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Nonreciprocal microwave routing plays a crucial role in measuring quantum circuits, and allows for

realizing cascaded quantum systems for generating and stabilizing entanglement between noninteracting

qubits. The most commonly used tools for implementing directionality are ferrite-based circulators. These

devices are versatile, but suffer from excess loss, a large footprint, and fixed directionality. For utilizing

nonreciprocity in scalable quantum circuits it is desirable to develop efficient integration of low-loss and

in-situ controllable directional elements. Here, we report the design and experimental realization of a

minimal controllable directional interface that can be directly coupled to superconducting qubits. In the

device presented, nonreciprocity is realized through a combination of interference and phase-controlled

parametric pumping. We have achieved a maximum directionality of around 30 dB, and the performance

of the device is predicted quantitatively from independent calibration measurements. Using the excellent

agreement of model and experiment, we predict that the circuit will be useable as a chiral qubit interface

with inefficiencies at the 1% level or below. Our work offers a promising route for realizing high-fidelity

signal routing and entanglement generation in all-to-all connected microwave quantum networks, and

provides a path for isolator-free qubit readout schemes.

DOI: 10.1103/PhysRevApplied.22.064023

I. INTRODUCTION

Nonreciprocal signal routing is an essential ingredient

for the practical operation of quantum devices as well

as for the observation of a range of fundamental quan-

tum phenomena. On the one hand, nonreciprocity enables

efficient yet noise-protected signal detection, which is a

foundation of quantum-limited measurement in cryogenic

quantum circuits [1–5]. The ability to perform high-fidelity

qubit readout with minimal back-action, in particular, will

be crucial for fault-tolerant quantum computation [6–8].

Single-shot readout with fidelities above 99% has been

demonstrated for superconducting qubits using readout

chains with commercial circulators [9,10]. On the other

hand, directional propagation of photons allows the real-

ization of cascaded quantum systems [11–14] that enable

the generation and autonomous stabilization of remote
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entanglement [15,16], providing a route for modular scal-

ing of quantum circuits.

While conventional microwave circulators have allowed

the realization of prototypical cascaded systems of super-

conducting qubits [17–19], achieving practical utility will

require efficient directional interfaces that are directly inte-

grated with qubits. The central functionality for such an

interface is the controllable directional coupling of a super-

conducting circuit mode that stores or processes quantum

information to a transmission line. Tunable directional-

ity can be used for on-demand quantum signal routing,

enabling interconnects for highly connected networks of

quantum devices [20]. Beyond this basic functionality,

we require efficiency and linearity. An efficient direc-

tional interface introduces no loss channels on the quantum

mode, and can faithfully emit (absorb) quantum informa-

tion into (from) propagating states. High efficiency and

low impact on circuit coherence are required to improve

the fidelity of quantum state transmission which is cur-

rently limited by the loss from standalone circulators

[17–19]. Finally, linearity allows for transferring arbitrary

quantum states ranging from single-photon encodings to

error-correctable bosonic multiphoton states.

There are multiple possible avenues for realizing inte-

grated nonreciprocity. One strategy is to introduce an

appropriate material into the circuit and bias it with an
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external magnetic field to break symmetry [21–24]. The

need to apply an external field to a part of the cir-

cuit is, however, inherently at odds with preserving high

coherence of superconducting qubits. Alternatively, it is

possible to realize directionality using synthetic fields in

Josephson circuits [25–32]. This approach has the unique

advantage of immediate compatibility with superconduct-

ing qubits, which is appealing for realizing efficient,

integrated devices. A range of standalone and general-

purpose microwave circulators and isolators have been

demonstrated in recent years [2,33–39]. Moreover, super-

conducting qubits that couple nonreciprocally to propagat-

ing microwaves in waveguide quantum electrodynamics

(wQED) have been proposed and experimentally realized

[20,40–45]. Operating on the principle of so-called “giant

atoms” [46], hallmarks of chiral wQED such as directional

emission [43] and scattering [44] were observed.

Here, we propose and experimentally demonstrate a

general chiral interface, a “chiral coupler,” that is suited

for integration with (arbitrary) superconducting quan-

tum devices and will allow for high efficient quantum

state emission and absorption. We approach the follow-

ing discussion predominantly from a quantum network

perspective, where the goal is to route quantum states

between qubits using directional emission and absorption

[Fig. 1(a)]; our circuit is, however, well suited also for

integrated noise isolation [2,34,37–39].

The central considerations of our design are as fol-

lows. We target a device with three modes [Fig. 1(b)].

Two modes couple to a common transmission line at two

physically separate points and operate at the same commu-

nication frequency. The third mode is tunably coupled to

the transmission line via parametric mode conversion with

the other two modes, similar to the idea of the giant atom in

wQED [46–51]. This mode may be the coherent quantum

mode of interest (e.g., a superconducting qubit or bosonic

memory element), or coherently couple to such a mode.

These considerations directly address our key criteria

for practical utility. The direct integration of the chiral

interface with the qubit mode is important for achieving

high efficiency, as it minimizes the number of couplings

and connections. We emphasize that our design only uses

a minimal number of modes to achieve nonreciprocity

[52]. In this way, we can analyze the device using a sim-

ple yet predictive model, and minimize the number of

additional decoherence channels introduced to the quan-

tum circuit. Our envisioned use also motivates that we do

not require a large bandwidth, but merely some degree

of (static) frequency tuning capability. Finally, the cir-

cuit supports isolation and circulation of arbitrary quantum

states; directional emission (absorption) from (to) qubits

has been demonstrated recently using transmon-based cou-

plers [43,53]. Our circuit, in contrast, is linear and will

allow for transmitting bosonic quantum error correction

codewords [54,55].

We note that linearity also allows the circuit to be used

as a replacement for conventional circulators employed in

established qubit measurement techniques using coherent

states. In an experimental realization of the proposed cir-

cuit we have achieved high directionality (about 30 dB),

determined through measurements of isolation and cir-

culation. As result of its minimal design, we can model

the device performance in quantitative agreement with a

few independently calibrated circuit parameters. With the

circuit parameters chosen in the device measured here,

directional emission and absorption of arbitrary quantum

states in a network could be achieved with an efficiency of

85%. Modest adjustment of circuit parameters will bring

this efficiency to the 99% level. The circuit presented thus

provides a promising, flexible chiral interface for super-

conducting qubit devices for the realization of low-loss

cascaded networks and for integrated noise isolation.

II. MODEL

Our system is composed of three modes, in a similar

spirit to recently investigated giant atoms in wQED, illus-

trated in Fig. 1(b) [46–51], We realize directionality by

phase-controlled interference between different emission

paths. Two modes a1,2 with identical frequency couple to a

common waveguide with strength 2γ1,2. They are spatially

separated along the waveguide by a distance �x = λ/4,

where λ is the wavelength of the emitted radiation. Mode

b couples to both a1,2 via parametrically controllable mode

conversion, with rate g1,2 and phase ϕ1,2. A photon from

b may enter the waveguide via two paths: b → a1 and

b → a2. This setup enables phase control of the emis-

sion paths through external drives, and thus controllable

interference between the paths, which is the origin of non-

reciprocity here. The only requirement on the modes in the

circuit is that phase-controlled frequency conversion can

be established between them. There is no restriction on the

nature of the b mode, and it could serve as the quantum

mode of interest or directly couple to it. The chiral coupler

could thus act as a general-purpose, narrow-band circulator

that is directly hybridized with a coherent quantum mode.

We model the system as a three-port device, where

d
in(out)
L , d

in(out)
R , bin(out) are the input (output) field operators

at each port [Fig. 1(d)]. The equations of motions are

ȧ1 = −iω0a1 − ig1ei(ωp t+ϕ1)b − γ a1

− iγ a2 − igca2 − √
γ din

L − √
γ din

R , (1)

ḃ = −iωbb − ig1e−i(ωp t+ϕ1)a1

− ig2e−i(ωp t+ϕ2)a2 −
γb

2
b − √

γbbin, (2)

ȧ2 = −iω0a2 − ig2ei(ωp t+ϕ2)b − γ a2

− iγ a1 − igca1 − √
γ e−i π

2 din
L − √

γ ei π
2 din

R . (3)
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FIG. 1. Chiral coupler concept and design. (a) Our goal is a controllable circulator that may be seamlessly integrated with super-

conducting qubits, independent of encoding. It may be used to achieve all-to-all connected quantum state transfer in modular quantum

processors. (b) Minimal model for a parametrically controlled circulator. Modes a1,2 have frequency ω0, and couple to left- and

right-propagating modes with rate γ . Combining phase-controlled mode conversion between b and a1,2 with propagation delay of emit-

ted/absorbed photons results in tunable circulation through constructive/destructive interference at the right/left ports. (c) Calculated

S matrix. Parameters used here: γ = γb = 2π × 1 MHz, g1 = g2 = 2π × 0.5 MHz; ϕ1 = 0, ϕ2 = π/2 (pink), ϕ1 = 0, ϕ2 = −π/2

(blue). (d) Lumped-element equivalent circuit. Mode b is frequency-tunable in this implementation. Each mode is capacitively cou-

pled to an external port for measuring S parameters. Two weakly coupled (Qc > 106) ports are attached to the a1 and a2 modes for

parametric pumping. Each SNAIL is flux-tunable. (e) False-colored optical image of the central portion of the device presented in this

work.

Here a1,2 and b are the lowering operators for the cor-

responding modes. We assume for now that both a1 and

a2 couple to the waveguide equally (i.e., γ1 = γ2 = γ ),

and γb is the coupling strength between b and its port.

We first focus on the ideal case with no internal damping,

γi,1 = γi,2 = γi,b = 0. Here ω0 and ωb are the mode fre-

quencies of a1,2 and b, respectively. At the operation point,

both mode a1 and a2 have the same frequency, ω1 = ω2 =
ω0. The terms iγ a2 in Eq. (1) and iγ a1 in Eq. (3) arise

from a waveguide-mediated interaction between a1 and a2.

Crucially, this interaction must be fully eliminated for the

chiral coupler to operate as a circulator [20] (Fig. 13). We

can eliminate this interaction by canceling it with a bus-

mediated coupling [56–59]: The terms igca2 in Eq. (1) and

igca1 in Eq. (3) are the result of this coupling, arising from

a static coupling between a1,2 to b, with

gc =
ga1bga2b

�
. (4)

Here, ga1(2)b is the static coupling between the undressed

a1(2) and b modes, and � = ωb − ω1(2). gc (and, in par-

ticular, its sign) can be controlled through the detuning

between the a1,2 and b (see Appendix A 3 for details).

If the cancelation condition is met (i.e., gc = −γ ), cir-

culation can be seen directly from the S matrix, which is

plotted as function of probe frequency detuning at each

port in Fig. 1(c). We have derived the S parameters by

combining the equations of motion with the input-output

relations, which are given by

dout
L = din

L + √
γ

(

a1 + ei π
2 a2

)

, (5)

dout
R = din

R + √
γ

(

a1 + e−i π
2 a2

)

, (6)

bout = bin + √
γbb. (7)

Full expressions for the S matrix as well as details of

the derivation are given in Appendix A 2. Of particular

importance is the waveguide transmission, S21. For perfect

cancelation and without internal damping and parametric

pumping, it is given by

S21(δ) =
δ2 + γ 2

(δ + iγ )2
, (8)

where δ is the detuning of the probe signal from the

mode frequency. In the following section, we will show

in detail that the cancelation condition can be calibrated by

measuring this transmission.

III. CIRCUIT REALIZATION AND

CHARACTERIZATION

Our model can be realized with the superconducting

circuit shown in Figs. 1(d) and 1(e). It consists of three

modes, each containing a superconducting nonlinear asym-

metric inductive element (SNAIL) [60] and a common

transmission line. We have chosen the SNAIL elements

for the following reasons: SNAILs provide a third-order
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TABLE I. Circuit parameters entering the model. Values are

the ones at the operation point, and are extracted from spec-

troscopy data.

Qty Value Description

ω1/2π 4.875 GHz resonant frequency of a1

ω2/2π 4.875 GHz resonant frequency of a2

ωb/2π 6.270 GHz resonant frequency of b

γi,1/2π 215 kHz internal damping of a1

2γ1/2π 1.46 MHz waveguide coupling of a1

γi,2/2π 294 kHz internal damping of a2

2γ2/2π 1.43 MHz waveguide coupling of a2

γi,b/2π 588 kHz internal damping of b

γb/2π 2.51 MHz waveguide coupling of b

gc/γ 1.04 coupling cancelation ratio

g1(2)/2π 0.70 MHz parametric coupling strength

nonlinearity that enables parametric frequency conver-

sion between the modes. Their frequency dependence on

external flux can be used to tune mode frequencies to

the operation point. Importantly, charge-coupled SNAILs

haven been shown to be highly coherence-preserving when

used as couplers between bosonic modes [61]. For this rea-

son, we anticipate them to be a good choice for achieving

high efficiencies.

This minimal circuit can be understood quantitatively

with a small set of parameters. In the following, we first

describe how the device parameters shown in Table I are

extracted from experiment. Further below, we show that

these parameters are sufficient to predict the circulator

performance of the device in quantitative agreement with

experiment.

We have performed basic mode characterization at 10

mK prior to applying parametric pumps using a vec-

tor network analyzer (VNA). In Fig. 2(a) we show the

mode frequencies as function of external flux. We have

obtained resonant frequencies, external coupling, and

internal damping by standard fitting of the VNA trace for

each flux bias point. At the targeted operation point, ω1 =
ω2 ≡ ω0 and � ≡ ωb − ω0 are chosen such that gc = −γ .

The effect of the waveguide-mediated coupling is mani-

fested in the waveguide transmission S21, [Eq. (8)]; this

allows us to use waveguide transmission to find the can-

celation condition. Minimal waveguide-induced coupling

corresponds to highest transmission at ω0. To find the best

operation point, we have thus measured S21 as function of

ωb, controlled by external flux, while keeping ω0 fixed.

Here gc was inferred from a fit to S21(δ) [see Eq. (C8)].

Two representative VNA traces and corresponding fits are

shown in Fig. 2(b). We note that ideally one can expect unit

transmission for perfect cancelation; finite internal damp-

ing or dephasing, however, results in residual insertion

loss at ω0. We note that in practice we cannot expect an

exact matching of external coupling rates (γ1 �= γ2), and

the cancelation condition slightly changes: gc = −√
γ1γ2

(a)

(b)

(d) (e)

(c)

2g

pump amplitude (arb. units)

FIG. 2. Mode characterization. (a) a1 (purple) and b (green)

resonant frequencies versus respective external flux, extracted

from spectroscopy. (b) Normalized S21 at two different values

of �, gc/
√

γ1γ2 = 1.04, with gc/2π = 0.75 MHz (top curve,

dashed-line arrow) and gc/
√

γ1γ2 = 0.55, with gc/2π = 0.40

MHz (bottom curve, solid-line arrow). Data were normalized by

dividing out the background. The lower curve is shifted by −5 dB

for clarity. (c) Ratio between the bus-mediated and waveguide-

mediated coupling as a function of detuning between a1,2 and b.

Here gc is obtained by a fit of S21 to a full model. The error bars

indicate a 10% variation of the fit parameter, estimated from the

least-squares error. (d) Normal-mode splitting between a1 and b

induced by parametric pumping. Here b is measured in reflection

while frequency conversion pumps are applied. (e) Calibration

of the coupling strength g1 (light orange triangles) and g2 (dark

orange circles) as a function of pump voltage. Lines are linear

fits.

(Appendix A 2). In Fig. 2(c), we show the inferred can-

celation ratio gc/
√

γ1γ2 as a function of �, following the

expected 1/� dependence. The operation point in what

follows is at �/2π = 1.395 GHz, where we found the best

cancelation.
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Next, we turn to the realization of parametric frequency

conversion between modes a1(2) and b. By applying exter-

nal pump tones at frequency � we can enable effective

“beam splitter” Hamiltonians [61–63],

Hg1(2)
= g1(2)e

iϕ1(2)a
†

1(2)b + h.c., (9)

where the effective coupling strengths g1(2) and phases

ϕ1(2) are controlled by the pumps. To determine g1(2), we

probe the reflection off b while applying a pump with

frequency ωp1(2)
∼ �; a representative response signal is

shown in Fig. 2(d). At the resonance condition, ωp1(2)
=

ωb − ωa1(2)
, we observe an anticrossing with a mode sep-

aration of 2g1(2). Coupling strengths g1(2) determined in

this way are shown as a function of pump amplitude

in Fig. 2(e). Coupling strength increases linearly with

pump amplitude, in agreement with our expectation for a

parametrically driven three-wave mixing element [61,63].

IV. ISOLATION AND CIRCULATION

At the operation point, applying both conversion pumps

simultaneously results in interference in the loop formed

by a1,2, b, and the transmission line. Consequently, we

expect phase-tunable transmissions and reflections when

injecting signals into a port, and monitoring emissions. In

principle, this would allow measuring the full S matrix

similar to the simulated one in Fig. 1(c). Here, due to con-

straints in the wiring, we focus on S21 and Sb1, which would

directly correspond to using the device as an isolator or

controllable absorber. The phase control of these quanti-

ties is confirmation that the directionality of the device can

indeed be fully controlled.

To evaluate the isolation performance of the device, we

have performed S21 measurements using a VNA, while

sweeping the relative phase between the two pumps. Pump

powers are set such that the conversion rates are matched,

g1 = g2. We note that both pumps are first tuned sepa-

rately and then applied simultaneously with no further fine

tuning. The small fourth-order nonlinearity of the SNAIL

modes minimizes interference between the two parametric

processes and thus allows for a simple and robust tuneup

procedure. The normalized S21 as a function of both pump

phase and probe frequency, for g1(2)/2π = 0.70 MHz, is

shown in Fig. 3(a). Here S21 changes dramatically from

low to high insertion loss at zero detuning, demonstrating

clearly the parametrically tunable directionality of the chi-

ral coupler. In Fig. 3(b), we show line cuts at the “pass” and

“isolation” phase settings, revealing a narrow-band isola-

tion of about 30 dB at the isolation setting. We also observe

a finite insertion loss of about 2 dB at the pass setting; this

nonideal behavior can be explained by internal decoher-

ence, which may originate from flux noise (Fig. 10). We

expect that this detrimental effect can be largely eliminated

by a moderate adjustment of the circuit parameters (see

(a) (b)

(c) (d)

FIG. 3. Characterization of isolation and circulation perfor-

mance. (a) Normalized S21 as a function of probe frequency and

relative phase between the two pumps. The data are normalized

to background data acquired when a1 and a2 were far-detuned.

Blue and red dashed lines mark relative phases where maximum

isolation and transmission are achieved, respectively. (b) S21

traces at maximum isolating point (blue) and maximum passing

point (red). (c) Detection of (frequency-converted) circulation.

Signal is injected from a1 and output power (Pb,out) is measured

using a spectrum analyzer. Detuning is given with respect to ωb

at the operation point. (d) Peak output power as a function of

relative pump phase. Maximal and minimal emission occur at

the same relative pump phases as isolation and pass in (a). We

note that while the shape and contrast of the power curve is pre-

dicted entirely by theory, the power offset of −94 dBm has been

estimated from the fridge wiring.

the next section for a detailed discussion). We emphasize

that the isolation performance is predicted in quantita-

tive agreement [blue and red lines in Fig. 3(b)] using the

same parameters we have extracted from our calibration

data shown in the previous section. We have repeated this

measurement over a wider range of g1(2), with each mea-

surement showing a similar level of agreement between

data and theoretical prediction. The data shown in Fig. 3

were taken at the value for g1(2) that yields the best peak

isolation, in agreement with theory and limited by damp-

ing. The model is presented in Appendices A 2 and C 1,

and additional data are shown in Fig. 15.

To directly evaluate circulation in the device, we have

measured not only insertion loss between ports 1 and 2,

but also the power emitted at port b, Pb,out, which is pro-

portional to Sb1. The data were taken using a spectrum

analyzer, in the same phase sweep as the S21 data. In

this measurement, the signal emitted at port b occurs at

the converted frequency ωb = ωa + ωp . Figure 3(c) shows
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detected power against detection frequency, taken at the

“isolation” setting indicated in Fig. 3(a). The fact that a

prominent peak is visible at ωb is an indicator that isolation

in S21 corresponds to transmission in Sb1 (i.e., that circula-

tion occurs). Peak power as a function of phase is shown in

Fig. 3(d). The maximum emitted power coincides with the

phase for the best isolation in S21 (at −90◦), and similarly

the minimum peak matches the best transmission (at 90◦),

providing strong evidence for circulation. As with isola-

tion, the circulation behavior is captured quantitatively, up

to rf output line calibrations, by our model using the same

set of parameters. Data for additional values of g1(2) are

presented in Fig. 15.

V. PARAMETER DEPENDENCE OF

PERFORMANCE

The data and model described above confirm that our

circuit is capable of achieving very good directional perfor-

mance, and that it is highly predictable. In the following,

we use these insights as a guide for predicting the perfor-

mance of integrated devices that may be used for isolation

and quantum signal routing. Specifically, we are interested

in how circuit parameters can be used to tailor insertion

loss and isolation, as well as the efficiency with which

the chiral coupler could be used to directionally emit and

absorb quantum states when integrated with a qubit, as

initially envisioned in Fig. 1(a).

First, isolation and insertion loss are useful metrics to

assess the utility of the chiral coupler as a circulator,

whether standalone or integrated with quantum devices on

a chip. We have observed that the internal damping of the

SNAIL modes causes a degradation of the device perfor-

mance, resulting in finite isolation as well as nonzero inser-

tion loss as shown in Fig. 3(b). The parameter governing

this degradation is the ratio between internal and exter-

nal damping, γi/γ . Here, we assume all the modes have

the same external and internal damping rate. In Fig. 4(a)

we show the calculated isolation and insertion loss as a

function of γi/γ , with device parameters similar to those

used in the experiment presented above. As expected, in

the limit of no internal damping the device approaches

ideal behavior (i.e., perfect isolation on resonance) and no

insertion loss.

A smaller γi/γ ratio can be achieved either by increas-

ing the external coupling strength of the modes, or by

reducing the internal damping rate. Increasing the exter-

nal coupling by moving the a1,2 modes closer to the

transmission line is straightforward. Regarding the inter-

nal damping, we have observed that measured linewidths

increase significantly as frequencies are tuned away from

the flux-insensitive point. This observation indicates that

flux noise could be a limitation of coherence (see Fig. 10).

Assuming that flux noise is a dominating source of deco-

herence and that we cannot find an effective route to reduce

(b)

(c) (d)

(a)

FIG. 4. Performance predictions. (a) Insertion loss and isola-

tion versus damping and external coupling. Parameters: γ /2π =
0.5 MHz, γb/2π = 0.5 MHz, g/2π = 0.5 MHz. (b) Insertion

loss and isolation as a function of SNAIL α. Dashed lines mark

parameters for the device used here. (c) Photon flux (blue, left;

red, right) when nominally emitting a single photon rightward as

shaped wavepacket. Dark line, ideal device; bright line, parame-

ters of the device used here. (d) Fraction of photons emitted to the

right as a function of external coupling rate and α. White marker

denotes current device.

it, we are left with the option to reduce flux sensitivity and

tunability; this can be achieved by reducing the SNAIL

parameter α [60] (see Appendix C 2). In Fig. 4(b), we show

the predicted isolation and insertion loss as a function of α.

For the calculation we have assumed that the flux noise is

the only source of internal broadening of the modes, and

we model this as a loss rate that depends on frequency sen-

sitivity, dω/dϕext. We note that flux noise can typically be

expected to result in dephasing rather than energy dissi-

pation; an explicit distinction is beyond the scope of our

current work. It is worth noting that reducing α will also

lead to a decrease in the third-order nonlinearity of the

SNAIL, thus lowering the parametric coupling strength for

the frequency conversion process; this can be compensated

by stronger drives. In summary, we predict that a modest

change of design parameters γe and α should be able to

yield a dramatic improvement in both insertion loss and

isolation.

Finally, we return to our originally envisioned use case

for the device, namely to act as an interface for direc-

tionally controllable emission and absorption of arbitrary

quantum states encoded in traveling wavepackets. Based

on our model above, we compute the predicted efficiency

of on-demand, directional photon emission from b. We

assume that b is initialized with one photon, and by
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applying temporally shaped pumps with g1(2)(t) and appro-

priately chosen phase difference, the photon leaves as a

shaped wavepacket in the desired direction. For specifi-

cally chosen pump setting, the emitted photon flux as a

function of time is shown in Fig. 4(c). While the direction-

ality of emission is near-perfect using our experimentally

established parameters, efficiency is suppressed due to

internal loss and dephasing. Similar to the case of inser-

tion loss discussed above, however, we predict that high

emission efficiency can be achieved by tailoring circuit

parameters. In Fig. 4(d) we show the calculated emitted

number of photons as a function of α and external cou-

pling strength γ , where we assume the photons are emitted

from an ideal b mode without decoherence. Smaller α

and larger γ result in dramatically reduced photon loss in

the device. With moderate adjustment of these parameters

(γ /2π � 3.5 MHz and α = 0.1), we predict that direc-

tional photon emission and absorption with efficiencies of

99% are achievable.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated a versatile directional interface

for integration with superconducting quantum circuits. In

this chiral coupler, parametrically controlled interference

breaks time-reversal symmetry and realizes nonreciproc-

ity with in-situ control. The experimentally realized device

displays a high degree of directionality, and we have

verified its performance in both isolation and circulation

measurements. Our circuit design consists of a minimal

number of modes, and can be described by a simple model.

With only few system parameters that can be calibrated

independently, our model successfully captures the mea-

sured device performance quantitatively and without free

fit parameters. Based on this model, we predict that sub-1%

inefficiency is within reach when using the chiral coupler

as a qubit-integrated circulator or quantum signal router,

without the need for significant improvement in device

quality. Looking forward, directly integrating our chiral

coupler with qubits on-chip will be a stepping stone for

harnessing nonreciprocity for scalable quantum proces-

sors. Integrated into readout circuitry, the coupler may

enable an isolator-free qubit readout scheme [2,34,37–39].

On the other hand, using the coupler as a quantum signal

routing element, it can enable driven-dissipative remote

entanglement [16,64,65], and the transfer of arbitrary

quantum states in all-to-all connected quantum networks

[17–19,66].
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APPENDIX A: MODEL

Here we give a detailed derivation of our model for

the chiral coupler. We first treat the chiral coupler as a

three-port device and derive the input-output relations for

each port. Then the full S matrix of the device is derived

using these input-output relations. We then discuss the

waveguide-mediated coupling and how to cancel it with

a bus-mediated coupling. Finally, we discuss the model for

quantum state transfer in a cascaded system of two chiral

emitters/absorbers implemented with our chiral coupler.

1. Input-output relations

We first assume that there is no internal damping in the

device. We treat the chiral coupler as a three-port device,

as shown in Figs. 1(b) and 1(d). The full Hamiltonian can

be written as

H = Hsys + Hb + Hsb, (A1)

in which Hsys = Hs + Hp + Hc describes the system

Hamiltonian for the chiral coupler. Here, Hs describes the

a and b modes,

Hs = ω0a
†

1a1 + ωbb†b + ω0a
†

2a2; (A2)

Hp describes the parametric frequency conversion process,

Hp = g1(t)e
i(ωp t+ϕ1)a

†

1b + g2(t)e
i(ωp t+ϕ2)a

†

2b + h.c., (A3)

where ωp is the pump frequency for the conversion pro-

cess; and Hc describes the bus-mediated coupling between

a1 and a2 mode,

Hc = gc(a
†

1a2 + a1a
†

2). (A4)

For clarity we write Hc as a separate term, rather than

absorbing it into the system Hamiltonian. It is used to can-

cel the waveguide-mediated coupling; its origin and how

cancelation is achieved are discussed further below.
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The second term on the left-hand side of Eq. (A1) is the bath Hamiltonian:

Hb =
∫

dω ω(d
†
R(ω)dR(ω) + d

†
L(ω)dL(ω) + d

†

b(ω)db(ω)). (A5)

Here d
(†)

R(L) are the ladder operators for right (left) propagating modes in the transmission line and satisfy commutation

relations [dj (ω), d
†

j ′(ω
′)] = δ(ω − ω′)δj ,j ′ , where j , j ′ = L, R, b. The system-bath interaction Hsb is given by

Hsb = i
1

√
2π

∫

dω

⎡

⎣

∑

j =1,2

√
γj (e

iω
xj
v d

†
L(ω)aj + e−iω

xj
v d

†
R(ω)aj ) + √

γbd
†

b(ω)b − h.c.

⎤

⎦ , (A6)

where xj is the position of aj along the common transmission line and v is the speed of light in the transmission line. Here

we use the first Markov approximation, that is, the coupling strength γj is independent of frequency.

The input-output relation for the b port can be obtained in the usual way [11],

dout
b (t) − din

b (t) = √
γbb(t), (A7)

and the dynamics for b are described by

ḃ = −i[b, Hsys] −
γb

2
b − √

γbdin
b (t). (A8)

The equations of motion for mode a1 and a2 and input-output relation of the transmission line modes can be obtained in

a similar way. We first set x1 = 0 and define τ = x2/v for simplicity (without loss of generality). The equation of motion

for dk(ω) (k = L, R) is given by

ḋk = −i[dk, H ]

= −i[dk, Hb + Hsb]

= −iωdk +
∑

j =1,2

(
√

γj

2π
e(−1)k iω

xj
v aj

)

. (A9)

The solution is

dk(ω, t) = e−iω(t−t0)dk(ω, t0) +
∑

j =1,2

[
√

γj

2π

∫ t

t0

dt′e−iω(t−t′)e(−1)k iω
xj
v aj (t

′)

]

, (A10)

where dk(ω, t0) is the initial value for dk at frequency ω. Similarly, the equation of motion for aj is given by

ȧj = −i[aj , H ]

= −i[aj , Hsys] − i[aj , Hb + Hsb]

= −i[aj , Hsys] −
1

√
2π

∫

dω
√

γj

(

e−iω
xj
v dL(ω, t) + eiω

xj
v dR(ω, t)

)

. (A11)

To solve the equation for aj , we need the last two terms in Eq. (A11), which follow from Eq. (A10). For dL, for example,

we obtain

1
√

2π

∫

dω
√

γj e−iω
xj
v dL(ω, t)

=
1

√
2π

∫

dω
√

γj e−iω
xj
v

⎛

¿e−iω(t−t0)dL(ω, t0) +
∑

j ′=1,2

[
√

γj ′

2π

∫ t

t0

dt′e−iω(t−t′)eiω
xj ′
v aj ′(t′)

]

À

⎠

=
1

√
2π

∫

dω
√

γj e
−iω

(

t+
xj
v −t0

)

dL(ω, t0) +
1

2π

∫

dω

∫ t

t0

dt′
∑

j ′=1,2

[

√
γj γj ′e−iω(t−t′+

xj
v −

x
j ′
v )aj ′(t′)

]

. (A12)
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For simplicity, we set x1 < x2. We write the input field modes propagating in the L(R) direction as

din
k =

1
√

2π

∫

dωe−iω(t−t0)dk(ω, t0). (A13)

Then Eq. (A12) can be simplified to

1
√

2π

∫

dω
√

γj e−iω
xj
v dL(ω, t) = √

γj din
L

(

t +
xj

v

)

+
γj

2
aj (t) + √

γj γj̄ aj̄

(

t −
|xj − xj̄ |

v

)

�(j̄ − j ), (A14)

where j̄ = 1 if j = 2, and vice versa. Here �(j − j ′) is the Heaviside step function. We have used the δ-function

representation

∫ ∞

−∞
dωe−iω(t−t′) = 2πδ(t − t′) (A15)

in the above derivation. The integral for dR can be obtained in the same way:

1
√

2π

∫

dω
√

γj eiω
xj
v dR(ω, t) = √

γj din
R

(

t −
xj

v

)

+
γj

2
aj (t) + √

γj γj̄ aj̄

(

t −
|xj − xj̄ |

v

)

�(j − j̄ ). (A16)

We use the free-evolution approximation, O(t − ((|xj − xj ′ |)/v)) = O(t)e
iω((|xj −xj ′ |)/v)

. This approximation is valid when

the delay time for photons from a1 to a2 is much shorter than the time scale of the evolution of the system. The operator

equation for aj can then be written as

ȧj = −i[aj , Hsys] − γj aj (t) − √

γj γj̄ e−iω0

|xj −x
j̄
|

v aj̄ − √
γj e−iω0

xj
v din

L − √
γj eiω0

xj
v din

R . (A17)

The term
√

γj γj̄ e
iω0(t−((|xj −xj̄ |)/v))

aj̄ corresponds to the waveguide-mediated coupling Hj . In order to derive the input-

output relation for the propagating mode in the transmission line, we note that the solution to Eq. (A9) can be written

differently if we choose to integrate from a time tf > t:

dk(ω, t) = e−iω(t−tf )dk(ω, tf ) −
∑

j =1,2

[
√

γj

2π

∫ tf

t0

dt′e−iω(t−t′)e(−1)k iω
xj
v aj (t

′)

]

. (A18)

Consider the integral (1/
√

2π)
∫

dωdL(ω, t):

1
√

2π

∫

dωdL(ω, t)

=
1

√
2π

∫

dωe−iω(t−t0)dL(ω, t0) +
1

2π

∫

dω

∫ t

t0

dt′
∑

j =1,2

[

√
γj e

−iω
(

t−t′−
xj
v

)

aj (t
′)

]

=
1

√
2π

∫

dωe−iω(t−tf )dL(ω, tf ) −
1

2π

∫

dω

∫ tf

t0

dt′
∑

j =1,2

[

√
γj e

−iω
(

t−t′−
xj
v

)

aj (t
′)

]

, (A19)

and we write the output modes as

dout
k =

1
√

2π

∫

dωe−iω(t−tf )dk(ω, tf ). (A20)
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We then arrive at the input-output relation for the leftward propagating modes:

dout
L − din

L =
∑

j =1,2

√
γj eiω0

xj
v aj (t). (A21)

Similarly, we obtain for the rightward propagating modes:

dout
R − din

R =
∑

j =1,2

√
γj e−iω0

xj
v aj (t). (A22)

The spatial separation between a1 and a2 mode is λ/4, and we can set x1 = 0, x2 = λ/4. By applying this condition to

Eqs. (A7), (A8), (A17), (A21), and (A22) and using the expression for Hs, Hp , Hc, we recover the input output relation

and equation of motion discussed in the Model section of the main text.

2. S matrix

The S matrix of the chiral coupler can be obtained by solving the input-output relation and operator equations

together in the frequency domain. We start from Eqs. (1), (2), and (3). Taking the Fourier transform on both sides, we

obtain

−iω̃0a1(ω̃0) = −iω0a1(ω̃0) − ig1eiϕ1b(ω̃0 + ωp) − γ1a1(ω̃0)

− i
√

γ1γ2a2(ω̃0) − igca2(ω̃0) − √
γ1din

L (ω̃0) − √
γ1din

R (ω̃0) (A23)

−iω̃bb(ω̃b) = −iωbb(ω̃b) − ig1e−iϕ1a1(ω̃b − ωp) − ig2e−iϕ2a2(ω̃b − ωp) −
γb

2
b(ω̃b) − √

γbbin(ω̃b) (A24)

−iω̃0a2(ω̃0) = −iω0a2(ω̃0) − ig2eiϕ2b(ω̃0 + ωp) − γ2a2(ω̃0)

− i
√

γ1γ2a1(ω̃0) − igca1(ω̃0) − √
γ2e−i π

2 din
L (ω̃0) − √

γ2e−i π
2 din

R (ω̃0), (A25)

where ω̃0 and ω̃b are probe frequencies for the a1(2) and b modes; these are frequencies close to the resonant frequencies

ω0 and ωb, in practice. The parametric conversion process requires the frequency matching condition ωp = ωb − ω0 =
ω̃b − ω̃0; we define a frequency detuning δ = ω̃0 − ω0 = ωb − ω̃b. Then we obtain

iδa1 − ig1eiϕ1b − γ1a1 − i
√

γ1γ2a2 − igca2 − √
γ1din

L − √
γ1din

R = 0, (A26)

iδb − ig1e−iϕ1a1 − ig2e−iϕ2a2 −
γb

2
b − √

γbbin = 0, (A27)

iδa2 − ig2eiϕ2b − γ2a2 − i
√

γ1γ2a1 − igca1 − √
γ2e−i π

2 din
L − √

γ2e−i π
2 din

R = 0. (A28)

We omit the frequency dependence for the operators for simplicity, as now they are all measured at their corresponding

probing frequencies. These equations, together with the input-output relations, yield the S matrix of the chiral coupler.

The S parameters are given by (here, for simplicity, let γ1 = γ2 = γb = γ , g1 = g2 = g, and γ = −gc):

S11 =
4

γ

g
cos (�ϕ)

A
, S12 =

4i
γ

g
sin (�ϕ) − 4 δ

g
+ C

A
, S13 =

2(D + E)

A
,

S21 =
4i

γ

g
sin (�ϕ) − 4 δ

g
+ C

A
, S22 =

4
γ

g
cos (�ϕ)

A
, S23 =

2(D − E)

A
,

S31 =
2

γ

g
(ie−iϕ1 − e−iϕ2)

B
, S32 =

2
γ

g
(ie−iϕ1 + e−iϕ2)

B
, S33 =

4 − (2δ−iγ )(δ+iγ )

g2

B
,

(A29)

where we have introduced �ϕ = ϕ1 − ϕ2, A = (−4 + (((δ + iγ )(2δ + iγ ))/g2))(((δ + iγ )/g)), B = 4 − (((2δ + iγ )2)/

g2), C = (((2δ + iγ )(δ2 + γ 2))/g3), D = eiϕ1((γ (−iδ + γ ))/g2), and E = eiϕ2((γ (δ + iγ ))/g2). Each S parameter is

obtained with other input signals set to 0 and the above result is used to generate the S matrix in Fig. 1(c) with �ϕ = ±π/2.

For the more realistic case where γ1 �= γ2, a similar solution can be obtained by choosing gc = −√
γ1γ2.
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3. Cancelation of waveguide-mediated coupling

As explained previously, there is a waveguide-mediated

coupling between the a1 and a2 modes that needs to be

canceled. The coupling term arises from the second term

on the right-hand side of Eq. (A11), which is due to the

interaction between aj and bath (the common transmission

line) modes. This term reads

ȧj = · · · − √

γj γj̄ e−iω0

|xj −x
j̄
|

v aj̄ + · · · , (A30)

which can be effectively written as

ȧj = · · · − i

[

−i
√

γj γj̄ e−iω0

|xj −x
j̄
|

v a
†
j aj̄ + h.c., aj

]

+ · · · .

(A31)

Specifically for our case, where |x1 − x2| = λ/4 and

assuming γj = γ , we have

ȧj = · · · − i
[

−iγ e−i π
2 a

†
j aj̄ + h.c., aj

]

+ · · ·

= · · · − i[−γ a
†
j aj̄ + h.c., aj ] + · · · . (A32)

Therefore this term acts as an effective interaction term

between a1 and a2, which may be absorbed into the system

Hamiltonian as an extra coupling term: Hwg = −γ (a
†

1a2 +
a1a

†

2). In the derivation of this interaction, we only assume

a general system-bath interaction, as given in Eq. (A6). As

shown explicitly in Fig. 13, this extra coupling is detrimen-

tal to the directionality of the chiral coupler, and needs to

be eliminated.

The cancelation is realized by exploiting a “quantum

bus” coupling [56–59] between the a1 and a2 modes

through the b mode. To understand the origin of this inter-

action, let us consider the three modes a1, a2 and b, with

coupling between each other. The Hamiltonian can be

written as

Hbus = ω0a
†

1a1 + ω0a
†

2a2 + ωbb†b

+ (g12a
†

1a2 + gba
†

1b + gba
†

2b + h.c.), (A33)

where for simplicity we assume that the a modes have the

same frequency (ω0) and the same coupling (gb) to the b

mode. We also assume a dispersive coupling regime (i.e.,

g 
 �), where � = ωb − ω0 is the frequency detuning

between the modes. We can then apply a Schrieffer-Wolff

transformation. The transfer matrix is given by

S =
gb

�
(a

†

1b − a1b† + a
†

2b − a2b†). (A34)

The Hamiltonian transforms as

H̄bus = eSHbuse
−S, (A35)

and we use the Baker-Campbell-Hausdorff formula,

H̄bus = Hbus + [S, Hbus] +
1

2
[S, [S, Hbus]] + · · · . (A36)

Since g 
 �, we can treat the mode couplings as a

perturbation, and write the Hamiltonian as

Hbus = H 0
bus + V, (A37)

where H 0
bus = ω0a

†

1a1 + ω0a
†

2a2 + ωbb†b and V = (g12a
†

1

a1 + gba
†

1b + gba
†

2b + h.c.). Up to first order in V, the

transformed Hamiltonian in the dressed basis is now

H̄bus = ω′
0a

†

1a1 + ω′
0a

†

2a2 + ω′
bb†b

+
[

g12 +
g2

b

�

]

(a
†

1a2 + a1a
†

2), (A38)

where ω′
0 = ω0 − g2

b/�, and ω′
b = ωb + g2

b/� are the new

mode frequencies in the dressed basis. Note that we have

already worked in this dressed basis in the main text and

derivations in previous sections, with the ′ omitted. This

extra coupling between the two a modes, g2
b/�, is gen-

erated because both a1 and a2 modes are coupled to the

b mode. Together with the original coupling between the

two a modes, we reach the “cancelation coupling,” gc, in

the main text:

gc = g12 +
g2

b

�
. (A39)

Its frequency-tunable nature allows us to reach the desired

coupling strength by biasing b to the right frequency.

Equation (A39) is used for fitting the cancelation ratio data

shown in Fig. 2(c).

4. On-demand directional photon emission and

absorption

To investigate quantum signal routing, we consider the

case of on-demand photon emission and absorption: b is

initialized with one excitation, and we aim to release this

excitation coherently as a traveling photon, with direc-

tional control. Conversely , we want the ability to absorb

traveling wavepackets into excitations in b. In general, this

requires a tunable coupling between the mode and its bath

[15]. These tasks can be realized with the chiral coupler by

parametrically controlling the couplings g(t) between the

b mode and two a modes.

Here, we provide a semiclassical time-domain solution

to this question by solving the input-output relations and

equations of motion for the mode operators. The target
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(a) (b)

(c) (d)

FIG. 5. Numerical solutions for on-demand photon emission

and absorption. (a) Photon flux to the left (blue) and right (pink)

as a function of time. Colors from light to dark represent γph =
0.5γ , 1.0γ , 1.5γ , respectively. (b) Average photon number in b

mode as a function of time during the photon absorption pro-

cess. Colors from light to dark represent γph = 0.5γ , 1.0γ , 1.5γ ,

respectively. (c),(d) Parametric pump amplitudes as a function of

time for on-demand pitch and catch of the wavepackets in (a).

Parameters used in the calculation: γ /2π = 1 MHz, γb/2π = 0

MHz, γph = 0.5γ , 1.0γ , 1.5γ , ϕ1 = π/2, ϕ2 = −π/2.

wavepacket is chosen to have the form

φ(t) =
√

γph

2
sech

(γph

2
t
)

, (A40)

where 1/γph is the full width at half maximum for the

wavepacket in the time domain. The form is chosen

because it provides an analytic solution for the shape of

the parametric pumps [20]; other shapes may be solved

for numerically. For the on-demand directional photon

emission, we first initialize the b mode in a coherent state

with one photon on average (i.e., 〈b†b〉 = 1). In in the

equations of motion and input-output relations, we set all

inputs to 0, and solve with initial condition a1 = 0, a2 =
0, b = 1. The analytically obtained form of the magnitude

of the parametric pump is given by

|g1(2)(t)| =
−γph

√
γph tanh

( γph

2
t
)

+ 2γ
√

γph

−8

√

− γph

8
+ γ

(

1−tanh
( γph

2
t
))

cosh2
( γph

2
t
)

2

.

(A41)

The solutions for the pumps and emitted field as a function

of time, for the case of a rightward emitted wavepacket,

are shown in Figs. 5(a) and 5(c). Directionality is achieved

by controlling the relative phases between the two pumps.

On-demand photon absorption can be calculated in a

similar way. Because the incoming wavepacket φ(t) is

time-symmetric, the absorption process is the time inverse

of the emission. Absorption can thus be achieved by set-

ting g1(2)(t) → g1(2)(−t). When solving the equations of

motion, we set din
R (t) = φ(t), keep all other inputs 0,

and initial conditions are a1 = 0, a2 = 0, b = 0. Example

solutions for photon absorption are shown in Figs. 5(b)

and 5(d).

These calculations provide semiclassical evidence for

directional emission and absorption capability of the chiral

coupler. To discuss its performance (e.g., transfer fidelity)

when routing quantum signals, we present a quantum

description below.

5. Quantum state transfer

We begin by deriving the quantum master equation for

a single chiral coupler. Similarly to Eq. (A11), we now

consider the equation for an operator O:

Ȯ = −i[O, Hsys] − i[O, Hb + Hsb]. (A42)

The second term on the right-hand side yields

−i[O, Hb + Hsb] =
1

√
2π

∫

dω
∑

j =1,2

√
γj

(

eiω
xj
v d

†
L[O, aj ] + e−iω

xj
v d

†
R[O, aj ] − e−iω

xj
v [O, a

†
j ]dL − eiω

xj
v [O, a

†
j ]dR

)

+
1

√
2π

∫

dω
√

γb(d
†

b[O, b] − [O, b†]db)

=
∑

j =1,2

√
γj

((

eiω0
xj
v (din

L )† + e−iω0
xj
v (din

R )†
)

[O, aj ] − [O, a
†
j ]

(

e−iω0
xj
v din

L + eiω0
xj
v din

R

))

+
∑

j =1,2

γj

(

a
†
j [O, aj ] − [O, a

†
j ]aj

)
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+
∑

j =1,2

√

γj γj̄

(

e
−iω0

(

t−
|xj −x

j̄
|

v

)

a
†

j̄
[O, aj ] − e

iω0

(

t−
|xj −x

j̇
|

v

)

[O, a
†
j ]aj̄

)

+ √
γb

(

(bin)†[O, b] − [O, b†]bin
)

+
γb

2

(

b†[O, b] − [O, b†]b
)

, (A43)

where we used Eqs. (A14) and (A16), and a similar result for bin from input-output theory. Now consider the expectation

value of this operator 〈O〉 in the Heisenberg picture. We use the cyclic invariance of the trace operation and we also

assume the initial state of the propagating mode to be the vacuum state, thus setting bin → 0, din
L → 0, and din

R → 0:

d〈O〉
dt

= Tr

[

dO

dt
ρtot

]

= Tr

[

O
dρtot

dt

]

= −iTr

⎡

⎣O, [Hsys, ρtot] +
∑

j =1,2

2γj [O(aj ρtota
†
j −

1

2
{a†

j aj , ρtot})] + γbO(bρtotb
† −

1

2
{b†b, ρtot})

+
∑

j =1,2

2
√

γj γj̄ O cos

(

ω0

|xj − xj̄ |
v

) (

aj ρtota
†

j̄
−

1

2
(ρtota

†
j aj̄ + a

†
j aj̄ ρtot)

)

− i
√

γ1γ2O sin

(

ω0

|x1 − x2|
v

)

[a
†

1a2 + a1a
†

2, ρtot]

⎤

⎦ . (A44)

Because the operator O is an arbitrary local operator of the chiral coupler, its expectation value can be obtained inde-

pendently of the partial trace of the propagating modes. Thus, the reduced master equation for the chiral coupler can be

written as

dρ

dt
= −i[Hsys + H ′

j , ρ] +
∑

j =1,2

(2γj D(aj )ρ + 2
√

γj γj̄ cos

(

ω0

|xj − xj̄ |
v

)

D(aj , aj̄ )ρ) + γbD(b)ρ, (A45)

where ρ = Trb(ρtot) is the density matrix of the chiral coupler, Trb(.) is the partial trace with respect to the propagating

modes, and H ′
j = √

γj γj̄ sin (ω0((|xj − xj̄ |)/v))(a
†

1a2 + a1a
†

2) corresponds to the waveguide-mediated coupling between

the a modes. When the physical separation between the a modes is λ/4 and γ1 = γ2 = γ , the Hamiltonian will lead to the

equations we used in the main text.

Next, we can derive from this the full quantum master equation of two chiral couplers that share the same transmission

line. The bath Hamiltonian for this case is

HB =
∫

dω ω(d
†
R(ω)dR(ω) + d

†
L(ω)dL(ω) + d

†

b1
(ω)db1

(ω) + d
†

b2
(ω)db2

(ω)), (A46)

and the system-bath interaction Hamiltonian is

HSB = i
1

√
2π

∫

dω

⎡

⎣

4
∑

j =1

√
γj

(

eiω
xj
v d

†
L(ω)aj + e−iω

xj
v d

†
R(ω)aj

)

+
2

∑

j =1

√

γbj
d

†

bj
(ω)bj − h.c.

⎤

⎦ , (A47)

where d
(†)

bj
is the ladder operator for the propagating mode in the semi-infinite transmission line on b’s port of the j th

chiral coupler, and γbj
is the external coupling of the corresponding b mode. The input-output relations for the b modes
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remain the same as the single coupler case. The solution for the propagating mode in the transmission line is given by

dk(ω, t) = e−iω(t−t0)dk(ω, t0) +
4

∑

j =1

[
√

γj

2π

∫ t

t0

dt′e−iω(t−t′)e(−1)k iω
xj
v aj (t

′)

]

. (A48)

Then, for an arbitrary local operator of the chiral coupler, we can obtain

− i[O, HB + HSB]

=
1

√
2π

∫

dω

4
∑

j =1

√
γj

(

eiω
xj
v d

†
L[O, aj ] + e−iω

xj
v d

†
R[O, aj ] − e−iω

xj
v [O, a

†
j ]dL − eiω

xj
v [O, a

†
j ]dR

)

+
1

√
2π

∫

dω

2
∑

j =1

√

γbj
(d

†

bj
[O, bj ] − [O, b

†
j ]dbj

)

=
4

∑

j =1

√
γj

((

eiω0
xj
v (din

L )† + e−iω0
xj
v (din

R )†
)

[O, aj ] − [O, a
†
j ]

(

e−iω0
xj
v din

L + eiω0
xj
v din

R

))

+
4

∑

j =1

γj

(

a
†
j [O, aj ] − [O, a

†
j ]aj

)

+
4

∑

j =1

4
∑

k �=j

√
γj γk

(

e
−iω0

(

t−
|xj −xk |

v

)

a
†

k[O, aj ] − e
iω0

(

t−
|xj −xk |

v

)

[O, a
†
j ]ak

)

+
2

∑

j =1

[

√

γbj

(

(bin
j )†[O, bj ] − [O, b

†
j ]bin

j

)

+
γbj

2

(

b
†
j [O, bj ] − [O, b

†
j ]bj

)

]

. (A49)

Then consider the same expectation value 〈O〉 and set all the initial state of the propagating mode to be the vacuum state:

d〈O〉
dt

= Tr

[

dO

dt
ρtot

]

= Tr

[

O
dρtot

dt

]

= −iTr

⎡

⎣O, [Hsys, ρtot] +
4

∑

j =1

2γj

[

O

(

aj ρtota
†
j −

1

2
{a†

j aj , ρtot}
)]

+
2

∑

j =1

γbj
O

(

bj ρtotb
†
j −

1

2
{b†

j bj , ρtot}
)

+
4

∑

j =1

4
∑

k �=j

2
√

γj γkO cos

(

ω0

|xj − xk|
v

) (

aj ρtota
†

k −
1

2
(ρtota

†
j ak + a

†
j akρtot)

)

− i

4
∑

j =1

4
∑

k>j

√
γj γkO sin

(

ω0

|xj − xk|
v

)

[a
†
j ak + aj a

†

k , ρtot]

⎤

⎦ . (A50)

This reduces to a master equation for the two connected chiral couplers:

dρ

dt
= −i[Hsys + H ′

J , ρ] +
4

∑

j =1

2γj D(aj )ρ +
2

∑

j =1

γbj
D(bj )ρ +

4
∑

j =1

4
∑

k �=j

2
√

γj γk cos

(

ω0

|xj − xk|
v

)

D(aj , ak)ρ, (A51)

where H ′
J =

∑4
j =1

∑4
k>j

√
γj γk sin (ω0((|xj − xk|)/v))(a

†
j ak + aj a

†

k) is the waveguide-mediated coupling between the a

modes.
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FIG. 6. Quantum state transfer simulations. The Wigner func-

tions of the state sent (top row) via a first chiral coupler and

received (bottom row) by a second chiral coupler are shown

for two different states. Parameters used in the calculation are:

γ /2π = 5 MHz, γ e
b /2π = 0 MHz, γph = 0.1γ a

e .

Using the master equation (A51) we can now compute

numerically state transfer fidelities. To illustrate this here,

we consider an ideal situation (no experimental imperfec-

tions), and two different types of initial states: Fock state

superpositions, and cat states (i.e., coherent state superpo-

sitions). At t = 0, the b mode in the first chiral coupler

is initialized with the chosen initial state. The parametric

pumps for both chiral coupler are then activated, with a

phase setting such that the first device emits the state to

the right, while the second one absorbs radiation coming

from left. The amplitude of the pumps is set according

to Eq. (A41), with t → t and t → −t for emission and

absorption processes, respectively. The calculated Wigner

functions for the states sent and received by the two chiral

couplers are shown in Fig. 6. As the model only requires

linear modes with parametric interactions, the chiral cou-

pler is not limited within the basis of |0〉 and |1〉, but allows

us to work with different encoding schemes, which shows

its potential to route complex quantum states throughout a

network.

APPENDIX B: EXPERIMENTAL SETUP

The circuit was fabricated by the Superconducting

Qubits at Lincoln Laboratory (SQUILL) Foundry at MIT

Lincoln Laboratory. The designed SNAIL junction param-

eters are: Lj = 3.0 nH (Lj value for one junction on the

three-junction arm) and α = 0.29 for a1 and a2; Lj = 2.5

nH and α = 0.29 for b.

Measurements were performed using an Oxford Tri-

ton 500 dilution refrigerator, at a base temperature of 10

mK. The experimental setup is shown in Fig. 7; most of

the wiring follows common best practices in circuit QED

experiments [67].

APPENDIX C: PERFORMANCE ANALYSIS AND

IMPERFECTIONS

We have already established the model for the chiral

coupler in the ideal case. We now go one step further and

discuss performance limits imposed by nonideal param-

eters. We first discuss the impact of internal damping

rate, and how the performance can be improved by using

a SNAIL with smaller α. We then discuss the effect of

imperfect cancelation of waveguide-mediated coupling.

1. Effect of damping

Including the effect from finite internal damping, the

relevant equations of motion become

ȧ1 = −iω0a1 − ig1ei(ωp t+ϕ1)b −
(2γ + γi,1)

2
a1

− iγ a2 − igca2 − √
γ din

L − √
γ din

R , (C1)

ḃ = −iωbb − ig1e−i(ωp t+ϕ1)a1

− ig2e−i(ωp t+ϕ2)a2 −
(γb + γi,b)

2
b − √

γbbin, (C2)

ȧ2 = −iω0a2 − ig2ei(ωp t+ϕ2)b −
(2γ + γi,2)

2
a2

− iγ a1 − igca1 − √
γ e−i π

2 din
L − √

γ ei π
2 din

R , (C3)

where γi,1, γi,2, γi,b are the internal damping rates of

a1, a2, b, respectively. To discriminate between the effect of

finite internal Q and detrimental effects from pumping we

have measured S21 under different conditions (Fig. 8). We

observe similar S21, indicating that the parametric pumps

do not introduce excess damping and the device insertion

loss is a result of internal damping.

To further understand the behavior of the chiral coupler

with a finite internal Q, we calculate the S21 by solving

this set of equations together with the input-output rela-

tions. Predictions for S21 with finite internal damping rates

are shown in Fig. 9(a). The result shown in Fig. 4(a) is

obtained by finding the minimum of S21 over a larger range

of the γi,a/γ ratio. The increase of the internal damping

rate of the SNAIL mode thus clearly results in a decrease

of both insertion loss and isolation of the chiral coupler.

This internal loss also impacts state transfer fidelity in a

cascaded system. We consider an example where the ini-

tial state (|0〉 + |1〉)/
√

2 is transferred from the first chiral

coupler to the second, and the process is simulated using

the full quantum model developed in the previous section.

The transfer fidelity as a function of γi,a/γ is shown in

Fig. 9(b).
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FIG. 7. Experimental setup. Most of the wiring and filtering follows typical best practices [67]. Relevant additional specifics are as

follows. Low-pass (LP) filters: probe lines, 12 GHz (K&L 5L250-10200); pump lines, additional 2.8 GHz LP filters (Mini-Circuits

ZLSS-A2R8G-S+); flux lines, two LP filters (Mini-Circuits VLFX-80 and Mini-Circuits SLP 1.9) and a bias tee (Mini-Circuits ZFBT-

4R2GW+). Output line configuration: two cascaded double-stage isolators (Low Noise Factory LNF-ISCIC4_12A), high electron

mobility transistor (HEMT) amplifier (Low Noise Factory LNF-LNC4_8C); additional circulator (Low Noise Factory) for reflectome-

try on mode b; room temperature low-noise amplifier (Low Noise Factory LNF-LNR4_14C). Room temperature electronics: dc source

for flux bias, Yokogawa GS200; VNA, Keysight P9374A; rf source (µW src) used in gyration measurements, SignalCore SC5511A;

spectrum analyzer (SA) used in gyration measurements, Keysight N9030B. Pump tones were synthesized with a Xilinx RFSoC board,

programmed using the open-source QICK software [68].

2. Flux noise

Lowering damping of the internal modes of the chiral

coupler would immediately result in improved perfor-

mance. As shown in Fig. 10, the measured linewidth of

mode a1 displays a trend that qualitatively matches its flux

sensitivity. Because there is an obvious difference (by a

factor of about 3) in the SNAIL linewidth between the flux

insensitive point and the operation point, we believe that

flux noise is a major reason for damping or dephasing, and

thus of lowered performance. One promising approach to
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(a) (b)

FIG. 8. Insertion loss with and without pumps. Normalized S21

measured in two different cases at the best waveguide-mediated

coupling cancelation point. (a) Both parametric pumps are off

[the top data shown in Fig. 2(b)]. (b) Parametric pumps are on

with a relative pump phase set to π/2 [the pink data shown in

Fig. 3(b)].

reducing the impact of the flux noise is to use a SNAIL

with a smaller α. We note that energy loss and dephas-

ing could not be distinguished in our network analyzer

measurements, as both manifest as line broadening in the

frequency domain. An improved noise model could be

established, for example, using ringdown measurements.

The SNAIL is designed to be a dipole circuit element

with third-order nonlinearity and minimal fourth-order

nonlinearity [60]. A typical SNAIL is a superconducting

loop of three Josephson junctions and a single smaller

junction shunted by a large capacitor. The whole loop is

threaded with magnetic flux �ext. The Hamiltonian for the

(a) (b)

0.0

5.0

0.750

1.000

FIG. 9. Calculated impact of internal damping on the perfor-

mance of the chiral coupler. (a) Numerical solution for S21 at

passing (top) and isolation (bottom) settings with finite inter-

nal damping rate; for simplicity we set γi,1 = γi,2 ≡ γi,a. Passing

(pink) and blocking (blue) predictions are shown as a function

of probe frequency detuning at different γi,a versus γ ratios. The

colors from dark to light represent γi,a/γ = 0.01, 0.1, 0.2, respec-

tively. (b) The fidelity of transferring (|0〉 + |1〉)/
√

2 from one

chiral coupler to another as a function of the ratio between γi,a

and γ .

0.000 0.450

FIG. 10. SNAIL linewidth and flux sensitivity. (Left axis,

dots) Measured linewidth of a1 as a function of external flux.

(Right axis, line) Calculated flux sensitivity of the mode fre-

quency as a function of external flux.

SNAIL is

HS = 4ECn2 − αEJ cos(ϕ) − 3EJ cos

(

ϕext − ϕ

3

)

,

(C4)

where EC is the charging energy of the SNAIL mode, n is

the charge operator, EJ is the Josephson energy is of the

small junction, α is the ratio between Josephson energy

between the large and small junctions, ϕ is the phase over

the small junction, and ϕext is the reduced external flux. We

an expand the inductive part H L
S of this Hamiltonian near

the energy minimum point (ϕmin):

H L
S =

EJ

2
(c2(ϕ − ϕmin)

2 + c3(ϕ − ϕmin)
3

+ c4(ϕ − ϕmin)
4 + · · · ), (C5)

where the coefficients for each order are functions of α and

ϕext, ci = ci(α, ϕext). As an example, normalized SNAIL

coefficients as a function of external flux calculated with

the design values of a1 are shown in Fig. 11(a).

To estimate the SNAIL mode dephasing rate due to the

flux noise, we assume the chiral coupler is operated at

the fourth- order nonlinearity cancelation point. Given the

coefficients above, the SNAIL mode can then be quan-

tized, with the resonant frequency ωS =
√

8EC(c2Ej ). The

dephasing rate of the SNAIL �
φ

S is a function of the flux

noise power spectrum, Sflux(ω):

�
φ

S ∝
dωS

dϕext

Sflux(ω). (C6)

Here we assume the flux noise is the same across the fre-

quency tuning range. Then the dephasing rate is set by the

frequency sensitivity to the external flux, which is pro-

portional to the derivative of SNAIL coefficient c2 with

respect to the external flux. This derivative is shown in

Fig. 11(b) as a function of α. In Fig. 4(d) of the main text,

064023-17



XI CAO et al. PHYS. REV. APPLIED 22, 064023 (2024)

(a) (b)
0.350

0.000

0.100 0.350

FIG. 11. SNAIL properties. (a) The SNAIL coefficients as a

function of external flux. All the coefficients are normalized to

their maximum values. The solid line, dashed line, and dash-

dotted line represent the c2, c3, and c4 values, respectively.

Ideally, the SNAIL is operated at the point where the fourth-order

nonlinearity is suppressed. The black dashed line represents the

operation point for the data shown in the main text. (b) The slope

of c2 at the fourth-order cancelation point as a function of SNAIL

α value. The black dashed line represents the parameter of our

current device.

the impact of α is estimated by setting the internal damp-

ing rate proportional to the value at α = 0.29 according to

the calculated derivative value. We note that by choosing

a SNAIL with α = 0.1, we predict an improvement by a

factor of 3 compared to our current device.

3. Effect of Kerr nonlinearity

In order to match the λ/4 separation condition, it is dif-

ficult to operate the SNAIL exactly at the Kerr free point.

The black dashed line in Fig. 11(a) shows the operation

flux value for the a1,2 mode, where the residual Kerr non-

linearity is 25% of the maximum value. However, the use

of the SNAIL largely suppresses this fourth-order nonlin-

earity, and we do not observe an obvious pump induced

Kerr shift when operating the device. We do note that the

issue of matching the frequency for λ/4 separation to the

Kerr free point does not put a fundamental limitation on the

design and it can be optimized with a more precise circuit

parameter control in the fabrication process.

4. Effect of pump leakage

Pump leakage can be modeled as an extra mode con-

version term in the equation of operators. For example,

including a pump leakage term in [Eq. (A24)] results in

− iω̃0a1(ω̃0)

= −iω0a1(ω̃0) − i(g1eiϕ1 + εg2eiϕ2)b(ω̃0 + ωp)

− γ1a1(ω̃0) − i
√

γ1γ2a2(ω̃0) − igca2(ω̃0)

− √
γ1din

L (ω̃0) − √
γ1din

R (ω̃0), (C7)

where the term εg2eiϕ2b(ω̃0 + ωp) represents the effect of

a2’s pump on the a1 mode. ε is the pump leakage ratio

(a) (b)

FIG. 12. Impact of pump leakage. (a) Numerical solution for

S21 at passing (top) and isolation (bottom) settings with differ-

ent pump leakage ratio; for simplicity we set γi,1 = γi,2 ≡ γi,a.

Passing (pink) and blocking (blue) predictions are shown as a

function of probe frequency detuning at different γi,a/γ ratios.

The colors from dark to light represent ε = 0.0, 0.2, 0.5, respec-

tively. (b) Measured S21 as a function of pump frequency and

probe frequency. Both a1 and a2 are biased at the same frequency

and the parametric pump for a1 ↔ b is applied to the system with

a changing frequency. The dashed and solid arrow indicate the a1

and a2 mode, respectively.

between the two pump lines. The pump leakage from a1

to a2 can be modeled similarly. In Fig. 12(a), we show

the predictions for S21 with different pump leakage ratios.

The increase of the pump leakage ratio clearly results in a

decrease of both insertion loss and isolation of the chiral

coupler.

To evaluate the pump leakage in our experiment, we

have first biased both a1 and a2 to the same frequency and

then applied the pump inducing mode conversion a1 ↔ b.

The measured S21 as a function of the pump frequency is

shown in Fig. 12(b). We can observe the pump induced

mode splitting pattern on the a1 mode while the a2 mode

remains unchanged under the pump. This observation

suggests that there is no noticeable pump leakage.

5. Effect of imperfect waveguide-mediated coupling

cancelation

Another important factor that affects the performance

of the chiral coupler is the imperfect cancelation of the

waveguide-mediated coupling (i.e., |gc| �= |γ |). The effect

of this case be seen, for example, in imperfect directional

emission of shaped wavepackets. In Fig. 13(a) we show the

calculated outgoing photon flux as a function of time after

b is initialized with one photon, and drives are applied to

emit the state. The “pitched” photon is partially emitted in

the wrong direction as the coupling cancelation deviates

from the ideal case. This leads to decoherence in a net-

work: the purity of the state received by a second party
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(a) (b)

FIG. 13. Effect of residual waveguide-mediated coupling on

directionality. (a) Left (blue) and right (magenta) emitted photon

flux as a function of time. Colors from light to dark represent

|gc/γ | = 1.0, 0.8, 0.5, respectively. (b) Purity of the received

state when transferring state (|0〉 + |1〉)/
√

2 as a function of

gc/γ .

(when attempting to transfer (|0〉 + |1〉)/
√

2) as function

of the ratio gc/γ is shown in Fig. 13(b).

6. Calibrating waveguide-mediate coupling cancelation

The degree of the cancelation is inferred by measuring

the S21 trace when both a modes are biased at their opera-

tion point without applying pumps. Ideally, unit transmis-

sion is achieved at the cancelation point, and a dip will

emerge as we deviate from it. The depth of the dip reflects

the degree of the cancelation. In practice, we still see a

finite dip near the perfect cancelation point, due to the

internal damping rate of the SNAIL mode. With finite γi,k

FIG. 14. Coupling cancelation measurement. Note that we

offset the traces by a 5 dB for visual clarity. The cancela-

tion ratio gc/γ = 1.04, 0.72, 1.28, 0.55, 1.60 from top to bottom

correspondingly. The degree of waveguide-mediated coupling

cancelation is obtained by measuring S21 at the operation point

without pumping. The dip of the curve reflects the degree of can-

celation. The cancelation ratio is obtained by fitting the data to

the model given in Eq. (C8).

FIG. 15. Isolation and gyration at different pump powers. (left)

Normalized S21 data as a function of probe frequency (right) Peak

output power at port b as a function of probe frequency. A power

offset of −94 dBm estimated from fridge wiring is added to the

theory curve for the isolation measurement. Note that the isola-

tion performance is not optimal for both small and large g values;

this is explained by the fact that ideal nonreciprocity requires

matching coherent and dissipative dynamics of the modes [52].

and gc �= γ , S21 at g = 0 becomes

S21 = [4g2
c + 8gcγe − 4δ2 + γi,1γi,2 + 2iδ(γi,1 + γi,2)]/

[8γ 2
e + 4g2

c + 8gcγe − 4δ2 + γi,1γi,2

+ 2iδ(γi,1 + γi,2) + 2γe(4iδ + γi,1 + γi,2)]. (C8)

It is easy to verify that with gc = −γe = −γ , γi,1 = γi,2 =
0, this turns back into the ideal case [Eq. (A29)].

In order to locate the cancelation point, we fit the data

to the model given in Eq. (C8). We show S21 measured at

different cancelation points in Fig. 14. The coupling cance-

lation ratio shown in Fig. 2(c) in the main text is obtained

from this fit.

7. Isolation and circulation performance

By taking into account all parameters and models dis-

cussed above, our theory shows good quantitative agree-

ment with measured isolation and circulation data across
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a wider range of pump powers. In Fig. 15, we show both

isolation and circulation data obtained at different pump

powers. The theory curves are obtained with parameters

independently calibrated as discussed in the main text.

g was obtained by extrapolation of the data shown in

Fig. 2(e). We stress that a single set of circuit parameters

(Table I in the main text) was used for predicting all data

in Fig. 15.
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