pupae, and offspring adults (F2), as well as larval frass. We reared larval monarchs on two species 149 

of milkweeds that vary widely in their concentrations of cardenolides but are similar in nutrient 150 

content: low-cardenolide A. incarnata and high-cardenolide A. curassavica (Tao et al., 2014). In 151 
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light of other studies on lepidopteran species conducted thus far, we discuss the significance of our 152 

findings, indicating the role of the environment and host plant chemicals in shaping the monarch’s 153 

gut microbial community. 154 

 155 
 156 
RESULTS 157 
 158 
Membership of the Monarch Gut Microbiome 159 

After quality filtering and preprocessing, we obtained 3,352,317 reads representing 1319 160 

ASVs from a total of 160 samples, including 11 egg samples (20 eggs/sample), 105 larval guts, 21 161 

larval frass samples, 9 pupal guts, and 14 adult guts (see Figure 1 and Table S1 for sampling 162 

scheme). Filtering out Archaea, mitochondria, and chloroplast sequences resulted in 1071 163 

remaining ASVs representing the bacterial microbiota. Dominant families were Acetobacteracae, 164 

Alcaligenaceae, Bacillaceae, Brevibacillaceae, Enterococcaceae and Erwiniaceae. Of note, 165 

Acetobacteraceae and Alcaligenaceae were common in adults but rare in all other life stages, while 166 

Enterobacteriaceae and Erwiniaceae dominated the immature stages (Figure 2A). 167 

 168 

Considering all life stages, a strain of Enterobacter was the most prevalent ASV in our 169 

dataset, present in all egg samples (11/11) and majority of larval (104/105), frass (20/21), and 170 

pupal (8/9) samples, albeit often at low relative abundance. The relative abundance of 171 

Enterobacter sp. increases in the later larval instars and becomes dominant during the pupal stage. 172 

This strain also exhibited high prevalence, though low relative abundance, in adult samples (12/14).  173 

 174 

Pantoea sp. is also highly prevalent and extremely abundant, making it very dominant 175 

especially across immature stages samples (Figure 2B-C). It was detected in all eggs (11/11) and 176 
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the majority of larval (98/105), frass (21/21), and pupal samples (5/9), but was relatively rare in 177 

adults (7/14).  178 

 179 

In fifth instar larvae, while many microbial taxa observed in previous instars seem to be 180 

lost or present in a very low abundance almost all samples show a high abundance of either 181 

Enterobacter sp., Pantoea sp., or a co-occurrence of both, with one strain often dominating the 182 

other. Additionally, a few samples exhibit a high abundance of Enterococcus sp. (3/22) (Figure 183 

2B). This pattern is also observed in frass samples from fifth instar larvae. 184 

 185 

Asaia appear characteristic of the adult microbiota. In all adults (F1 and F2), three strain 186 

belonging to the genus Asaia (Family Acetobacteraceae) was consistently observed, irrespective 187 

of sex (Figure 2B-C). Asaia sp1. prevalence was notably lower in eggs (5/11), larvae (27/105), 188 

frass (1/21), and pupae (2/9), with very low relative abundance when detected. This suggests that 189 

this strain may persist, albeit in reduced numbers, throughout the developmental life cycle. 190 

Additionally, it may be acquired by adults from the environment, thus increasing its relative 191 

abundance and our ability to detect it in adult life stages. Asaia sp2. and Enterococcus sp. were 192 

two other dominant taxa found in adults (Figure 2B). 193 

 194 

Changes in Microbial Community Composition and Diversity across the Monarch Lifecyle 195 

For comparative analysis of microbial communities across various life stages and diets, 196 

samples were rarefied to 700 reads per sample, leading to a reduced data set of 105 samples (Table 197 

S1B) with a total of 672 ASVs. There was a significant effect of monarch life stage on the 198 

composition of their microbial communities based on Bray-Curtis dissimilarity (PERMANOVA 199 
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with 10,000 permutations; p < 0.001, R2 = 0.26). According to Adonis pairwise comparison, no 200 

significant difference was observed between the gut microbial communities of larvae and eggs. 201 

However, pupae and adult butterflies possessed their own distinguishable communities, albeit with 202 

slight overlap with that of other development stages (Table 1A, Figure 3A). This dissimilarity is 203 

evident, with statistical support, when comparing F1 female adults and their oviposited eggs 204 

(PERMANOVA with 10,000 permutations; p < 0.001, R² = 0.54; Figure 3D). No significant 205 

difference was found between female and male adults (PERMANOVA with 10,000 permutations; 206 

p = 0.342, R² = 0.08) nor between F1 and F2 adults (PERMANOVA with 10,000 permutations; p 207 

= 0.932, R² = 0.04). Taken together, these results emphasize differences between the microbial 208 

community composition of mature stages (adults) and immature stages (eggs and larvae). 209 

 210 

The DESeq2 results (Table S2) show that strains with a mean abundance over 30, including 211 

Enterobacter sp., Asaia sp., and Pantoea sp., exhibit significant differences across life stages, 212 

underscoring the role of these strains in shaping microbial community shifts (Figure 2). In addition, 213 

the presence, absence, and changing abundance of less abundant strains (with mean abundance 214 

between 25-30 reads) also contribute to the distinctiveness of microbial profiles at certain life 215 

stages (Figure S2-S5, Table S2). Notably, there is a significant higher abundance of Pantoea sp., 216 

Enterobacter sp., Bacillus sp., Enterococcus sp1 and Paenibacillus, and Staphylococcus genus in 217 

egg and larval samples compared to adults (Figure S2). During the transition to the pupal stage, 218 

Enterobacter sp. becomes dominant. Moreover, pupae have significantly lower abundances of 219 

Bacillus sp., Staphylococcus sp., and Paenibacillus sp. compared to larvae, and lower abundance 220 

of Asaia sp. compared to adults.  In the adult stage, the genus Asaia is dominant, with Enterococcus 221 

sp2 and Serratia sp. also present to a lesser extent (Figure S2).    222 
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   223 

 224 

Bray-Curtis dissimilarity testing revealed non-significant community differences among 225 

larval instars (PERMANOVA with 10,000 permutations; p = 0.12, R² = 0.07). Adonis pairwise 226 

comparisons indicated that significant dissimilarities were observed only in the fifth instar, which 227 

differed significantly from all instars except the fourth (Table 1B, Fig 3B). The emergence of very 228 

low abundance of Serratia sp. and the increasing abundance of Enterobacter sp. in the fourth and 229 

fifth instars could explain the differences observed between later and earlier instars (Figure S2). 230 

 231 

To better understand whether the bacterial communities within larval frass reflect those in 232 

larval guts and/or predict those in pupal guts, we compared the microbial community composition 233 

of frass excreted by fifth instars close to pupation to that of late fifth instar larvae and pupae 234 

(PERMANOVA with 10,000 permutations; p < 0.001, R² = 0.18, see Figure 3D). There was 235 

apparent overlap between the larval frass and larval gut community compositions (Adonis pairwise 236 

comparison, 10,000 permutations; p = 0.7, R² = 0.02). The fifth instar larvae share the same 237 

dominant strains as the frass, but with different abundances (Figure S4). There were significant 238 

differences between the microbial communities of larval frass and pupae (Adonis pairwise 239 

comparison, 10,000 permutations; p = 0.001, R² = 0.41), which is consistent with the fact that there 240 

were also significant differences between the microbial communities of fifth instar larvae and 241 

pupae (Adonis pairwise comparison, 10,000 permutations; p = 0.003, R² = 0.38). In the pupal 242 

stage, some larva-specific strains, such as Bacillus sp and Paenibacillus, as well as the genus 243 

Staphylococcus, are lost. However, a few adult-specific strains, such as Enterococcus sp1 and 244 

Asaia sp3, appear (Figure S2-S4).  245 
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 246 

The measurement of microbial Shannon diversity revealed a pattern wherein eggs exhibit 247 

high diversity (Figure 4A). However, it is important to note that egg samples were pooled, so their 248 

diversity cannot be independently compared with other stages. Microbial diversity fluctuated 249 

throughout the larval stages but tended to decrease overall from the first instar to the fifth instar 250 

(Figure 4B), reaching a minimum in the pupal stage and then recovering in adults (Figure 4A). 251 

While this pattern of changing microbial diversity is visually evident in the graphs, comparison of 252 

Shannon diversity by pairwise post-hoc tests indicated that these differences in diversity were only 253 

significant for comparisons between pupa and F1 adults (Table 1A) and between third and fifth 254 

instar larvae (Table 1B). Consistent with Shannon diversity, the results for bacterial richness 255 

exhibit a similar pattern. Pairwise comparisons of bacterial richness indicate that pupae have the 256 

lowest richness, which is significantly different from that of larval instars (Table 1A). However, 257 

no significant differences were observed in microbial richness among any of the larval instars 258 

(Table 1B). 259 

 260 

Influence of Host Plant Diet on the Larval Gut Microbiome 261 

When considering all larval instars, host plant diet had no significant effect on the 262 

community composition of gut microbiomes (PERMANOVA with 10,000 permutations; p = 263 

0.110, R² = 0.05; Figure 3C). The analysis of Shannon diversity among developmental stages 264 

comparing host plants was conducted using the Kruskal-Wallis test. Shannon diversity did not 265 

show a significant difference between larvae fed on A. curassavica and A. incarnata (p = 0.1 Figure 266 

4C). However, when considering individual larval instars, fourth instar larvae fed on A. 267 
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curassavica had more diverse gut microbiomes than those fed on A. incarnata (Figure 4C; Table 268 

1C). 269 

 270 

DESeq2 analysis indicates that none of the strains show significant differences in 271 

abundance between larval stages when comparing the two diet groups, with a threshold of mean 272 

abundance set at 25. However, visual examination of their microbial profiles reveals some 273 

descriptive differences between the two groups, such as variation in microbial prevalence, 274 

although these differences are not statistically significant (Figures 2B and S3). For example, larvae 275 

feeding on A. incarnata appear to exhibit a higher prevalence of Pantoea sp across all stages 276 

(expect third instar), with an apparent increase in Asaia sp during the first and second instars. In 277 

contrast, larvae feeding on A. curassavica tend to show a greater dominance of Enterococcus sp 278 

and Paenibacillus sp2 in the later stages, particularly the fifth instar. Additionally, Massilia sp is 279 

consistently present in all larval instars of the A. curassavica group but absent in the A. incarnata 280 

group. 281 

 282 

Overall Microbial Densities 283 

The quantification of 16S V4 rRNA copy numbers was conducted for all life stages 284 

individually, including each egg sample (rather than pooling of 20 eggs per sample). The results 285 

revealed a significant difference in 16S rRNA copy numbers across different life stages (one-way 286 

ANOVA, F = 5.346, p < 0.001; see Figure 5A). Further pairwise comparisons indicated significant 287 

differences between the egg and all other life stages, with the eggs exhibiting the lowest bacterial 288 

abundance (Figure 5A, Table 1D).When focusing on larvae, quantification of 16S copy number 289 

revealed a significant difference among instars (one-way ANOVA, F = 4.126, p = 0.004), with 290 
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significantly lower bacterial abundances in the first instar compared to the second, third, and fifth 291 

instars (Table 1E; Figure 5C).  292 

 293 

There was no significant difference in bacterial load among larval instars based on the 294 

larval milkweed diet (one-way ANOVA, F = 1.048, p = 0.308; Figure 5D). However, when 295 

comparing each instar separately, first instar larvae fed on A. curassavica had a lower bacterial 296 

load compared to those fed on A. incarnata (Table 1C). Additionally, when comparing the bacterial 297 

load between fifth instar guts, fifth instar frass samples, and pupal guts, we found that the bacterial 298 

load in frass samples was significantly higher than that in larval and pupal gut samples (one-way 299 

ANOVA, F = 12.95, p < 0.001; Figure 5D). There was no significant difference between pupal gut 300 

and frass samples (T-test, p = 0.91). 301 

 302 
DISCUSSION 303 
 304 

High fluctuations in microbial composition and diversity among individual lepidopterans 305 

(Robinson et al., 2010; Hammer et al., 2014; Minard et al., 2019) and other insects (Gupta and 306 

Nair, 2020; Muratore et al., 2020; Suenami et al., 2023) emphasize the need for robust and ample 307 

sampling in microbiota research. Our study, based on 160 samples from eggs, larvae (including 308 

frass), pupae, and adults, serves as a robust case study, allowing a comprehensive exploration of 309 

microbial shifts and diversity patterns in monarchs with relation to two key potential drivers of 310 

microbiota composition: host development and host diet. We find that both developmental stage, 311 

and diet influence key measures of microbiota composition, diversity, and abundance in this 312 

tractable animal model. 313 

 314 

Overall pattern of microbial diversity across monarch development 315 
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 316 
In monarchs, the most apparent influence of microbiome development is that composition 317 

of adult gut microbial communities differ from those of all other life stages. These differences 318 

likely are driven by the drastic dietary shift that comes with adulthood, from feeding on milkweed 319 

foliage as larvae to feeding on liquid (here, sucrose solution) as adults. This has been seen in other 320 

lepidoptera, including Western bean cutworms, (Striacosta albicosta) (Ayayee et al., 2022), 321 

European corn borers (Ostrinia nubilalis) (Belda et al., 2011), domesticated silkworms (Bombyx 322 

mori) (Chen et al., 2018) and red postmen (Heliconius erato) (Hammer et al., 2014). Consistent 323 

with the hypothesis that dietary shifts drive changes in the microbiota, similar shifts are not seen 324 

in species where adults do not feed, such as the Indianmeal moth (Plodia interpunctella) 325 

(Mereghetti et al., 2019).  326 

 Patterns of changes in microbial community diversity across lepidopteran development 327 

differ across species. Several previous studies of lepidopteran microbiome diversity have revealed 328 

a ‘U-Shaped’ pattern of diversity, with diversity decreasing from egg to pupal stages before 329 

recovery upon maturation to adult. This trend has been reported for the European corn borer (Belda 330 

et al., 2011), the Western bean cutworm, (Ayayee et al., 2022) and the Fall armyworm (Spodoptera 331 

frugiperda) (Fu et al., 2023). However, some lepidopterans exhibit a different pattern, in which 332 

diversity tends to drop in adulthood, as seen in the domesticated silkworm (Chen et al., 2018), 333 

Oriental fruit moth (Grapholita molesta) (X. Wang et al., 2020) and greater wax moth (Galleria 334 

mellonella) (Gohl et al., 2022).  335 

 336 

For monarch’s gut microbiome, our data exhibit a general U-shaped pattern of diversity, wherein 337 

the lowest diversity is observed in pupae (Figure 3). However, caution is needed when interpreting 338 
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the diversity of eggs compared to other stages. Each egg sample consisted of a pool of 20 339 

individuals, potentially introducing a bias toward increasing diversity in these samples.  340 

 341 

A focus on eggs 342 

In contrast to Kingsley (1972), who suggested that monarchs lack egg microbiota, our research 343 

reveals that monarch eggs do indeed host bacteria. This difference is not surprising, as Kingsley 344 

used culture-based methods to quantify microbes, whereas we used sequencing to capture both 345 

culturable and unculturable microbes. However, the source of these microbes is not clear. The first 346 

common assumption is that all or part of this microbiota is maternally transferred to eggs, as 347 

reported in some lepidopteran species (Freitak et al., 2014; Mereghetti et al., 2019). This is often 348 

indicated by the similarity between the microbiota compositions of female adults and eggs, and 349 

the presence of common microbial taxa, a phenomenon observed in various species, including 350 

silkworms (Chen et al., 2018), greater wax moths (Gohl et al., 2022), beet armyworms (Gao et al., 351 

2019) and fall armyworms (Fu et al., 2023). It has also been observed through experimental study 352 

of the transmission of fluorescently tagged bacteria; in one such study, labeled Enterococcus were 353 

consistently observed in all life stages and generations of Egyptian cotton leafworm (Spodoptera 354 

littoralis) (Teh et al., 2016). In contrast, other studies have found environmental transmission to 355 

be more important than maternal transfer, such as in S. albicosta, where the microbiota of eggs are 356 

very similar to those on leaves of their corn host plant (Ayayee et al., 2022). Our findings indicate 357 

that monarch egg-associated communities, primarily dominated by Erwiniaceae and 358 

Enterobacteriaceae, exhibit greater similarity to larval gut communities than those of their mothers. 359 

This suggests that environmental acquisition may be common. This observation may also account 360 

for the low microbial load in monarch eggs compare to other stages (Table 1D). We did, however, 361 
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find that Enterobacter sp., was consistently present across all stages (although in low relative 362 

abundance, especially in egg and larva stages), suggesting potential vertical transmission 363 

throughout the dynamics monarch lifecycle. Additionally, Pantoea sp., prevalent in the egg, larval, 364 

and pupal stages at high relative abundance, and Asaia sp1., prevalent in the adult stages, were 365 

both found in all other stages, albeit at low frequency of occurrence and relative abundance. 366 

Altogether, these findings suggest the existence of a prevalent microbiome whose members’ 367 

abundances change with the developmental and dietary shift associated with adulthood.  368 

 369 

Across larval instars 370 

As monarch larvae progress through five instar stages, they dramatically increase in size and 371 

consume more food, likely creating a different niche for bacterial intake and growth. As such, 372 

drastic changes between microbial communities of early and later larval instars have been shown 373 

in several lepidopteran case studies  (Mason and Raffa, 2014; Chen et al., 2018; Gohl et al., 2022). 374 

However, our findings reveal a nuanced picture. While the microbial community composition of 375 

monarch larval guts appears to remain relatively stable throughout larval development (Figure 3B), 376 

we observed contrasting trends in microbial diversity and abundance (Figure 4B and 5C). 377 

Specifically, microbial diversity tends to decrease, while microbial abundance tends to increase 378 

from the first to the fifth larval instar. It is noteworthy that these changes occur gradually and, 379 

when considering the broader context, are statistically supported only between the first and fifth 380 

instars.  381 

 382 

Fifth instar larvae excrete large amounts of frass before morphing into pupae, which may partly 383 

explain the overall reduction in gut microbial diversity observed in fifth instar larvae (Figure 4). 384 
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Frass samples contained a higher microbial load compared to fifth instar larvae and other stages, 385 

possibly due to the frass environment being less stringent and more conducive to microbial 386 

proliferation than the gut environment. The microbial composition of frass may also provide 387 

insights into the level of dependency of gut microbiota on diet and environment. For instance, the 388 

frass of the Melissa blue butterfly includes microbiota that significantly differs from larval 389 

microbiota and is more similar to plant microbial communities (Chaturvedi et al., 2017). This 390 

suggests a higher stability and lesser dependence on diet for the Melissa blue microbiota compared 391 

to monarchs, where the microbial community found in frass resembles that of the gut. Future work, 392 

of course, should assess the microbial communities of milkweed plants for comparison to the 393 

microbial communities associated with monarchs across their lifecycle.  394 

 395 

The final steps: from pupa to adult 396 

In almost all existing lepidopteran studies, the lowest diversity of microbiota is observed 397 

in pupae (Johnston and Rolff, 2015; Phalnikar et al., 2018). This could be explained by the purging 398 

of gut contents before pupation, the drastic reorganization of body tissues and the non-feeding 399 

state of this life stage. Upon enclosing, most adult lepidoptera begin to feed, which is expected to 400 

lead to changes in microbial composition and increases in both diversity and abundance. In our 401 

study, pupae had the lowest diversity of gut microbes, with a shift in microbial community from 402 

that of larvae characterized by a dominance of Enterobacter sp over Pantoea sp (Figure 2C). As 403 

expected, diversity recovered in adults. This increase in diversity is in tandem with a change in 404 

composition (Figure 3A), and may be driven by increases in the abundance of specific taxa, such 405 

as three strains of Asaia. Since Asaia is common in plant nectars (Lenaerts et al., 2017; Bassene 406 

et al., 2020), as well as in insects that feed on sugary nectar and plant sap ((Bassene et al., 2020) 407 
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(Gonella et al., 2012, 2012; Li et al., 2019) and even in several lepidopterans (Robinson et al., 408 

2010; Gao et al., 2019; X. Wang et al., 2020), a substantial part of this shift may be driven by 409 

differences in the nutritional composition of leaves and sugary liquids (Shao et al., 2024). While 410 

in our study adults were fed a diet consisting only of sugar, in natural populations, adults feed on 411 

various nectars, and are therefore expected to have different compositions and diversity of 412 

microbiota.  413 

 414 

The effect of plant diet, with a focus on plant chemistry 415 

Even though the composition of lepidopteran’s prevalent microbiota can exhibit 416 

independence from diet (Whitaker et al., 2016), certain lepidopteran species display notable 417 

variations in microbiota composition when consuming different host plant diets. Examples include 418 

corn earworm (Helicoverpa zea) (Jones et al., 2019), cotton leafworm (Spodoptera littoralis) and 419 

cotton bollworm (Helicoverpa armigera) (Tang et al., 2012) and European gypsy moth (Lymantria 420 

dispar) (Mason et al., 2015). This trend becomes more pronounced when multiple generations of 421 

insects are exposed to a controlled diet, as seen in rice leaffolder (Cnaphalocrocis medinalis) 422 

feeding on either rice or maize (Yang et al., 2022), and S. littoralis larvae feeding on either cabbage 423 

or cotton (Roy et al., 2023). 424 

 425 

Our results indicate that the gut microbiota of fourth instar larvae feeding on A. 426 

curassavica, which contains higher concentrations of cardenolides, are more diverse than those of 427 

individuals feeding on A. incarnata. Additionally, first instar larvae feeding on A. curassavica 428 

exhibited significantly lower microbial abundance compared to those feeding on A. incarnata (Fig 429 

5D). Changes in the presence of particular strains or the prevalence of common strains due to the 430 



 

 19 
 
 

feeding groups are also detectable; for instance, Massilia sp is present only in the A. curassavica 431 

group, while Pantoea sp shows a higher prevalence in the A. incarnata group (Figure S3).Since 432 

the milkweed species used here are similar in nutrients but differ greatly in toxic cardenolides (Tao 433 

et al., 2016), it is possible that the chemical properties of these plants contribute to slight alterations 434 

in gut microbial diversity and composition. In a similar study comparing the influence of different 435 

milkweed species (A. syriaca and A. curassavica) on the microbiota of second instar monarch 436 

larvae, caterpillars feeding on these plants exhibited similar microbial diversity but different 437 

microbial composition (Hansen and Enders, 2022). The study reported different dominant bacterial 438 

families than we observed in our study, and identified Enterobacteriaceae as a rare family (Hansen 439 

and Enders, 2022). In contrast, Enterobacteriaceae, which includes the genera Enterobacter and 440 

Pantoea, was the most prevalent family in our dataset. Variability in findings may stem from 441 

differences in study design, original monarch populations, and plant species. Our study design 442 

included plants growing in the same soil sample, which may contribute to greater similarity in the 443 

microbial environment of the two groups. Additionally, this suggests that other unknown factors 444 

might influence the shaping of the monarch's microbiome. These results highlight the need for 445 

more comprehensive studies in controlled environments to elucidate the underlying mechanisms 446 

and emphasize the necessity of studying microbiomes across diverse populations to obtain a clearer 447 

picture. 448 

 449 

In conclusion, our study significantly advances our understanding of the dynamic 450 

monarch gut microbiome by characterizing microbial communities, quantifying bacterial loads 451 

across developmental stages, identifying prevalent microbiota, and assessing the impact of 452 

alternative larval diets. We found that adults, eggs/larvae, and pupae form three distinct microbial 453 



 

 20 
 
 

communities, with pupae exhibiting the lowest diversity and adults the highest. Our findings 454 

suggest that while environmental factors influence microbiota shifts, certain microbial taxa may 455 

persist, indicating potential maternal transfer and maintenance within the monarch population. 456 

Furthermore, diets rich in cardenolides have the potential to reduce bacterial loads in early larval 457 

development and to increase gut microbiome diversity in later larval stages. Further studies are 458 

needed to determine the transmission route of monarch microbes, how monarch microbiota varies 459 

in nature and the importance of the microbiota for monarch life history traits and protection against 460 

pathogens (Smilanich et al., 2018).  461 

 462 

MATERIALS AND METHODS 463 

Insect rearing  464 
 465 

The monarchs used in this study were descendants of individuals collected from St Marks, 466 

Florida, US. Several generations had been lab reared prior to this experiment. To minimize the 467 

possibility of carryover effects from the parental diet, ten adult individuals from four lineages were 468 

fed on sterile 20% sucrose solution, a common lab diet; these adults are referred to hereafter as the 469 

P generation. P adults were mated with the opposite sex of another lineage. Once mated, five P 470 

females of the same lineage were placed in a single butterfly cage (two cages per lineage) 471 

maintained in the greenhouse and oviposited on either milkweed food plant species, A. incarnata 472 

or A. curassavica. Their eggs (the F1 generation) were collected and once hatched, the larvae were 473 

fed on either of the two host plants and reared to adulthood. F1 adults were fed sterile 20% sucrose 474 

solution and placed in a single butterfly cage (two cages per lineage) maintained in the greenhouse. 475 

They were ovipositing on either one of two milkweed species, A. incarnata or A. curassavica. 476 

Oviposited eggs, recorded to be collected from either A. incarnata or A. curassavica, seeded the 477 
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F2 generation, which is the focus of our study. F2 eggs were then moved to individual plastic, 478 

lidded cups, where they were placed on leaves of either greenhouse grown A. incarnata or A. 479 

curassavica. Once the eggs hatched, leaves were replaced daily. Similar to P and F1, F2 adults from 480 

both diets were again placed in a single cage and provided with a sterile 20% sucrose solution. 481 

“Overall, there were four F2 diet treatments differing in the plant species fed to larvae of their 482 

parents (F1) and to them (F2) when they were larvae. The four treatments included: (1) F1 and F2 483 

both fed on A. incarnata (n = 27); (2) F1 fed on A. incarnata, and F2 fed on A. curassavica (n = 484 

27); (3) F1 and F2 both fed on A. curassavica (n = 29); and (4) F1 fed on A. curassavica, and F2 fed 485 

on A. incarnata (n = 22) (see Figure 1 and Table S1.A).”   486 

 487 
Sample collection and gut dissections  488 
 489 

We collected parental F1 adults after oviposition. Resulting F2 offspring, once hatched, fed 490 

on either greenhouse grown A. incarnata or A. curassavica. F2 individuals were collected at all 491 

developmental stages (egg, larva, pupa, and sucrose-fed adults). Due to the difficulty of extracting 492 

DNA from individual eggs, the egg samples consisted of a pool of 20 eggs each. Sample sizes for 493 

each developmental stages are indicated in Figure 1.  From all larval instars, larvae were 494 

euthanized with CO2, then whole bodies were surface-sterilized with 95% molecular grade ethanol 495 

for three minutes. Then, we dissected out guts of second, third, fourth and fifth instars for further 496 

analysis; first instars were not dissected because of their small size, which prevented removal of 497 

the gut from the rest of the animal tissue. Seven-day old pupae were handled similarly to later 498 

larval instars though not euthanized. For adults, we clipped off the wings at the thorax, then surface 499 

sterilized as described for larvae. Guts from larvae, pupae and adults were dissected with sterile 500 

instruments and immediately frozen. In addition, to test if larval frass microbial communities are 501 

reflective of their gut microbial communities, we collected frass excreted on sterilized Petri dishes 502 
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from 21 fifth instar F2 larvae (12 fed on A. curassavica and 9 fed on A. incarnata). Each frass 503 

sample consisted of five frass pellets. Frass samples were not surface-sterilized. All samples were 504 

frozen at -80° until DNA extraction.  505 

 506 

Gut Microbiome Community Profiling  507 

DNA was extracted using the Qiagen DNeasy PowerSoil kit, following the manufacturer’s 508 

protocols. Extractions were sent to the University of Michigan’s Center for Microbial Systems for 509 

PCR amplification, amplicon library preparation, and high-throughput 16S rRNA sequencing. The 510 

16S rRNA gene was amplified with barcoded dual-indexed primers 515F and 806R specific to the 511 

V4 region. The PCR cycle consisted of two min at 95°C, followed by 30 cycles of 95°C for 20 s, 512 

55°C for 15 s, and 72°C for five min, followed by 72°C for 10 min. PCR reactions were 513 

normalized, pooled, and quantified for amplicon library preparation. Libraries were sequenced on 514 

an Illumina MiSeq platform with 250bp paired ends. A mock community was co-sequenced 515 

(ZymoBIOMICSTM Microbial Community DNA Standard) to determine the sequencing error rate, 516 

which was 0.0082%.  517 

Raw bacterial sequences were processed and analyzed in qiime2 v 2019.7 (Hall and Beiko, 518 

2018). Once the primers were removed the reads were merged and trimmed, sequences less than 519 

250bp or greater that 289bp in length were removed from analysis. Quality filtering was performed 520 

using DADA2 (Callahan et al., 2016) and subsequently a Bayesian V4 specific classifier was 521 

designed to taxonomically identify the amplicon sequence variants (ASV’s) using the SILVA v132 522 

reference database (Quast et al., 2013). Visualizations and all statistical tests of sequence data were 523 

performed in R v4.2.1 (R Core Team, 2022) using packages phyloseq (McMurdie and Holmes, 524 

2013), vegan (Dixon, 2003),  pairwiseAdonis v0.4 (Martinez Arbizu, 2020), and  qiime2R (Bisanz, 525 
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2018). For generating figures and conducting statistical analysis, and particularly to minimize the 526 

effect of sample size bias, samples were normalized to 700 reads per sample, resulting in a 527 

reduction of sample size (Table S1). Based on the rarefaction curve plot generated in R using 528 

phyloseq and vegan packages (Figure S1), rarefying to 700 reads indicates a negligible loss of 529 

diversity. The curves show that increasing sequencing depth beyond 700 reads yields few new 530 

types of ASVs, suggesting that rarefying to 700 reads is sufficient for detecting high-abundance 531 

microbial taxa. 532 

 533 

Analysis of Community Structure and Diversity 534 

For the analysis of taxonomic composition of each sample, the ASV’s in the datasets were 535 

classified using a qiime2 V4 classifier. Bray-Curtis distances between all communities were 536 

calculated and the significance of clustering at the community level was tested for both metrics 537 

using the Adonis function implemented in the VEGAN package, including taxonomy, life stage 538 

and diet as possible variables. The PERMANOVA (Permutational Multivariate Analysis of 539 

Variance) non-parametric test implemented in R was used to assess differences in microbial 540 

community composition between developmental stages (egg, larva, pupa, and adult). The primary 541 

objective was to understand broader microbial dynamics throughout the life cycle, addressing 542 

questions such as how microbial diversity changes between stages, indications of plausible vertical 543 

transmission and/or environmental acquisition. For the focused analysis on larval instars, 544 

PERMANOVA examined differences across the five larval instars to monitor progressive changes 545 

and identify potential microbial shifts linked to larval development stages. To identify strains 546 

driving these differences, DESeq2 (R package) (Love et al., 2014) was used for differential 547 

abundance analysis, performing pairwise comparisons between developmental stages and filtering 548 
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significant results with a p-value cutoff of <0.05. Strains with a baseMean (average abundance) 549 

greater than 25 were included in order to focus on biologically relevant features, excluding low-550 

abundance strains. 551 

Microbial diversity within each sample was estimated using the Shannon diversity index at 552 

the ASV level, calculated with the 'phyloseq' package in R. Due to the non-normal distribution of 553 

the data, as determined by Shapiro-Wilk test implemented in R (p > 0.05), non-parametric tests 554 

were employed for comparisons. The analysis of Shannon diversity among developmental stages 555 

was conducted using the Kruskal-Wallis test to assess overall differences in Shannon diversity 556 

values among groups. Subsequently, pairwise post-hoc tests with Holm correction were performed 557 

to identify specific differences between pairs of developmental stages. In addition to Shannon 558 

diversity, bacterial richness was also estimated to provide a more comprehensive understanding of 559 

the microbial community structure. Using both Shannon diversity and bacterial richness allows us 560 

to capture the complexity of the microbial community (richness and evenness) as well as the actual 561 

number of distinct microbial taxa. Bacterial richness was estimated by counting the number of 562 

observed ASVs within each sample, also using the 'phyloseq' package in R. Similar to the Shannon 563 

diversity analysis, the richness data were tested for normality using the Shapiro-Wilk test, and due 564 

to non-normal distribution, non-parametric tests were applied. For the larval stages, the Kruskal-565 

Wallis test was used to evaluate overall differences in observed richness among larval instars, 566 

followed by pairwise Wilcoxon tests with Holm correction to identify specific differences between 567 

pairs of larval instars. 568 

 569 

Quantitative PCR and Analysis of Bacterial Load  570 
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To determine differences in bacterial sequence abundance between developmental stages 571 

and larval instars fed on A. incarnata and A. curassavica, mean copy numbers of 16S rRNA genes 572 

in a subset of samples were estimated using qPCR (n = 138). Each sample was amplified in 573 

triplicate, except for four samples amplified in duplicate due to lack of DNA, with the same 16S 574 

rRNA primers used for PCR amplification (515F and 806R). Primers and reaction conditions are 575 

described in (Cariveau et al., 2014). Standard curves were calculated using purified genomic E. 576 

coli DH10B cells (ThermoFisher Scientific). To calculate the starting copy number for the standard 577 

curve, we used the copy number calculator for real time PCR (Science Primer online platform, 578 

www.scienceprimer.com) and generated the standard curve in relation to the serial dilution of 1:10. 579 

The standard copy number started at 1.6 x1011 and was diluted down to ~1.6 x 104. No samples 580 

were considered out of range. The estimated mean absolute copy number across triplicates, and in 581 

four cases duplicates, was used for analysis of bacterial load. To estimate individual samples from 582 

pooled egg samples, the 16S rRNA copy numbers were initially divided by 20. Subsequently, the 583 

log10 values of each resulting sample were calculated. These log10 values were then utilized for 584 

statistical analysis. Shapiro-Wilk normality tests did not reject the null hypothesis, indicating that 585 

the data approximated a normal distribution (p > 0.05). Therefore, parametric tests were employed 586 

for comparison. Specifically, One-way ANOVA followed by T-tests with corrected p-values using 587 

the Holm method were used to assess differences in bacterial loads among developmental stages, 588 

larval instars, and diets. 589 

 590 

Data Availability 591 

Raw sequence reads are available on NBCI’s Sequence Read Archive under project 592 

PRJNA816827. 593 
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Figure 1. Schematic of experimental design, depicting the diets received for each group in 

colored circles (red for A. curassavica and pink for A. incarnata). The numbers within each 

circle represent the sample size for microbial metabarcoding. F2 diet treatments include (1) F1 

and F2 on A. incarnata (n = 27), (2) F1 parent on A. incarnata and F2 offspring on A. curassavica 

(n = 27), (3) F1 and F2 on A. curassavica (n = 29), and (4) F1 parent on A. curassavica and F2 

offspring on A. incarnata (n = 22). Frass samples (not shown in figure) were collected from 

fifth instar larvae, and each egg sample consists of a pool of 20 eggs. 
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Figure 2. Microbial community composition across developmental stages, A. based on top 25 

most abundant families, and B. based on the top strains (ASVs) with a mean abundance of over 

0.1% across all samples. For the top 20 strains, see Figure S2. Monarch larvae were reared on 

two host plants, A. incarnata and A. curassavica. Larvae are indicated by instar (1st to 5th). 

With the exception of egg samples, which were pooled, each column represents the microbial 

community within the gut of one individual. C. Mean abundance of selected strains across 

developmental stages (strain colors as in B). 
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Figure 3. Comparative analysis of gut microbial community variations (PERMANOVA with 

10,000 permutations: p < 0.05): A. Across all developmental stages, revealing differences in 

the composition of adult butterfly gut communities compared to other life stages. Except for 

eggs, which are pools of whole eggs, all samples are from single individuals, and all larval 

stages (first to fifth) are considered together. Eggs and first instars are based microbial 

community profiling of whole individuals, while all other life stages are based on gut tissue 

only. B. Across the five larval instars. C. Between two larval feeding diets, considering all 

larval stages together. D. Between eggs and their F1 female parent. Notably, the gut microbial 

communities of female adults differ from those of their oviposited eggs, with parents being F1 

female adults fed sterile 20% sucrose water before dissection, and egg samples consisting of a 

pool of 20 eggs each. E. Between the gut and frass microbial communities of the fifth instar 

larva and pupa, showing overall overlap and similarity. 
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Figure 4. Shannon diversity of the microbial community across A. All developmental stages, 

including larvae (1st to 5th) analyzed collectively, with each point representing one sample 

(pools of 20 eggs per egg sample, whole individual first instars, and individual guts for all other 

life stages). B. Larval instars, considering those fed on both milkweed species, revealing higher 

diversity in earlier instars. C. Larval instars based on their diets, distinguishing between A. 

curassavica (high cardenolides) and A. incarnata (low cardenolides). 
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Figure 5. Bacterial abundance across developmental stages, as estimated by quantitative 

PCR. A. Egg samples (20 eggs per sample) have fewer bacteria than individual guts of other 

developmental stages. All larval instars combined for this comparison. B. Larval frass samples 

have more bacteria than larval and pupal guts. C. First instar guts have fewer bacteria than 

other larval instars. D. Larval diet does not affect microbial abundance across larval instars. 

Red dots (left) are larvae fed A. curassavica, and pink (right) are larvae fed A. incarnata. Points 

represent individual samples, and horizontal bars represent means. 
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