

1 **Microbiome analysis of monarch butterflies reveals effects of development**
2 **and diet**

3
4
5 Ehsan Sanaei^{1a*}, Joselyne Chavez^{1,2a}, Erica V. Harris^{1,3}, Tiffanie Y. Alcaide¹, Keisha Baffour-
6 Addo^{1,4}, Mahal J. Bugay^{1,5}, Kandis L. Adams^{1,6}, Anna Zelaya^{1,7}, Jacobus C. de Roode¹ and
7 Nicole M. Gerardo¹.

8
9
10 ¹Department of Biology, Emory University, Atlanta, Georgia, 30322, USA

11 ² Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence,
12 Rhode Island, 02912, USA

13 ³Agnes Scott College, Department of Medical Sciences, Decatur, Georgia, 30030, USA

14 ⁴University of Michigan School of Medicine, Ann Arbor, Michigan, 48109, USA

15 ⁵Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA

16 ⁶ Department of Biology, Earlham College, Richmond, Indiana, 47374

17 ⁷Department of Biology, California State University, San Bernardino, California 92407, USA

18
19
20 ^a Co-First author

21
22 *Correspondence: Ehsan Sanaei, ehsan.sanaei@emory.edu

23
24 **Key Words:** *Danaus plexippus*, *Enterobacter*, Gut microbiome, Milkweed, Life stage, Monarch

42 **ABSTRACT**

43 Diet profoundly influences the composition of an animal's microbiome, especially in
44 holometabolous insects, offering a valuable model to explore the impact of diet on gut microbiome
45 dynamics throughout metamorphosis. Here, we use monarch butterflies (*Danaus plexippus*),
46 specialist herbivores that feed as larvae on many species of chemically well-defined milkweed
47 plants (*Asclepias* sp.), to investigate the impacts of development and diet on the composition of
48 the gut microbial community. While a few microbial taxa are conserved across life stages of
49 monarchs, the microbiome appears to be highly dynamic throughout the life cycle. Microbial
50 diversity gradually diminishes throughout the larval instars, ultimately reaching its lowest point
51 during the pupal stage and then recovering again in the adult stage. The microbial composition
52 then undergoes a substantial shift upon the transition from pupa to adult, with female adults having
53 significantly different microbial communities than the eggs that they lay, indicating limited
54 evidence for vertical transmission of gut microbiota. While diet did not significantly impact overall
55 microbial composition, our results suggest that fourth instar larvae exhibit higher microbial
56 diversity when consuming milkweed with high concentrations of toxic cardenolide
57 phytochemicals. This study underscores how diet and developmental stage collectively shape the
58 monarch's gut microbiota.

59

60 **INTRODUCTION**

61 Like most animal and plants, insects form symbiotic relationships with microbial
62 communities. The microbial residents can be seamlessly integrated into insect biology and
63 ecology, and microbes play an essential role in the lives of the majority of insect species (Douglas,
64 2022). Insect gut microbes, for example, affect insect development (Sommer and Bäckhed, 2013;
65 Li *et al.*, 2023), digestion (Marcobal *et al.*, 2011; Brune, 2014), behavior (Heijtz *et al.*, 2011; Wong
66 *et al.*, 2017) detoxification of harmful substances (Berasategui *et al.*, 2017; Siddiqui *et al.*, 2022)
67 and defense against natural enemies (Piel, 2002; Ramirez *et al.*, 2014). Gut microbiota function
68 relies on the specific composition of microbes, which is composed of beneficial symbionts, as well
69 as pathogens and commensals (Dillon and Dillon, 2004). Several factors influence composition,
70 including insect host species, environmental conditions, genetics, social interactions, immune
71 responses, maternal transmission, diet and exposure to antibiotics (Douglas, 2011; Hasan and
72 Yang, 2019). While less explored, insect development also influences the composition and
73 function of the gut microbiota (Pernice *et al.*, 2014; Hammer and Moran, 2019).

74

75 For microbes, the insect gut can be a hostile environment. This may especially be the case
76 for holometabolous insects, which undergo complete metamorphosis through egg, larval, pupal,
77 and adult stages. Each developmental transition involves shedding of the cuticle (ecdysis) and
78 often substantial turnover and transformation of the inner gut cuticle (foregut and hindgut)
79 (Cracraft and Donoghue, 2004). As such, metamorphosis may radically remodel the morphology,
80 biochemistry and chemical attributes of the digestive system (Engel and Moran, 2013).
81 Consequently, in early developmental stages, the gut microbiomes of insects undergo ecological
82 succession and turnover, during which bacteria establish colonies, engage in cooperative

83 interactions and compete for spatial dominance (Hammer and Moran, 2019; Figueiredo and
84 Kramer, 2020). These dynamics eventually result in the establishment of a more stable microbial
85 community in the adult stage, often differing significantly from that in the larval stages (Hu *et al.*,
86 2013; Zhang *et al.*, 2018; Augustinos *et al.*, 2019; Wang *et al.*, 2019, 2023; Yao *et al.*, 2019; Xue
87 *et al.*, 2021; Li *et al.*, 2022, 2023).

88

89 In conjunction with developmental metamorphosis, alterations in diet can exert significant
90 influence on the gut microbiota, leading to the elimination of certain microbes and the promotion
91 of others (Luo *et al.*, 2021; Brunetti *et al.*, 2022). The profound impact of diet on the gut
92 microbiome has been observed in numerous insects, including Indian fruit flies (*Anastrepha*
93 *obliqua*) (Cárdenas-Hernández *et al.*, 2023), cereal leaf beetles (*Oulema melanopus*) (Wielkopolan
94 *et al.*, 2021), rainbow stag beetles (*Phalacognathus muelleri*) (M. Wang *et al.*, 2020), dung beetles
95 (*Copris incertus*) (Suárez-Moo *et al.*, 2020), and European firebugs (*Pyrrhocoris apterus*)
96 (Sudakaran *et al.*, 2012). Furthermore, the synergistic effect of diet and life stage has been
97 observed in several lepidopteran species, where the two feeding stages (larva and adult) have
98 drastically different diets—generally, solid plant foliage for larvae and liquid nectar for adults—
99 resulting in distinct microbial communities (Hammer *et al.*, 2014; Phalnikar *et al.*, 2018; Gohl *et*
100 *al.*, 2022).

101

102 Lepidoptera usually have simple guts, comprising a midgut protected by a peritrophic
103 matrix, which fosters a relatively uncomplicated and nonspecific microbiome (Paniagua Voirol *et*
104 *al.*, 2018; Mason, 2020). Despite this simplicity, gut microbial communities in lepidopteran
105 species vary not only across species but also between populations, individuals, and even sexes

106 (Chen *et al.*, 2016; Staudacher *et al.*, 2016; Paniagua Voirol *et al.*, 2018; X. Wang *et al.*, 2020; Fu
107 *et al.*, 2023). Some of this variation is driven by diet, and particularly larval host plant diet, which
108 can vary both within and between insect species. For several lepidopteran species, alternative
109 larval diets lead to the colonization of distinct gut communities (Broderick *et al.*, 2004, 2004;
110 Pinto-Tomás *et al.*, 2011; Staudacher *et al.*, 2016; Whitaker *et al.*, 2016; Phalnikar *et al.*, 2018).
111 While some of this variation may be imposed by nutritional differences, it may also result from
112 changes in plant phytochemistry, particularly for insect species that sequester and accumulate toxic
113 secondary metabolites from plants. These metabolites, including alkaloids, phenolics, and cardiac
114 glycosides, impose not only dietary challenges to their microbiota but also select for survival and
115 detoxification in close proximity to these poisonous chemicals (Shikano *et al.*, 2017). Despite the
116 potential importance of life stage and diet in shaping the microbiota of lepidopteran species, studies
117 to test their combined effects remain lacking (Smilanich and Muchoney, 2022).

118

119 Here, we focus on how developmental stage and larval diet influence gut microbiome
120 composition of a specialized butterfly that has been a model for studies of herbivore-plant
121 interactions, secondary metabolite sequestration, migration, and disease ecology (Ehrlich and
122 Raven, 1964; Bradley and Altizer, 2005; de Roode *et al.*, 2008; Agrawal *et al.*, 2009; Zhan *et al.*,
123 2011; Gowler *et al.*, 2015). Monarch butterfly (*Danaus plexippus*) caterpillars are specialist
124 herbivores, feeding exclusively on milkweed plants (mostly in the genus *Asclepias*). Milkweed
125 species vary in their concentrations of cardenolides, toxic secondary chemicals that monarchs can
126 sequester to make themselves unpalatable to predators (Brower and Calvert, 1985; Holzinger *et*
127 *al.*, 1992; Martin *et al.*, 1992). High-cardenolide diet also provide protection against the virulent
128 protozoan parasite *Ophryocystis elektroscirrha* (Hoogshagen *et al.*, 2023), and infected monarchs

129 preferentially oviposit on high-cardenolide plants, reducing infection in their offspring (Lefèvre *et*
130 *al.*, 2010, 2012). Consuming cardenolides boosts monarch butterfly survival against the parasite
131 but simultaneously suppresses their immunity, as evidenced by decreased melanization,
132 phenoloxidase activity, hemocyte numbers, and downregulation of immunity-related genes (Tan
133 *et al.*, 2019; Decker *et al.*, 2021). This dual effect may involve direct toxicity to the parasite, but
134 the suppression of the pathogen could also be driven by alteration to the microbiota, as observed
135 in other lepidopterans, such as common buckeyes (*Junonia coenia*) (Smilanich *et al.*, 2018) and
136 Melissa blue butterflies (*Plebejus melissa*) (Yoon *et al.*, 2019).

137

138 Until now, there have been limited efforts to understand the diversity and composition of
139 monarchs' microbiota. Recent comparisons of microbiota of second instar monarch larvae feeding
140 on different plants (*A. curassavica* and *A. syriaca*), revealed no host plant-related differences in
141 microbial diversity but did reveal differences in microbial composition (Hansen and Enders, 2022).
142 The study also highlighted the similarity between the microbiota of the second instar larvae and
143 the rhizosphere microbiome of milkweed plants, suggesting an environmental influence on
144 monarch gut microbiota. Beyond these findings, there is a knowledge gap as to how monarch
145 microbiota change during and across life stages and how diet influences these changes.

146

147 Here, we characterize gut microbial communities and quantify bacterial load across the
148 monarch lifecycle, encompassing parental adults (F₁) and their offspring eggs, all larval instars,
149 pupae, and offspring adults (F₂), as well as larval frass. We reared larval monarchs on two species
150 of milkweeds that vary widely in their concentrations of cardenolides but are similar in nutrient
151 content: low-cardenolide *A. incarnata* and high-cardenolide *A. curassavica* (Tao *et al.*, 2014). In

152 light of other studies on lepidopteran species conducted thus far, we discuss the significance of our
153 findings, indicating the role of the environment and host plant chemicals in shaping the monarch's
154 gut microbial community.

155

156

157 RESULTS

158

159 Membership of the Monarch Gut Microbiome

160 After quality filtering and preprocessing, we obtained 3,352,317 reads representing 1319
161 ASVs from a total of 160 samples, including 11 egg samples (20 eggs/sample), 105 larval guts, 21
162 larval frass samples, 9 pupal guts, and 14 adult guts (see Figure 1 and Table S1 for sampling
163 scheme). Filtering out Archaea, mitochondria, and chloroplast sequences resulted in 1071
164 remaining ASVs representing the bacterial microbiota. Dominant families were Acetobacteraceae,
165 Alcaligenaceae, Bacillaceae, Brevibacillaceae, Enterococcaceae and Erwiniaceae. Of note,
166 Acetobacteraceae and Alcaligenaceae were common in adults but rare in all other life stages, while
167 Enterobacteriaceae and Erwiniaceae dominated the immature stages (Figure 2A).

168

169 Considering all life stages, a strain of *Enterobacter* was the most prevalent ASV in our
170 dataset, present in all egg samples (11/11) and majority of larval (104/105), frass (20/21), and
171 pupal (8/9) samples, albeit often at low relative abundance. The relative abundance of
172 *Enterobacter* sp. increases in the later larval instars and becomes dominant during the pupal stage.
173 This strain also exhibited high prevalence, though low relative abundance, in adult samples (12/14).

174

175 *Pantoea* sp. is also highly prevalent and extremely abundant, making it very dominant
176 especially across immature stages samples (Figure 2B-C). It was detected in all eggs (11/11) and

177 the majority of larval (98/105), frass (21/21), and pupal samples (5/9), but was relatively rare in
178 adults (7/14).

179

180 In fifth instar larvae, while many microbial taxa observed in previous instars seem to be
181 lost or present in a very low abundance almost all samples show a high abundance of either
182 *Enterobacter* sp., *Pantoea* sp., or a co-occurrence of both, with one strain often dominating the
183 other. Additionally, a few samples exhibit a high abundance of *Enterococcus* sp. (3/22) (Figure
184 2B). This pattern is also observed in frass samples from fifth instar larvae.

185

186 *Asaia* appear characteristic of the adult microbiota. In all adults (F₁ and F₂), three strain
187 belonging to the genus *Asaia* (Family Acetobacteraceae) was consistently observed, irrespective
188 of sex (Figure 2B-C). *Asaia* sp1. prevalence was notably lower in eggs (5/11), larvae (27/105),
189 frass (1/21), and pupae (2/9), with very low relative abundance when detected. This suggests that
190 this strain may persist, albeit in reduced numbers, throughout the developmental life cycle.
191 Additionally, it may be acquired by adults from the environment, thus increasing its relative
192 abundance and our ability to detect it in adult life stages. *Asaia* sp2. and *Enterococcus* sp. were
193 two other dominant taxa found in adults (Figure 2B).

194

195 **Changes in Microbial Community Composition and Diversity across the Monarch Lifecycle**

196 For comparative analysis of microbial communities across various life stages and diets,
197 samples were rarefied to 700 reads per sample, leading to a reduced data set of 105 samples (Table
198 S1B) with a total of 672 ASVs. There was a significant effect of monarch life stage on the
199 composition of their microbial communities based on Bray-Curtis dissimilarity (PERMANOVA

200 with 10,000 permutations; $p < 0.001$, $R^2 = 0.26$). According to Adonis pairwise comparison, no
201 significant difference was observed between the gut microbial communities of larvae and eggs.
202 However, pupae and adult butterflies possessed their own distinguishable communities, albeit with
203 slight overlap with that of other development stages (Table 1A, Figure 3A). This dissimilarity is
204 evident, with statistical support, when comparing F1 female adults and their oviposited eggs
205 (PERMANOVA with 10,000 permutations; $p < 0.001$, $R^2 = 0.54$; Figure 3D). No significant
206 difference was found between female and male adults (PERMANOVA with 10,000 permutations;
207 $p = 0.342$, $R^2 = 0.08$) nor between F₁ and F₂ adults (PERMANOVA with 10,000 permutations; p
208 = 0.932, $R^2 = 0.04$). Taken together, these results emphasize differences between the microbial
209 community composition of mature stages (adults) and immature stages (eggs and larvae).

210

211 The DESeq2 results (Table S2) show that strains with a mean abundance over 30, including
212 *Enterobacter* sp., *Asaia* sp., and *Pantoea* sp., exhibit significant differences across life stages,
213 underscoring the role of these strains in shaping microbial community shifts (Figure 2). In addition,
214 the presence, absence, and changing abundance of less abundant strains (with mean abundance
215 between 25-30 reads) also contribute to the distinctiveness of microbial profiles at certain life
216 stages (Figure S2-S5, Table S2). Notably, there is a significant higher abundance of *Pantoea* sp.,
217 *Enterobacter* sp., *Bacillus* sp., *Enterococcus* sp1 and *Paenibacillus*, and *Staphylococcus* genus in
218 egg and larval samples compared to adults (Figure S2). During the transition to the pupal stage,
219 *Enterobacter* sp. becomes dominant. Moreover, pupae have significantly lower abundances of
220 *Bacillus* sp., *Staphylococcus* sp., and *Paenibacillus* sp. compared to larvae, and lower abundance
221 of *Asaia* sp. compared to adults. In the adult stage, the genus *Asaia* is dominant, with *Enterococcus*
222 sp2 and *Serratia* sp. also present to a lesser extent (Figure S2).

223

224

225 Bray-Curtis dissimilarity testing revealed non-significant community differences among
226 larval instars (PERMANOVA with 10,000 permutations; $p = 0.12$, $R^2 = 0.07$). Adonis pairwise
227 comparisons indicated that significant dissimilarities were observed only in the fifth instar, which
228 differed significantly from all instars except the fourth (Table 1B, Fig 3B). The emergence of very
229 low abundance of *Serratia* sp. and the increasing abundance of *Enterobacter* sp. in the fourth and
230 fifth instars could explain the differences observed between later and earlier instars (Figure S2).

231

232 To better understand whether the bacterial communities within larval frass reflect those in
233 larval guts and/or predict those in pupal guts, we compared the microbial community composition
234 of frass excreted by fifth instars close to pupation to that of late fifth instar larvae and pupae
235 (PERMANOVA with 10,000 permutations; $p < 0.001$, $R^2 = 0.18$, see Figure 3D). There was
236 apparent overlap between the larval frass and larval gut community compositions (Adonis pairwise
237 comparison, 10,000 permutations; $p = 0.7$, $R^2 = 0.02$). The fifth instar larvae share the same
238 dominant strains as the frass, but with different abundances (Figure S4). There were significant
239 differences between the microbial communities of larval frass and pupae (Adonis pairwise
240 comparison, 10,000 permutations; $p = 0.001$, $R^2 = 0.41$), which is consistent with the fact that there
241 were also significant differences between the microbial communities of fifth instar larvae and
242 pupae (Adonis pairwise comparison, 10,000 permutations; $p = 0.003$, $R^2 = 0.38$). In the pupal
243 stage, some larva-specific strains, such as *Bacillus* sp and *Paenibacillus*, as well as the genus
244 *Staphylococcus*, are lost. However, a few adult-specific strains, such as *Enterococcus* sp1 and
245 *Asaia* sp3, appear (Figure S2-S4).

246

247 The measurement of microbial Shannon diversity revealed a pattern wherein eggs exhibit
248 high diversity (Figure 4A). However, it is important to note that egg samples were pooled, so their
249 diversity cannot be independently compared with other stages. Microbial diversity fluctuated
250 throughout the larval stages but tended to decrease overall from the first instar to the fifth instar
251 (Figure 4B), reaching a minimum in the pupal stage and then recovering in adults (Figure 4A).
252 While this pattern of changing microbial diversity is visually evident in the graphs, comparison of
253 Shannon diversity by pairwise post-hoc tests indicated that these differences in diversity were only
254 significant for comparisons between pupa and F₁ adults (Table 1A) and between third and fifth
255 instar larvae (Table 1B). Consistent with Shannon diversity, the results for bacterial richness
256 exhibit a similar pattern. Pairwise comparisons of bacterial richness indicate that pupae have the
257 lowest richness, which is significantly different from that of larval instars (Table 1A). However,
258 no significant differences were observed in microbial richness among any of the larval instars
259 (Table 1B).

260

261 **Influence of Host Plant Diet on the Larval Gut Microbiome**

262 When considering all larval instars, host plant diet had no significant effect on the
263 community composition of gut microbiomes (PERMANOVA with 10,000 permutations; $p =$
264 0.110, $R^2 = 0.05$; Figure 3C). The analysis of Shannon diversity among developmental stages
265 comparing host plants was conducted using the Kruskal-Wallis test. Shannon diversity did not
266 show a significant difference between larvae fed on *A. curassavica* and *A. incarnata* ($p = 0.1$ Figure
267 4C). However, when considering individual larval instars, fourth instar larvae fed on *A.*

268 *curassavica* had more diverse gut microbiomes than those fed on *A. incarnata* (Figure 4C; Table
269 1C).

270

271 DESeq2 analysis indicates that none of the strains show significant differences in
272 abundance between larval stages when comparing the two diet groups, with a threshold of mean
273 abundance set at 25. However, visual examination of their microbial profiles reveals some
274 descriptive differences between the two groups, such as variation in microbial prevalence,
275 although these differences are not statistically significant (Figures 2B and S3). For example, larvae
276 feeding on *A. incarnata* appear to exhibit a higher prevalence of *Pantoea* sp across all stages
277 (expect third instar), with an apparent increase in *Asaia* sp during the first and second instars. In
278 contrast, larvae feeding on *A. curassavica* tend to show a greater dominance of *Enterococcus* sp
279 and *Paenibacillus* sp2 in the later stages, particularly the fifth instar. Additionally, *Massilia* sp is
280 consistently present in all larval instars of the *A. curassavica* group but absent in the *A. incarnata*
281 group.

282

283 **Overall Microbial Densities**

284 The quantification of 16S V4 rRNA copy numbers was conducted for all life stages
285 individually, including each egg sample (rather than pooling of 20 eggs per sample). The results
286 revealed a significant difference in 16S rRNA copy numbers across different life stages (one-way
287 ANOVA, $F = 5.346, p < 0.001$; see Figure 5A). Further pairwise comparisons indicated significant
288 differences between the egg and all other life stages, with the eggs exhibiting the lowest bacterial
289 abundance (Figure 5A, Table 1D). When focusing on larvae, quantification of 16S copy number
290 revealed a significant difference among instars (one-way ANOVA, $F = 4.126, p = 0.004$), with

291 significantly lower bacterial abundances in the first instar compared to the second, third, and fifth
292 instars (Table 1E; Figure 5C).

293

294 There was no significant difference in bacterial load among larval instars based on the
295 larval milkweed diet (one-way ANOVA, $F = 1.048, p = 0.308$; Figure 5D). However, when
296 comparing each instar separately, first instar larvae fed on *A. curassavica* had a lower bacterial
297 load compared to those fed on *A. incarnata* (Table 1C). Additionally, when comparing the bacterial
298 load between fifth instar guts, fifth instar frass samples, and pupal guts, we found that the bacterial
299 load in frass samples was significantly higher than that in larval and pupal gut samples (one-way
300 ANOVA, $F = 12.95, p < 0.001$; Figure 5D). There was no significant difference between pupal gut
301 and frass samples (T-test, $p = 0.91$).

302

303 DISCUSSION

304

305 High fluctuations in microbial composition and diversity among individual lepidopterans
306 (Robinson *et al.*, 2010; Hammer *et al.*, 2014; Minard *et al.*, 2019) and other insects (Gupta and
307 Nair, 2020; Muratore *et al.*, 2020; Suenami *et al.*, 2023) emphasize the need for robust and ample
308 sampling in microbiota research. Our study, based on 160 samples from eggs, larvae (including
309 frass), pupae, and adults, serves as a robust case study, allowing a comprehensive exploration of
310 microbial shifts and diversity patterns in monarchs with relation to two key potential drivers of
311 microbiota composition: host development and host diet. We find that both developmental stage,
312 and diet influence key measures of microbiota composition, diversity, and abundance in this
313 tractable animal model.

314

315 **Overall pattern of microbial diversity across monarch development**

316
317 In monarchs, the most apparent influence of microbiome development is that composition
318 of adult gut microbial communities differ from those of all other life stages. These differences
319 likely are driven by the drastic dietary shift that comes with adulthood, from feeding on milkweed
320 foliage as larvae to feeding on liquid (here, sucrose solution) as adults. This has been seen in other
321 lepidoptera, including Western bean cutworms, (*Striacosta albicosta*) (Ayayee *et al.*, 2022),
322 European corn borers (*Ostrinia nubilalis*) (Belda *et al.*, 2011), domesticated silkworms (*Bombyx*
323 *mori*) (Chen *et al.*, 2018) and red postmen (*Heliconius erato*) (Hammer *et al.*, 2014). Consistent
324 with the hypothesis that dietary shifts drive changes in the microbiota, similar shifts are not seen
325 in species where adults do not feed, such as the Indianmeal moth (*Plodia interpunctella*)
326 (Mereghetti *et al.*, 2019).

327 Patterns of changes in microbial community diversity across lepidopteran development
328 differ across species. Several previous studies of lepidopteran microbiome diversity have revealed
329 a ‘U-Shaped’ pattern of diversity, with diversity decreasing from egg to pupal stages before
330 recovery upon maturation to adult. This trend has been reported for the European corn borer (Belda
331 *et al.*, 2011), the Western bean cutworm, (Ayayee *et al.*, 2022) and the Fall armyworm (*Spodoptera*
332 *frugiperda*) (Fu *et al.*, 2023). However, some lepidopterans exhibit a different pattern, in which
333 diversity tends to drop in adulthood, as seen in the domesticated silkworm (Chen *et al.*, 2018),
334 Oriental fruit moth (*Grapholita molesta*) (X. Wang *et al.*, 2020) and greater wax moth (*Galleria*
335 *mellonella*) (Gohl *et al.*, 2022).

336
337 For monarch’s gut microbiome, our data exhibit a general U-shaped pattern of diversity, wherein
338 the lowest diversity is observed in pupae (Figure 3). However, caution is needed when interpreting

339 the diversity of eggs compared to other stages. Each egg sample consisted of a pool of 20
340 individuals, potentially introducing a bias toward increasing diversity in these samples.

341

342 **A focus on eggs**

343 In contrast to Kingsley (1972), who suggested that monarchs lack egg microbiota, our research
344 reveals that monarch eggs do indeed host bacteria. This difference is not surprising, as Kingsley
345 used culture-based methods to quantify microbes, whereas we used sequencing to capture both
346 culturable and unculturable microbes. However, the source of these microbes is not clear. The first
347 common assumption is that all or part of this microbiota is maternally transferred to eggs, as
348 reported in some lepidopteran species (Freitak *et al.*, 2014; Mereghetti *et al.*, 2019). This is often
349 indicated by the similarity between the microbiota compositions of female adults and eggs, and
350 the presence of common microbial taxa, a phenomenon observed in various species, including
351 silkworms (Chen *et al.*, 2018), greater wax moths (Gohl *et al.*, 2022), beet armyworms (Gao *et al.*,
352 2019) and fall armyworms (Fu *et al.*, 2023). It has also been observed through experimental study
353 of the transmission of fluorescently tagged bacteria; in one such study, labeled *Enterococcus* were
354 consistently observed in all life stages and generations of Egyptian cotton leafworm (*Spodoptera*
355 *littoralis*) (Teh *et al.*, 2016). In contrast, other studies have found environmental transmission to
356 be more important than maternal transfer, such as in *S. albicosta*, where the microbiota of eggs are
357 very similar to those on leaves of their corn host plant (Ayayee *et al.*, 2022). Our findings indicate
358 that monarch egg-associated communities, primarily dominated by Erwiniaceae and
359 Enterobacteriaceae, exhibit greater similarity to larval gut communities than those of their mothers.
360 This suggests that environmental acquisition may be common. This observation may also account
361 for the low microbial load in monarch eggs compare to other stages (Table 1D). We did, however,

362 find that *Enterobacter* sp., was consistently present across all stages (although in low relative
363 abundance, especially in egg and larva stages), suggesting potential vertical transmission
364 throughout the dynamics monarch lifecycle. Additionally, *Pantoea* sp., prevalent in the egg, larval,
365 and pupal stages at high relative abundance, and *Asaia* sp1., prevalent in the adult stages, were
366 both found in all other stages, albeit at low frequency of occurrence and relative abundance.
367 Altogether, these findings suggest the existence of a prevalent microbiome whose members'
368 abundances change with the developmental and dietary shift associated with adulthood.

369

370 **Across larval instars**

371 As monarch larvae progress through five instar stages, they dramatically increase in size and
372 consume more food, likely creating a different niche for bacterial intake and growth. As such,
373 drastic changes between microbial communities of early and later larval instars have been shown
374 in several lepidopteran case studies (Mason and Raffa, 2014; Chen *et al.*, 2018; Gohl *et al.*, 2022).
375 However, our findings reveal a nuanced picture. While the microbial community composition of
376 monarch larval guts appears to remain relatively stable throughout larval development (Figure 3B),
377 we observed contrasting trends in microbial diversity and abundance (Figure 4B and 5C).
378 Specifically, microbial diversity tends to decrease, while microbial abundance tends to increase
379 from the first to the fifth larval instar. It is noteworthy that these changes occur gradually and,
380 when considering the broader context, are statistically supported only between the first and fifth
381 instars.

382

383 Fifth instar larvae excrete large amounts of frass before morphing into pupae, which may partly
384 explain the overall reduction in gut microbial diversity observed in fifth instar larvae (Figure 4).

385 Frass samples contained a higher microbial load compared to fifth instar larvae and other stages,
386 possibly due to the frass environment being less stringent and more conducive to microbial
387 proliferation than the gut environment. The microbial composition of frass may also provide
388 insights into the level of dependency of gut microbiota on diet and environment. For instance, the
389 frass of the Melissa blue butterfly includes microbiota that significantly differs from larval
390 microbiota and is more similar to plant microbial communities (Chaturvedi *et al.*, 2017). This
391 suggests a higher stability and lesser dependence on diet for the Melissa blue microbiota compared
392 to monarchs, where the microbial community found in frass resembles that of the gut. Future work,
393 of course, should assess the microbial communities of milkweed plants for comparison to the
394 microbial communities associated with monarchs across their lifecycle.

395

396 **The final steps: from pupa to adult**

397 In almost all existing lepidopteran studies, the lowest diversity of microbiota is observed
398 in pupae (Johnston and Rolff, 2015; Phalnikar *et al.*, 2018). This could be explained by the purging
399 of gut contents before pupation, the drastic reorganization of body tissues and the non-feeding
400 state of this life stage. Upon enclosing, most adult lepidoptera begin to feed, which is expected to
401 lead to changes in microbial composition and increases in both diversity and abundance. In our
402 study, pupae had the lowest diversity of gut microbes, with a shift in microbial community from
403 that of larvae characterized by a dominance of *Enterobacter* sp over *Pantoea* sp (Figure 2C). As
404 expected, diversity recovered in adults. This increase in diversity is in tandem with a change in
405 composition (Figure 3A), and may be driven by increases in the abundance of specific taxa, such
406 as three strains of *Asaia*. Since *Asaia* is common in plant nectars (Lenaerts *et al.*, 2017; Bassene
407 *et al.*, 2020), as well as in insects that feed on sugary nectar and plant sap ((Bassene *et al.*, 2020)

408 (Gonella *et al.*, 2012, 2012; Li *et al.*, 2019) and even in several lepidopterans (Robinson *et al.*,
409 2010; Gao *et al.*, 2019; X. Wang *et al.*, 2020), a substantial part of this shift may be driven by
410 differences in the nutritional composition of leaves and sugary liquids (Shao *et al.*, 2024). While
411 in our study adults were fed a diet consisting only of sugar, in natural populations, adults feed on
412 various nectars, and are therefore expected to have different compositions and diversity of
413 microbiota.

414

415 **The effect of plant diet, with a focus on plant chemistry**

416 Even though the composition of lepidopteran's prevalent microbiota can exhibit
417 independence from diet (Whitaker *et al.*, 2016), certain lepidopteran species display notable
418 variations in microbiota composition when consuming different host plant diets. Examples include
419 corn earworm (*Helicoverpa zea*) (Jones *et al.*, 2019), cotton leafworm (*Spodoptera littoralis*) and
420 cotton bollworm (*Helicoverpa armigera*) (Tang *et al.*, 2012) and European gypsy moth (*Lymantria*
421 *dispar*) (Mason *et al.*, 2015). This trend becomes more pronounced when multiple generations of
422 insects are exposed to a controlled diet, as seen in rice leaffolder (*Cnaphalocrocis medinalis*)
423 feeding on either rice or maize (Yang *et al.*, 2022), and *S. littoralis* larvae feeding on either cabbage
424 or cotton (Roy *et al.*, 2023).

425

426 Our results indicate that the gut microbiota of fourth instar larvae feeding on *A.*
427 *curassavica*, which contains higher concentrations of cardenolides, are more diverse than those of
428 individuals feeding on *A. incarnata*. Additionally, first instar larvae feeding on *A. curassavica*
429 exhibited significantly lower microbial abundance compared to those feeding on *A. incarnata* (Fig
430 5D). Changes in the presence of particular strains or the prevalence of common strains due to the

431 feeding groups are also detectable; for instance, *Massilia* sp is present only in the *A. curassavica*
432 group, while *Pantoea* sp shows a higher prevalence in the *A. incarnata* group (Figure S3). Since
433 the milkweed species used here are similar in nutrients but differ greatly in toxic cardenolides (Tao
434 *et al.*, 2016), it is possible that the chemical properties of these plants contribute to slight alterations
435 in gut microbial diversity and composition. In a similar study comparing the influence of different
436 milkweed species (*A. syriaca* and *A. curassavica*) on the microbiota of second instar monarch
437 larvae, caterpillars feeding on these plants exhibited similar microbial diversity but different
438 microbial composition (Hansen and Enders, 2022). The study reported different dominant bacterial
439 families than we observed in our study, and identified Enterobacteriaceae as a rare family (Hansen
440 and Enders, 2022). In contrast, Enterobacteriaceae, which includes the genera *Enterobacter* and
441 *Pantoea*, was the most prevalent family in our dataset. Variability in findings may stem from
442 differences in study design, original monarch populations, and plant species. Our study design
443 included plants growing in the same soil sample, which may contribute to greater similarity in the
444 microbial environment of the two groups. Additionally, this suggests that other unknown factors
445 might influence the shaping of the monarch's microbiome. These results highlight the need for
446 more comprehensive studies in controlled environments to elucidate the underlying mechanisms
447 and emphasize the necessity of studying microbiomes across diverse populations to obtain a clearer
448 picture.

449

450 In conclusion, our study significantly advances our understanding of the dynamic
451 monarch gut microbiome by characterizing microbial communities, quantifying bacterial loads
452 across developmental stages, identifying prevalent microbiota, and assessing the impact of
453 alternative larval diets. We found that adults, eggs/larvae, and pupae form three distinct microbial

454 communities, with pupae exhibiting the lowest diversity and adults the highest. Our findings
455 suggest that while environmental factors influence microbiota shifts, certain microbial taxa may
456 persist, indicating potential maternal transfer and maintenance within the monarch population.
457 Furthermore, diets rich in cardenolides have the potential to reduce bacterial loads in early larval
458 development and to increase gut microbiome diversity in later larval stages. Further studies are
459 needed to determine the transmission route of monarch microbes, how monarch microbiota varies
460 in nature and the importance of the microbiota for monarch life history traits and protection against
461 pathogens (Smilanich *et al.*, 2018).

462

463 MATERIALS AND METHODS

464 Insect rearing

465

466 The monarchs used in this study were descendants of individuals collected from St Marks,
467 Florida, US. Several generations had been lab reared prior to this experiment. To minimize the
468 possibility of carryover effects from the parental diet, ten adult individuals from four lineages were
469 fed on sterile 20% sucrose solution, a common lab diet; these adults are referred to hereafter as the
470 P generation. P adults were mated with the opposite sex of another lineage. Once mated, five P
471 females of the same lineage were placed in a single butterfly cage (two cages per lineage)
472 maintained in the greenhouse and oviposited on either milkweed food plant species, *A. incarnata*
473 or *A. curassavica*. Their eggs (the F₁ generation) were collected and once hatched, the larvae were
474 fed on either of the two host plants and reared to adulthood. F₁ adults were fed sterile 20% sucrose
475 solution and placed in a single butterfly cage (two cages per lineage) maintained in the greenhouse.
476 They were ovipositing on either one of two milkweed species, *A. incarnata* or *A. curassavica*.
477 Oviposited eggs, recorded to be collected from either *A. incarnata* or *A. curassavica*, seeded the

478 F₂ generation, which is the focus of our study. F₂ eggs were then moved to individual plastic,
479 lidded cups, where they were placed on leaves of either greenhouse grown *A. incarnata* or *A.*
480 *curassavica*. Once the eggs hatched, leaves were replaced daily. Similar to P and F₁, F₂ adults from
481 both diets were again placed in a single cage and provided with a sterile 20% sucrose solution.
482 “Overall, there were four F₂ diet treatments differing in the plant species fed to larvae of their
483 parents (F₁) and to them (F₂) when they were larvae. The four treatments included: (1) F₁ and F₂
484 both fed on *A. incarnata* (n = 27); (2) F₁ fed on *A. incarnata*, and F₂ fed on *A. curassavica* (n =
485 27); (3) F₁ and F₂ both fed on *A. curassavica* (n = 29); and (4) F₁ fed on *A. curassavica*, and F₂ fed
486 on *A. incarnata* (n = 22) (see Figure 1 and Table S1.A).”

487

488 **Sample collection and gut dissections**

489

490 We collected parental F₁ adults after oviposition. Resulting F₂ offspring, once hatched, fed
491 on either greenhouse grown *A. incarnata* or *A. curassavica*. F₂ individuals were collected at all
492 developmental stages (egg, larva, pupa, and sucrose-fed adults). Due to the difficulty of extracting
493 DNA from individual eggs, the egg samples consisted of a pool of 20 eggs each. Sample sizes for
494 each developmental stages are indicated in Figure 1. From all larval instars, larvae were
495 euthanized with CO₂, then whole bodies were surface-sterilized with 95% molecular grade ethanol
496 for three minutes. Then, we dissected out guts of second, third, fourth and fifth instars for further
497 analysis; first instars were not dissected because of their small size, which prevented removal of
498 the gut from the rest of the animal tissue. Seven-day old pupae were handled similarly to later
499 larval instars though not euthanized. For adults, we clipped off the wings at the thorax, then surface
500 sterilized as described for larvae. Guts from larvae, pupae and adults were dissected with sterile
501 instruments and immediately frozen. In addition, to test if larval frass microbial communities are
502 reflective of their gut microbial communities, we collected frass excreted on sterilized Petri dishes

503 from 21 fifth instar F₂ larvae (12 fed on *A. curassavica* and 9 fed on *A. incarnata*). Each frass
504 sample consisted of five frass pellets. Frass samples were not surface-sterilized. All samples were
505 frozen at -80° until DNA extraction.

506

507 **Gut Microbiome Community Profiling**

508 DNA was extracted using the Qiagen DNeasy PowerSoil kit, following the manufacturer's
509 protocols. Extractions were sent to the University of Michigan's Center for Microbial Systems for
510 PCR amplification, amplicon library preparation, and high-throughput 16S rRNA sequencing. The
511 16S rRNA gene was amplified with barcoded dual-indexed primers 515F and 806R specific to the
512 V4 region. The PCR cycle consisted of two min at 95°C, followed by 30 cycles of 95°C for 20 s,
513 55°C for 15 s, and 72°C for five min, followed by 72°C for 10 min. PCR reactions were
514 normalized, pooled, and quantified for amplicon library preparation. Libraries were sequenced on
515 an Illumina MiSeq platform with 250bp paired ends. A mock community was co-sequenced
516 (ZymoBIOMICSTM Microbial Community DNA Standard) to determine the sequencing error rate,
517 which was 0.0082%.

518 Raw bacterial sequences were processed and analyzed in *qiime2* v 2019.7 (Hall and Beiko,
519 2018). Once the primers were removed the reads were merged and trimmed, sequences less than
520 250bp or greater than 289bp in length were removed from analysis. Quality filtering was performed
521 using DADA2 (Callahan *et al.*, 2016) and subsequently a Bayesian V4 specific classifier was
522 designed to taxonomically identify the amplicon sequence variants (ASV's) using the SILVA v132
523 reference database (Quast *et al.*, 2013). Visualizations and all statistical tests of sequence data were
524 performed in R v4.2.1 (R Core Team, 2022) using packages *phyloseq* (McMurdie and Holmes,
525 2013), *vegan* (Dixon, 2003), *pairwiseAdonis* v0.4 (Martinez Arbizu, 2020), and *qiime2R* (Bisanz,

526 2018). For generating figures and conducting statistical analysis, and particularly to minimize the
527 effect of sample size bias, samples were normalized to 700 reads per sample, resulting in a
528 reduction of sample size (Table S1). Based on the rarefaction curve plot generated in R using
529 *phyloseq* and *vegan* packages (Figure S1), rarefying to 700 reads indicates a negligible loss of
530 diversity. The curves show that increasing sequencing depth beyond 700 reads yields few new
531 types of ASVs, suggesting that rarefying to 700 reads is sufficient for detecting high-abundance
532 microbial taxa.

533

534 **Analysis of Community Structure and Diversity**

535 For the analysis of taxonomic composition of each sample, the ASV's in the datasets were
536 classified using a *qiime2* V4 classifier. Bray-Curtis distances between all communities were
537 calculated and the significance of clustering at the community level was tested for both metrics
538 using the Adonis function implemented in the VEGAN package, including taxonomy, life stage
539 and diet as possible variables. The PERMANOVA (Permutational Multivariate Analysis of
540 Variance) non-parametric test implemented in R was used to assess differences in microbial
541 community composition between developmental stages (egg, larva, pupa, and adult). The primary
542 objective was to understand broader microbial dynamics throughout the life cycle, addressing
543 questions such as how microbial diversity changes between stages, indications of plausible vertical
544 transmission and/or environmental acquisition. For the focused analysis on larval instars,
545 PERMANOVA examined differences across the five larval instars to monitor progressive changes
546 and identify potential microbial shifts linked to larval development stages. To identify strains
547 driving these differences, DESeq2 (R package) (Love *et al.*, 2014) was used for differential
548 abundance analysis, performing pairwise comparisons between developmental stages and filtering

549 significant results with a p-value cutoff of <0.05 . Strains with a baseMean (average abundance)
550 greater than 25 were included in order to focus on biologically relevant features, excluding low-
551 abundance strains.

552 Microbial diversity within each sample was estimated using the Shannon diversity index at
553 the ASV level, calculated with the 'phyloseq' package in R. Due to the non-normal distribution of
554 the data, as determined by Shapiro-Wilk test implemented in R ($p > 0.05$), non-parametric tests
555 were employed for comparisons. The analysis of Shannon diversity among developmental stages
556 was conducted using the Kruskal-Wallis test to assess overall differences in Shannon diversity
557 values among groups. Subsequently, pairwise post-hoc tests with Holm correction were performed
558 to identify specific differences between pairs of developmental stages. In addition to Shannon
559 diversity, bacterial richness was also estimated to provide a more comprehensive understanding of
560 the microbial community structure. Using both Shannon diversity and bacterial richness allows us
561 to capture the complexity of the microbial community (richness and evenness) as well as the actual
562 number of distinct microbial taxa. Bacterial richness was estimated by counting the number of
563 observed ASVs within each sample, also using the 'phyloseq' package in R. Similar to the Shannon
564 diversity analysis, the richness data were tested for normality using the Shapiro-Wilk test, and due
565 to non-normal distribution, non-parametric tests were applied. For the larval stages, the Kruskal-
566 Wallis test was used to evaluate overall differences in observed richness among larval instars,
567 followed by pairwise Wilcoxon tests with Holm correction to identify specific differences between
568 pairs of larval instars.

569

570 **Quantitative PCR and Analysis of Bacterial Load**

571 To determine differences in bacterial sequence abundance between developmental stages
572 and larval instars fed on *A. incarnata* and *A. curassavica*, mean copy numbers of 16S rRNA genes
573 in a subset of samples were estimated using qPCR (n = 138). Each sample was amplified in
574 triplicate, except for four samples amplified in duplicate due to lack of DNA, with the same 16S
575 rRNA primers used for PCR amplification (515F and 806R). Primers and reaction conditions are
576 described in (Cariveau *et al.*, 2014). Standard curves were calculated using purified genomic *E.*
577 *coli* DH10B cells (ThermoFisher Scientific). To calculate the starting copy number for the standard
578 curve, we used the copy number calculator for real time PCR (Science Primer online platform,
579 www.scienceprimer.com) and generated the standard curve in relation to the serial dilution of 1:10.
580 The standard copy number started at 1.6×10^{11} and was diluted down to $\sim 1.6 \times 10^4$. No samples
581 were considered out of range. The estimated mean absolute copy number across triplicates, and in
582 four cases duplicates, was used for analysis of bacterial load. To estimate individual samples from
583 pooled egg samples, the 16S rRNA copy numbers were initially divided by 20. Subsequently, the
584 log10 values of each resulting sample were calculated. These log10 values were then utilized for
585 statistical analysis. Shapiro-Wilk normality tests did not reject the null hypothesis, indicating that
586 the data approximated a normal distribution ($p > 0.05$). Therefore, parametric tests were employed
587 for comparison. Specifically, One-way ANOVA followed by T-tests with corrected p-values using
588 the Holm method were used to assess differences in bacterial loads among developmental stages,
589 larval instars, and diets.

590

591 **Data Availability**

592 Raw sequence reads are available on NBCI's Sequence Read Archive under project
593 PRJNA816827.

594

595 **ACKNOWLEDGEMENTS**

596 The authors thank members of the Gerardo and de Roode labs for their helpful comments, and N.
597 Moran and her lab for qPCR protocols and materials. This work was supported by National Science
598 Foundation (NSF) grants IOS-1557724 and IOS-2202255 to J.C.dR. and N.M.G., and NSF
599 Graduate Research Fellowship Program DGE-1444932 and Woodrow Wilson MMUF
600 Dissertation Fellowship to E.V.H.. K.L.A. and A.Z. were supported by IRACDA Fellowships in
601 Research and Science Teaching (NIH K12 GM 000680).

602

603 **REFERENCES**

604 Agrawal, A.A., Fishbein, M., Halitschke, R., Hastings, A.P., Rabosky, D.L., and Rasmann, S.
605 (2009) Evidence for adaptive radiation from a phylogenetic study of plant defenses. *Proc
606 Natl Acad Sci* **106**: 18067–18072.

607 Augustinos, A.A., Tsiamis, G., Cáceres, C., Abd-Alla, A.M.M., and Bourtzis, K. (2019)
608 Taxonomy, Diet, and Developmental Stage Contribute to the Structuring of Gut-
609 Associated Bacterial Communities in Tephritid Pest Species. *Front Microbiol* **10**:
610 463894.

611 Ayayee, P.A., Currie, A., and Peterson, J.A. (2022) Different Gut Microbiomes of
612 Developmental Stages of Field-Collected Native and Invasive Western Bean Cutworm,
613 *Striacosta albicosta*, in Western Nebraska. *Microorganisms* **10**: 1828.

614 Bassene, H., Niang, E.H.A., Fenollar, F., Doucoure, S., Faye, O., Raoult, D., et al. (2020) Role
615 of plants in the transmission of *Asaia* sp., which potentially inhibit the Plasmodium
616 sporogenic cycle in *Anopheles* mosquitoes. *Sci Rep* **10**: 7144.

617 Belda, E., Pedrola, L., Peretó, J., Martínez-Blanch, J.F., Montagud, A., Navarro, E., et al. (2011)
618 Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European
619 Corn Borer *Ostrinia nubilalis*. *PLOS ONE* **6**: e21751.

620 Berasategui, A., Salem, H., Paetz, C., Santoro, M., Gershenson, J., Kaltenpoth, M., and Schmidt,
621 A. (2017) Gut microbiota of the pine weevil degrades conifer diterpenes and increases
622 insect fitness. *Mol Ecol* **26**: 4099–4110.

623 Bisanz, J.E. (2018) *qiime2R*: Importing QIIME2 artifacts and associated data into R sessions.

624 Bradley, C.A. and Altizer, S. (2005) Parasites hinder monarch butterfly flight: implications for
625 disease spread in migratory hosts. *Ecol Lett* **8**: 290–300.

626 Broderick, N.A., Raffa, K.F., Goodman, R.M., and Handelsman, J. (2004) Census of the
627 Bacterial Community of the Gypsy Moth Larval Midgut by Using Culturing and Culture-
628 Independent Methods. *Appl Environ Microbiol* **70**: 293–300.

629 Brower, L.P. and Calvert, W.H. (1985) FORAGING DYNAMICS OF BIRD PREDATORS ON
630 OVERWINTERING MONARCH BUTTERFLIES IN MEXICO. *Evolution* **39**: 852–868.

631 Brune, A. (2014) Symbiotic digestion of lignocellulose in termite guts. *Nat Rev Microbiol* **12**:
632 168–180.

633 Brunetti, M., Magoga, G., Gionechetti, F., De Biase, A., and Montagna, M. (2022) Does diet
634 breadth affect the complexity of the phytophagous insect microbiota? The case study of
635 Chrysomelidae. *Environ Microbiol* **24**: 3565–3579.

636 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P.
637 (2016) DADA2: High-resolution sample inference from Illumina amplicon data. *Nat
638 Methods* **13**: 581–583.

639 Cárdenas-Hernández, V., Velasco-Cuervo, S., and Toro-Perea, N. (2023) Whole metagenome
640 sequencing reveals host plant influences microbial community associated with larvae of
641 *Anastrepha obliqua*. *Entomol Exp Appl* **171**: 668–680.

642 Cariveau, D.P., Elijah Powell, J., Koch, H., Winfree, R., and Moran, N.A. (2014) Variation in
643 gut microbial communities and its association with pathogen infection in wild bumble
644 bees (*Bombus*). *ISME J* **8**: 2369–2379.

645 Chaturvedi, S., Rego, A., Lucas, L.K., and Gompert, Z. (2017) Sources of Variation in the Gut
646 Microbial Community of *Lycaeides melissa* Caterpillars. *Sci Rep* **7**: 11335.

647 Chen, B., Du, K., Sun, C., Vimalanathan, A., Liang, X., Li, Y., et al. (2018) Gut bacterial and
648 fungal communities of the domesticated silkworm (*Bombyx mori*) and wild mulberry-
649 feeding relatives. *ISME J* **12**: 2252–2262.

650 Chen, B., Teh, B.-S., Sun, C., Hu, S., Lu, X., Boland, W., and Shao, Y. (2016) Biodiversity and
651 Activity of the Gut Microbiota across the Life History of the Insect Herbivore *Spodoptera
652 littoralis*. *Sci Rep* **6**: 29505.

653 Cracraft, J. and Donoghue, M.J. (2004) Assembling the Tree of Life, Oxford University Press,
654 USA.

655 Decker, L.E., Jeffrey, C.S., Ochsenrider, K.M., Potts, A.S., de Roode, J.C., Smilanich, A.M., and
656 Hunter, M.D. (2021) Elevated atmospheric concentrations of CO₂ increase endogenous
657 immune function in a specialist herbivore. *J Anim Ecol* **90**: 628–640.

658 Dillon, R.J. and Dillon, V.M. (2004) THE GUT BACTERIA OF INSECTS: Nonpathogenic
659 Interactions. *Annu Rev Entomol* **49**: 71–92.

660 Dixon, P. (2003) VEGAN, a package of R functions for community ecology. *J Veg Sci* **14**: 927–
661 930.

662 Douglas, A.E. (2022) Insects and Their Beneficial Microbes.

663 Douglas, A.E. (2011) Lessons from studying insect symbioses. *Cell Host Microbe* **10**: 359–367.

664 Ehrlich, P.R. and Raven, P.H. (1964) Butterflies and Plants: A Study in Coevolution. *Evolution*
665 **18**: 586–608.

666 Engel, P. and Moran, N.A. (2013) The gut microbiota of insects – diversity in structure and
667 function. *FEMS Microbiol Rev* **37**: 699–735.

668 Figueiredo, A.R.T. and Kramer, J. (2020) Cooperation and Conflict Within the Microbiota and
669 Their Effects On Animal Hosts. *Front Ecol Evol* **8**:

670 Freitak, D., Schmidtberg, H., Dickel, F., Lochnit, G., Vogel, H., and Vilcinskas, A. (2014) The
671 maternal transfer of bacteria can mediate trans-generational immune priming in insects.
672 *Virulence* **5**: 547–554.

673 Fu, J., Wang, J., Huang, X., Guan, B., Feng, Q., and Deng, H. (2023) Composition and diversity
674 of gut microbiota across developmental stages of *Spodoptera frugiperda* and its effect on
675 the reproduction. *Front Microbiol* **14**: 1237684.

676 Gao, X., Li, W., Luo, J., Zhang, L., Ji, J., Zhu, X., et al. (2019) Biodiversity of the microbiota in
677 *Spodoptera exigua* (Lepidoptera: Noctuidae). *J Appl Microbiol* **126**: 1199–1208.

678 Gohl, P., LeMoine, C.M.R., and Cassone, B.J. (2022) Diet and ontogeny drastically alter the
679 larval microbiome of the invertebrate model *Galleria mellonella*. *Can J Microbiol* **68**:
680 594–604.

681 Gonella, E., Crotti, E., Rizzi, A., Mandrioli, M., Favia, G., Daffonchio, D., and Alma, A. (2012)
682 Horizontal transmission of the symbiotic bacterium *Asaia* sp. in the leafhopper
683 *Scaphoideus titanus* Ball (Hemiptera: Cicadellidae). *BMC Microbiol* **12**: S4.

684 Gowler, C.D., Leon, K.E., Hunter, M.D., and de Roode, J.C. (2015) Secondary Defense
685 Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, *Danaus*
686 *plexippus*. *J Chem Ecol* **41**: 520–523.

687 Gupta, A. and Nair, S. (2020) Dynamics of Insect–Microbiome Interaction Influence Host and
688 Microbial Symbiont. *Front Microbiol* **11**:

689 Hall, M. and Beiko, R.G. (2018) 16S rRNA Gene Analysis with QIIME2. In *Microbiome
690 Analysis: Methods and Protocols*. Methods in Molecular Biology. Beiko, R.G., Hsiao,
691 W., and Parkinson, J. (eds). New York, NY: Springer, pp. 113–129.

692 Hammer, T.J., McMillan, W.O., and Fierer, N. (2014) Metamorphosis of a Butterfly-Associated
693 Bacterial Community. *PLOS ONE* **9**: e86995.

694 Hammer, T.J. and Moran, N.A. (2019) Links between metamorphosis and symbiosis in
695 holometabolous insects. *Philos Trans R Soc B Biol Sci* **374**: 20190068.

696 Hansen, T.E. and Enders, L.S. (2022) Host Plant Species Influences the Composition of
697 Milkweed and Monarch Microbiomes. *Front Microbiol* **13**:

698 Hasan, N. and Yang, H. (2019) Factors affecting the composition of the gut microbiota, and its
699 modulation. *PeerJ* **7**: e7502.

700 Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al. (2011) Normal
701 gut microbiota modulates brain development and behavior. *Proc Natl Acad Sci* **108**:
702 3047–3052.

703 Holzinger, F., Frick, C., and Wink, M. (1992) Molecular basis for the insensitivity of the
704 Monarch (*Danaus plexippus*) to cardiac glycosides. *FEBS Lett* **314**: 477–480.

705 Hoogshagen, M., Hastings, A.P., Chavez, J., Duckett, M., Pettit, R., Pahnke, A.P., et al. (2023)
706 Mixtures of Milkweed Cardenolides Protect Monarch Butterflies against Parasites. *J
707 Chem Ecol.*

708 Hu, X., Wang, C., Chen, H., and Ma, J. (2013) Differences in the Structure of the Gut Bacteria
709 Communities in Development Stages of the Chinese White Pine Beetle (*Dendroctonus*
710 *armandi*). *Int J Mol Sci* **14**: 21006–21020.

711 Johnston, P.R. and Rolff, J. (2015) Host and Symbiont Jointly Control Gut Microbiota during
712 Complete Metamorphosis. *PLOS Pathog* **11**: e1005246.

713 Jones, A.G., Mason, C.J., Felton, G.W., and Hoover, K. (2019) Host plant and population source
714 drive diversity of microbial gut communities in two polyphagous insects. *Sci Rep* **9**:
715 2792.

716 Kingsley, V.V. (1972) Persistence of intestinal bacteria in the developmental stages of the
717 Monarch butterfly (*Danaus plexippus*). *J Invertebr Pathol* **20**: 51–58.

718 Lefèvre, T., Chiang, A., Kelavkar, M., Li, H., Li, J., de Castillejo, C.L.F., et al. (2012)
719 Behavioural resistance against a protozoan parasite in the monarch butterfly. *J Anim Ecol*
720 **81**: 70–79.

721 Lefèvre, T., Oliver, L., Hunter, M.D., and De Roode, J.C. (2010) Evidence for trans-generational
722 medication in nature. *Ecol Lett* **13**: 1485–1493.

723 Lenaerts, M., Goelen, T., Paulussen, C., Herrera-Malaver, B., Steensels, J., Van den Ende, W., et
724 al. (2017) Nectar bacteria affect life history of a generalist aphid parasitoid by altering
725 nectar chemistry. *Funct Ecol* **31**: 2061–2069.

726 Li, D.-D., Li, J.-Y., Hu, Z.-Q., Liu, T.-X., and Zhang, S.-Z. (2022) Fall Armyworm Gut Bacterial
727 Diversity Associated with Different Developmental Stages, Environmental Habitats, and
728 Diets. *Insects* **13**: 762.

729 Li, F., Hua, H., Ali, A., and Hou, M. (2019) Characterization of a Bacterial Symbiont *Asaia* sp.
730 in the White-Backed Planthopper, *Sogatella furcifera*, and Its Effects on Host Fitness.
731 *Front Microbiol* **10**:

732 Li, Mei, C., Luo, X., Wulamu, D., Zhan, S., Huang, Y.-P., and Yang, H. (2023) Dynamics of the
733 intestinal bacterial community in black soldier fly larval guts and its influence on insect
734 growth and development. *Insect Sci* **30**: 947–963.

735 Love, M.I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and
736 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**: 550.

737 Luo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., and Xu, L. (2021) Variation of gut microbiota
738 caused by an imbalance diet is detrimental to bugs' survival. *Sci Total Environ* **771**:
739 144880.

740 Marcabal, A., Barboza, M., Sonnenburg, E.D., Pudlo, N., Martens, E.C., Desai, P., et al. (2011)
741 Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization
742 Pathways. *Cell Host Microbe* **10**: 507–514.

743 Martin, R.A., Lynch, S.P., Brower, L.P., Malcolm, S.B., and Van Hook, T. (1992) Cardenolide
744 content, emetic potency, and thin-layer chromatography profiles of monarch
745 butterflies, *Danaus plexippus*, and their larval host-plant milkweed, *Asclepias humistrata*,
746 in Florida. *CHEMOECOLOGY* **3**: 1–13.

747 Martinez Arbizu, P. (2020) pairwiseAdonis: Pairwise multilevel comparison using adonis.

748 Mason, C.J. (2020) Complex Relationships at the Intersection of Insect Gut Microbiomes and
749 Plant Defenses. *J Chem Ecol* **46**: 793–807.

750 Mason, C.J. and Raffa, K.F. (2014) Acquisition and Structuring of Midgut Bacterial
751 Communities in Gypsy Moth (Lepidoptera: Erebidae) Larvae. *Environ Entomol* **43**: 595–
752 604.

753 Mason, C.J., Rubert-Nason, K.F., Lindroth, R.L., and Raffa, K.F. (2015) Aspen Defense
754 Chemicals Influence Midgut Bacterial Community Composition of Gypsy Moth. *J Chem
755 Ecol* **41**: 75–84.

756 McMurdie, P.J. and Holmes, S. (2013) phyloseq: An R Package for Reproducible Interactive
757 Analysis and Graphics of Microbiome Census Data. *PLOS ONE* **8**: e61217.

758 Mereghetti, V., Chouaia, B., Limonta, L., Locatelli, D.P., and Montagna, M. (2019) Evidence for
759 a conserved microbiota across the different developmental stages of *Plodia interpunctella*.
760 *Insect Sci* **26**: 466–478.

761 Minard, G., Tikhonov, G., Ovaskainen, O., and Saastamoinen, M. (2019) The microbiome of the
762 *Melitaea cinxia* butterfly shows marked variation but is only little explained by the traits
763 of the butterfly or its host plant. *Environ Microbiol* **21**: 4253–4269.

764 Muratore, M., Sun, Y., and Prather, C. (2020) Environmental Nutrients Alter Bacterial and
765 Fungal Gut Microbiomes in the Common Meadow Katydid, *Orchelimum vulgare*. *Front*
766 *Microbiol* **11**:.

767 Paniagua Voirol, L.R., Frago, E., Kaltenpoth, M., Hilker, M., and Fatouros, N.E. (2018)
768 Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the
769 Host. *Front Microbiol* **9**:.

770 Pernice, M., Simpson, S.J., and Ponton, F. (2014) Towards an integrated understanding of gut
771 microbiota using insects as model systems. *J Insect Physiol* **69**: 12–18.

772 Phalnikar, K., Kunte, K., and Agashe, D. (2018) Dietary and developmental shifts in butterfly-
773 associated bacterial communities. *R Soc Open Sci* **5**: 171559.

774 Piel, J. (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured
775 bacterial symbiont of Paederus beetles. *Proc Natl Acad Sci* **99**: 14002–14007.

776 Pinto-Tomás, A.A., Sittenfeld, A., Uribe-Lorío, L., Chavarría, F., Mora, M., Janzen, D.H., et al.
777 (2011) Comparison of Midgut Bacterial Diversity in Tropical Caterpillars (Lepidoptera:
778 Saturniidae) Fed on Different Diets. *Environ Entomol* **40**: 1111–1122.

779 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA
780 ribosomal RNA gene database project: improved data processing and web-based tools.
781 *Nucleic Acids Res* **41**: D590–D596.

782 R Core Team (2022) R: A language and environment for statistical computing.

783 Ramirez, J.L., Short, S.M., Bahia, A.C., Saraiva, R.G., Dong, Y., Kang, S., et al. (2014)
784 Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes
785 and Has Entomopathogenic and In Vitro Anti-pathogen Activities. *PLOS Pathog* **10**:
786 e1004398.

787 Robinson, C.J., Schloss, P., Ramos, Y., Raffa, K., and Handelsman, J. (2010) Robustness of the
788 Bacterial Community in the Cabbage White Butterfly Larval Midgut. *Microb Ecol* **59**:
789 199–211.

790 de Roode, J.C., Pedersen, A.B., Hunter, M.D., and Altizer, S. (2008) Host Plant Species Affects
791 Virulence in Monarch Butterfly Parasites. *J Anim Ecol* **77**: 120–126.

792 Roy, A., Houot, B., Kushwaha, S., and Anderson, P. (2023) Impact of transgenerational host
793 switch on gut bacterial assemblage in generalist pest, *Spodoptera littoralis* (Lepidoptera:
794 Noctuidae). *Front Microbiol* **14**: 1172601.

795 Shao, Y., Mason, C.J., and Felton, G.W. (2024) Toward an Integrated Understanding of the
796 Lepidoptera Microbiome. *Annu Rev Entomol* **69**: 117–37.

797 Shikano, I., Rosa, C., Tan, C.-W., and Felton, G.W. (2017) Tritrophic Interactions: Microbe-
798 Mediated Plant Effects on Insect Herbivores. *Annu Rev Phytopathol* **55**: 313–331.

799 Siddiqui, J.A., Khan, M.M., Bamisile, B.S., Hafeez, M., Qasim, M., Rasheed, M.T., et al. (2022)
800 Role of Insect Gut Microbiota in Pesticide Degradation: A Review. *Front Microbiol* **13**:.

801 Smilanich, A.M., Langus, T.C., Doan, L., Dyer, L.A., Harrison, J.G., Hsueh, J., and Teglas, M.B.
802 (2018) Host plant associated enhancement of immunity and survival in virus infected
803 caterpillars. *J Invertebr Pathol* **151**: 102–112.

804 Smilanich, A.M. and Muchoney, N.D. (2022) Host Plant Effects on the Caterpillar Immune
805 Response. In *Caterpillars in the Middle: Tritrophic Interactions in a Changing World*.
806 Fascinating Life Sciences. Marquis, R.J. and Koptur, S. (eds). Cham: Springer
807 International Publishing, pp. 449–484.

808 Sommer, F. and Bäckhed, F. (2013) The gut microbiota — masters of host development and
809 physiology. *Nat Rev Microbiol* **11**: 227–238.

810 Staudacher, H., Kaltenpoth, M., Breeuwer, J.A.J., Menken, S.B.J., Heckel, D.G., and Groot, A.T.
811 (2016) Variability of Bacterial Communities in the Moth *Heliothis virescens* Indicates
812 Transient Association with the Host. *PLOS ONE* **11**: e0154514.

813 Suárez-Moo, P., Cruz-Rosales, M., Ibarra-Laclette, E., Desgarennes, D., Huerta, C., and
814 Lamelas, A. (2020) Diversity and Composition of the Gut Microbiota in the
815 Developmental Stages of the Dung Beetle *Copris incertus* Say (Coleoptera,
816 Scarabaeidae). *Front Microbiol* **11**: 564362.

817 Sudakaran, S., Salem, H., Kost, C., and Kaltenpoth, M. (2012) Geographical and ecological
818 stability of the symbiotic mid-gut microbiota in European firebugs, *Pyrrhocoris apterus*
819 (Hemiptera, Pyrrhocoridae). *Mol Ecol* **21**: 6134–6151.

820 Suenami, S., Koto, A., and Miyazaki, R. (2023) Basic Structures of Gut Bacterial Communities
821 in Eusocial Insects. *Insects* **14**: 444.

822 Tan, W.-H., Acevedo, T., Harris, E.V., Alcaide, T.Y., Walters, J.R., Hunter, M.D., et al. (2019)
823 Transcriptomics of monarch butterflies (*Danaus plexippus*) reveals that toxic host plants
824 alter expression of detoxification genes and down-regulate a small number of immune
825 genes. *Mol Ecol* **28**: 4845–4863.

826 Tang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E.A., et al. (2012) Complexity and
827 Variability of Gut Commensal Microbiota in Polyphagous Lepidopteran Larvae. *PLOS*
828 *ONE* **7**: e36978.

829 Tao, L., Berns, A.R., and Hunter, M.D. (2014) Why does a good thing become too much?
830 Interactions between foliar nutrients and toxins determine performance of an insect
831 herbivore. *Funct Ecol* **28**: 190–196.

832 Tao, L., Hoang, K.M., Hunter, M.D., and de Roode, J.C. (2016) Fitness costs of animal
833 medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. *J*
834 *Anim Ecol* **85**: 1246–1254.

835 Teh, B.-S., Apel, J., Shao, Y., and Boland, W. (2016) Colonization of the Intestinal Tract of the
836 Polyphagous Pest *Spodoptera littoralis* with the GFP-Tagged Indigenous Gut Bacterium
837 *Enterococcus mundtii*. *Front Microbiol* **7**.

838 Wang, L., Wu, J., Li, K., Sadd, B.M., Guo, Y., Zhuang, D., et al. (2019) Dynamic Changes of
839 Gut Microbial Communities of Bumble Bee Queens through Important Life Stages.
840 *mSystems* **4**: 10.1128/msystems.00631-19.

841 Wang, M., Xiang, X., and Wan, X. (2020) Divergence in Gut Bacterial Community Among Life
842 Stages of the Rainbow Stag Beetle *Phalacognathus muelleri* (Coleoptera: Lucanidae).
843 *Insects* **11**: 719.

844 Wang, X., Sun, S., Yang, X., Cheng, J., Wei, H., Li, Z., et al. (2020) Variability of Gut
845 Microbiota Across the Life Cycle of *Grapholita molesta* (Lepidoptera: Tortricidae). *Front*
846 *Microbiol* **11**: 1366.

847 Wang, X., Wang, H., Su, X., Zhang, J., Bai, J., Zeng, J., and Li, H. (2023) Dynamic changes of
848 gut bacterial communities present in larvae of *Anoplophora glabripennis* collected at
849 different developmental stages. *Arch Insect Biochem Physiol* **112**: e21978.

850 Whitaker, M.R.L., Salzman, S., Sanders, J., Kaltenpoth, M., and Pierce, N.E. (2016) Microbial
851 Communities of Lycaenid Butterflies Do Not Correlate with Larval Diet. *Front Microbiol*
852 **7**: 230496.

853 Wielkopolan, B., Krawczyk, K., Szabelska-Beręsewicz, A., and Obrepalska-Stepłowska, A.
854 (2021) The structure of the cereal leaf beetle (*Oulema melanopus*) microbiome depends
855 on the insect's developmental stage, host plant, and origin. *Sci Rep* **11**: 20496.

856 Wong, A.C.-N., Wang, Q.-P., Morimoto, J., Senior, A.M., Lihoreau, M., Neely, G.G., et al.
857 (2017) Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging
858 Decisions in *Drosophila*. *Curr Biol* **27**: 2397-2404.e4.

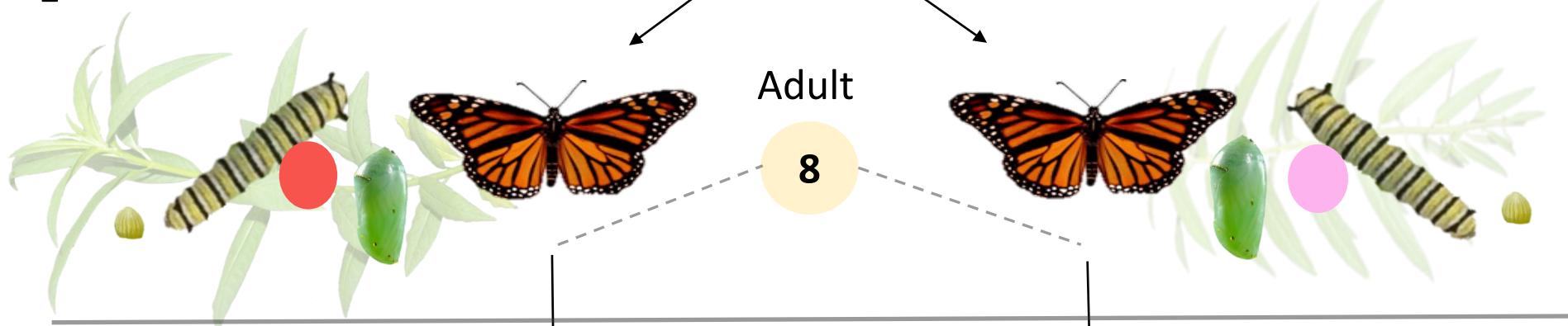
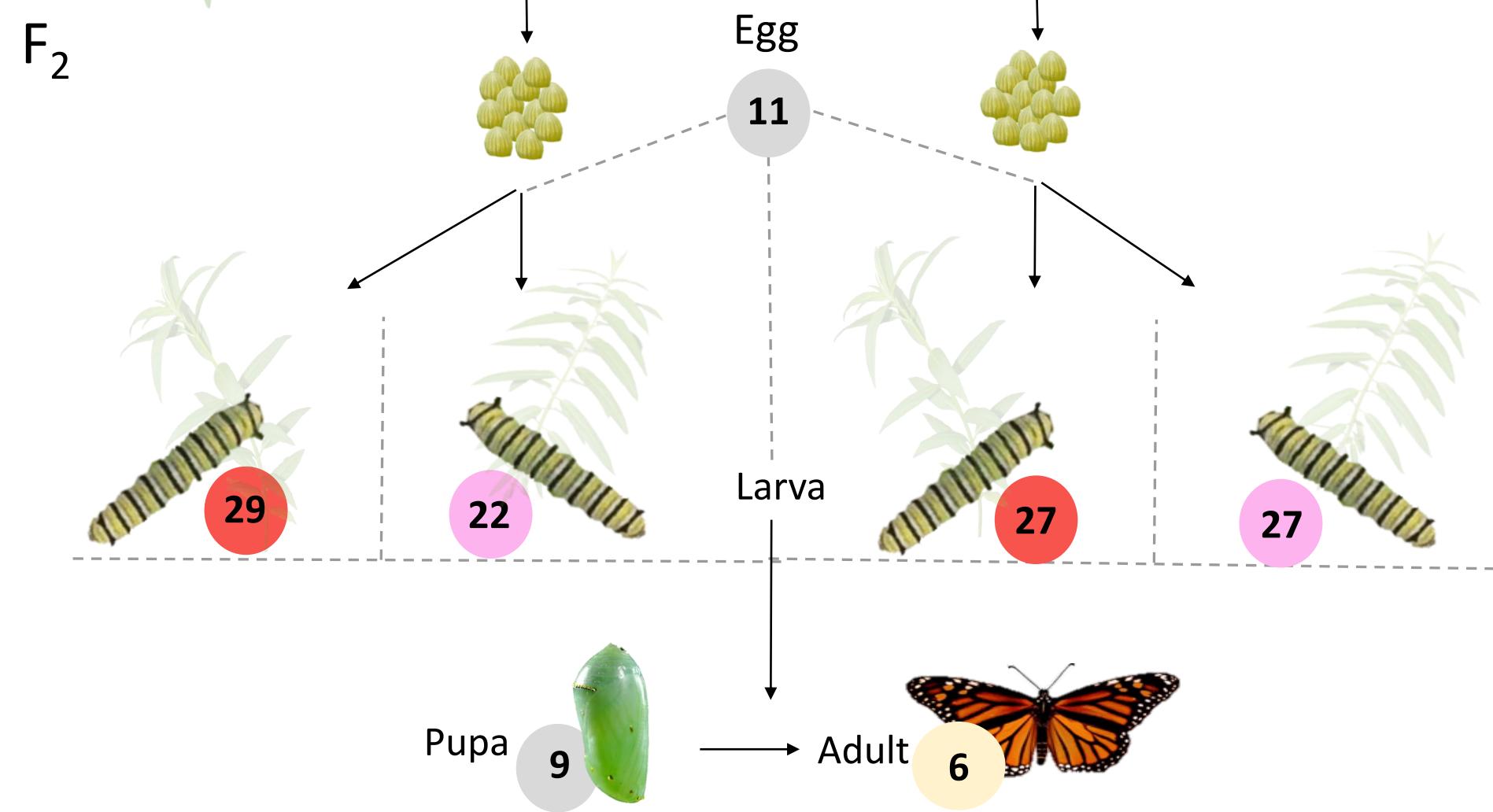
859 Xue, H., Zhu, X., Wang, L., Zhang, K., Li, D., Ji, J., et al. (2021) Gut Bacterial Diversity in
860 Different Life Cycle Stages of *Adelphocoris suturalis* (Hemiptera: Miridae). *Front*
861 *Microbiol* **12**: 670383.

862 Yang, Y., Liu, X., Xu, H., Liu, Y., and Lu, Z. (2022) Effects of Host Plant and Insect Generation
863 on Shaping of the Gut Microbiota in the Rice Leaffolder, *Cnaphalocrocis medinalis*.
864 *Front Microbiol* **13**: 824224.

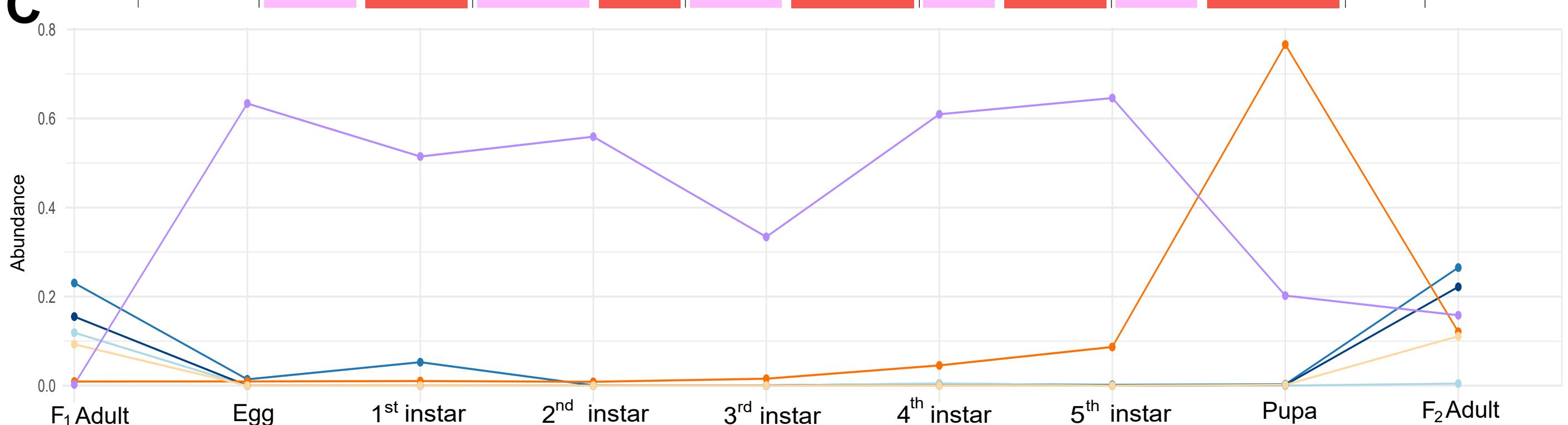
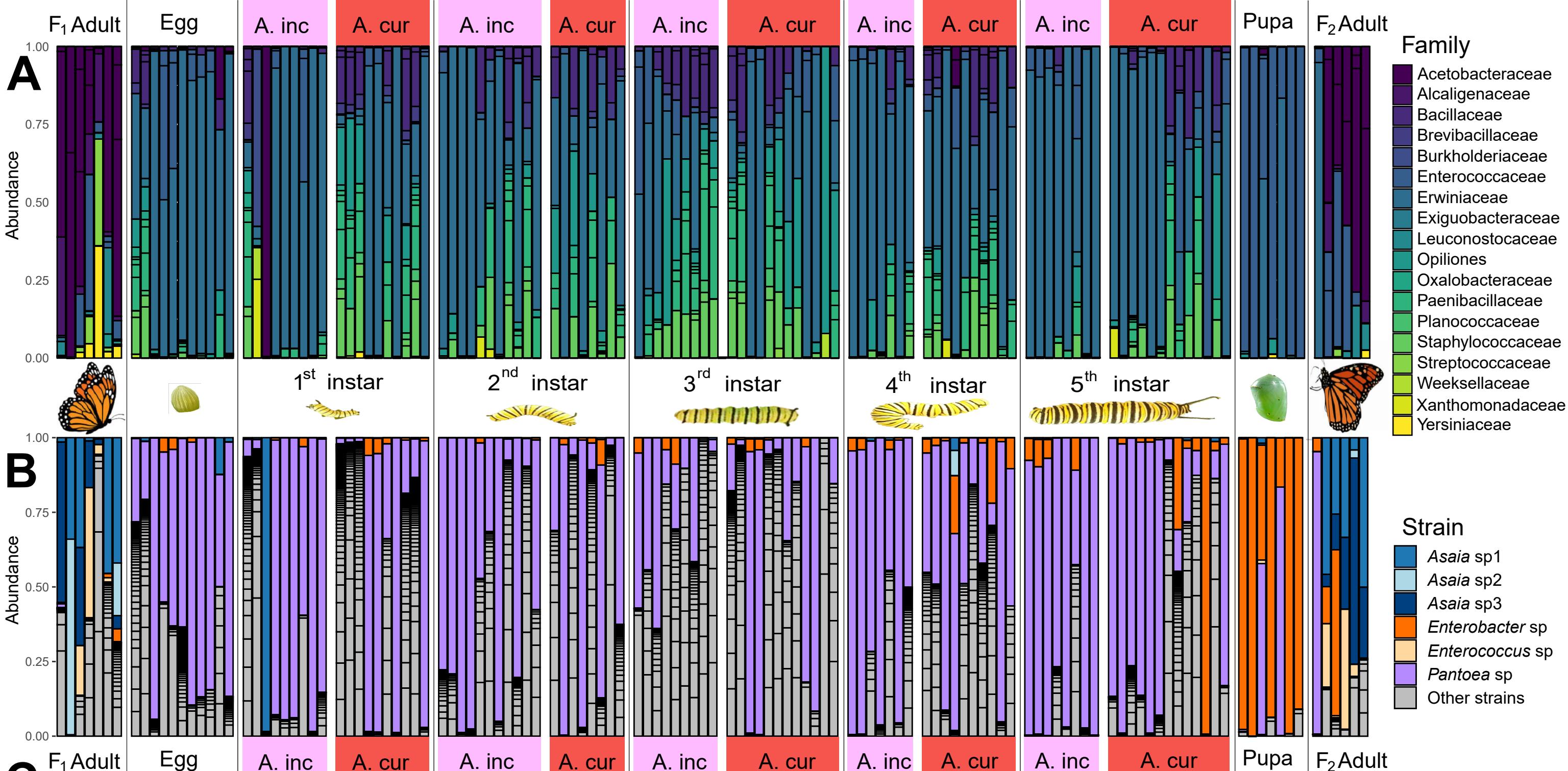
865 Yao, Z., Ma, Q., Cai, Z., Raza, M.F., Bai, S., Wang, Y., et al. (2019) Similar Shift Patterns in
866 Gut Bacterial and Fungal Communities Across the Life Stages of *Bactrocera minax*
867 Larvae From Two Field Populations. *Front Microbiol* **10**: 2262.

868 Yoon, S.A., Harrison, J.G., Philbin, C.S., Dodson, C.D., Jones, D.M., Wallace, I.S., et al. (2019)
869 Host plant-dependent effects of microbes and phytochemistry on the insect immune
870 response. *Oecologia* **191**: 141–152.

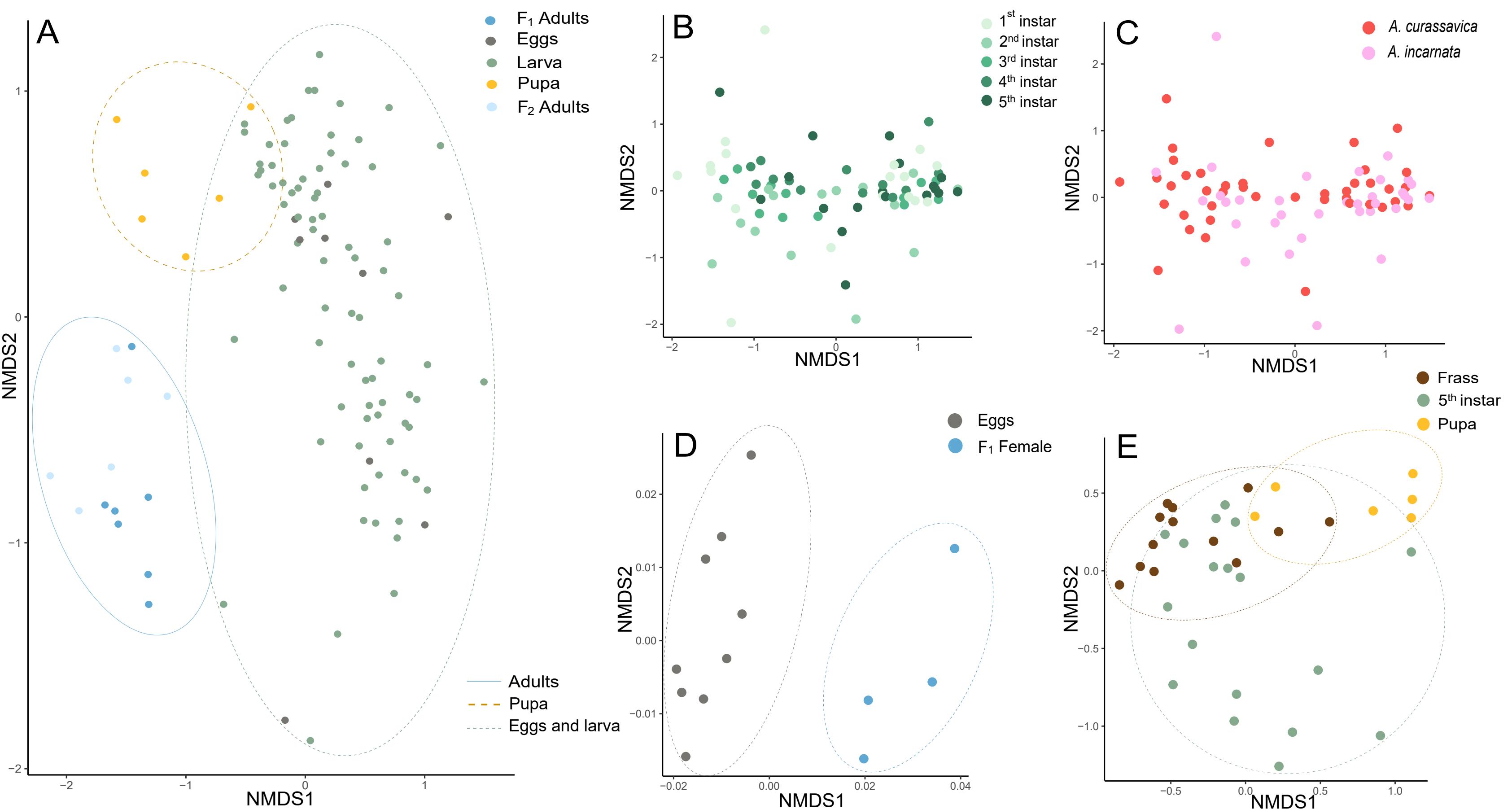
871 Zhan, S., Merlin, C., Boore, J.L., and Reppert, S.M. (2011) The Monarch Butterfly Genome
872 Yields Insights into Long-Distance Migration. *Cell* **147**: 1171–1185.



873 Zhang, Z., Jiao, S., Li, X., and Li, M. (2018) Bacterial and fungal gut communities of *Agrilus*
874 *mali* at different developmental stages and fed different diets. *Sci Rep* **8**: 15634.

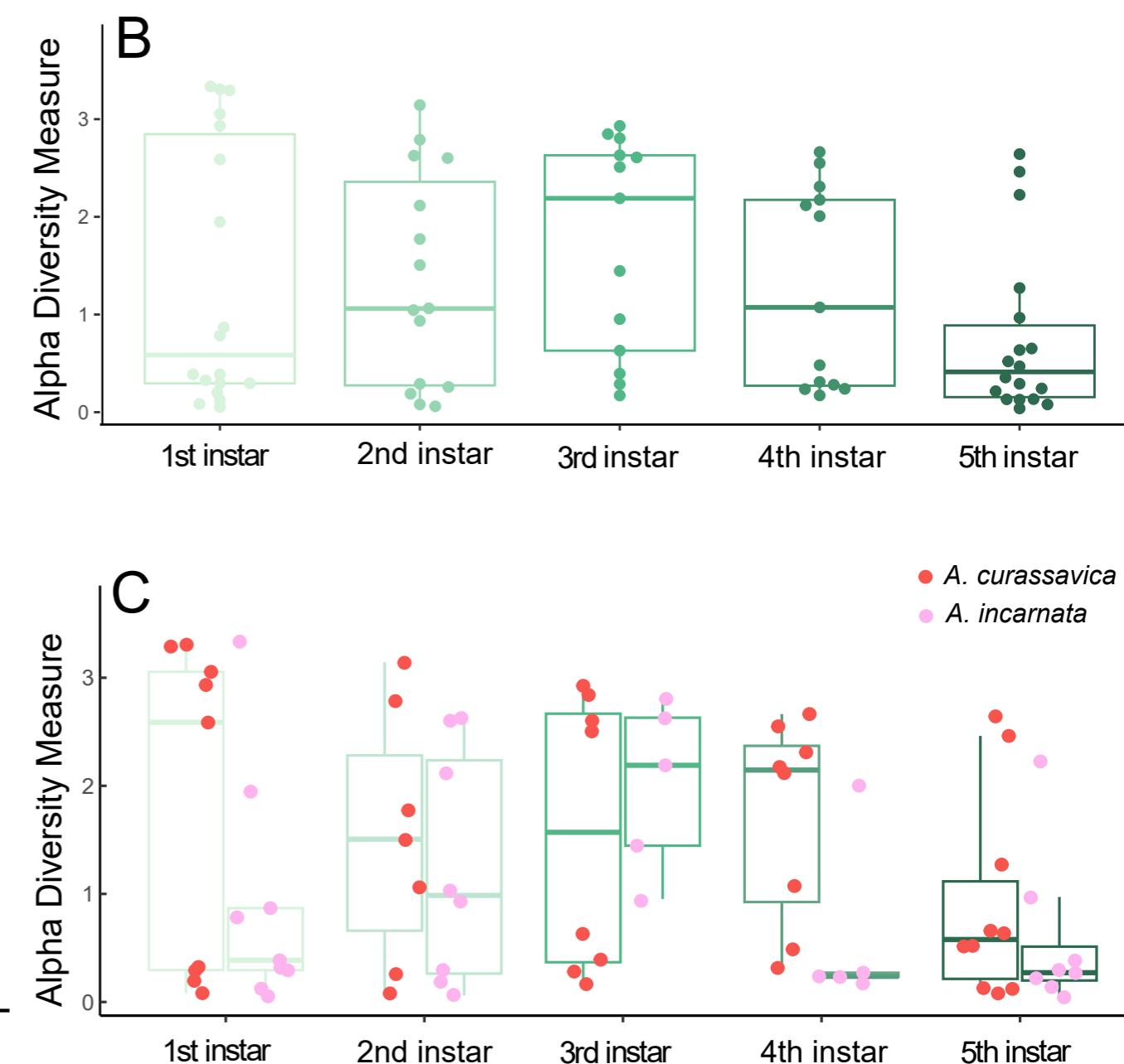
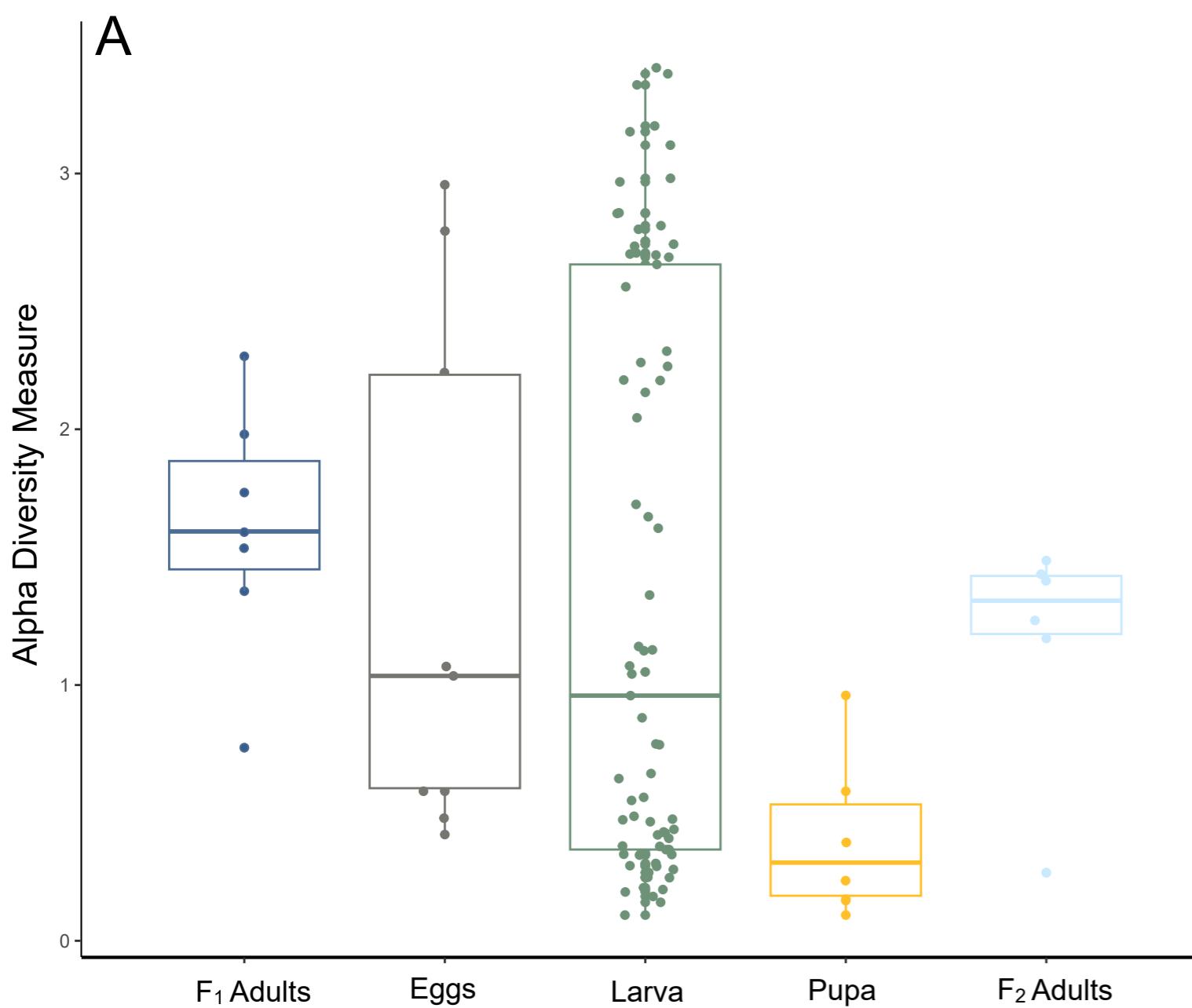
875



Figure 1. Schematic of experimental design, depicting the diets received for each group in colored circles (red for *A. curassavica* and pink for *A. incarnata*). The numbers within each circle represent the sample size for microbial metabarcoding. F₂ diet treatments include (1) F₁ and F₂ on *A. incarnata* (n = 27), (2) F₁ parent on *A. incarnata* and F₂ offspring on *A. curassavica* (n = 27), (3) F₁ and F₂ on *A. curassavica* (n = 29), and (4) F₁ parent on *A. curassavica* and F₂ offspring on *A. incarnata* (n = 22). Frass samples (not shown in figure) were collected from fifth instar larvae, and each egg sample consists of a pool of 20 eggs.

P


- 20% Sucrose solution
- A. curassavica*
- A. incarnata*
- None feeding stage

 F_1 F_2



Figure 2. Microbial community composition across developmental stages, **A.** based on top 25 most abundant families, and **B.** based on the top strains (ASVs) with a mean abundance of over 0.1% across all samples. For the top 20 strains, see Figure S2. Monarch larvae were reared on two host plants, *A. incarnata* and *A. curassavica*. Larvae are indicated by instar (1st to 5th). With the exception of egg samples, which were pooled, each column represents the microbial community within the gut of one individual. **C.** Mean abundance of selected strains across developmental stages (strain colors as in B).

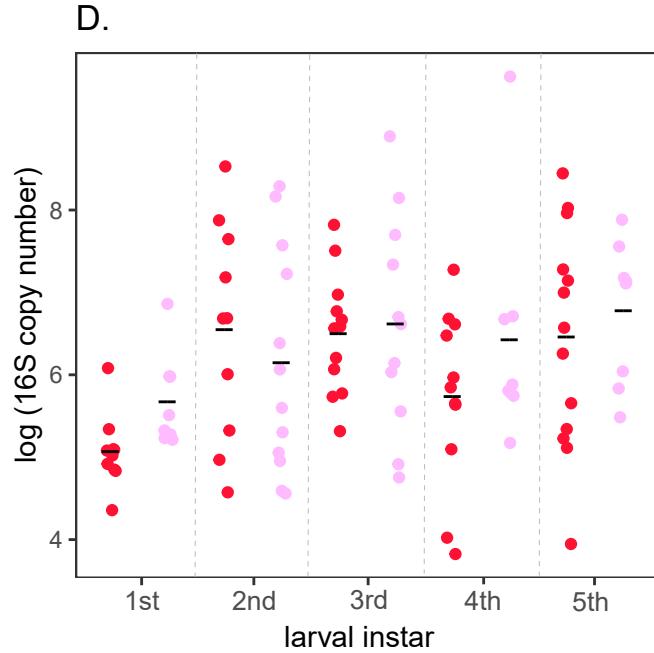
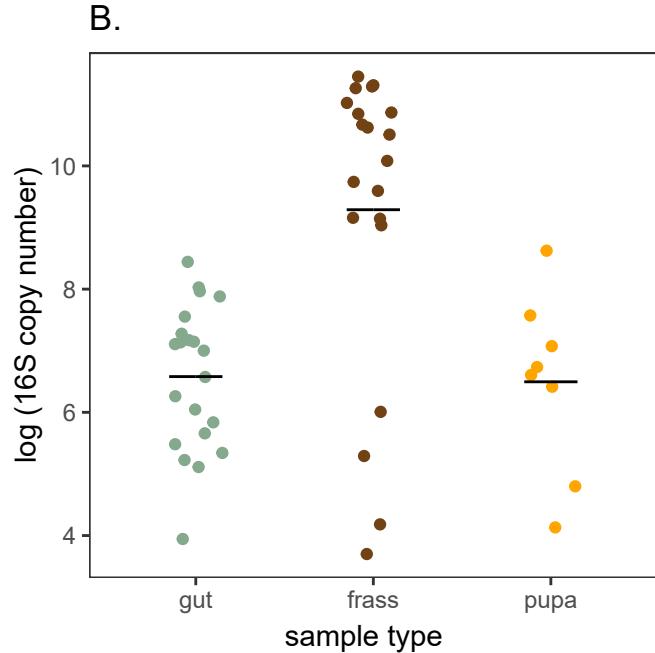
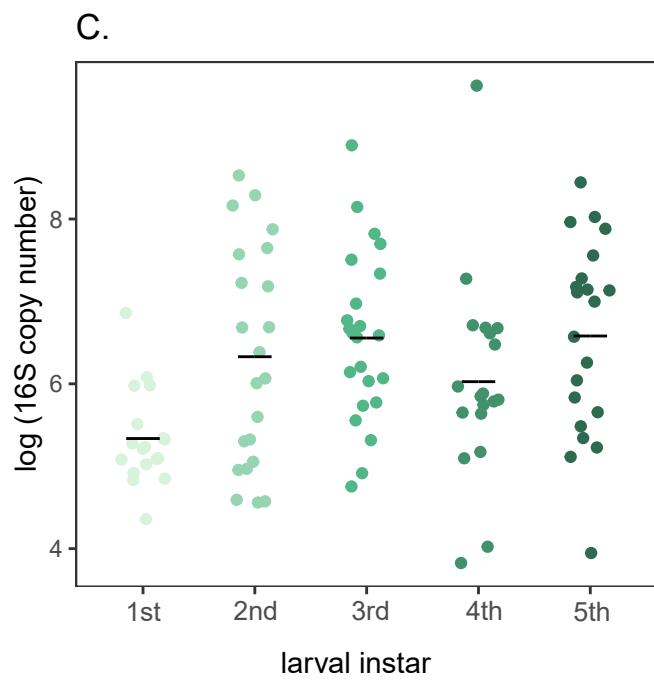
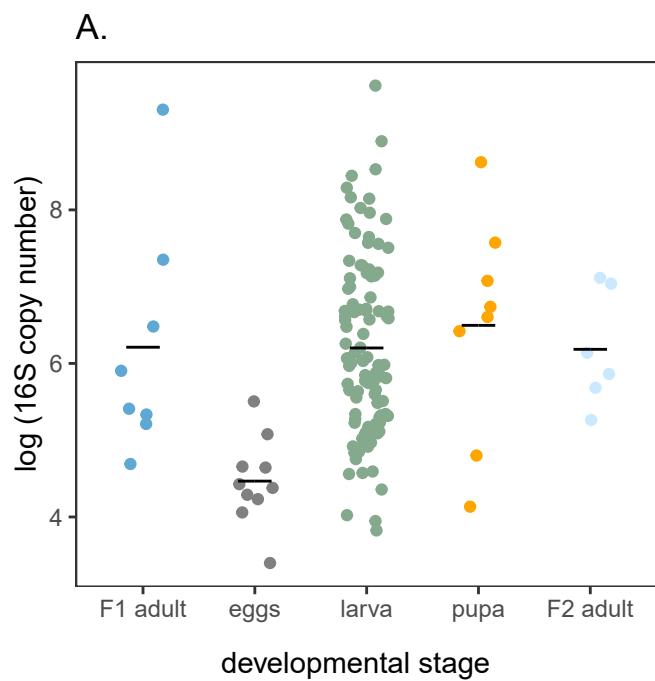




Figure 3. Comparative analysis of gut microbial community variations (PERMANOVA with 10,000 permutations: $p < 0.05$): **A.** Across all developmental stages, revealing differences in the composition of adult butterfly gut communities compared to other life stages. Except for eggs, which are pools of whole eggs, all samples are from single individuals, and all larval stages (first to fifth) are considered together. Eggs and first instars are based microbial community profiling of whole individuals, while all other life stages are based on gut tissue only. **B.** Across the five larval instars. **C.** Between two larval feeding diets, considering all larval stages together. **D.** Between eggs and their F_1 female parent. Notably, the gut microbial communities of female adults differ from those of their oviposited eggs, with parents being F_1 female adults fed sterile 20% sucrose water before dissection, and egg samples consisting of a pool of 20 eggs each. **E.** Between the gut and frass microbial communities of the fifth instar larva and pupa, showing overall overlap and similarity.

Figure 4. Shannon diversity of the microbial community across **A.** All developmental stages, including larvae (1st to 5th) analyzed collectively, with each point representing one sample (pools of 20 eggs per egg sample, whole individual first instars, and individual guts for all other life stages). **B.** Larval instars, considering those fed on both milkweed species, revealing higher diversity in earlier instars. **C.** Larval instars based on their diets, distinguishing between *A. curassavica* (high cardenolides) and *A. incarnata* (low cardenolides).

Figure 5. Bacterial abundance across developmental stages, as estimated by quantitative PCR. **A.** Egg samples (20 eggs per sample) have fewer bacteria than individual guts of other developmental stages. All larval instars combined for this comparison. **B.** Larval frass samples have more bacteria than larval and pupal guts. **C.** First instar guts have fewer bacteria than other larval instars. **D.** Larval diet does not affect microbial abundance across larval instars. Red dots (left) are larvae fed *A. curassavica*, and pink (right) are larvae fed *A. incarnata*. Points represent individual samples, and horizontal bars represent means.

