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We derive an exact solution for the steady state of a setup where two XX-coupledN-qubit spin chains (with

possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by

a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure

entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of

squeezed light. Our solution also provides insights into a single boundary-driven dissipative XX spin chain

that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation

effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping.

Our system could be implemented in a number of experimental platforms, including circuit QED.
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I. INTRODUCTION

The recent intense interest in driven-dissipative quantum

systems has many distinct motivations. One key goal is to

understand how tailored dissipative processes [1,2] could

be used to stabilize entangled quantum states in both the

few and many-body regimes, with possible applications

to quantum information processing (see, e.g., Refs. [3–22]).

A second, seemingly distinct line of work seeks to under-

stand the unique properties of nonequilibrium steady

states (NESS) that arise in driven quantum spin chains

from the interplay of driving, lattice dynamics, and dis-

sipation [23–35]. Here, certain exact solutions have been

especially valuable [23–27].

In this paper, we present new exact results for two

boundary-driven spin models that are directly relevant to

both of the above motivations. The first [Fig. 1(a)] consists

of two passively coupled N-qubit chains that hang off the

same waveguide. We show that, for arbitrary N, this system
has a pure, highly entangled steady, even for weak driving

and with certain kinds of disorder. The second [Fig. 1(b)] is

a single-qubit chain with boundary Rabi driving and loss,

which somewhat surprisingly corresponds to an interacting
fermionic model. We nonetheless obtain an exact result for

the NESS by considering the directional waveguide limit of

the double-chain system: The double-chain pure state is the

purification of the desired NESS. This represents the first

use of the hidden time-reversal or quantum absorber exact

solution method [4,36,37] to a nontrivial system where

interactions are not long-ranged. This solution is also a rare

example of an exactly solved coherently driven 1D spin

chain model. In contrast, the few existing examples of

exactly solvable boundary-driven spin chains have involved

purely incoherent drives [23–27].

Our exact solutions provide a wealth of insights relevant

to understanding correlations in the NESS and to the

application of remote entanglement stabilization. Despite

the lack of any explicit attractive interactions in our

systems, their steady states exhibit strong real-space pairing

correlations. In fact, we show that the pure steady state of

the double-chain system can be exactly written as a

condensate of paired holes, where a hole here corresponds

to an interchain dimer of qubits that are both in the vacuum

state [see Fig. 1(c)]. We discuss how this pairing has clear

observable consequences and how it ultimately arises from

a kinetically constrained hopping process (something that

could also be studied in certain nondissipative cold atom

systems [38]). This pairing mechanism also has a direct

connection to the emergence of quantum scar states: It

represents a restricted spectrum-generating algebra of the

two-chain Hamiltonian [39] and can be used to construct a
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tower ofmany-body scar states in relatednonintegrable ladder

models such as that studied in Ref. [40]. We also discuss

regimes where this pairing structure directly results in an

NESSwith features reminiscent of charge densitywave order.

In terms of entanglement stabilization, our double-

chain system has potential advantages over other proposals

[16–21], as it does not require the preparation and transport

of high-fidelity squeezed light but only simple Rabi drives

and passive waveguide couplings. It unifies and extends to

the multiqubit regime previously known two-qubit schemes

[4–8]. For large Rabi drive amplitude Ω, our system is just

one example of a more general mechanism for replicating

definite-parity two-qubit states using simple XX (hopping)

couplings. While this was seen previously in different

systems [16–19], the underlying mechanism had not been

elucidated. For finite Ω, the two-qubit systems need Ω > γ

for significant steady-state entanglement, where γ is the

waveguide-induced dissipation. We find that this is no

longer the case for larger systems: For N ≥ 2, strong

steady-state entanglement requires only the potentially

much weaker condition Ω >
ffiffiffiffiffi

Jγ
p

, where J is the hopping

(XX coupling) in each chain. We also show that the method

introduced in Ref. [8] for speeding up the dissipative

stabilization of a two-qubit entangled state can be extended

to situations with multiple qubits, leading to a dramatic

acceleration of our protocol.

The rest of this paper is organized as follows. In Sec. II,

we introduce our two basic models, while in Sec. III

we give the exact pure steady state of the double chain,

discuss its structure, and explain the general entanglement
replication mechanism that applies for large Ω. In Sec. IV,

we explain three surprising features of the steady state:

effective hole pairing, universal single-parameter scaling of

the excitation density, and the emergence of single-particle

states with charge density wave order. In Sec. V, we discuss

the application of Fig. 1(a) to remote many-Bell-pair

entanglement stabilization.

II. XX-COUPLED QUBIT CHAINS WITH

BOUNDARY DISSIPATION AND DRIVING

A. The two-chain model

Consider the setup in Fig. 1(a): two passively coupled

N-qubit chains (A and B), with boundary driving and

correlated dissipation. The dynamics is described by the

Lindblad master equation

∂tρ̂ ¼ −i½Ĥ; ρ̂� þ γD½ĉ�ρ̂; ð1Þ

Ĥ ¼ Ĥdrive þ ĤXX þ Ĥdiss; ð2Þ

ĉ ¼ σ̂−A;1 þ σ̂−B;1; ð3Þ

where the Hamiltonian terms are given by

Ĥdrive ¼
Ω

2
ðσ̂xA;1 þ σ̂xB;1Þ þ

Δ

2
ðσ̂zA;1 − σ̂zB;1Þ; ð4Þ

ĤXX ¼ 1

2

X

N−1

j¼1

X

s¼A;B

Jjðσ̂þs;jσ̂−s;jþ1 þ H:c:Þ; ð5Þ

Ĥdiss ¼
1

2
iνγ

�

σ̂þA;1σ̂
−
B;1 − H:c:

�

: ð6Þ

The Lindblad dissipatorD½ĉ�·¼ ĉ · ĉ†−fĉ†ĉ; ·g=2 describes
collective loss on the site-1 qubits (with σ̂− ¼ j0ih1j,
σ̂z ¼ j1ih1j − j0ih0j).
Consider first the driving of our system. Qubits A1 and

B1 are Rabi-driven at the same frequency and amplitude Ω.

We, however, take qubit A1 (B1) to be detuned byþΔ (−Δ)

from the drive frequency. Treating these drives within the

rotating wave approximation, we obtain the rotating frame

Hamiltonian Ĥdrive, given by Eq. (4). We take the remaining

qubits in each chain to be resonant with the drive frequency.

Within each chain, excitations can hop between adjacent

qubits. This is described by simple nearest-neighbor XX

couplings: ĤXX, given by Eq. (5). While the hopping

amplitudes Jj in each chain can vary from bond to bond, we

require that the hopping across a particular bond j is the

same for chains A and B; as we see in Sec. III, this mirror

symmetry is necessary to obtain a pure steady state. The

passive exchange couplings we use here are natural in many

experimental settings. For example, in superconducting

(a)

(c)

(b)

FIG. 1. (a) Two XX-coupled N-qubit chains, with boundary

collective loss (rate γ, mediated by a waveguide) and Rabi drives

(strength Ω, detuning �Δ). (b) A single XX chain with a Rabi

drive and loss on the boundary, which corresponds to an

interacting fermionic model. The steady state here is obtained

from the pure steady state of the two-chain system. (c) For strong

dimensionless driving Ω̃ [cf. Eq. (26)], the steady state ap-

proaches a product of dimer Bell pairs. For finite driving, the

exact steady state is obtained by doping this state with delocal-

ized, paired “holes.” Strong interchain entanglement can be

achieved even if Ω < γ.
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circuits, they could be realized straightforwardly with

capacitive couplings.

Finally, we turn to the dissipation-mediated coupling

between the two chains. Qubits A1 and B1 experience

collective loss (at rate γ) due to a common coupling to a

Markovian reservoir. We focus on the case where this bath

is an open waveguide structure and the two chains are

spatially separated (in the limit where non-Markovian

effects associated with a finite propagation time can be

neglected). We consider two types of waveguides: (i) a

bidirectional waveguide that supports both left- and right-

propagating waves or (ii) a unidirectional waveguide that

supports only, e.g., right-propagating waves. Note that a

bidirectional waveguide requires precise spacing of the

qubits to engineer collective loss (see, e.g., Ref. [7]);

such control is not needed for the directional setup.

When the waveguide is not fully bidirectional (e.g., qubits

couple preferentially to right-propagating modes versus

left-propagating modes), it induces the effective exchange

Hamiltonian Ĥdiss given by Eq. (6) [41], where ν is a

directionality factor, −1 ≤ ν ≤ 1. When ν ¼ 0 the wave-

guide is perfectly bidirectional, and when ν ¼ þ1 (ν ¼ −1)

the waveguide is perfectly unidirectional with system A
(system B) upstream of B (A).

B. Remote two-qubit entanglement stabilization

A key motivation for our two-chain setup is the ability to

stabilize large amounts of remote entanglement. To under-

stand the challenge here, we first review the simpler

problem of dissipatively stabilizing entanglement between

two remote qubits. One generic approach is to use squeezed

light (as first introduced by Kraus and Cirac [3] and further

studied in Refs. [10,13,18]). Such schemes ultimately rely

on generating correlated “pairing” dissipation, with a

Lindblad jump operator ĉpair ¼ uσ̂−A;1 þ vσ̂þB;1. While con-

ceptually appealing, such pairing-based protocols are

experimentally challenging, given the difficulty of pre-

paring and propagating high-quality squeezed light.

Recent work shows that pairing dissipation can be realized

without squeezed light, instead using modulated qubit-

waveguide couplings [7,16]; this is also challenging in

many setups.

A simpler approach for stabilizing remote two-qubit

entanglement (using only Rabi drives and passive loss) is

provided by the N ¼ 1 version of Eq. (1). This both unifies

and generalizes the entanglement stabilization schemes

studied in Refs. [4–7]. The bidirectional waveguide

case (ν ¼ 0) yields the schemes of Refs. [6,7], and the

unidirectional waveguide case (ν ¼ �1) yields the scheme

introduced in Ref. [4].

The general N ¼ 1 system has a pure steady state

ρ̂1ðt → ∞Þ ¼ jψ1ihψ1j given by (up to normalization)

jψ1i ¼
ffiffiffi

2
p

Γj00i þ ΩjSi; ð7Þ

Γ≡ Δ −
1

2
iνγ; ð8Þ

where Γ∈C is a generalized complex detuning. Here, we

introduce the singlet and triplet entangled states

jSi ¼ 1
ffiffiffi

2
p ðj01i − j10iÞ; jTi ¼ 1

ffiffiffi

2
p ðj01i þ j10iÞ; ð9Þ

respectively, in addition to the unentangled vacuum j00i
and the “doublon” j11i. Equation (7) is the unique two-

qubit steady state for any jΩ=Γj < ∞, and, as jΩ=Γj → ∞,

it approaches a perfect Bell state jψ1i → jSi. Note, how-
ever, that in this limit the dissipative gap closes and a

second impure steady state emerges [7–9].

Going forward, one key goal is to extend this entangle-

ment stabilization to the case where each chain has N ≫ 1

qubits. As we show, this is a priori a nontrivial exercise.

Unlike schemes that use squeezing dissipation, the entan-

glement structure of the N ≫ 1 chain is complicated and

crucially depends on the interplay between the boundary

driving and lattice dynamics. However, this interplay also

gives the N ≫ 1 chain advantages over squeezing-based

schemes by enabling large amounts of entanglement to be

stabilized without requiring Ω ≫ γ. To describe the stabi-

lized state for N ≫ 1, it is useful to use a basis where we

specify the state of each cross chain dimer j. We use

notation like jð01Þji ¼ j0A;j1B;ji to denote the state of the

qubit pair on dimer site j. For example, jSji denotes a Bell
pair spanning qubits Aj and Bj.

C. Boundary-driven dissipative quantum spin chain

A second motivation for our work comes from

the seemingly simpler single-chain system depicted in

Fig. 1(b): a chain of XX-coupled qubits with local loss

and Rabi driving on one boundary site of the chain. The

master equation for this system is

∂tρ̂A¼−i½ĤA; ρ̂A�þγD½σ̂−A;1�ρ̂A;

ĤA¼
Ω

2
σ̂xA;1þ

Δ

2
σ̂zA;1þ

1

2

X

j

Jjðσ̂þA;jσ̂−A;jþ1þH:c:Þ: ð10Þ

As with other boundary-driven spin chain systems, we are

interested in understanding the NESS of this setup. For

weak drives, one expects the NESS to approach a product

state (all qubits in j0i), whereas for strong driving, one

instead expects an infinite-temperature state. How one

interpolates between these limits (and how the correspond-

ing NESS depends on master equation parameters and the

disordered hopping) is at first glance unclear. Surprisingly,

Eq. (10) cannot be mapped to a system of free fermions,

even though this is possible for the Hamiltonian ĤA alone.

As we show in Appendix A, upon making a Jordan-Wigner

EXACT RESULTS FOR A BOUNDARY-DRIVEN DOUBLE SPIN … PHYS. REV. X 14, 021028 (2024)

021028-3



transformation, the Rabi drive in ĤA yields a linear-in-

fermion term, something that can be treated using the

method in Ref. [42]. However, when applied to the full

master equation, this necessarily yields an interacting

fermionic problem. Specifically, the loss dissipator

becomes nonlinear in the fermionic master equation:

∂tρ̂ ¼ −i½Ĥfermi;η; ρ̂� þ γD½ð−1Þη̂†η̂ĉ1�ρ̂, where Ĥfermi;η is a

quadratic fermionic Hamiltonian, ĉ1 is the fermion-

lowering operator on the dissipative site, and η̂ is the

fermionic-lowering operator of an auxiliary mode introduced

per the method in Ref. [42] (see Appendix A for details).

Equation (10), thus, corresponds to an interacting fer-

mionic system without translational invariance (the hop-

pings can be disordered). Surprisingly, we are able to find

an exact analytic description of its NESS. We do this by

first solving for the pure steady state jψi of the double-

chain system in Eq. (1), something that can be done

analytically. If we then focus on the case where the

waveguide is directional from A to B (i.e., ν ¼ 1), simply

tracing out the B chain yields the steady state of the single-

chain system in Eq. (10):

ρ̂A ¼ trBjψihψ j: ð11Þ

This corresponds to a new many-body application of the

coherent quantum absorber technique introduced in Ref. [4]

and extended in Refs. [36,37,43,44]. The existence of this

exact solution implies that the single-chain system has a

“hidden time-reversal symmetry” which enforces Onsager

time symmetry of a certain class of two-time correlation

functions [37].

As presented in more detail in Sec. IV, our exact solution

for this boundary-driven spin chain reveals a number of

surprising features in the NESS, including regimes of

strong long-range correlations and even structures remi-

niscent of charge density wave order.

III. PURE ENTANGLED STEADY STATE

FOR ARBITRARY N AND Ω

We now introduce a key result of this work: The

boundary-driven double spin chain in Eq. (1) has a pure

steady state for arbitrary N, drive strength Ω, and hoppings
Jj. Even though the 1þ 1-qubit system has generically a

unique pure steady state, a priori there is no reason to

expect that this will also be true whenN > 1. Indeed, Fig. 2

shows that, for a generalized version of our 2þ 2 qubit

model, the steady state will be impure if the two hopping

amplitudes differ or if we detune the second pair of qubits

from the drive.

We find surprisingly that these two conditions (mirror

symmetry of hoppings and no detunings of additional

qubits) are enough to guarantee a pure steady state for

arbitrary N and for arbitrary choices of the parameters in

Eq. (1). In the infinite-drive limit, the steady state has a

simple translationally invariant dimerized form that can

be understood from a general replication argument that

we present below (and that applies to many other setups

[16–19]). For finite drives Ω, the steady state has a far more

complicated form that is neither dimerized nor translation-

ally invariant. Our exact analytic expression, nonetheless,

provides a simple picture for the state: It is a condensate of

paired “hole” excitations, where holes correspond to cross-

chain dimers that are in the vacuum jð00Þji state.

A. Ω → ∞ limit: Generic entanglement replication

via XX couplings

The form of this pure state of Eq. (1) becomes extremely

simple in the limit of strong driving Ω:

jψi → jψ∞i ¼ jS1T2S3T4S5T6…ðS=TÞNi: ð12Þ

This is a highly entangled state of the two chains that

factors into a product of Bell pairs on each cross-chain

dimer j. The phase of these pairs alternates from jSi or jTi
as one moves down the chain as indicated. Up to this local

phase variation, the state is translationally invariant. This

result is, in fact, the consequence of a much more general

“entanglement replication” phenomenon associated with

XX couplings and definite-parity dimer states; we explain

this in what follows. This mechanism also explains and

unifies the replication phenomena seen in several previous

works [16–19]. We note that the general nature of the

replication mechanism we present here was not discussed

in earlier works.

Imagine, as in Fig. 3, that we have dissipative

dynamics L̂ acting on a two-qubit system that stabilizes

an arbitrary state jψi with fixed excitation number parity,

FIG. 2. The existence of a pure steady state is special. We

consider two kinds of Hamiltonian perturbations to the N ¼ 2

version of the system in Fig. 1(a), demonstrating that the

emergence of a pure steady state is not generic. We break

the mirror symmetry in the hopping rates via JB ¼ JA þ δ [cf. the

discussion below Eq. (5)]. We also consider the addition of both

equal detunings and opposite detunings to the second site of each

chain: ĤΔ ¼ ðδ=2Þðσ̂zA;2 � σ̂zB;2Þ. The purity of the numerically

computed steady state ρ̂ss ¼ ρ̂ðt → ∞Þ is shown in each case

versus the perturbation strength δ. The steady state is pure only

when δ ¼ 0. We use unperturbed system parameters Ω ¼ 0.5γ,

Δ ¼ 0.1γ, and J ¼ 0.25γ.
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i.e., jψi ¼ aj00i þ bj11i or jψi ¼ aj01i þ bj10i. The

actual method for stabilization is unimportant; only the

state matters. For now, we focus on even-parity states for

concreteness, but the analysis is identical for odd-parity

ones. Note for our specific system, for the N ¼ 1 case and

Ω → ∞, the stabilized state has a definite parity; hence, the

following arguments apply.

Next, imagine passively coupling a second pair of qubits

to the first with an XX Hamiltonian; cf. Eq. (5). For

convenience, we use a different gauge choice for the

B chain (i.e., j1i → −j1i for the B qubits), such that the

XX couplings now have opposite signs in the B chain

versus the A chain. Specifically, if L̂ stabilizes jψ1i ¼
ajð00Þ1i þ bjð11Þ1i, then we are interested in the

Hamiltonian

ĤXX;2 ¼ J
X

s¼A;B

ð−1Þs½σ̂xs;1σ̂xs;2 þ σ̂
y
s;1σ̂

y
s;2�: ð13Þ

This Hamiltonian now has an extremely convenient feature:

No matter what the parameters a and b, the “replicated,”

dimerized state jψi ¼ jψ1ψ2i is a zero eigenstate, as can be
confirmed by a simple direct computation:

ĤXX;2jψ1ψ2i ¼ 0: ð14Þ

This tells us that jψi ¼ jψi1 ⊗ jψi2 is a steady state of the

four-qubit dynamics defined by

∂tρ̂ ¼ ðL̂ ⊗ 1Þρ̂ − i½ĤXX;2; ρ̂�: ð15Þ

Hence, without changing the dissipative stabilization

mechanism at all, we can use the passive Hamiltonian

interaction to propagate entanglement to a second qubit

pair. Even more strikingly, we can now add a third pair of

qubits (again via mirrored XX couplings). The same

arguments tell us that the steady state will be a replicated

entangled state, i.e., a product of cross-chain dimers, where

each entangled dimer is in the state jψi. Iterating this

argument, we can show that for arbitrary N, if we let

ĤXX;N ¼
X

N−1

i¼1

X

s¼A;B

Jið−1Þs½σ̂xs;iσ̂xs;iþ1 þ σ̂
y
s;iσ̂

y
s;iþ1�; ð16Þ

jψi ¼ ⊗
N

i¼1

½ajð00Þii þ bjð11Þii�; ð17Þ

then jψi is still a steady state of the dynamics

ðL̂ ⊗ 1⊗N−1Þjψihψ j − i½ĤXX;N ; jψihψ j� ¼ 0: ð18Þ

The analysis follows in the exact same manner if one uses

odd-parity states instead of even-parity ones. Elsewhere in

this manuscript, we work in a gauge with uniform coupling

signs [so that there is no factor of ð−1Þs in Eq. (5); contrast
with Eq. (16)]. The replication here goes through exactly

the same, where we can make a local sign flip on every

other dimer, moving the relative phase onto the b coef-

ficient in Eq. (17), b→ ð−1Þib. Therefore, this replication
argument gives a general proof that Eq. (12) is a pure steady

state of Eq. (1) in the infinite driving limit [as in this limit,

the N ¼ 1 problem has a definite (odd-) parity pure steady

state jS1i] [45]. The change of gauge, thus, explains why

Eq. (12) is a product of staggered jSi and jTi instead of

uniform jSi states.
The fact that the Hamiltonian perfectly replicates fixed-

parity states can be understood intuitively from the fact

that it commutes with Ŝ2s the total spin operator and Ŝzs ¼
σ̂zs;1 þ σ̂zs;2 the collective Z operator of each chain s ¼ A, B.

More details are in Appendix B 1. More generally, one can

demonstrate that, given any arbitrary two-qubit entangled
state, Heisenberg couplings can be used to perfectly

replicate this state down the chain, alleviating the parity

constraint. Details are in Appendix B 2. Moreover, for both

the Heisenberg coupling or XX couplings, significantly

more complex geometries than chains can be used, general-

izing [18]. For more details, see Appendix B 3.

B. Ω < ∞: Pure steady-state condensate

of paired holes

We now turn to the more general (and experimentally

relevant) case of a noninfinite-drive amplitude Ω. For finite

strength driving, the steady state for N ¼ 1 [Eq. (7)] no

longer has definite parity. As such, the replication argument

of the previous section does not apply when we now

consider larger systems, and there are no general arguments

that would guarantee the existence of a pure steady state for

N ≥ 2. Remarkably, we find that, for arbitrary parameters,

Eq. (1) has a pure steady state, albeit one that is far more

FIG. 3. Entanglement replication via passive exchange cou-

plings. Suppose there is some dissipative dynamics L̂ that

stabilizes a two-qubit entangled state jψi on the first pair of

qubits in two exchange-coupled chains. If that state has definite

parity, then the product state jψ1ψ2i is a zero energy eigenstate of
passive exchange couplings ĤXX [cf. Eq. (13)]. Thus, the product

state is a steady state of the stabilization dynamics and exchange

couplings. Therefore, any number of qubit pairs may be added via

exchange couplings, resulting in the tensor product steady state

jψ1ψ2…ψNi, replicating the entanglement on site 1 down a pair

of arbitrarily long chains.
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complicated than the dimerized, translationally invariant

state in Eq. (12). As we now show, this state can be

exactly understood as a condensate of paired “holes.”

Here, a “hole pair” excitation is defined as starting with

the “filled” state in Eq. (12) and then replacing the state

of two adjacent dimers with the vacuum state, i.e.,

jðSÞjijðTÞjþ1i → jð00Þjijð00Þjþ1i.
Certain features of our state can be understood intui-

tively. For finiteΩ, it is reasonable to expect the presence of

holes, i.e., fewer qubit excitations than in the infinite

driving limit. Furthermore, these holes should be delocal-

ized throughout the chain in order to have an eigenstate of

the kinetic energy term ĤXX. This motivates looking for a

pure steady state having delocalized hole excitations (with

the density of holes scaling inversely with drive amplitude).

More unexpected is our finding that, in the steady state,

these holes must be paired on adjacent sites.

To present our solution, it is convenient to map the

double-chain system to a 1D “dimer chain,”where each site

of the new 1D chain has local Hilbert space dimension 4

and corresponds to a dimer of the original system. With this

mapping, we introduce two flavors of “particle” j•ji and

j▪ji and “hole” j∘ji states via

j∘ji≡ jð00Þji; ð19Þ

j•ji≡
1
ffiffiffi

2
p τ̂

†
j j∘ji ¼

(

jSji j odd;

jTji j even;
ð20Þ

j▪ji≡
1
ffiffiffi

2
p λ̂

†
j j∘ji ¼

(

jTji j odd;

jSji j even;
ð21Þ

where we implicitly define the dimer ladder operators τ̂
†
j

and τ̂j that create and destroy the dimer particles j•ji ¼
jðS=TÞji (for j odd or even) when acting on j∘ji or j•ji,
respectively. Similarly, λ̂†j and λ̂j create and destroy the

particles j▪ji ¼ jðT=SÞji (for j odd or even) when acting on
j∘ji or j▪ji, respectively. Note that there is a hard-core

constraint that prevents a j•i and a j▪i from simultaneously

occupying a site. We can neglect the remaining basis state

for each dimer for now, as this state does not appear in the

pure steady state of interest (see Appendix C for more

details). With our new representation, the filled state

Eq. (12) is, thus, jψ∞i ¼ j • • • � � �i.
Using the dimer particle representation defined in

Eq. (20), we introduce an operator that creates a delocalized

hole pair:

Q̂ ¼ 1

2J̄
ffiffiffiffi

N
p

X

N−1

j¼1

Jjð−1Þjτ̂jτ̂jþ1: ð22Þ

Here,

J̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N − 1

X

j

J2j

s

ð23Þ

is the rms hopping rate. Acting on the reference filled state

jψ∞i, the operator Q̂ creates a superposition state where

each term corresponds to a pair of adjacent holes at a

different location [46].

At a heuristic level, the phases in Q̂ give each hole pair a

net momentum, allowing them to become zero-energy

eigenstates of the “kinetic energy” ĤXX. More formally,

we show in Appendix D that Q̂ commutes with ĤXX. Its

action on an ĤXX eigenstate, thus, produces another

eigenstate with the same energy. In particular,

ĤXXðQ̂jψ∞iÞ ¼ Q̂ĤXXjψ∞i ¼ 0: ð24Þ

An entire tower of zero-energy ĤXX eigenstates can, thus,

be generated by repeated application of Q̂ to jψ∞i, each
state having an increasing number of hole pairs. The

maximal-hole state in this tower corresponds to the empty

state (if N is even) or a state with a single delocalized

particle j•ji (if N is odd).

Recall that, in general, to obtain a pure steady state we

require a state that is both an eigenstate of the Hamiltonian

and annihilated by relevant dissipators. The family of states

Q̂mjψ∞i provides us with a large class of states that are

compatible with the Hamiltonian and connected to the

pure steady state in the infinite-drive limit. One might

expect that they can be used to construct the steady state

for the finite-drive amplitude system. We find that, apart

from a boundary correction, this is indeed the case. As we

rigorously show in Appendix E, for any set of parameters,

Eq. (1) has a pure steady state jψQi given by the “pair

condensate” state

jψQi ¼
�

1þ Γ

Ω
τ̂1

�

exp

�
ffiffiffiffi

N
p

Ω̃2
Q̂

�

jψ∞i; ð25Þ

where τ̂1 is the dimer-lowering operator that removes the

particle on site 1 [cf. Eq. (20)] and the reference state jψ∞i
is given by Eq. (12). The dimensionless drive strength Ω̃

appearing in the exponential is

Ω̃≡
Ω
ffiffiffiffiffiffi

ΓJ̄
p ; ð26Þ

with Γ given by Eq. (8) and J̄ by Eq. (23). The first few

terms of jψQi are shown in Fig. 4. Up to overall normali-

zation, the coefficients aj can be read off from Eq. (25),

e.g., for a uniform chain (Jj ¼ J̄), a0 ¼ 1, a1 ¼ Γ=Ω ¼
ffiffiffiffiffiffiffiffi

Γ=J̄
p

=Ω̃, a2 ¼ 1=Ω̃2, etc.; this is a power series in 1=Ω̃,

with aj ∼ 1=Ω̃j. As we discuss in more detail, this exact
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solution also immediately lets us understand the NESS of

the nontrivial single-chain system in Fig. 1(b).

Finally, we note that there is an equivalent construction

of jψQi that is recursive in the length N of the chains. The

recursive construction enables the efficient numerical

evaluation of expectation values and correlation functions,

e.g., particle density hn̂ji ¼ 1
2
hτ̂†j τ̂ji. Details are provided in

Appendix F.

IV. REAL-SPACE HOLE PAIRING AND

CONSEQUENCES FOR THE STEADY STATE

A. Hole pairing as a kinetic constraint

The hole pairing in jψQi is surprising at first glance, as

there is no attractive interaction or other explicit pairing

mechanism in our model. Hole pairing turns out to be a

consequence of two facts: (i) ĤXX causes j•i and j▪i
particles to change flavor when they hop, and (ii) the

hard-core constraint forbids a j•i and an j▪i to simulta-

neously occupy a site. As shown in Fig. 5(a), with details in

Appendix C, a particle can swap positions with a hole and

change flavor in the process. Two adjacent particles of the

same flavor cannot hop due to the hard-core constraint;

hence, ĤXXj • •i ¼ 0. If we now try to form zero kinetic

energy states (i.e., zero-energy eigenstates of ĤXX) by

delocalizing hole excitations, we find that they must be
paired on adjacent sites. Delocalizing a single hole to get a

zero-energy eigenstate fails due to the flavor-changing

hopping [see Fig. 5(b)], but delocalizing a pair is successful

[see Fig. 5(c)].

The creation of zero kinetic energy eigenstates of ĤXX

via the hole-pairing operator Q̂ [cf. Eq. (22)] is somewhat

analogous to η pairing found in Fermi-Hubbard lattices

[47,48]. In both cases, the pairing operator generates exact

Hamiltonian eigenstates with zero kinetic energy by delo-

calizing a pair of excitations throughout the system. A key

distinction, however, is that in η pairing each paired

excitation is spatially local, i.e., a pair of fermions on

one lattice site, whereas in Q pairing each hole pair

occupies adjacent lattice sites. We also note that the

algebraic structure of η pairing [η̂; η̂† form a closed

representation of SU(2)] is not found in Q pairing: Q̂

and Q̂† do not form a closed SU(2) group.

While not a true symmetry of the Hamiltonian, the hole-

pairing operator has a special relation to the Hamiltonian

of the double-chain system, via a structure that was

introduced in the context of many-body scar states.

Specifically, it constitutes a restricted spectrum-generating

algebra (RSGA) of double-chain Hamiltonian when acting

on jψ∞i [39]. Furthermore, certain terms can be added to

the XX chain to make the model nonintegrable while

preserving this RSGA structure, thus guaranteeing that

Q̂njψ∞i remain exact eigenstates. In Appendix G, we

discuss how this makes the corresponding hole-pairing

states true many-body scar states in a nonintegrable ladder

system (a model related to that studied in Ref. [40]).

Having understood the route to hole pairing in our

model, we can also postulate other Hamiltonian models

where this will occur. For example, a 1D Fermi-Hubbard

chain with a spin orbit interaction can exhibit effective

flavor-changing hopping. For strong interactions, it can,

thus, also exhibit hole pairing in a subset of its eigenstates

(see Appendix D). The fermionic analog of the hole-pairing

operator Q̂ has the same properties, generating eigenstates

(a)

(b)

(c)

FIG. 5. Flavor-change hopping forces hole pairing in zero-

energy eigenstates. (a) ĤXX [cf. Eq. (5)] swaps a particle and a

hole in the dimer chain and changes the particle flavor in the

process. (b) Because of the flavor change in hopping, a single

delocalized hole is not an eigenstate of the chain, because the

final states of a hole hopping to the left and hole hopping to the

right are distinguishable: The j▪i ends up either to the right of

the hole or to the left of the hole, respectively. (c) Adjacent

paired holes can form zero-energy eigenstates via destructive

interference, because the j▪i always ends up sandwiched

between two holes.

FIG. 4. First few terms of the steady state. The expansion of the

steady state in the number of holes added to jψ∞i [cf. Eq. (12)].
The expansion coefficients an ∼ 1=Ω̃n are the weights of the nth-
hole components of the state; they can be found analytically from

Eq. (25). Here, we take uniform Jj ¼ J̄. For nonuniform Jj, the

components of each an term are weighted by factors of Jj=J̄.
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of the 1D chain when acting on a filled state. These hole-

paired eigenstates may be accessible in, e.g., the ultracold

atoms platform proposed in Ref. [38].

B. Density correlations due to hole pairing

The structured hole pairing in Eq. (25) immediately gives

rise to spatial density correlations, something that is most

apparent when the hole density is low, i.e., jΩ̃j≳ 2.

This correlation is directly observable in the single-chain

system in Fig. 1(a) as Zmagnetization correlations between

adjacent sites: hσ̂zA;jσ̂zA;jþ1i ≠ 0. The correspondence

between magnetization and hole density follows from

the fact that the dimer holes j∘i are polarized but the

particles j•i are depolarized [cf. Eqs. (19) and (20)]:

h•jjσ̂zA;jj•ji ¼ 0; h∘jjσ̂zA;jj∘ji ¼ −1: ð27Þ

Thus, ð−σ̂zA;jÞ acts as a local hole number operator when

acting on the steady state. We define the z-magnetization

correlation function for the A chain as

Czzðj; kÞ ¼
hσ̂zA;jσ̂zA;ki − hσ̂zA;jihσ̂zA;ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhσ̂zA;ji þ hσ̂zA;ji2Þðhσ̂zA;ki þ hσ̂zA;ki2Þ
q ; ð28Þ

normalized such that Czzðj; jÞ ¼ 1. See Appendix H for a

discussion of the nonstandard normalization. In Fig. 6, we

show Czzðj; kÞ for fixed distance jk − jj and averaged over

the whole chain. For strong driving, the average correla-

tions between adjacent sites saturates to Czzðj;j�1Þ→0.5,

because, in this regime, a hole on site j is always paired

with a hole on either j� 1 but is unlikely to be correlated

with any other site. In contrast, there are no appreciable

correlations in this regime for larger distances. We note

that the correlation functions Czzðj; kÞ can be measured in

either the double-chain system or the single-chain system.

In either case, the saturation of Czzðj; j� 1Þ ≈ 0.5 for

Ω̃ > 1 is a clear indication of hole pairing.

C. Universal density scaling

There are two dimensionless parameters in our model:

the dimensionless drive amplitude Ω̃ [cf. Eq. (26)] and the

ratio ζ ≡
ffiffiffiffiffiffiffiffi

Γ=J̄
p

. One might naturally expect that bulk

steady-state properties would depend on both these param-

eters. However, the exact result Eq. (25) shows that this is

not the case. We can write this as

jψQi ¼
�

1þ ζ

Ω̃
τ̂1

�

exp

�
ffiffiffiffi

N
p

Ω̃2
Q̂

�

jψ∞i; ð29Þ

which suggests that the excitation density in the bulk is

controlled only by Ω̃. We now show explicitly that the

excitation density (i.e., Z magnetization density) is indeed

intensive and scales universally with the single parameter

jΩ̃j in the regime jΩ̃j≳ 2.

Consider first the limit where jζj → 0 while jΩ̃j remains

fixed, such that we can ignore the boundary term in

Eq. (29). We, thus, have jψQi ¼ eαQ̂jψ∞i, where

α ¼
ffiffiffiffi

N
p

=jΩ̃j2. This expression mimics a bosonic coherent

state jαi ¼ eαâ
† j0i, where hole pairs are the bosons, jψ∞i is

the hole-pair vacuum, and Q̂ is the hole-pair creation

operator. As we show in Appendix I, this analogy to

bosonic coherent states can be made precise when N ≫ 1

and the hole density m̄ satisfies

m̄≡
1

N

X

j

h−σ̂zA;ji ≪ 1: ð30Þ

In this low hole density regime, we may neglect the hard-

core constraint that prevents two hole pairs from occupying

the same sites and can, thus, accurately estimate the total

hole number as

M ¼ 2jαj2 ¼ 2N

jΩ̃j4
≡ Nm̄: ð31Þ

We, thus, find for large drives an intensive scaling of hole

density. Note that this result immediately implies that, for

an arbitrarily long single-chain system, one needs only

jΩ̃j≳ 2 to approach the infinite-temperature state.

When jζj > 0, the coherent state analogy is still valid,

but there is a boundary correction to Eq. (31). Because site

1 directly sees the dissipation, it can be occupied by an

isolated hole, and, thus, its occupation depends on not

only jΩ̃j, but also jζj. The hole density m̄, thus, obtains a
Oð1=NÞ correction to the intensive universal scaling:

m̄ ¼ 2

jΩ̃j4
þ 2jζj2
NðjΩ̃j2 þ 2jζj2Þ

: ð32Þ

FIG. 6. Density correlations on adjacent sites are a direct

observable consequence of hole pairing. The hole density

correlation function Czzðj; kÞ [cf. Eq. (28)] is averaged over

averaged over the entire N ¼ 40 chain while holding jk − jj
fixed. The averaged Czzðj; kÞ is plotted versus drive strength jΩ̃j.
The nearest-neighbor (jk − jj ¼ 1) correlations saturate to 0.5

with increasing jΩ̃j, indicating that, as the filled state jψ∞i is

approached, deviations from jψ∞i in the bulk are due to holes

paired on adjacent sites. For this plot, we hold jΓj ¼ J fixed.
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There is, thus, a transition from universal ∼jΩ̃j−4 scaling to
an N-dependent ∼jΩ̃j−2 scaling at jΩ̃j2 ≈ N=jζj2 or, equiv-
alently, Ω=J̄ ≈

ffiffiffiffi

N
p

. The universal scaling behavior is exact

for any jζj when the dissipative site density is excluded, as

is shown in Fig. 7(a), and the dissipative site corrections for

jζj > 0 are shown in Fig. 7(b).

D. Single-particle “charge density waves”

For Jj ¼ J, the spin chain systems in Fig. 1 are trans-

lationally invariant except for the boundary j ¼ 1 site. For

long chains, one might, thus, expect that the steady-state

density is also translationally invariant, except for edge

effects near j ¼ 1. Surprisingly, this expected translational

invariance is strongly broken in the steady state for weak

drives Ω̃. As a consequence of the hole pair condensate of

Eq. (25), there is a regime where the steady state corre-

sponds to a single excitation that is localized on either the

even-j or odd-j sublattice, i.e., a kind of single-particle

charge density wave (CDW).

As we show, for weak drives, the double spin chain

system’s steady state (for uniform Jj ¼ J̄) is given by the

CDW form:

jΨcdwi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

⌈N=2⌉
p

X

j

ð−1Þjj•N−2ji; ð33Þ

where ⌈X⌉ is the ceiling function and j•ji is given by

Eq. (20). This describes a single particle that is delocalized

either across all odd-j sites in odd-length chains or across

all even-j sites in even-length chains. For disordered Jj,

each component j•ji is weighted by an additional factor

ð…Jj−4Jj−2ÞðJjþ1Jjþ3…Þ=J̄⌈ðN−1Þ=2⌉ (and the requisite

correction to the normalization).

For the single dissipative spin chain [Fig. 1(b)], the

nonequilibrium steady state ρ̂A;cdw ¼ trBjΨcdwihΨcdwj is an
equal mixture of vacuum and the single-particle CDW:

ρ̂A;cdw ¼ 1

2
½j0ih0j þ jΦcdwihΦcdwj�; ð34Þ

jΦcdwi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

⌈N=2⌉
p

X

j

ð−1Þjσ̂þA;N−2jj0i: ð35Þ

Despite not being a pure state, the single-chain CDW is a

very low entropy state, Sðρ̂A;cdwÞ ¼ ln 2, for which any

particle density necessarily arises from the single coher-

ently delocalized excitation. Here, jΦcdwi is the single-

chain equivalent of jΨcdwi given above, and its components

have the sameweighting factors when the Jj are disordered.

To see why these single-particle states emerge, consider

the steady state, Eq. (29), in the limit jζj → 0: jψQi ¼
e

ffiffiffi

N
p

Q̂=Ω̃2 jψ∞i. In this limit, all holes in the state are created

by some power of Q̂ acting on jψ∞i, with the component

Q̂mjψ∞i having 2m holes. For an N-length chain, Q̂ can,

thus, act up to m ¼ bN=2c times to produce new states,

after which Q̂m>bN=2cjψ∞i ¼ 0. For an even chain, all

2m ¼ N particles can be removed, taking the filled state to

vacuum:

Q̂bN=2cjψ∞i ∝ j0i; N even: ð36Þ

However, for an odd chain, all but one of the N ¼ 2mþ 1

particles can be removed. The real-space pairing of holes

on neighboring sites requires that the remaining single j•i
particle is confined to the odd-j sites, resulting in a CDW-

like structure where a single particle is delocalized over the

odd-j sublattice only:

Q̂bN=2cjψ∞i ∝ j • ∘∘∘ � � �i
− j∘∘ • ∘ � � �i þ � � � ; N odd: ð37Þ

Thus, for jζj ≪ 1, there is a regime of sufficiently weak jΩ̃j
for which odd-length chains exhibit a charge density wave

consisting of a single delocalized particle. The emergence

of a CDW in an odd-length chain, and the lack of a CDW in

an even-length chain for the same parameters, is shown in

Fig. 8(a). The particle density n̄ ¼ NjΩ̃j4=8 of the even

chain is found using Eq. (J6) in Appendix J.

The analysis follows analogously in the limit jζj → ∞,

where now jψQi ¼ e
ffiffiffi

N
p

Q̂=Ω̃2

τ̂1jψ∞i (as τ̂j commutes with

Q̂). Site 1, thus, always has a hole, and we repeat the above

analysis on the remaining N − 1 sites. Thus, even chains

(a)

(b)

FIG. 7. Universal scaling of steady-state Z magnetization (hole

density). The Z magnetization and hole density m̄ [cf. Eq. (30)]

are shown for chains of widely varying length as a function of

inverse effective drive strength 1=jΩ̃j. (a) Here, we plot the hole
density, excluding the dissipative site, which shows universal

scaling m̄ ¼ 2=jΩ̃j4 for 1=jΩ̃j≳ 1. (b) Here, we include the

dissipative site and show that m̄ now has deviations ∼1=NjΩ̃j2
appearing when jΩ̃j2 ≈ N=jζj2. For both plots, jζj2 ≡ jΓ=J̄j ¼
0.05 except where indicated otherwise, and we vary only Ω.
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have a CDW-like structure where a single particle is

delocalized over the even-j sites.

The parameter regime in which CDWs emerge can be

found by expanding jψQi to the lowest few orders in jΩ̃j.
Leaving the details to Appendix J, we can show that two

distinct scales emerge: an N-dependent upper limit on drive

strength, jΩ̃j2 ≪ 1=N, and a jζj- and N-dependent lower

limit that differs for even- and odd-length chains:

jζj2
N

≪ jΩ̃j2 ≪ 1

N
; N odd; ð38Þ

1

Njζj2 ≪ jΩ̃j2 ≪ 1

N
; N even: ð39Þ

When jΩ̃j2 > 1=N, many particles can populate the chain,

destroying the CDW ordering, and when jΩ̃j2 < jζj�2=N
(forN odd or even), the average particle density vanishes as

∼jΩ̃j2. Here, Eq. (34) is no longer an equal mixture of j0i
and jΦcdwi but increasingly weighted toward vacuum with

jΩ̃j → 0. The emergence of CDWs, and the dependence

with both N and jζj, is shown in Fig. 8(b).

V. RESOURCE FOR CROSS-CHAIN (REMOTE)

ENTANGLEMENT STABILIZATION

As discussed in Sec. II, the double-qubit chain system in

Fig. 1(a) (where collective loss is provided by passive

couplings to a waveguide) is a potentially powerful setup

for stabilizing large amounts of steady-state remote entan-

glement. The scheme is also very resource efficient: It

foregoes the complication and resource overhead of using

squeezed light in favor of local driving, and it requires only

passive hopping between qubits in each chain. It also does

not require precise fine-tuning of parameters, nor does it

require extremely strong driving to approach maximal

entanglement of the chains. We now use insights obtained

from our exact solution Eq. (25) to better understand this

potential application.

The exact solution tells us that, for any drive strength Ω,

we have a pure steady state with some degree of entangle-

ment between the remote chain-A and chain-B qubits. This

entanglement is maximal in the Ω →∞ limit, where the

steady state becomes a dimerized product of cross-chain

maximally entangled Bell pairs. A natural question is how
strong must the Rabi drive be to achieve this level of

entanglement. The exact solution provides a succinct and

surprising answer here: One needs only that the effective
drive amplitude jΩ̃j≳ 2, as in this regime the density of

holes is very small, implying the steady state is very close

to the ideal dimerized state. We stress that this condition is

independent of N (even though drives are applied to only

the first qubit in each change) and, furthermore, that

one can achieve this condition even if Ω ≪ γ (the drive

does not need to overwhelm dissipation if hopping is

sufficiently weak).

Of course, these considerations neglect a crucial second

issue: One cares about both the amount of entanglement in

the dissipative steady state as well as the time needed to

prepare this state (i.e., the characteristic system relaxation

time or the inverse dissipative gap). This timescale also

directly determines the susceptibility of our scheme to

additional unwanted dissipative processes (e.g., waveguide

loss, qubit dephasing, and relaxation).

A full study of the effects of waveguide loss and qubit

dissipation on entanglement stabilization in a circuit QED

realization of Fig. 1(a) is presented in a complementary

work [49], but we briefly discuss the basic requirements to

realize the scheme in circuit QED in Appendix K. Here, we

instead focus on a fundamental aspect of the relaxation time

physics in our double-chain scheme. While the qubit-only

version suffers from a fundamental trade-off between speed

and entanglement, we show below that, by generalizing the

local two-qubit scheme introduced in Ref. [8] to a

(a)

(b)

FIG. 8. The emergence of single-particle “CDWs” in finite-

length spin chains. (a) Local particle density hn̂ji is plotted for

each site of 40 and 41 site chains, scaled by length N. For the

given parameters Ω̃ ¼ 0.1 and jζj ¼ 0.005 and taking uniform Jj,

the odd-length chain has a single particle delocalized across all

odd sites; hence, the average particle density is n̄¼1=2N≈0.012.

The even-length chains do not have charge density waves and

have much smaller average density n̄ ¼ NjΩ̃j4=8 ≈ 0.0005. The

modulation of local density across the chain is due to the highly

correlated two-particle state. (b) Particle density n̄ is plotted

versus drive strength jΩ̃j for two odd-length chains (N ¼ 11 and

N ¼ 10 001) in the odd-length CDW driving strength regime

[cf. Eq. (38)] for two different jζj2 ¼ 10−4 and jζj2 ¼ 10−2. In the

limit jζj → 0 (dashed curves), the single-particle CDW persists

for any arbitrarily small jΩ̃j > 0. In both plots, the particle

density is n̄ ¼ ð1=NÞ
P

jhσ̂þA;jσ̂−A;ji.
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multiqubit setup with directional dissipation, we can

dramatically improve this seemingly unavoidable trade-off.

A. Slowdown in large drive limit

Recent works [6–9] on dissipatively preparing entangle-

ment between two remote qubits have observed that the

dissipative gap closes as the target entangled state

approaches a perfect Bell pair [e.g., as the vacuum

component in Eq. (7) vanishes]. References [8,9] showed

that this is a generic property of two-qubit systems and that

it arises due to an approximate conservation of total angular

momentum that becomes an exact symmetry in the infinite

driving limit. In this limit, a second impure steady state

emerges in the subspace orthogonal to the target Bell state.

As one approaches the point of added symmetry, the

transition rate out of the orthogonal subspace and into

the target Bell state becomes extremely small, leading to a

vanishing dissipative gap. We briefly review this argument

in Appendix L.

In the infinite driving limit jΩ=Γj → ∞, the steady state

of the N ¼ 1 double chain is not unique [7–9] but can be

any state of the form ρ̂1 ¼ νjSihSj þ 1
4
ð1 − νÞÎ for any

−1=3 ≤ ν ≤ 1; see Appendix M for details. One can readily

show that the maximally mixed state Î=4 is replicated via

the XX Hamiltonian. Therefore, the near symmetry that

causes a slowdown in the N ¼ 1 system persists for N > 1,

because the near-steady infinite-temperature state is repli-

cated down the chain, and, thus, the chain cannot relax out

of that state except by the very slow dissipative population

transfer at the boundary.

B. Speeding up stabilization with a qutrit

A recent work by Brown et al. [8] theoretically proposed
and experimentally demonstrated that the slowdown asso-

ciated with dissipatively stabilizing two-qubit Bell pairs

can be circumvented by promoting one of the qubits to a

qutrit, in a system for which the dissipation is both local

and reciprocal (i.e., mediated by common coupling to a

damped cavity mode). They demonstrated that the near

symmetry that conserves total angular momentum is no

longer present in a qubit-qutrit system. This makes the

degenerate dark state vanish in the large drive limit.

Here, we show that this scheme can now be extended to

the directional version of our double-chain system by

promoting the downstream qubit B1 to a qutrit; see

Fig. 9(a). This leaves Eq. (25) as the pure steady state

while avoiding the symmetry-induced slowdown and

allows a dramatic stabilization speedup for arbitrary N
without sacrificing the fidelity with the perfect dimerized

entangled state.

More concretely, starting from the double-chain master

equation [cf. Eq. (1)] for N ¼ 1 in the directional limit

ν ¼ 1, we promote qubit B1 to a qutrit and modify its

coupling to the waveguide via

Ĥdrive ¼
Ω

2
ðσxA;1 þ j0ih1jB;1 þ j1ih0jB;1Þ

þ Δ

2
ðσ̂zA;1 − ½j1ih1jB;1 − j0ih0jB;1�Þ; ð40Þ

Ĥdiss ¼
iγ

2
ðσþA;1½j0ih1jB;1 þ ηj1ih2jB;1� − H:c:Þ; ð41Þ

L̂ ¼ ffiffiffi

γ
p ðσ−A;1 þ j0ih1jB;1 þ ηj1ih2jB;1Þ; ð42Þ

for which the master equation now reads ∂tρ̂ ¼ −i½Ĥdrive þ
Ĥdiss; ρ̂� þD½L̂�ρ. Physically, this means that now the qutrit

B1 can produce a photon in the chiral waveguide via either

a 1–0 relaxation event or a 2–1 relaxation event (with

relative matrix elements η). The result is a dissipative

interaction that allows the state j11i to pass a single photon
through the waveguide at a rate ηγ and become j02i,
which can, in turn, decay into the state j01i. The effective
interaction (no jump Hamiltonian) of such a process is

−iηγσ−Aðj2ih1jBÞ. Because this process explicitly breaks the
conservation of angular momentum in the two-qubit sub-

space, it circumvents the slowdown previously observed.

(a)

(b)

FIG. 9. Speeding up entanglement stabilization time of the

nonreciprocal double chain using a qutrit. (a) The nonreciprocal

double chain is modified by replacing the downstream B1 qubit

with a qutrit and engineering the nonreciprocal coupling to

include the 2–1 transition of the qutrit. (b) The numerically

computed relaxation time γτrel (red) and the infidelity of the

steady state to the maximally entangled state jψ∞i [cf. Eq. (12)],
1 − hψ∞jρ̂jψ∞i (black), are shown as functions of the hopping

rate J̄=γ for N ¼ 3, Ω=γ ¼ 10, and Δ ¼ 0. For the qubit-qutrit

scheme, the relaxation time is optimized over η. We also plot the

relaxation time for the single-chain system for comparison. For a

fixed state fidelity of 0.999 (achieved at J̄ ¼ 7γ, dashed line), the

relaxation times are γτ2qb ¼ 2.1 × 104, γτqutrit ¼ 120, and γτsc ¼
14 for the qubit-qubit, qubit-qutrit, and single chain, respectively.
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From here, one can take our qubit-qutrit system and

add back the remaining N − 1 qubits in each chain and the

hopping Hamiltonian ĤXX. We stress that all remaining

qubits are just qubits: It is only B1 where we need to make

use of the higher j2i level. A direct calculation shows that the

steady state found in Eq. (25) is still a zero-energy eigenstate

of the new Ĥdrive þ Ĥdiss, as well as the new jump operator

L̂, and so it remains a dissipative steady state; the only thing

that has changed in adding the third level is the dynamics,

which should now be significantly faster. This is demon-

strated in Fig. 9(b) for an N ¼ 3 system.

Numerically, we observe a significant improvement in

the relaxation timescale τrel (as determined by the inverse

dissipative gap of the full Lindbladian) of a N ¼ 3 system,

when we promote site B1 to a qutrit and optimize over the

qutrit 2 − 1 transition coefficient η. These results are as

shown in Fig. 9(b). Here, we fix all other parameters except

the uniform hopping rate J̄ and show how both the fidelity

with the ideal dimerized entangled state and τrel vary

with J̄. For the all-qubit chain, small J̄ makes jΩ̃j large;
thus, the fidelity to the maximally entangled state jψ∞i
[cf. Eq. (12)] is high, but the relaxation slows down. As

Fig. 9(b) shows, there is a dramatic improvement of the

relaxation time: over 2 orders of magnitude at a state

fidelity of 0.999. The optimized value of η as a function

of J̄=γ, as well as the speedup of anN ¼ 2 system, is shown

in Appendix N. We expect that the qutrit scheme speeds up

the stabilization time for larger N systems as well.

VI. CONCLUSION

Our work presents an exact analytic solution for the

steady state of two different spin chain models with

boundary dissipation and driving. As discussed, these

solutions reveal a number of surprising correlation effects

(e.g., the effective pairing of holes) and lay the groundwork

for a potentially powerful route to dissipative stabilization

of remote multiqubit entanglement. We also elucidated a

general mechanism for “replicating” definite-parity two-

qubit entangled states using passive XX couplings in a

double-qubit chain and demonstrated that the approach

of Ref. [8] for avoiding slowdowns in dissipative entan-

glement stabilization could be extended from a two-qubit

situation to a setup with many qubits and directional

dissipation.

In future work, it will be extremely interesting to explore

whether the ideas introduced here could be extended to

more complex systems, where multiple 1D XX qubit chains

are attached to the same common waveguide. This could

potentially be a source of stabilized multipartite, multiqubit

remote entanglement. It would also be interesting to

explore further the dynamics of our solvable dissipative

spin chain models. As discussed, the solvability of the

nontrivial single-chain model in Fig. 1(a) can be ultimately

traced to a surprising hidden time-reversal symmetry [37].

Understanding how this symmetry constrains the dynamics

and Liouvillian spectrum could be an extremely rich

direction for future research. It would also be interesting

to understand whether the scaling of the dissipative gap

in the two-chain model in Fig. 1(b) could be improved

beyond the usual 1=N3 scaling that is found in a variety of

integrable spin chain models [16,29]. Finally, it would be

interesting to study the spectra and NESS of other two-

chain models. We already demonstrated in Appendix G that

our hole pairing states correspond to many-body scar states

in a closed, nonintegrable ladder system. Adding dissipa-

tion here could be extremely interesting. Furthermore, one

could extend our two-chain model to a ladder system with

Creutz ladder-style couplings [50] along the full length of

the chain. If one tunes the diagonal interchain couplings td
to be equal to the intrachain XX couplings J, then this

system possesses at least N − 1 strong symmetries. It, thus,

has multiple dissipative steady states, making it another

interesting system worthy of further study.

Note added.—Recently, we became aware of a related but

independent work on autonomously stabilizing many-qubit

entanglement; unlike our study, the setup in this work

used squeezed light and explicitly directional qubit-qubit

couplings [51].
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APPENDIX A: INTERACTING FERMION MODEL

OF THE DISSIPATIVE SPIN CHAIN

Given a boundary driven or dissipative spin chain, often

the first step toward obtaining a solution is performing a

Jordan-Wigner transform into free fermions [52]. Define

the canonical (Dirac) fermions:

ĉj ¼
�

Y

j−1

i¼1

σ̂zi

�

σ̂−j : ðA1Þ

Then, we can rewrite the spin Hamiltonian [cf. ĤA in

Eq. (10)] as
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Ĥfermi ¼
Ω

2
ðĉ1 þ ĉ†1Þ þ Δĉ†1ĉ1 −

1

2

X

N−1

j¼1

Jjðĉ†j ĉjþ1 þ H:c:Þ:

ðA2Þ

The Hamiltonian is a sum of quadratic and linear fermion

terms and can be exactly diagonalized (using the procedure

outlined in Ref. [42]).

We are, of course, interested in the dissipative dynamics.

The full master equation in terms of fermions is then

˙̂ρ ¼ −i½Ĥfermi; ρ̂� þ γD½ĉ1�ρ̂: ðA3Þ

It also has both quadratic and linear fermion terms. While

one might assume that this master equation is exactly

solvable, this is not the case. If the fermionic Lindbladian

contains both a Hamiltonian term linear-in-fermion oper-

ators, along with linear dissipation, then this generically

corresponds to an interacting problem. The easiest way to

see this is simply to compute the equation of motion for the

linear expectation value of a fermionic operator under just

the dissipative dynamics. Because the Hamiltonian has a

linear term, the even and odd moments are dynamically

connected, and so we must consider these linear expect-

ation values:

∂thĉji ¼ γhD½ĉ1�†ĉji ¼
γ

2
hĉ†1½ĉj; ĉ1� þ ½ĉ†1; ĉj�ĉ1i ðA4Þ

¼ −
γ

2
h4ĉ†1ĉ1ĉj þ δ1;jĉji: ðA5Þ

We see that these first moments are coupled to third

moments. In a similar manner, one can observe that all

odd moments of degree n couple to odd moments of

degree nþ 2, and so the equations of motions do not close

on themselves, signifying that this is not a simple free

fermion model.

More formally, one could try and use the standard

diagonalization technique for a linear fermionic

Hamiltonian [42] and introduce a fictitious fermion η̂ to

homogenize the Hamiltonian and make everything quad-

ratic. This is equivalent to rewriting the Hamiltonian

Eq. (A2) as

Ĥfermi;η ¼
Ω

2
ðĉ1 þ ĉ†1Þðη̂ − η̂†Þ þ Δĉ†ĉ

−
1

2

X

N−1

j¼1

Jjðĉ†j ĉjþ1 þ H:c:Þ: ðA6Þ

Now, the Majorana ðη̂þ η̂†Þ is conserved by the

Hamiltonian, and so if this were a closed system, we

would be done, as the two Hamiltonians Ĥfermi;η and Ĥfermi

would be isospectral (with Ĥfermi;η doubly degenerate).

However, this is an open system, and we need to consider

the dissipation. In this case, the Majorana ðη̂þ η̂†Þ con-

stitutes only a weak symmetry [53] of the Lindbladian, as it

anticommutes with the jump term:

fη̂þ η̂†; ĉ1g ¼ 0: ðA7Þ

This is problematic, as, without further modification, the

dissipation will cause unphysical jumps between the two

conserved sectors of Ĥfermi;η.

To correct this problem, we must also modify the linear-

in-fermion jump operator so that these unphysical jumps

do not occur. Formally, we must make the conservation of

ðη̂þ η̂†Þ a strong symmetry [53]. This is achieved by the

master equation

˙̂ρ ¼ −i½Ĥfermi;η; ρ̂� þ γD½ð−1Þη̂†η̂ĉ1�ρ̂: ðA8Þ

Note that this is ultimately equivalent to first introducing an

auxiliary spin in Eq. (10) (preceding the first lattice site)

and then performing the Jordan-Wigner transform. Note

that the jump operator is now cubic, and, therefore, the

system is explicitly interacting. We also note that this

procedure is consistent with the general rules outlined in

Ref. [42]: When introducing the auxiliary fermion η, all
linear-in-fermion operator terms must be modified to

ensure that they have the correct matrix elements in the

expanded space. This rule must be applied to the jump

operator ĉ1, as the action of the superoperator D½ĉ1� cannot
be written solely in terms of the quadratic operator ĉ†1ĉ1.

As a final confirmation that the single-chain qubit system

is not equivalent to free fermions, in Fig. 10, we plot the full

Liouvillian spectrum (eigenvalues λ) for the N ¼ 2 version

of the master equation (10). For Ω ¼ 0 (left), the eigen-

values have the normal mode structure expected for a free

fermion Lindblad master equation (as can be found using

third quantization [24]). This implies, e.g., that eigenvalues

FIG. 10. Lindblad spectrum of a single chain with two qubits.

We plot the eigenvalues λ of the single-chain master equation (10)

for N ¼ 2, Δ ¼ 0, and J ¼ γ. Left: In the absence of any drive

Ω ¼ 0, the spectrum has the normal mode form expected for a

quadratic fermionic Lindblad master equation. Right: For a

nonzero drive Ω ¼ 0.6γ, the normal mode structure is lost;

e.g., summing single-excitation eigenvalues does not correctly

predict higher-lying eigenvalues. This provides a direct confir-

mation that, with driving and loss, the single-chain problem is not

equivalent to a quadratic fermionic Lindbladian.
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corresponding to two-particle excitations are formed by

summing eigenvalues associated with single-particle exci-

tations. With a nonzero drive (right), this structure is clearly

lost. The Lindblad spectrum with both drive and loss no

longer has the form expected for a free fermion

Lindbladian, consistent with our conclusions above.

APPENDIX B: REPLICATION

1. Intuition for fixed-parity states

The fact that the passive XX couplings can replicate

fixed-parity states is simple enough to check but is not

immediately intuitive. To get some more intuition, let us

write the Hamiltonian for a pair of dimers as

Ĥ ¼ σ̂xA;1σ̂
x
A;2 þ σ̂

y
A;1σ̂

y
A;2 − ðσ̂xB;1σ̂xB;2 þ σ̂

y
B;1σ̂

y
B;2Þ: ðB1Þ

We can immediately observe that ½Ĥ;Ŝ2A;B�¼ ½Ĥ;ŜzA;B�¼0,

and so we can diagonalize it in terms of the singlet and

triplet states jsA; mAi ⊗ jsB; mBi, where s and m are the

standard quantum numbers of total spin and z-angular
momentum, respectively. It is quite easy to observe that

ðσ̂x1σ̂x2 þ σ̂
y
1σ̂

y
2Þjs;mi ¼ δm;0ð−1Þsþ1js;mi ðB2Þ

⇒ ĤjsA; mAi ⊗ jsB; mBi ¼ ðδmA;0
ð−1ÞsAþ1 − δmB;0

ð−1ÞsBþ1ÞjsA; mAi ⊗ jsB; mBi ðB3Þ

⇒ ĤjsA; mAi ⊗ jsB; mBi ¼ 0: ðB4Þ

The only remaining piece of the puzzle is the observation

that tensoring together two copies of a fixed- (even-) parity

state jψi is diagonal in this spin basis:

jψi ¼
X

i∈ f0;1g
ψ ijiiA ⊗ jiiB ðB5Þ

⇒ jψi1 ⊗ jψi2 ¼
X

i;j∈ f0;1g
ψ iψ jjijiA ⊗ jijiB ðB6Þ

¼
X

s;m

cs;mjs;mi ⊗ js;mi; ðB7Þ

where in the last line we go from the computational basis in

Eq. (B6) to the total spin basis in Eq. (B7). Since the

coefficient ψ iψ j is a symmetric tensor, it is diagonal in the

spin basis; intuitively, this is because the spin states are all

either symmetric (s ¼ 1) or antisymmetric (s ¼ 0). Thus,

the tensor product of s ¼ 0 with s ¼ 1 is antisymmetric,

which multiplied by a symmetric tensor is identically zero.

However, the product of two symmetric or two antisym-

metric tensors will not be. This can also be checked very

straightforwardly by direct computation. j00i in the com-

putational basis is j1;−1i in the total spin basis already, and
vice versa for j11i ↔ j1; 1i. Thus, it requires only checking
the cross terms. Denote jSi ¼ j0; 0i ¼ ðj01i − j10iÞ=

ffiffiffi

2
p

the singlet state and jTi ¼ j1; 0i ¼ ðj01i þ j10iÞ=
ffiffiffi

2
p

the

triplet. Then,

j01i⊗ j01iþ j10i⊗ j10i

¼ 1

2
ðjSiþ jTiÞ⊗ ðjSiþ jTiÞþ1

2
ðjSi− jTiÞ⊗ ðjSi− jTiÞ

¼ jSi⊗ jSiþ jTi⊗ jTi; ðB8Þ

as expected.

Going to a fixed- (odd-) parity state can be deduced in

the same manner by observing that (defining a bit flip

operation via jīi≡ j1 − ii ¼ σ̂xjii)

jψi ¼
X

i

ψ ijiiA ⊗ jīiB ðB9Þ

⇒ jψi1 ⊗ jψi2 ¼
X

i;j

ψ iψ jjijiA ⊗ jī j̄iB ðB10Þ

¼
X

s;m

cs;mjs;mi ⊗ js;mi: ðB11Þ

However, bit flip on the entire B chain leaves the

Hamiltonian invariant:

σ̂xB;1σ̂
x
B;2Ĥσ̂xB;1σ̂

x
B;2 ¼ Ĥ; ðB12Þ

and, hence, the argument still holds.

This shows that the XX Hamiltonian annihilates every

tensor product of identical fixed-parity states. Thus, we

can repeat this argument for an arbitrarily long chain of

identical, fixed-parity states. If we denote ĤXX;i as the XX

Hamiltonian acting on the i and iþ 1 pair of spins, then the

total Hamiltonian would be

ĤtotaljΨitotal ¼
�

X

N−1

i¼1

JiĤXX;i

�

jψi⊗N

¼
X

N−1

i¼1

jψi1…ðJiĤXX;ijψiijψiiþ1Þ…jψiN

ðB13Þ

¼ 0; ðB14Þ
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so the total 2N-site XX Hamiltonian has a many-body zero-

energy eigenstate composed of N copies of an arbitrary

fixed-parity two-qubit state.

2. Heisenberg couplings

To observe that Heisenberg couplings can replicate

any state, it is first important to observe that, given a

fixed- (even-) parity state jψi ¼ uj00i þ vj11i, then

ðσ̂zA;1σ̂zA;2 − σ̂zB;1σ̂
z
B;2Þjψi ⊗ jψi ¼ 0: ðB15Þ

Combining this with the fact that, as shown in the previous

section, this state is annihilated by the XX couplings, we

see that it is annihilated by any XXZ Hamiltonian.

From here, we point out that, given an arbitrary state jϕi,
then by the Schmidt decomposition there exist local

unitaries Û1 and Û2 such that

ðÛ1 ⊗ Û2Þjϕi ¼ uj00i þ vj11i≡ jψi ðB16Þ

for some u and v. Let us define ĤH to be the isotropic

Heisenberg Hamiltonian. Then, we have that

ĤHjϕi ⊗ jϕi ¼ ĤHðU†

1 ⊗ U†

1ÞA ⊗ ðU†

2 ⊗ U†

2ÞBjψi⊗ jψi:
ðB17Þ

Since the isotropic Heisenberg Hamiltonian is invariant

under uniform local unitary rotations, it can be commuted

through to annihilate the fixed-parity state:

ĤHjϕi ⊗ jϕi ¼ 0 ðB18Þ

as desired.

3. Replication in more complicated graphs

We now demonstrate the claim made in the main text that

the replication mechanism can work on more complicated

graphs than a 1D chain. In fact, states can be replicated

down any treelike structure (i.e., with no closed loops) that

has exactly one symmetry axis.

The proof is a simple generalization of what we have

already shown: We show that, given two dissipatively

stabilized qubits, one can attach an arbitrary number of

qubit pairs off of these using symmetric XX couplings. This

generates one level of the tree graph, and then simple

bootstrapping shows that arbitrary trees are possible.

Let us assume once again that there exists a Liouvillian

operator L0 acting on qubits at site A0, B0 that stabilizes a

fixed-parity state jψi, L0ðjψihψ jÞ ¼ 0. Next, we extend

this to the next layer in the graph by defining the next set of

qubits on sites A1;…; An and B1;…; Bn, so that the full

system Liouvillian is now

L ¼ L0 ⊗ 1⊗n − i½ĤXX;n; ·�; ðB19Þ

ĤXX;n ¼
X

s¼A;B

X

n

i¼1

sgnðsÞJiðσxs;0σxs;i þ σ
y
s;0σ

y
s;iÞ; ðB20Þ

where we define sgnðAÞ ¼ 1 and sgnðBÞ ¼ −1. Now, at

this point, defining jΨi ¼ jψi⊗nþ1, it is simple to observe

that, since the Hamiltonian is simply a sum of terms acting

independently on the different dimers, ĤXX;njΨi ¼ 0 by the

exact same logic as presented before.

Thus, a single qubit can sustain any number of pairs

branching off of it. However, this means that each of those

are now dissipatively stabilized fixed-parity states, and so

we can repeat the argument to branch more qubits off,

generating trees.

At this point, it is crucial to note that, since there are

multiple qubits branching off a single pair, now it is

important that the Ji terms are all distinct if you want a

unique steady state. If there are degeneracies in the Ji
parameters, then one generates a permutation symmetry

where there are multiple degenerate pairings between A
qubits and B qubits, and so the steady state will necessarily

be degenerate.

APPENDIX C: DIMER REPRESENTATION

Each dimer chain site can be described as a pair of

noncommuting spin-1’s embedded in the spin- 1
2
× spin- 1

2

Hilbert space which sharem ¼ �1 states but have orthogo-

nal m ¼ 0 states. The m ¼ −1 state is the two-qubit

vacuum j00i, the m ¼ þ1 state is the double-excited state

j11i, and the orthogonal pair of m ¼ 0 states are jSi ¼
ðj01i − j10iÞ=

ffiffiffi

2
p

and jTi ¼ ðj01i þ j10iÞ=
ffiffiffi

2
p

.

We define the lowering operators τ̂j and λ̂j on each site j

that each destroy one of jSji or jTji. The τ̂j destroy

jSj¼1;3;5;…i and jTj¼2;4;6;…i—the j•i particles—and the λ̂j
destroy the opposite m ¼ 0 states—the j▪i particles.

Explicitly, in terms of the qubit operators, the lowering

operators are

τ̂j ≡ σ̂−B;j þ ð−1Þjσ̂−A;j

¼
ffiffiffi

2
p

(

j00jihSjj − jSjih11jj j odd;

j00jihTjj − jTjih11jj j even;
ðC1Þ

λ̂j ≡ σ̂−B;j − ð−1Þjσ̂−A;j

¼
ffiffiffi

2
p

(

j00jihSjj þ jSjih11jj j even;

j00jihTjj þ jTjih11jj j odd:
ðC2Þ

Each ladder operator and its adjoint forms a spin-1

representation of SU(2), with the same Ŝzj completing

the algebra for each. That is, the commutation relations

½τ̂†j ; τ̂k� ¼ ½λ̂†j ; λ̂k� ¼ 2Ŝzjδjk are simultaneously satisfied for

the operator
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Ŝzj ¼
1

2
ðσ̂zA;j þ σ̂zB;jÞ ¼ j11jih11jj − j00jih00jj: ðC3Þ

The two flavors of ladder operators on each site j do not

commute with each other:

½τ̂†j ; λ̂j� ¼ ½λ̂†j ; τ̂j� ¼ σ̂zB;j − σ̂zA;j

¼ 2ðjSjihTjj þ H:c:Þ: ðC4Þ

Notice that these commutators are Hermitian and act to

change flavor on a given dimer site. Finally, products of

same-site ladder operators are

τ̂2j ¼ −λ̂2j ¼ −2ð−1Þjj00jih11jj; ðC5Þ

τ̂jλ̂j ¼ 0: ðC6Þ

This completes the dimer algebra.

We use the following notation of states in the dimer

representation: j∘ji and jð11Þji are the vacuum and double-

excited state, respectively. The single-excited states are

j•ji ¼ ð1=
ffiffiffi

2
p

Þτ̂†j j∘ji and j▪ji¼ 1
ffiffi

2
p λ̂

†
j j∘ji. Finally, we define

the steady-state subspace

Hs ¼ span

	

X

j

j∘ji; j•ji



ðC7Þ

(so-called because jψQi∈Hs), which contains all states

with only j•ji and j∘ji. The projector into Hs is given by

P̂s ¼ ⊗
j
ðj∘jih∘jj þ j•jih•jjÞ: ðC8Þ

Now we rewrite Eq. (1) in the dimer representation. The

collective loss operator [cf. Eq. (3)] is simply

ĉ ¼ λ̂1; ðC9Þ

which makes immediately obvious that its dark subspace

on site 1 is spanned by j∘1i and j•1i, since λ̂1jð11Þ1i ¼
ffiffiffi

2
p

j▪1i and λ̂1j▪1i ¼
ffiffiffi

2
p

j∘1i. The Hamiltonian terms

[cf. Eqs. (4)–(6)] are

ĤXX ¼ 1

4

X

N−1

j¼1

Jj
�

τ̂
†
j λ̂jþ1 þ λ̂

†
j τ̂jþ1 þ H:c:

�

; ðC10Þ

Ĥdrive ¼
Ω

2

�

λ̂
†

1 þ H:c:
�

−
Δ

2
½λ̂†1; τ̂1�; ðC11Þ

Ĥdiss ¼
1

4
iνγ

�

λ̂
†

1τ̂1 − H:c:
�

: ðC12Þ

ĤXX becomes a flavor-changing exchange interaction, and

the Rabi drives become a single drive acting on the j▪i
flavor. The drive detuning in Ĥdrive and the nonreciprocity-

induced exchange in Ĥdiss appear in different ways to

achieve the same effect: a flavor change that swaps j•1i
and j▪1i. Note that the commutator in Ĥdrive is Hermitian,

which can be seen using Eq. (C4).

APPENDIX D: HOLE PAIRING AND XX

EIGENSTATES IN QUBIT CHAINS AND

FERMI-HUBBARD CHAINS

1. Hole-pairing operator

The hole-pairing operator Q̂ defined by Eq. (22) is a

central character in the analytical description of the steady

state of Eq. (1). Here, we prove that it acts on eigenstates

of ĤXX [cf. Eq. (5)] within the steady-state subspace Hs

[cf. Eq. (C7)] to produce new eigenstates of ĤXX with the

same energy and also in Hs. We prove this at the operator

level by showing that, when Q̂ acts on states within the

steady-state subspace Hs, it commutes with both ĤXX and

the projector into the subspace P̂s [cf. Eq. (C8)]:

½Q̂; ĤXX�P̂s ¼ 0; ðD1Þ

½Q̂; P̂s�P̂s ¼ 0: ðD2Þ

Together, these imply that, for a given ĤXX eigenstate

jϕi∈Hs with energy E, the action of Q̂ on jϕi produces
another eigenstate with energy E:

ðĤXX − EÞðQ̂jϕiÞ ¼ 0; Q̂jϕi∈Hs: ðD3Þ

In this way, we find that, by repeated application of Q̂ on an

ĤXX eigenstate, a tower of some finite number n0 < ∞ of

degenerate eigenstates is returned.

In general, the commutators ½Q̂;ĤXX�≠0 and ½Q̂;P̂s�≠0.

A direct computation using Eqs. (C8) and (C10) yields the

commutators

½Q̂; ĤXX� ¼
1

8
ffiffiffiffi

N
p

X

j

ð−1Þj
�

J2j

J̄
½τ̂j; λ̂†j �ðτ̂2jþ1 − τ̂2j−1Þ − 2

JjJj−1

J̄
Ŝzj
�

τ̂jþ1λ̂j−1 − τ̂j−1λ̂jþ1

�

�

; ðD4Þ

½Q̂; P̂s� ¼ −
1
ffiffiffiffi

N
p

X

j

ðJj=J̄Þð−1Þj ⊗
k≠j;jþ1

ðj∘kih∘kj þ j•kih•kjÞ

× ½j •j ∘jþ1ihð11Þj •jþ1 j þ j∘j•jþ1ih•jð11Þjþ1j þ j •j •jþ1ihð11Þjð11Þjþ1j�: ðD5Þ
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Noting that τ̂2j j•ji ¼ λ̂jj•ji ¼ 0 and τ̂2j j∘ji ¼ λ̂jj∘ji ¼ 0, we

immediately see that, within the steady-state subspace,

½Q̂; ĤXX�P̂s ¼ 0. By inspection, ½Q̂; P̂s�P̂s ¼ 0.

2. Hole pairing in a Fermi-Hubbard model

The hole pairing observed in the dimer chains is not

unique to that system. The requirements for a 1D tight-

binding chain to have eigenstates of paired holes (or some

suitable paired excitation) are that (i) there exist two flavors

or species of excitation, (ii) the exchange couplings change

the flavor when the particles hop, and (iii) there is a hard-

core constraint preventing double occupation on a site. The

Fermi-Hubbard tight-binding chain with on-site repulsion

U can, in the hard-core interaction limit U → ∞, fulfill

these requirements, albeit in a nonstandard basis. A recent

work by Mamaev et al. [38] introduced a proposal of a

Fermi-Hubbard model with a staggered laser drive that flips

spin on each site. This laser drive induces an effective spin-

orbit coupling that causes spin-flip (flavor-change) hopping

in an appropriate excitation basis. In the hard-core repul-

sion limit, hole-paired states emerge as eigenstates of the

Hamiltonian.

The model introduced in Ref. [38] is of a 1D Fermi-

Hubbard lattice with an added spin-orbit coupling (SOC)

laser drive, Ĥ ¼ Ĥ0 þ ĤSOC, where

Ĥ0 ¼ J
X

j;σ

�

ĉ†j;σ ĉjþ1;σ þ H:c:
�

þ U

2

X

j

n̂j;↑n̂j;↓; ðD6Þ

ĤSOC ¼ Ω

2

X

j

ð−1Þj
�

ĉ†j;↑ĉj;↓ þ H:c:
�

: ðD7Þ

Here, J is the hopping rate (taken to be uniform, for

simplicity, but can be generalized to nonuniform J, like
the spin chains), U is the Hubbard potential, Ω is the laser

Rabi drive strength, and n̂j;σ ¼ ĉ†j;σ ĉj;σ . As in Ref. [38], we

define a new set of fermion operators:

âj;↑ ¼ 1
ffiffiffi

2
p ðĉj;↑ þ ð−1Þjĉj;↓Þ; ðD8Þ

âj;↓ ¼ 1
ffiffiffi

2
p ðĉj;↑ − ð−1Þjĉj;↓Þ; ðD9Þ

which obey the canonical anticommutation relations

fâj;σ; âk;τg ¼ δjkδστ. In this basis, the Hamiltonian is

Ĥ ¼ J
X

j;σ

�

â†j;σâjþ1;σ̄ þ H:c:
�

þ U

2

X

j

n̂j;↑n̂j;↓

þ Ω

2

X

j

�

n̂j;↑ − n̂j;↓Þ; ðD10Þ

where σ̄ denotes the spin flip of σ and now n̂j;σ ¼ â†j;σâj;σ.

We, thus, have the desired spin-flip hopping. Also note

the energy splitting Ω between spin-up and spin-down

particles, thus making this a good basis with respect to the

SOC laser drive.

Whereas Ref. [38] explores the physics in the limit

Ω ¼ U → ∞, here we wish to consider a slightly different

limit: U → ∞ with Ω; J < ∞. This effects the on-site hard-

core repulsion between opposite spins; thus, we have the

effective model

Ĥ∞¼Ω

2

X

j

ðn̂j;↑− n̂j;↓Þ

þJ
Y

k

ð1− n̂k;↑n̂k;↓Þ
X

jσ

�

â†j;σâjþ1;σ̄þH:c:
�

: ðD11Þ

With the hard-core repulsion, the N-particle ferromagnetic

states jΞ↑i ¼ j↑↑↑ � � �i and jΞ↓i ¼ j↓↓↓ � � �i are eigen-

states of Ĥ∞, with energies þNðΩ=2Þ and −NðΩ=2Þ,
respectively. We now introduce the fermionic hole-pairing

operators (one for each spin)

Q̂σ ¼
1
ffiffiffiffi

N
p

X

j

ð−1Þjâj;σâjþ1;σ; ðD12Þ

that create pairs of adjacent holes with staggered phases,

in perfect analogy with Eq. (22). We also denote by P̂σ the

projector into each spin subspace, in analogy with Eq. (C8).

Just as with the dimer spin chain case, we find that the

hole-pairing operators here commute with the tight-binding

Hamiltonian when restricted to the appropriate subspace,

but the total energy changes due to the removal of two

particles:

½Q̂↑;Ĥ∞�P̂↑¼−ΩQ̂↑; ½Q̂↓;Ĥ∞�P̂↓¼þΩQ̂↓: ðD13Þ

Thus, when acting on their respective jΞσi, powers of Q̂σ

produce towers of Hamiltonian eigenstates with energies

ranging from �NðΩ=2Þ to either 0 or �ðΩ=2Þ for either

even-length or odd-length chains, respectively. Notice that,

due to the SOC energy splitting, Q̂σ raises or lowers the

eigenstate energy by a multiple of the SOC drive strength

Ω=2, furthering the analogy with η pairing [47,48], for

which η-paired states have energy splitting that are a

multiple of the Hubbard potential U.

APPENDIX E: EXISTENCE PROOF FOR THE

PURE STEADY STATE

Here, we rigorously prove that jψQi [Eq. (25)] is indeed
a pure steady state of Eq. (1). For jψQi to be a pure steady

state, it is sufficient for it to be an eigenstate of the

Hamiltonian and a dark state of the dissipation [54]. The

latter property is satisfied, as ĉj•1i ¼ ĉj∘1i ¼ 0 and jψQi
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has only those components on site 1. It remains to show that

jψQi is an eigenstate of Ĥ, which we do by way of a

variational ansatz.

We consider a two-parameter variational ansatz jψ 0½α; β�i
and show that it is an exact eigenstate for a set of uniquely

determined variational parameters α and β. First, note that,

for N ¼ 1, the steady state [cf. Eq. (7)] is

jψ1i ¼
�

1þ Γ

Ω
τ̂1

�

j•i: ðE1Þ

This is a zero-energy eigenstate of the boundary

Hamiltonian

Ĥ1 ≡ Ĥdrive þ Ĥdiss ðE2Þ

[cf. Eqs. (C11) and (C12)]. Thus, we construct a variational

ansatz which includes this wave function in theN ¼ 1 case,

but we replace Γ=Ω with a variational parameter β for

generality. This correction to jψ∞i cannot be enough for

N > 1, because the hole on site 1 will be delocalized

throughout the chain in order to have an eigenstate of ĤXX.

One might expect that a linear combination of zero-energy

ĤXX eigenstates with all possible numbers of hole pairs is

needed. A “hole-pair condensate,” i.e., the exponential of Q̂
acting on jψ∞i, is a simple way to achieve that; thus, we

make the ansatz

jψ 0½α; β�i ¼ ð1þ βτ̂1ÞeαQ̂jψ∞i: ðE3Þ

Evaluating Ĥjψ 0½α; β�i, there are three nonzero terms:

Ĥjψ 0½α; β�i ¼ ½Ĥ1 þ βĤ1τ̂1 þ β½ĤXX; τ̂1��eαQ̂jψ∞i; ðE4Þ

as ĤXXe
αQ̂jψ∞i ¼ 0. In what follows, we use the fact that

eαQ̂jψ∞i∈Hs [cf. Eq. (C7)] contains no j▪i or doublon

states j11i. Thus, we may always write eαQ̂jψ∞i ¼
P̂se

αQ̂jψ∞i [cf. Eq. (C8)]. Evaluating the boundary

Hamiltonian restricted to the steady-state subspace yields

ĤdriveP̂s ¼
Ω

2
λ̂
†

1 −
Δ

2
λ̂
†

1τ̂1; ðE5Þ

ĤdissP̂s ¼
1

4
iνγλ̂†1τ̂1: ðE6Þ

So we have Ĥ1P̂s ¼ 1
2
Ωλ̂†1 −

1
2
Γλ̂†1τ̂1, where Γ is defined

in Eq. (8). Likewise, the commutator is given by

½ĤXX; τ̂1�P̂s ¼ 1
4
J1λ̂

†

1τ̂1τ̂2. Thus, we have

Ĥjψ 0½α; β�i

¼
�

1

2
Ωλ̂†1 þ β

1

4
J1λ̂

†

1τ̂1τ̂2 þ
1

2
ðβΩ − ΓÞλ̂†1τ̂1

�

eαQ̂jψ∞i:

ðE7Þ

Commuting everything past the exponential eαQ̂, one can

readily show that ½λ̂†1τ̂1; Q̂�P̂s ¼ ½λ̂†1τ̂1τ̂2; Q̂�P̂s ¼ 0. The

only nonzero commutator is

½λ̂†1; eαQ̂�P̂s ¼ −αðJ1=2J̄
ffiffiffiffi

N
p

ÞeαQ̂λ̂†1τ̂1τ̂2: ðE8Þ

This commutator is evaluated by first noting that

½λ̂†1; Q̂�P̂s ¼ −ðJ1=2J̄
ffiffiffiffi

N
p

Þλ̂†1τ̂1τ̂2 and ½λ̂†1τ̂1τ̂2; Q̂�P̂s ¼ 0.

Thus, ½½λ̂†1; Q̂�; Q̂�P̂s ¼ 0. Then, we can use the general

results that for two operators Â and B̂ satisfying

½½Â; B̂�; B̂� ¼ 0, the commutator ½Â; eαB̂� ¼ α½Â; B̂�eαB̂ ¼
αeαB̂½Â; B̂�. Using the hard-core constraint, we also have

λ̂
†

1jψ∞i ¼ 0; hence, the action of Ĥ on the variational

ansatz reduces to the following two terms:

Ĥjψ 0½α;β�i

¼ eαQ̂
�

J1

4

�

β−α
Ω

J̄
ffiffiffiffi

N
p

�

λ̂
†

1τ̂1τ̂2þ
1

2
ðβΩ−ΓÞλ̂†1τ̂1

�

jψ∞i:

ðE9Þ

Since both terms involve the creation of a j▪1i, the

eigenstate must have eigenvalue 0, and each term must

vanish separately as they remove differing numbers of j•ji.
Immediately, we see that letting β ¼ Γ=Ω [as predicted by

Eq. (E1)] and α ¼
ffiffiffiffi

N
p

ΓJ̄=Ω2 yields jψQi as desired.
We conclude this appendix with an important comment

on uniqueness. While we do not have a proof that this is the

unique steady state of the master equation for any N > 1,

we have reason to expect that it is unique so long as

jΩ̃j < ∞. As noted above, the originalN ¼ 1 problem does

have a unique steady state jψ1i [cf. Eq. (7)] for any finite

driving strength jΩ=Γj < ∞. Numerical exact diagonaliza-

tion of the Liouvillian for up to N ¼ 4 finds Eq. (25) to be

the unique steady state. Moreover, there is no obvious

symmetry in the problem that would allow for a steady-

state degeneracy (except in the limit Ω → ∞; see Sec. V),

and, thus, we expect this steady state to be generically

unique.

APPENDIX F: RECURSIVE STEADY-STATE

CONSTRUCTION

1. Steady-state recursion relation

The steady state jψi given by Eq. (25) can alter-

natively be constructed recursively in the length of the

chains N. While this construction does not lead to

further analytic insights into the structure and properties

of the steady state beyond what can be obtained from

Eq. (25), it does allow for the numerically amenable

calculation of expectation values and correlation func-

tions. In what follows, it is convenient to define the

dimensionless parameters
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ζ ≡

ffiffiffi

Γ

J̄

r

; ηj ≡
Jj

J̄
: ðF1Þ

The two ζ and Ω̃ [cf. Eq. (26)] are sufficient to describe

overall properties of the steady state (i.e., jψi can be

written using only these two parameters when the fJjg
are hidden away in Q̂), and the set of fηjg encodes all

intrachain hopping disorder.

The starting point for the recursive construction is

the pair of steady states jψ1i and jψ2i for the N ¼ 1

and N ¼ 2 chains, respectively. The N ¼ 1 steady state

jψ1i [cf. Eq. (7)] is given in terms of Ω̃ and ζ by

jψ1i ¼
1

N 1

�

ffiffiffi

2
p ζ

Ω̃
j∘1i þ j•1i

�

; ðF2Þ

N 2
1 ¼

2jζj2
jΩ̃j2

þ 1; ðF3Þ

where N 1 is the normalization. For later use in computing

correlation functions, it is crucial that the states be

normalized. The N ¼ 2 steady state is

jψ2i ¼
1

N 2

�

η1

N 1Ω̃
2
j∘1∘2i − jψ1i ⊗ j•2i

�

; ðF4Þ

N 2
2 ¼

η21

N 2
1jΩ̃j4

þ 1: ðF5Þ

By construction, this is a dark state of the dissipation, and

one can readily verify that it is a zero-energy eigenstate of

the Hamiltonian Ĥ2 ¼ Ĥ1 þ ĤXX;2.

For all n ≥ 3, the steady state is given recursively by

jψni ¼
1

N n

�

ηn−1

N n−1Ω̃
2
jψn−2i ⊗ j∘n−1∘ni

þ ð−1Þbn=2cjψn−1i ⊗ j•ni
�

; ðF6Þ

N 2
n ¼

η2n−1

N 2
n−1jΩ̃j4

þ 1: ðF7Þ

One readily verifies that this is an eigenstate of the

Hamiltonian Ĥn ¼ Ĥ1 þ ĤXX;n using the induction

hypotheses Ĥn−1jψn−1i ¼ Ĥn−2jψn−2i ¼ 0. The hypothe-

ses hold for jψ1i and jψ2i, thus completing the inductive

proof that Ĥnjψni ¼ 0. Notice that the pairing of holes in

the steady state appears clearly in the recursion relation.

The strong Ω̃ limit jψi → j • • • � � �i is also evident by

neglecting terms at least Oð1=Ω̃Þ in small 1=Ω̃ ≪ 1.

2. Correlation functions

The recursive construction of jψi provides a convenient
way to numerically compute correlation functions. Using

Eq. (25) directly presents some analytic challenges that are

avoided in the recursion. For the sake of clarity, we focus

here on the dimer particle number n̂j ≡
1
2
τ̂
†
j τ̂j. Since the

recursion relation for jψni is in the chain length n, it is
necessary to denote the chain length for which expectation

values are taken, e.g.,

hn̂jin ¼
1

2
hψnjτ̂†j τ̂jjψni: ðF8Þ

Here, the state is normalized by construction: hψnjψni ¼ 1.

Using the recursion relation Eq. (F6), we expand hn̂jin in

terms of the expectation values evaluated for n − 1 and

n − 2 length chains:

hn̂jin ¼
η2n−1

N 2
nN

2
n−1jΩ̃j4

hn̂jin−2 þ
1

N 2
n

hn̂jin−1; ðF9Þ

where N k are the normalization factors given by Eq. (F7).

This expression tells us that the expectation value hn̂jin,
evaluated for a chain of length n, is given in terms of the

expectation value evaluated on chains of length n − 1 and

n − 2, which are similarly given by the recursive expression

Eq. (F9). This recursion terminates at the expectation value

hn̂jij, i.e., for a length n ¼ j chain. The termination hn̂jij is
readily evaluated using Eq. (F6) directly and is

hn̂jij ¼ hψ jjn̂jjψ ji ¼
1

N 2
j

: ðF10Þ

Any expectation value or correlation function can be

evaluated in a similar way.

APPENDIX G: RESTRICTED

SPECTRUM-GENERATING ALGEBRA

AND RELATION TO SCARRING

Here, we briefly demonstrate that Q̂ and jψ∞i
[cf. Eq. (12)] constitute an RSGA and show that these

states have area-law entanglement entropy across a par-

ticular bipartition and, thus, are scar states of a simple

ladder model.

1. RSGA in a nonintegrable model

In Ref. [39], a restricted spectrum-generating algebra of

the order of M for a system with Hamiltonian Ĥ is defined

by an operator η̂† and a state jψ0i satisfying (i) Ĥjψ0i ¼
E0jψ0i, (ii) Ĥ1jψi¼Eη̂†jψ0i, Ĥnjψ0i¼0 ∀ n;2≤n≤M,

and (iv) Ĥn ≠ 0; n ≤ M, Ĥn ¼ 0; n ¼ M þ 1. Here, Ĥn ¼
½Ĥn−1; η̂

†� are successive commutators with η̂†, and

Ĥ0 ¼ Ĥ is the system Hamiltonian. Then, the states
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ðη̂†Þnjψ0i are eigenstates of Ĥ with equally spaced energies

E0 þ nE for all n for which ðη̂†Þnjψ0i ≠ 0.

We consider a simple nonintegrable ladder model,

specifically the model discussed in Ref. [40] of two XX
chains with an XXZ interaction on each rung (to which we

add a term Ĥδ):

Ĥ ¼ ĤXX þ Ĥrung þ Ĥδ; ðG1Þ

Ĥrung ¼
X

L

j¼1




g
�

σ̂xA;jσ̂
x
B;j þ σ̂

y
A;jσ̂

y
B;j

�

þ μσ̂zA;jσ̂
z
B;j

�

;

Ĥδ ¼ δ
X

L=2

i¼1

�

σ̂þA;2iσ̂
−
B;2i þ H:c:

�

: ðG2Þ

This model is nonintegrable (even for μ ¼ 0), and it

conserves total Z-axis magnetization [40]:

M̂ ¼
X

j

σ̂zA;j þ σ̂zB;j: ðG3Þ

The rung terms split the jSi and jTi states—ĤrungjSi ¼
−2gjSi, ĤrungjTi ¼ þ2gjTi—and acts as a chemical

potential by giving an energy cost to adding either holes

or particles: Ĥrungj∘i ¼ μj∘i, Ĥrungjð11Þi ¼ μjð11Þi. The
added Ĥδ splits the two reference states jψ∞i ¼ jSTST…i
and jψ̃∞i ¼ jTSTS…i via ĤδjS2ii ¼ −2δjS2ii and

ĤδjT2ii ¼ 2δjT2ii, to lift some degeneracies between the

hole-paired states and other eigenstates of the system.

It is straightforward to see that the Q̂ operator con-

structed in Appendix D and the reference state jψ∞i
[cf. Eq. (12)] form an RSGA of the order of 2 under this

Hamiltonian. In particular, we have

Ĥjψ∞i ¼ E0jψ∞i;

E0 ¼
	

0 L even;

−g L odd;

Ĥ1jψ∞i ¼ 2μQ̂jψ∞i;
Ĥ2jψ∞i ¼ 0; Ĥ3 ¼ 0; ðG4Þ

where Ĥn ¼ ½Ĥn−1; Q̂� with Ĥ0 ¼ Ĥ. Equation (G4)

implies that the set of hole-paired states

jψni ¼ Q̂njψ∞i; ðG5Þ

Ĥjψni ¼ ðE0 þ 2nμÞjψni ðG6Þ

are a tower of exact eigenstates of the nonintegrable

ladder, with equal energy spacing En − En−1 ¼ 2nμ, for
all n < L=2.

Similar calculations show that Q̂† acting on jψ∞i is also
an RSGA of the order of 2, but this time creating particle

[i.e., jð11Þji] pairs. Similarly, if we define a Q̃ which is

identical to Q̂ but with the replacement τ̂jτ̂jþ1 ↦ λ̂jλ̂jþ1

and a new reference state jψ̃∞i ¼ jTSTSTS…i, we also

find that Q̃ and Q̃† with jψ̃∞i form order-2 RSGAs,

creating hole and particle pairs, respectively.

2. Scarring in a nonintegrable ladder model

For the hole-paired states to be true quantum scars in the

ladder model, it is not enough that they are generated from a

restricted spectrum-generating algebra. A key hallmark

of quantum scarring is the existence of eigenstates of a

nonintegrable system which are highly anomalous in some

observable quantities when compared to other eigenstates

of similar energy and, thus, violate the strong eigenstate

thermalization hypothesis, which one would otherwise

naively expect to hold [55]. One common quantity to

compare is the entanglement entropy (EE) across some

bipartition of the quantum system. Generically, eigenstates

of nonintegrable systems have volume-law EE across a

given bipartition; in a 1D system, we thus expect S ∼ L for

a generic eigenstate.

In the ladder model, we consider the bipartition

defined by cutting the system lengthwise at site L=2
(letting the partitions α and β be the left and right

halves of the chain, respectively). It is clear that the

reference states jψ∞i and jψ̃∞i have zero EE across the

bipartition, as they are tensor products of a Bell state on

each dimer site. Furthermore, as we show rigorously

below, the EE of hole-paired states follows an area law

in the limit L → ∞: Sα ∼ L0; thus, these eigenstates are

quantum scars.

To demonstrate the anomalously low EE of the hole-

paired states, we perform numerical exact diagonalization

of Eq. (G1) for a length L ¼ 8 chain (i.e., 16 total spins)

using QuSpin [56]. For two fixed magnetization sectors,

M ¼ −2;−4, we plot the EE of each eigenstate across

the central bond versus eigenstate energy in Fig. 11. We

find that, as is typical of nonintegrable systems, the

typical energy eigenstate near the center of the band has

high EE (which we expect to be ∼L). The hole-paired

states, identified by stars in the figure, are states in the

middle of the eigenspectrum and clearly have anoma-

lously low EE.

3. Area-law entanglement entropy

of hole-paired states

For completeness, we rigorously show that the entangle-

ment entropy of the hole-paired states across the central cut

at L=2 of the length L chain follows an area law, scaling as

Sðρ̂α;nÞ ∼ L0, where ρ̂α;n ¼ trβ½Q̂njψ∞ihψ∞jQ̂†n�. Here, we
denote the partitions by α and β; the α partition contains the
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first L=2 qubits of each chain A and B. First, we split the Q̂
operator into three terms:

Q̂ ¼ Q̂α þ Q̂β þ Q̂L=2; ðG7Þ

where the first term acts only on the α partition (sites 1

through L=2) and the second on the β partition and the

last term Q̂L=2 ∝ τ̂L=2τ̂L=2þ1 places a hole pair across the

central cut. Now, using the fact that the Q states are

orthogonal,

hψ∞jQ̂†mQ̂njψ∞i ∝ δnm; ðG8Þ

specifically that this relation holds term by term, and that

Q̂2
L=2 ¼ 0, we can write a generic Q state as

Q̂njψ∞i ¼ ðQ̂α þ Q̂βÞnjψ∞iαjψ∞iβ
þ ðQ̂α þ Q̂βÞn−1Q̂L=2jψ∞i: ðG9Þ

Because Q̂α=β act only on their respective halves of the

chain, the terms ∝ ðQ̂α þ Q̂βÞnjψ∞i can always be written

Q̂k
αjψ∞iα ⊗ Q̂n−k

β jψ∞iβ. Similarly, for the ∝ Q̂L=2 terms,

the only entangling operator is Q̂L=2, with all powers of

Q̂α=β acting only on their halves of the chain. Thus, we can

efficiently perform the partial trace over the β partition of

the density matrix. In particular, terms with unique powers

of Q̂β and Q̂L=2 are orthogonal; thus, the partial trace over

the β partition is

ρ̂α;n¼ trβ

h

Q̂njψ∞ihψ∞jQ̂†n
i

¼
X

n

k¼0

�

n

k

�

2

kQ̂n−k
β jψ∞iβk2Q̂k

αjψ∞iαhψ∞jQ̂†k

þ
X

n−1

k¼0

�

n−1

k

�

2

kQ̂n−1−k
β j∘ψ∞iβk2Q̂k

αjψ∞∘iαhψ∞∘jQ̂†k:

ðG10Þ

Here, j∘ψ∞iβ is the β partition of Q̂L=2jψ∞i, which has a

hole on site L=2þ 1.

For a given fixed n, when we take the limit L→ ∞, we

have kQ̂n
α=βjψ∞iβk2 ∼ ðL=2Þn, as each half of the chain has

≈L=2 places where each hole pair can be placed. Thus,

tr½ρ̂α;n� ∼ ðL=2Þnð2n
n
Þ þOðLn−1Þ. Denoting the probabil-

ities of terms where a hole pair does not span the central

cut by pk and denoting the probabilities of terms with a

hole pair spanning the cut by p̃k, we find

pk ∼

�

n

k

�

2
��

2n

n

�

; p̃k ∼ L−1

�

n − 1

k

�

2
��

2n

n

�

:

ðG11Þ

We can neglect the p̃k for L → ∞ (keeping n fixed), so the

entanglement entropy of a hole-paired state is area law:

Sðρ̂α;nÞ ≈ −
X

k

pk lnpk ∼ L0: ðG12Þ

Note that this argument holds only for a 2n-hole state when
taking L →∞ with n fixed.

APPENDIX H: HOLE-PAIR CORRELATION

FUNCTION

Here, we derive the correlation function Eq. (28) and

discuss its nonstandard normalization. It is natural to

measure hole correlations using the dimer operators τ̂j

defined in Eq. (C1), as τ̂zj ¼ ½τ̂†j ; τ̂j� has the matrix elements

h∘jjτ̂zjj∘ji ¼ −2 and h•jjτ̂zjj•ji ¼ 0 (and zero off-diagonal

matrix elements) within the steady-state subspace fj∘ji;
j•jig. Thus, we define the hole-pair correlation function as

FIG. 11. Hole-paired states as scars in the double XX chain

ladder model. The entanglement entropy of the ladder model

eigenstates [cf. Eq. (G1)] of the α partition (i.e., sites 1 to L=2)
is plotted versus the eigenstate energy. Here, we consider a

length L ¼ 8 ladder (16 total spins) and plot the eigenstates in

theM ¼ −2 magnetization sector (i.e., two-hole sector) and the

M ¼ −4 (four-hole) sector. The hole-paired states are denoted

with stars; in each magnetization sector, there are two states

corresponding to hole pairs created in each reference state jψ∞i
and jψ̃∞i. For both plots, the parameters are μ=J ¼ 0.2,

g=J ¼ 0.5, and δ=g ¼ 0.3.
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Czzðj; kÞ ¼
hτ̂zj τ̂zki − hτ̂zjihτ̂zki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhτ̂zjτzji − hτ̂zji2Þðhτ̂zkτ̂zki − hτ̂zki2Þ
q ; ðH1Þ

which is a standard connected correlation function nor-

malized by the on-site fluctuations. To relate this to

measurable quantities in the single A chain alone, we first

note that τ̂zj ¼ σ̂zA;j þ σ̂zB;j and that, within the steady-state

subspace, h∘jjσ̂zs;jj∘ji ¼ −1 and h•jjσ̂zs;jj•ji ¼ 0, for

s∈ fA;Bg. Thus, when evaluating the correlation functions
for an arbitrary state within the steady-state subspace, we

have hσ̂zA;ji ¼ hσ̂zB;ji, and for j ≠ k, it is readily shown that

all hσ̂zs;jσ̂zs0;ki are equivalent for any s; s0 ∈ fA;Bg.
Therefore, the connected correlation function for j ≠ k
can be expressed in A-chain observables as

hτ̂zjτ̂zki − hτ̂zjihτ̂zki ¼ 4ðhσ̂zA;jσ̂zA;ki − hσ̂zA;jihσ̂zA;kiÞ: ðH2Þ

For j ¼ k, the expectation values hσ̂zs;jσ̂zs0;ji are not all

equivalent. The connected correlation functions can be

reduced to

hτ̂zj τ̂zji − hτ̂zji2 ¼ 2þ 2hσ̂zA;jσ̂zB;ji − 4hσ̂zA;ji2: ðH3Þ

As a final step, we find that, within the steady-state

subspace, the nonzero matrix elements of σ̂zA;jσ̂
z
B;j are

h∘jjσ̂zA;jσ̂zB;jj∘ji ¼ 1 and h•jjσ̂zA;jσ̂zB;jj•ji ¼ −1. Thus, when

restricted to this subspace, the expression 2þ 2hσ̂zA;jσ̂zB;ji
has the same matrix elements as −4hσ̂zA;ji. While these are

not equivalent as operators, we, thus, have the expectation

value equivalence

2þ 2hσ̂zA;jσ̂zB;ji ¼ −4hσ̂zA;ji ðH4Þ

in the steady-state subspace. Therefore, the correlation

function defined above in terms of τ̂zj is equivalent to

Eq. (28) when evaluated on the steady state (and any state

in the steady-state subspace, generally).

APPENDIX I: APPROXIMATE COHERENT

STATES OF HOLE PAIRS

The analogy we make to bosonic coherent states in

Sec. IV can be made precise for large N ≫ 1. For the sake

of clarity, we consider the limit ζ → 0 to focus only on the

exponential of Q̂ in jψi [cf. Eq. (29)]. We seek to show

that the probability distribution of finding m hole pairs in

the chain is a Poisson distribution when m ≪ N; hence,

jψi ¼ eαQ̂jψ∞i approximates a coherent state with dis-

placement α ¼
ffiffiffiffi

N
p

=Ω̃2 from the “hole vacuum” jψ∞i.
Each power of Q̂ acting on jψ∞i adds one more hole pair

to the state. Thus, the probability pðmÞ for having m hole

pairs in the state is

pðmÞ ¼ 1

Z

ð
ffiffiffiffi

N
p

=jΩ̃j2Þ2m
ðm!Þ2 hψ∞jQ̂†mQ̂mjψ∞i; ðI1Þ

where Z is an overall normalization. The crucial step

here is to compute the state norms kQ̂mjψ∞ik2 ¼
hψ∞jQ̂†mQ̂mjψ∞i. If the state norms for small m≪N

are kQ̂mjψ∞ik2 ≈m!, then we have the Poisson

distribution

pðmÞ ≈ e−N=jΩ̃j4 ðN=jΩ̃j4Þm
m!

; ðI2Þ

and, therefore, the average number of holes in the state is

hM̂i ¼ 2N=jΩ̃j4 (twice the number of hole pairs). We, thus,

arrive at the result that, for hM̂i ≪ N, the density of holes is
intensive:

m̄ ¼ 1

N
hM̂i ¼ 2

jΩ̃j4
ðI3Þ

and depends on only Ω̃. It remains only to compute the state

norms and verify kQ̂mjψ∞ik2 ≈m!.

The m-hole-pair state norms kQ̂mjψ∞ik2 are found by

simply counting the configurations of m hole pairs in a

length N chain. First consider a single hole pair. There are

ðN − 1Þ=1! unique configurations for a single hole pair in

the chain, and each of those configurations has an ampli-

tude ð1!Þ2; thus, the state norm for one hole pair is

kQ̂jψ∞ik2 ¼
1

N

N − 1

1!
ð1!Þ2 ≈ 1!; ðI4Þ

with an Oð1=NÞ correction. Moving to two hole pairs, we

see that there are still N − 1 configurations for the first pair,

but now due to the hard-core constraint there are onlyN − 3

configurations for the second. Note that, here, we neglect

the rare configurations in which the first pair limits

the second pair to N − 4 configurations (i.e., when the

first pair is one site from the boundary). Thus, there are

≈ðN − 1ÞðN − 3Þ=2! unique configurations of two hole

pairs, each with amplitude ð2!Þ2; thus, the state norm is

kQ̂2jψ∞ik2 ≈
1

N2

ðN − 1ÞðN − 3Þ
2!

ð2!Þ2 ≈ 2!: ðI5Þ

We may proceed in this way for larger m, noting that

the number of unique configurations for m holes is

≈Nm=m!þOð1=NÞ. Therefore, for m ≪ N we have

kQ̂mjψ∞ik2 ≈m!, the desired result.

We pause here to note that this line of argument certainly

breaks down when m ∼ N, as the hard-core constraint

allows significantly fewer unique configurations of m hole

pairs than Nm=m!. A more careful analysis of the errors

suggests that the breakdown of the analogy may occur for
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an even tighter constraint m ∼
ffiffiffiffi

N
p

; nevertheless, direct

numerical computation of the hole density using the exact

solution shows a remarkable adherence to the estimate

m ≈ N=jΩ̃j4 for much higher hole densities than would be

reasonably expected from this analysis. The precise reason

for this is not yet understood.

Finally, having established the coherent state analogy in

the jζj → 0 limit, we consider the general case. All of the

analysis above proceeds in exactly the same way, but now

the dissipative site has extra probability of containing a

hole due to the ∝ ζ term in Eq. (29). The state can be

written as the sum of a hole coherent state on all sites and a

hole coherent state on sites 2 through N with an isolated

hole on site 1:

jψi ¼ eαQ̂jψ∞i þ
ffiffiffi

2
p

ζ

Ω̃
eαQ̂

0 j∘1ψ 0
∞i; ðI6Þ

where Q̂0 and jψ 0
∞i denote those objects defined on sites 2

through N and where α ¼
ffiffiffiffi

N
p

=Ω̃2. For large N ≫ 1,

the state norms are approximately equal: keαQ̂jψ∞ik2 ≈
keαQ̂0 j∘1ψ 0

∞ik2. Using this fact and that the term propor-

tional to ζ has one more hole than the ζ-independent term,

we find the number of holes in the state to be

hM̂i ¼ 2N

jΩ̃j4
þ 2jζj2
jΩ̃j2 þ 2jζj2

: ðI7Þ

The first term is extensive and recovers the universal

scaling m̄ ¼ 2=jΩ̃j4 of the hole coherent state, and the

second term is independent of N and reflects the additional

hole density on site 1, which approaches one additional

hole in the limit jζj → ∞.

APPENDIX J: EMERGENCE OF CHARGE

DENSITY WAVES

Here, we derive the drive strength regime in which the

single-particle CDWs emerge, i.e., Eqs. (38) and (39).

1. ζ-independent upper bound

We first consider the limit jζj → 0 in which odd-length

chains have CDWs. We estimate the particle density of

even- and odd-length chains by expanding jψi to second

order in jΩ̃j:

jψi ≈ Q̂bN=2c−1jψ∞i þ
ffiffiffiffi

N
p

Ω̃2

1

bN=2c Q̂
bN=2cjψ∞i: ðJ1Þ

For even chains, the particle numbers of the two terms are 2

and 0, respectively, while for odd chains the particle

numbers are 3 and 1. Thus, the total chain particle numbers

are (using subscripts e and o for even- and odd-length

chains, respectively)

hN̂ie ¼
2

1þ 4

NjΩ̃j4
kQ̂N=2jψ∞ik2
kQ̂N=2−1jψ∞ik2

; ðJ2Þ

hN̂io ¼
3þ 4

NjΩ̃j4
kQ̂bN=2cjψ∞ik2
kQ̂bN=2c−1jψ∞ik2

1þ 4

NjΩ̃j4
kQ̂bN=2cjψ∞ik2
kQ̂bN=2c−1jψ∞ik2

: ðJ3Þ

The onset of the CDW scale occurs when these particle

numbers start to diverge from each other—hN̂ie vanishes

with decreasing Ω̃, whereas hN̂io saturates to one particle.

We, thus, need to estimate the ratio of state norms.

We do not need to estimate the absolute magnitude of

the state norms but only their ratios. Ignoring any

boundary effects and assuming that all hole configurations

of each state are equally likely, the state norm of Q̂kjψ∞i
can be given as AðkÞ × ð#configs of k hole pairsÞ, where
AðkÞ is an amplitude weighting function. Dropping the

floor notation for simplicity, for the nearly empty chains,

each configuration of Q̂N=2−1jψ∞i produces up to one

configuration of Q̂N=2jψ∞i [neglecting the Oð1=NÞ rare

configurations of three adjacent particles in odd chains]

with a permutation factor N=2. Thus, AðN=2Þ ¼
ð1=NÞðN=2ÞAðN=2 − 1Þ, where the extra 1=N comes from

the normalization of Q̂ [cf. Eq. (22)].

For even chains, there are ðN=2ÞðN=2 − 1Þ=2 configu-

rations of N=2 − 1 hole pairs (i.e., two particles), of which

N=2 produce the vacuum state (i.e., N=2 hole pairs). Thus,

the state norm ratio for even chains is

kQ̂bN=2cjψ∞ik2e
kQ̂bN=2c−1jψ∞ik2e

≈

1
N
ðN=2ÞAðN=2−1ÞðN=2Þ
AðN=2−1ÞðN=2Þ2=2 ¼ 2

N
: ðJ4Þ

Similarly, for odd chains, there are ðN=2ÞðN=2þ 1Þ
ðN=2þ 2Þ=6 configurations of N=2 − 1 hole pairs (i.e.,

three particles), of which ðN=2 − 1ÞðN=2Þ=2 produce

configurations of N=2 hole pairs (i.e., one particle

CDW); thus,

kQ̂bN=2cjψ∞ik2o
kQ̂bN=2c−1jψ∞ik2o

≈

1
N
ðN=2ÞAðN=2 − 1ÞðN=2Þ2=2
AðN=2 − 1ÞðN=2Þ3=6 ¼ 3

N
:

ðJ5Þ

From these state norms, we immediately obtain the

particle numbers

hN̂ie ≈
1

4
N2jΩ̃j4; ðJ6Þ

hN̂io ≈ 1þ 1

6
N2jΩ̃j4; ðJ7Þ

which are valid when we assume the drive strength satisfies

jΩ̃j ≪ 1
ffiffiffiffi

N
p : ðJ8Þ
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Thus, we have the upper bound on jΩ̃j below which CDWs

emerge in odd-length chains in the jζj ¼ 0 limit.

This analysis is essentially identical in the jζj → ∞ limit

via the same reasoning used to explain the emergence of

single-particle states in even-length chains. Because site 1

always has a hole, we may basically neglect it and consider

chains of length N − 1 in an effective jζj ¼ 0 limit, thus

obtaining exactly the same CDW emergence scale. The

only difference here is that even chains have CDWs and

odd chains do not.

2. ζ-dependent lower bound

With the upper bound of the CDW regime established,

we now turn to the jζj-dependent lower bound. This bound
is characterized by the point at which the particle number of

chains with CDWs starts to fall below 1. Note that the

CDWs persist below the lower bound but with a particle

number that vanishes as ∼jΩ̃j2; i.e., there is less than one

particle in the chain on average.

Here, we focus on the case of odd chains for jζj ≪ 1—as

above, the even chain in the jζj ≫ 1 regime follows

analogously. We expand the odd chain state to first order

in jΩ̃j as

jψio ¼ Q̂N=2jψ∞i þ
ζ

Ω̃
τ̂1jψ∞i: ðJ9Þ

These two terms are the CDW and vacuum, respective.

Note that only one configuration of the CDW can be

acted upon with τ̂1 to produce vacuum; hence, we immedi-

ately obtain the state norm ratio kQ̂N=2jψ∞ik2=
kQ̂N=2τ̂1jψ∞ik2 ¼ N=2. Thus, computing the particle num-

ber yields

hN̂io ¼
1
2
Njζj2jΩ̃j2

1þ 1
2
Njζj2jΩ̃j2

; ðJ10Þ

from which we immediately derive the lower bound on the

single-particle CDW for odd chains:

jΩ̃j ≫ jζj
ffiffiffiffi

N
p : ðJ11Þ

Note that, for the even chain, we have the same condition

but with the inverse jζj−1. Finally, we note that if jζj ≈ 1,

the CDWs of either parity chain will not be particularly

pronounced, because the vacuum will be reached before the

two- and three-particle states are fully suppressed.

APPENDIX K: NOTES ON EXPERIMENTAL

REALIZATION IN CIRCUIT QED

Here, we briefly describe the necessary components and

setup to realize on a circuit QED platform both the two-

chain model (for remote entanglement stabilization) and the

single-chain model. For the remote entanglement scheme, a

detailed study of waveguide and qubit losses will be given

in a complementary work [49].

1. Remote entanglement realization

We consider two chains of N qubits each, with nearest-

neighbor capacitive coupling (one may use tunable cou-

plings [57]), and Rabi drives applied to qubit 1 of each

chain:

Ĥ ¼
X

s;j

ω
q
s;j

2
σ̂zs;j þ

X

s;j

J

2
σ̂xs;jσ̂

x
s;jþ1 þ

X

s

Ω

2
cosðω0tÞσ̂xs;1:

ðK1Þ

Here, ω
q
s;j are the qubit frequencies, J is the hopping rate,

Ω is the Rabi drive strength, and ω0 is the common Rabi

frequency. We take qubits 2 through N of each chain to be

resonant with each other and with the Rabi drives; thus,

ω
q
s;j>1 ¼ ω0. If the driven qubits of each chain are not

resonant with the other qubits, they must be oppositely

detuned from ω0: Δ≡ jωq
s;1 − ω0j. Note that the scheme is

perfectly robust to any disorder in the hopping rates along

the two chains, so we can replace J with Jj in Eq. (K1).

Moving to a common rotating frame at ω0 and making a

rotating wave approximation, we arrive at the desired

Hamiltonian:

Ĥ ¼ Δ

2
ðσ̂zA;1 − σ̂zB;1Þ þ

Ω

2
ðσ̂xA;1 þ σ̂xB;1Þ

þ 1

2

X

s;j

Jjðσ̂þs;jσ̂−s;jþ1 þ H:c:Þ ðK2Þ

[cf. Eqs. (4) and (5)]. Now it remains to engineer the

collective dissipation.

In a remote circuit QED realization, the collective

dissipation is engineered using a waveguide that links

the two remote chains together. In the main text, we

consider both bidirectional and unidirectional waveguides.

The driven qubits are coupled to the waveguide with rate γ.

To realize the collective dissipation using a bidirectional

waveguide, the qubits must be properly positioned along

the waveguide a distance Δx ¼ nλ0=2 apart, i.e., an integer
number of half-wavelengths of the drive frequency ω0 [7].

Precise spacing control of qubits along a waveguide has

been demonstrated in state-of-the-art waveguide QED

experiments [58,59]. A unidirectional waveguide can be

constructed using microwave circulators that couple the

output fields of the qubits to only one propagating direction

of the waveguide. Here, there is no spacing requirement

to get collective loss. Moreover, the nonreciprocity of the

waveguide automatically induces the dissipative exchange

Hamiltonian Ĥdiss [cf. Eq. (6)] [41]. Combined with the
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Hamiltonian derived above, we arrive at the desired master

equation [Eq. (1)].

2. Qubit dephasing

Any experimental realization of a scheme must contend

with unwanted dissipation, and the remote entanglement

stabilization scheme is no exception. We consider a super-

conducting circuit realization using transmon qubits. The

dominant source of dissipation affecting this scheme is

unwanted qubit dephasing, as dephasing quickly degrades

the coherence of the entangled states. Other sources of

dissipation, namely, qubit relaxation and losses in the

waveguide, will be discussed in more detail in a comple-

mentary work [49]. Here, we provide an estimate for how

much transmon dephasing can be tolerated using realistic

driving, hopping, and dissipation rates. A heuristic for

determining how much qubit dephasing can be tolerated is

to compare the typical qubit coherence time T2 to the

stabilization time τrel of the ideal system (i.e., the relaxation

time of the slowest Liouvillian eigenmode). When

τrel ≪ T2, the qubit dephasing has relatively small effects

on the steady state, but when τrel ≈ T2, the performance of

the scheme is rapidly degraded.

Based on previous waveguide QED experiments [59–61],

engineered collective dissipation rates have been demon-

strated ranging from γ=2π ¼ 20 MHz to γ=2π ¼ 100 MHz.

Here, we take a rather conservative set of parameters

γ ¼ Ω ¼ J̄ ¼ 2π × 3 MHz. In the dephasing-free system

with 3þ 3 qubits, these parameters lead to 90% fidelity to

the ideal tensor product of Bell states jSTSi. We find the

stabilization rate numerically to be τrel ≈ 156=γ ¼ 9 μs. This

is considerably faster than the typical qubit coherence time,

which has been shown to be typically at least T2 ∼ 20 μs

[59] up to T2 ∼ 1 ms [62]. Moreover, as discussed in Sec. V,

utilizing the natural third level of transmon accelerates the

dissipation process by orders of magnitude. For a 3þ 3

system with optimal qutrit coupling, here, instead, we aim

for higher Bell state fidelity of 99% with γ ¼ 2π × 3 MHz,

and Ω ¼ J̄ ¼ 2π × 10 MHz. We numerically find the sta-

bilization time to be τrel ≈ 50=γ ¼ 2.7 μs. Thus, even

the modest parameter values considered here render the

scheme experimentally feasible and robust against unwanted

dephasing.

3. The single spin chain realization

The single-chain model [cf. Eq. (10)] is readily imple-

mented in a variety of platforms including circuit QED. In

the circuit QED case, the realization of the dynamics is

essentially identical to that of the remote entanglement

scheme: Starting from a 1D chain of capacitively coupled

qubits, we tune all qubits j ≥ 2 into resonance with a

coherent Rabi drive applied on the j ¼ 1 qubit. The

dissipation on the first qubit can be implemented in any

number of standard ways including coupling the qubit to a

heavily damped photonic mode. The nearest-neighbor

hopping rates can be arbitrarily disordered, and the driving

and dissipation rates can be tuned freely.

The single-chain nonequilibrium steady state is sensitive

to local qubit dephasing like the remote entanglement

scheme, but it has two advantages that make it a more

forgiving experiment to perform. First, as we find in Fig. 9,

the single-chain relaxation time is typically much shorter

than the double chain, even for strong driving (in Fig. 9,

Ω=γ ¼ 10). Second, we find numerically that the relaxation

time of the single chain is shortest when γ ∼Ω ∼ J̄, which
is precisely the parameter regime in which the correlation

effects in the NESS are strongest. In this parameter regime,

jΩ̃j ∼ 1, which is where many of the magnetization

correlations are strongest, as we find in Fig. 6. Using a

similar set of parameters as in the remote entanglement

case, γ ¼ Ω ¼ J̄ ¼ 2π × 3 MHz, we find that a seven-

qubit chain has a relaxation time of τrel ≈ 2.6 μs. Even if the

relaxation time scales as N3, we expect that somewhat

longer chains could still be experimentally feasible with

typical transmon T2.

APPENDIX L: STABILIZATION SLOWDOWN

DUE TO CONSERVATION OF ANGULAR

MOMENTUM

The necessary and sufficient conditions for the existence

of a pure steady state L̂jψihψ j ¼ 0 are Ĥjψi ¼ 0 and

L̂jψi ¼ 0 [54]. Here, L̂ is the entanglement-stabilizing

jump term; in our scheme, L̂ ¼ ĉ [cf. Eq. (3)]. The

uniqueness of this state also requires that the transition

rate from the Hilbert space orthogonal to jψi to the steady

state must be nonzero [5]. To see what in particular is

required for the transition rate to be nonzero, we consider

the time evolution of the overlap of a generic initial state ρ̂

with the steady state:

d

dt
hψ jρ̂jψi ¼ −ihψ j½Ĥ; ρ̂�jψi þ hψ jD½L̂�ðρ̂Þjψi ðL1Þ

¼ hψ jL̂ ρ̂ L̂†jψi: ðL2Þ

If L̂†jψi ¼ 0, then the transition rate from any state ρ̂ to jψi
is zero: ∂thψ jρ̂jψi ¼ 0. In other words, the steady state is

completely disconnected from its orthogonal space. Thus,

we require L̂†jψi ≠ 0 to guarantee a unique two-qubit

steady state (and, thus, a finite dissipative gap of the

dynamics).

The origin of the vanishing dissipative gap can be traced

to the conservation of total angular momentum [8,9].

Suppose we have some dissipative dynamics L̂ that

stabilizes an ideal Bell state which, without loss of general-

ity, we take to be jSi ¼ ðj01i − j10iÞ=
ffiffiffi

2
p

. Suppose the

jump operator L̂ is restricted to linear combinations of spin

operators L̂ ¼ cþ1 σ̂
þ
1 þ c−1 σ̂

−
1 þ cþ2 σ̂

þ
2 þ c−2 σ̂

−
2 , as is the
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case in the schemes in Refs. [4–7]. The steady-state

condition L̂jSi ¼ 0 further confines the form of jump

operator L̂ ¼ c−Ŝ− þ cþŜþ, where Ŝ− ¼ σ̂−1 þ σ̂−2 is the

collective spin-lowering operator. Therefore, it commutes

with the total angular momentum ½L̂; Ŝ2� ¼ ½L̂†; Ŝ2� ¼ 0.

Thus, total angular momentum is conserved in the jump

process, and the singlet subspace is decoupled from triplet

subspace, i.e.,

L̂†jSi ¼ 0: ðL3Þ

Stabilizing a perfect Bell state in finite time is, thus, not

possible when the dissipation is a linear sum of raising and

lowering operators. One may readily extend this argument

to the remaining three Bell states via the appropriate unitary

transformations.

APPENDIX M: STRONG DRIVING

STEADY-STATE DEGENERACY

Here, we derive the degenerate steady state that emerges

for jΩ=Γj →∞ in the N ¼ 1 (two-qubit) system

[cf. Eq. (1)]. For concreteness, we consider Δ ¼ 0 and

ν ¼ 1, but the result generalizes in a straightforward

manner. When taking strong driving limit Ω=γ →∞,

one cannot simply ignore the dissipation, because the

Hamiltonian dynamics alone never has a unique steady

state (for any γ > 0, the dissipation is required to pick out a

unique pure steady state).

We start by (nearly) diagonalizing the Hamiltonian

Ĥ ¼ Ĥdrive þ Ĥdiss [cf. Eqs. (4) and (6)], which can be

done using a pair of equal but opposite π=2 qubit rotations

about the y axes:

Û ¼ exp

�

iπ

4
σ̂
y
A;1

�

exp

�

−
iπ

4
σ̂
y
B;1

�

: ðM1Þ

The Hamiltonian is, thus,

Ĥ0 ¼ Û Ĥ Û† ¼ Ω

2
ðσ̂zA;1 − σ̂zB;1Þ þOðγ=ΩÞ; ðM2Þ

where we neglect the small γ=Ω ≪ 1 corrections; it is safe

to ignore these here, because, as one can show, they will

contribute only Oðγ=ΩÞ corrections to the final degenerate

steady state. The dissipation [cf. Eq. (3)] transforms as

ĉ0 ¼ Û ĉ Û† ¼ 1

2
ðσ̂zA;1 − σ̂zB;1Þ −

i

2
ðσ̂yA;1 þ σ̂

y
B;1Þ: ðM3Þ

Now, we move into the rotating frame of the two qubits, set

by the detunings �Ω=2, and find that the dissipation has

three sets of terms, each rotating at a different frequency:

0;�Ω. We may, therefore, make a rotating wave approxi-

mation and split the dissipator:

D½ĉ0� ≈D½L̂z� þD½L̂þ� þD½L̂−�; ðM4Þ

where L̂z ¼ σ̂zA;1 − σ̂zB;1, L̂þ ¼ σ̂þA;1 − σ̂−B;1, and

L̂− ¼ σ̂−A;1 − σ̂þB;1.
Now, we find that the maximally mixed state I=4

becomes a dark state of the dissipation up to Oðγ=ΩÞ
corrections and, thus, becomes a steady state of the

dynamics. Going back to the lab frame, we, thus, have

the degenerate steady state

ρ̂ν ¼
1

4
ð1 − νÞÎ þ νjSihSj; ðM5Þ

where −1=3 ≤ ν ≤ 1 to ensure ρ̂ν is a valid density matrix.

APPENDIX N: DISSIPATIVE GAP

OPTIMIZATION OVER COUPLING

TO THIRD LEVEL

We provide further details here on the approach intro-

duced in Sec. V B that lets us dramatically speed up

entanglement preparation by introducing a single qutrit.

As discussed, the entangled steady state is independent of

the parameter η in our extended master equation (42),

where η is the asymmetry between the coupling of the 2–1

and 1–0 transitions of the B1 qutrit to the unidirectional

waveguide. Thus, for all other model parameters fixed, we

optimize (via the Nelder-Mead method) the choice of η to

yield the smallest relaxation time (i.e., largest dissipative

gap of the full Lindbladian). The optimal choice of η

corresponding to parameters in Fig. 9 are shown in Fig. 12.

We also present results analogous to those shown in

Fig. 9 in the main text but now for a smaller system where

each chain has N ¼ 2 sites, with B1 again being a qutrit.

The key features seen in Fig. 9(b) in the main text are also

apparent here; in particular, the optimized qutrit scheme

FIG. 12. Optimized value of coupling asymmetry in the qutrit

scheme. As discussed in Sec. V B, replacing qubit B1 with a

qutrit in our double-chain setup allows for a dramatic accel-

eration of entanglement stabilization. Here, we plot the opti-

mized value of the coupling parameter η [cf. Eq. (42)] that

minimizes the relaxation time, for each value of hopping rate

J̄=γ. Parameters correspond to Fig. 9 in the main text. For large

J̄, we find that η ∝ J̄.
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allows an order-of-magnitude speedup versus the qubit-

only scheme.

Finally, we find that the even-odd physics discussed in

the main text (that emerges for weak Ω̃) also has an impact

for timescales. In Fig. 13, we see that for large J̄

(corresponding to small Ω̃) the relaxation time for the full

double-chain system approaches the timescale for the

single-chain system. In contrast, for the N ¼ 3 system in

Fig. 9, this is not the case.
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