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Nonreciprocal microwave routing plays a crucial role in measuring quantum circuits, and allows for
realizing cascaded quantum systems for generating and stabilizing entanglement between noninteracting
qubits. The most commonly used tools for implementing directionality are ferrite-based circulators. These
devices are versatile, but suffer from excess loss, a large footprint, and fixed directionality. For utilizing
nonreciprocity in scalable quantum circuits it is desirable to develop efficient integration of low-loss and
in-situ controllable directional elements. Here, we report the design and experimental realization of a
minimal controllable directional interface that can be directly coupled to superconducting qubits. In the
device presented, nonreciprocity is realized through a combination of interference and phase-controlled
parametric pumping. We have achieved a maximum directionality of around 30 dB, and the performance
of the device is predicted quantitatively from independent calibration measurements. Using the excellent
agreement of model and experiment, we predict that the circuit will be useable as a chiral qubit interface
with inefficiencies at the 1% level or below. Our work offers a promising route for realizing high-fidelity
signal routing and entanglement generation in all-to-all connected microwave quantum networks, and

provides a path for isolator-free qubit readout schemes.
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I. INTRODUCTION

Nonreciprocal signal routing is an essential ingredient
for the practical operation of quantum devices as well
as for the observation of a range of fundamental quan-
tum phenomena. On the one hand, nonreciprocity enables
efficient yet noise-protected signal detection, which is a
foundation of quantum-limited measurement in cryogenic
quantum circuits [1-5]. The ability to perform high-fidelity
qubit readout with minimal back-action, in particular, will
be crucial for fault-tolerant quantum computation [6—8].
Single-shot readout with fidelities above 99% has been
demonstrated for superconducting qubits using readout
chains with commercial circulators [9,10]. On the other
hand, directional propagation of photons allows the real-
ization of cascaded quantum systems [11—14] that enable
the generation and autonomous stabilization of remote
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entanglement [15,16], providing a route for modular scal-
ing of quantum circuits.

While conventional microwave circulators have allowed
the realization of prototypical cascaded systems of super-
conducting qubits [17—19], achieving practical utility will
require efficient directional interfaces that are directly inte-
grated with qubits. The central functionality for such an
interface is the controllable directional coupling of a super-
conducting circuit mode that stores or processes quantum
information to a transmission line. Tunable directional-
ity can be used for on-demand quantum signal routing,
enabling interconnects for highly connected networks of
quantum devices [20]. Beyond this basic functionality,
we require efficiency and linearity. An efficient direc-
tional interface introduces no loss channels on the quantum
mode, and can faithfully emit (absorb) quantum informa-
tion into (from) propagating states. High efficiency and
low impact on circuit coherence are required to improve
the fidelity of quantum state transmission which is cur-
rently limited by the loss from standalone circulators
[17—19]. Finally, linearity allows for transferring arbitrary
quantum states ranging from single-photon encodings to
error-correctable bosonic multiphoton states.

There are multiple possible avenues for realizing inte-
grated nonreciprocity. One strategy is to introduce an
appropriate material into the circuit and bias it with an
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external magnetic field to break symmetry [21-24]. The
need to apply an external field to a part of the cir-
cuit is, however, inherently at odds with preserving high
coherence of superconducting qubits. Alternatively, it is
possible to realize directionality using synthetic fields in
Josephson circuits [25-32]. This approach has the unique
advantage of immediate compatibility with superconduct-
ing qubits, which is appealing for realizing efficient,
integrated devices. A range of standalone and general-
purpose microwave circulators and isolators have been
demonstrated in recent years [2,33—39]. Moreover, super-
conducting qubits that couple nonreciprocally to propagat-
ing microwaves in waveguide quantum electrodynamics
(WQED) have been proposed and experimentally realized
[20,40-45]. Operating on the principle of so-called “giant
atoms” [46], hallmarks of chiral wQED such as directional
emission [43] and scattering [44] were observed.

Here, we propose and experimentally demonstrate a
general chiral interface, a “chiral coupler,” that is suited
for integration with (arbitrary) superconducting quan-
tum devices and will allow for high efficient quantum
state emission and absorption. We approach the follow-
ing discussion predominantly from a quantum network
perspective, where the goal is to route quantum states
between qubits using directional emission and absorption
[Fig. 1(a)]; our circuit is, however, well suited also for
integrated noise isolation [2,34,37-39].

The central considerations of our design are as fol-
lows. We target a device with three modes [Fig. 1(b)].
Two modes couple to a common transmission line at two
physically separate points and operate at the same commu-
nication frequency. The third mode is tunably coupled to
the transmission line via parametric mode conversion with
the other two modes, similar to the idea of the giant atom in
wQED [46-51]. This mode may be the coherent quantum
mode of interest (e.g., a superconducting qubit or bosonic
memory element), or coherently couple to such a mode.

These considerations directly address our key criteria
for practical utility. The direct integration of the chiral
interface with the qubit mode is important for achieving
high efficiency, as it minimizes the number of couplings
and connections. We emphasize that our design only uses
a minimal number of modes to achieve nonreciprocity
[52]. In this way, we can analyze the device using a sim-
ple yet predictive model, and minimize the number of
additional decoherence channels introduced to the quan-
tum circuit. Our envisioned use also motivates that we do
not require a large bandwidth, but merely some degree
of (static) frequency tuning capability. Finally, the cir-
cuit supports isolation and circulation of arbitrary quantum
states; directional emission (absorption) from (to) qubits
has been demonstrated recently using transmon-based cou-
plers [43,53]. Our circuit, in contrast, is linear and will
allow for transmitting bosonic quantum error correction
codewords [54,55].

We note that linearity also allows the circuit to be used
as a replacement for conventional circulators employed in
established qubit measurement techniques using coherent
states. In an experimental realization of the proposed cir-
cuit we have achieved high directionality (about 30 dB),
determined through measurements of isolation and cir-
culation. As result of its minimal design, we can model
the device performance in quantitative agreement with a
few independently calibrated circuit parameters. With the
circuit parameters chosen in the device measured here,
directional emission and absorption of arbitrary quantum
states in a network could be achieved with an efficiency of
85%. Modest adjustment of circuit parameters will bring
this efficiency to the 99% level. The circuit presented thus
provides a promising, flexible chiral interface for super-
conducting qubit devices for the realization of low-loss
cascaded networks and for integrated noise isolation.

II. MODEL

Our system is composed of three modes, in a similar
spirit to recently investigated giant atoms in wQED, illus-
trated in Fig. 1(b) [46-51], We realize directionality by
phase-controlled interference between different emission
paths. Two modes a; » with identical frequency couple to a
common waveguide with strength 2y, . They are spatially
separated along the waveguide by a distance Ax = A/4,
where A is the wavelength of the emitted radiation. Mode
b couples to both a; ; via parametrically controllable mode
conversion, with rate g, and phase ¢;,. A photon from
b may enter the waveguide via two paths: b — a; and
b — a,. This setup enables phase control of the emis-
sion paths through external drives, and thus controllable
interference between the paths, which is the origin of non-
reciprocity here. The only requirement on the modes in the
circuit is that phase-controlled frequency conversion can
be established between them. There is no restriction on the
nature of the » mode, and it could serve as the quantum
mode of interest or directly couple to it. The chiral coupler
could thus act as a general-purpose, narrow-band circulator
that is directly hybridized with a coherent quantum mode.

We model the system as a three-port device, where
A0 | gm0 pinuw) are the input (output) field operators
at each port [Fig. 1(d)]. The equations of motions are

a) = —iwpa;, — ig €"PTh — ya,

—iyay —igear — Jydy — Jydy, (1)
b= —iwpb — igie @r g,

— igyeTi@rtten g, %b _ \/%bm, @)
a = —iwoay — igre"“r" Vb — ya,

—iya) —ige.a, — \/?efi%din — ﬁei%d}?. 3)
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Chiral coupler concept and design. (a) Our goal is a controllable circulator that may be seamlessly integrated with super-

conducting qubits, independent of encoding. It may be used to achieve all-to-all connected quantum state transfer in modular quantum
processors. (b) Minimal model for a parametrically controlled circulator. Modes a;, have frequency wy, and couple to left- and
right-propagating modes with rate . Combining phase-controlled mode conversion between b and a; , with propagation delay of emit-
ted/absorbed photons results in tunable circulation through constructive/destructive interference at the right/left ports. (c) Calculated
S matrix. Parameters used here: y =y, =27 x 1 MHz, gy = g, = 27 x 0.5MHz; ¢; =0, ¢, = 7/2 (pink), ¢; =0, ¢, = —7/2
(blue). (d) Lumped-element equivalent circuit. Mode b is frequency-tunable in this implementation. Each mode is capacitively cou-
pled to an external port for measuring S parameters. Two weakly coupled (Q, > 10°) ports are attached to the a; and @, modes for
parametric pumping. Each SNAIL is flux-tunable. (e) False-colored optical image of the central portion of the device presented in this

work.

Here a;, and b are the lowering operators for the cor-
responding modes. We assume for now that both a; and
a, couple to the waveguide equally (i.e., y; = y» = y),
and y; is the coupling strength between b and its port.
We first focus on the ideal case with no internal damping,
Vi1 = Vi2 = Yip» = 0. Here @y and w, are the mode fre-
quencies of a; » and b, respectively. At the operation point,
both mode a; and a; have the same frequency, w; = w; =
wp. The terms iya; in Eq. (1) and iya; in Eq. (3) arise
from a waveguide-mediated interaction between a; and a;.
Crucially, this interaction must be fully eliminated for the
chiral coupler to operate as a circulator [20] (Fig. 13). We
can eliminate this interaction by canceling it with a bus-
mediated coupling [56—59]: The terms ig.a, in Eq. (1) and
ig.a; in Eq. (3) are the result of this coupling, arising from
a static coupling between a,  to b, with

_ galbgazb

. @

c

Here, gq; is the static coupling between the undressed
ayzy and b modes, and A = wp — wy(2). g (and, in par-
ticular, its sign) can be controlled through the detuning
between the a;, and b (see Appendix A 3 for details).

If the cancelation condition is met (i.e., g. = —y), cir-
culation can be seen directly from the S matrix, which is
plotted as function of probe frequency detuning at each
port in Fig. 1(c). We have derived the S parameters by
combining the equations of motion with the input-output

relations, which are given by

d = df + 7 (a1 + ¢Ta), 5)
dyt = di + 7 (a1 +e7as), (6)
bout — bin 4 \/%b (7)

Full expressions for the S matrix as well as details of
the derivation are given in Appendix A 2. Of particular
importance is the waveguide transmission, S;. For perfect
cancelation and without internal damping and parametric
pumping, it is given by

82+ y?

$1(08) = m,

®)

where § is the detuning of the probe signal from the
mode frequency. In the following section, we will show
in detail that the cancelation condition can be calibrated by
measuring this transmission.

I11. CIRCUIT REALIZATION AND
CHARACTERIZATION

Our model can be realized with the superconducting
circuit shown in Figs. 1(d) and 1(e). It consists of three
modes, each containing a superconducting nonlinear asym-
metric inductive element (SNAIL) [60] and a common
transmission line. We have chosen the SNAIL elements
for the following reasons: SNAILs provide a third-order
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TABLE 1. Circuit parameters entering the model. Values are
the ones at the operation point, and are extracted from spec-
troscopy data.

Qty Value Description

w /27 4.875 GHz resonant frequency of a;
wy /21 4.875 GHz resonant frequency of a;
wp /21 6.270 GHz resonant frequency of b
Vi1/2mw 215kHz internal damping of a,
2y, /27 1.46 MHz waveguide coupling of a;
Via/2m 294kHz internal damping of a;
2y, /21 1.43 MHz waveguide coupling of a;
Vib/2m 588 kHz internal damping of b
V)27 2.51 MHz waveguide coupling of b
gy 1.04 coupling cancelation ratio
g1 /2w 0.70 MHz parametric coupling strength

nonlinearity that enables parametric frequency conver-
sion between the modes. Their frequency dependence on
external flux can be used to tune mode frequencies to
the operation point. Importantly, charge-coupled SNAILs
haven been shown to be highly coherence-preserving when
used as couplers between bosonic modes [61]. For this rea-
son, we anticipate them to be a good choice for achieving
high efficiencies.

This minimal circuit can be understood quantitatively
with a small set of parameters. In the following, we first
describe how the device parameters shown in Table I are
extracted from experiment. Further below, we show that
these parameters are sufficient to predict the circulator
performance of the device in quantitative agreement with
experiment.

We have performed basic mode characterization at 10
mK prior to applying parametric pumps using a vec-
tor network analyzer (VNA). In Fig. 2(a) we show the
mode frequencies as function of external flux. We have
obtained resonant frequencies, external coupling, and
internal damping by standard fitting of the VNA trace for
each flux bias point. At the targeted operation point, w; =
wy = wy and A = wp — wy are chosen such that g. = —y.
The effect of the waveguide-mediated coupling is mani-
fested in the waveguide transmission Sp;, [Eq. (8)]; this
allows us to use waveguide transmission to find the can-
celation condition. Minimal waveguide-induced coupling
corresponds to highest transmission at wy. To find the best
operation point, we have thus measured S,; as function of
wp, controlled by external flux, while keeping w, fixed.
Here g. was inferred from a fit to S,;(5) [see Eq. (C8)].
Two representative VNA traces and corresponding fits are
shown in Fig. 2(b). We note that ideally one can expect unit
transmission for perfect cancelation; finite internal damp-
ing or dephasing, however, results in residual insertion
loss at wy. We note that in practice we cannot expect an
exact matching of external coupling rates (y; # y»), and
the cancelation condition slightly changes: g. = —/Y172
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FIG. 2. Mode characterization. (a) a; (purple) and b (green)
resonant frequencies versus respective external flux, extracted
from spectroscopy. (b) Normalized S, at two different values
of A, g.//yviy2 = 1.04, with g./2mw = 0.75 MHz (top curve,
dashed-line arrow) and g./,/yiy, = 0.55, with g./2m = 0.40
MHz (bottom curve, solid-line arrow). Data were normalized by
dividing out the background. The lower curve is shifted by —5 dB
for clarity. (c) Ratio between the bus-mediated and waveguide-
mediated coupling as a function of detuning between a; , and b.
Here g, is obtained by a fit of S,; to a full model. The error bars
indicate a 10% variation of the fit parameter, estimated from the
least-squares error. (d) Normal-mode splitting between a; and b
induced by parametric pumping. Here b is measured in reflection
while frequency conversion pumps are applied. (¢) Calibration
of the coupling strength g, (light orange triangles) and g, (dark
orange circles) as a function of pump voltage. Lines are linear
fits.

(Appendix A 2). In Fig. 2(c), we show the inferred can-
celation ratio g./,/y1y2 as a function of A, following the
expected 1/A dependence. The operation point in what
follows is at A /2w = 1.395 GHz, where we found the best
cancelation.
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Next, we turn to the realization of parametric frequency
conversion between modes a; () and b. By applying exter-
nal pump tones at frequency A we can enable effective
“beam splitter’” Hamiltonians [61—63],

Hg,,, = g1(2)€iw1(2) aJlr(z)b + h.c., 9)

where the effective coupling strengths g2, and phases
@12y are controlled by the pumps. To determine g;(2), we
probe the reflection off b while applying a pump with
frequency wp,, ~ A; a representative response signal is
shown in Fig. 2(d). At the resonance condition, w,, =
Wh — Wqy (5> WE observe an anticrossing with a mode sep-
aration of 2g;(;). Coupling strengths gj;, determined in
this way are shown as a function of pump amplitude
in Fig. 2(e). Coupling strength increases linearly with
pump amplitude, in agreement with our expectation for a
parametrically driven three-wave mixing element [61,63].

IV. ISOLATION AND CIRCULATION

At the operation point, applying both conversion pumps
simultaneously results in interference in the loop formed
by ai,, b, and the transmission line. Consequently, we
expect phase-tunable transmissions and reflections when
injecting signals into a port, and monitoring emissions. In
principle, this would allow measuring the full S matrix
similar to the simulated one in Fig. 1(c). Here, due to con-
straints in the wiring, we focus on S,; and Sp;, which would
directly correspond to using the device as an isolator or
controllable absorber. The phase control of these quanti-
ties is confirmation that the directionality of the device can
indeed be fully controlled.

To evaluate the isolation performance of the device, we
have performed S,; measurements using a VNA, while
sweeping the relative phase between the two pumps. Pump
powers are set such that the conversion rates are matched,
g1 = g». We note that both pumps are first tuned sepa-
rately and then applied simultaneously with no further fine
tuning. The small fourth-order nonlinearity of the SNAIL
modes minimizes interference between the two parametric
processes and thus allows for a simple and robust tuneup
procedure. The normalized S,; as a function of both pump
phase and probe frequency, for gi)/2m = 0.70 MHz, is
shown in Fig. 3(a). Here S, changes dramatically from
low to high insertion loss at zero detuning, demonstrating
clearly the parametrically tunable directionality of the chi-
ral coupler. In Fig. 3(b), we show line cuts at the “pass” and
“isolation” phase settings, revealing a narrow-band isola-
tion of about 30 dB at the isolation setting. We also observe
a finite insertion loss of about 2 dB at the pass setting; this
nonideal behavior can be explained by internal decoher-
ence, which may originate from flux noise (Fig. 10). We
expect that this detrimental effect can be largely eliminated
by a moderate adjustment of the circuit parameters (see
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FIG. 3. Characterization of isolation and circulation perfor-

mance. (a) Normalized S,; as a function of probe frequency and
relative phase between the two pumps. The data are normalized
to background data acquired when a; and a, were far-detuned.
Blue and red dashed lines mark relative phases where maximum
isolation and transmission are achieved, respectively. (b) Sy
traces at maximum isolating point (blue) and maximum passing
point (red). (c) Detection of (frequency-converted) circulation.
Signal is injected from a; and output power (Pp o) is measured
using a spectrum analyzer. Detuning is given with respect to w,
at the operation point. (d) Peak output power as a function of
relative pump phase. Maximal and minimal emission occur at
the same relative pump phases as isolation and pass in (a). We
note that while the shape and contrast of the power curve is pre-
dicted entirely by theory, the power offset of —94 dBm has been
estimated from the fridge wiring.

the next section for a detailed discussion). We emphasize
that the isolation performance is predicted in quantita-
tive agreement [blue and red lines in Fig. 3(b)] using the
same parameters we have extracted from our calibration
data shown in the previous section. We have repeated this
measurement over a wider range of gj(2), with each mea-
surement showing a similar level of agreement between
data and theoretical prediction. The data shown in Fig. 3
were taken at the value for g, that yields the best peak
isolation, in agreement with theory and limited by damp-
ing. The model is presented in Appendices A2 and C1,
and additional data are shown in Fig. 15.

To directly evaluate circulation in the device, we have
measured not only insertion loss between ports 1 and 2,
but also the power emitted at port b, P oy, Which is pro-
portional to Sp;. The data were taken using a spectrum
analyzer, in the same phase sweep as the S;; data. In
this measurement, the signal emitted at port b occurs at
the converted frequency w, = w, + w,. Figure 3(c) shows

064023-5



XI CAO et al.

PHYS. REV. APPLIED 22, 064023 (2024)

detected power against detection frequency, taken at the
“isolation” setting indicated in Fig. 3(a). The fact that a
prominent peak is visible at wy, is an indicator that isolation
in S, corresponds to transmission in Sy (i.e., that circula-
tion occurs). Peak power as a function of phase is shown in
Fig. 3(d). The maximum emitted power coincides with the
phase for the best isolation in S; (at —90°), and similarly
the minimum peak matches the best transmission (at 90°),
providing strong evidence for circulation. As with isola-
tion, the circulation behavior is captured quantitatively, up
to rf output line calibrations, by our model using the same
set of parameters. Data for additional values of gj(, are
presented in Fig. 15.

V. PARAMETER DEPENDENCE OF
PERFORMANCE

The data and model described above confirm that our
circuit is capable of achieving very good directional perfor-
mance, and that it is highly predictable. In the following,
we use these insights as a guide for predicting the perfor-
mance of integrated devices that may be used for isolation
and quantum signal routing. Specifically, we are interested
in how circuit parameters can be used to tailor insertion
loss and isolation, as well as the efficiency with which
the chiral coupler could be used to directionally emit and
absorb quantum states when integrated with a qubit, as
initially envisioned in Fig. 1(a).

First, isolation and insertion loss are useful metrics to
assess the utility of the chiral coupler as a circulator,
whether standalone or integrated with quantum devices on
a chip. We have observed that the internal damping of the
SNAIL modes causes a degradation of the device perfor-
mance, resulting in finite isolation as well as nonzero inser-
tion loss as shown in Fig. 3(b). The parameter governing
this degradation is the ratio between internal and exter-
nal damping, y;/y. Here, we assume all the modes have
the same external and internal damping rate. In Fig. 4(a)
we show the calculated isolation and insertion loss as a
function of y;/y, with device parameters similar to those
used in the experiment presented above. As expected, in
the limit of no internal damping the device approaches
ideal behavior (i.e., perfect isolation on resonance) and no
insertion loss.

A smaller y;/y ratio can be achieved either by increas-
ing the external coupling strength of the modes, or by
reducing the internal damping rate. Increasing the exter-
nal coupling by moving the a;, modes closer to the
transmission line is straightforward. Regarding the inter-
nal damping, we have observed that measured linewidths
increase significantly as frequencies are tuned away from
the flux-insensitive point. This observation indicates that
flux noise could be a limitation of coherence (see Fig. 10).
Assuming that flux noise is a dominating source of deco-
herence and that we cannot find an effective route to reduce

b
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FIG. 4. Performance predictions. (a) Insertion loss and isola-
tion versus damping and external coupling. Parameters: y /27 =
0.5 MHz, y,/27 = 0.5 MHz, g/2m = 0.5 MHz. (b) Insertion
loss and isolation as a function of SNAIL «. Dashed lines mark
parameters for the device used here. (c) Photon flux (blue, left;
red, right) when nominally emitting a single photon rightward as
shaped wavepacket. Dark line, ideal device; bright line, parame-
ters of the device used here. (d) Fraction of photons emitted to the
right as a function of external coupling rate and «. White marker
denotes current device.

it, we are left with the option to reduce flux sensitivity and
tunability; this can be achieved by reducing the SNAIL
parameter « [60] (see Appendix C 2). In Fig. 4(b), we show
the predicted isolation and insertion loss as a function of «.
For the calculation we have assumed that the flux noise is
the only source of internal broadening of the modes, and
we model this as a loss rate that depends on frequency sen-
sitivity, dw/dgex. We note that flux noise can typically be
expected to result in dephasing rather than energy dissi-
pation; an explicit distinction is beyond the scope of our
current work. It is worth noting that reducing o will also
lead to a decrease in the third-order nonlinearity of the
SNAIL, thus lowering the parametric coupling strength for
the frequency conversion process; this can be compensated
by stronger drives. In summary, we predict that a modest
change of design parameters y, and « should be able to
yield a dramatic improvement in both insertion loss and
isolation.

Finally, we return to our originally envisioned use case
for the device, namely to act as an interface for direc-
tionally controllable emission and absorption of arbitrary
quantum states encoded in traveling wavepackets. Based
on our model above, we compute the predicted efficiency
of on-demand, directional photon emission from b. We
assume that b is initialized with one photon, and by
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applying temporally shaped pumps with g;(2) (f) and appro-
priately chosen phase difference, the photon leaves as a
shaped wavepacket in the desired direction. For specifi-
cally chosen pump setting, the emitted photon flux as a
function of time is shown in Fig. 4(c). While the direction-
ality of emission is near-perfect using our experimentally
established parameters, efficiency is suppressed due to
internal loss and dephasing. Similar to the case of inser-
tion loss discussed above, however, we predict that high
emission efficiency can be achieved by tailoring circuit
parameters. In Fig. 4(d) we show the calculated emitted
number of photons as a function of @ and external cou-
pling strength y, where we assume the photons are emitted
from an ideal » mode without decoherence. Smaller «
and larger y result in dramatically reduced photon loss in
the device. With moderate adjustment of these parameters
(y/2m 2 3.5 MHz and o = 0.1), we predict that direc-
tional photon emission and absorption with efficiencies of
99% are achievable.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated a versatile directional interface
for integration with superconducting quantum circuits. In
this chiral coupler, parametrically controlled interference
breaks time-reversal symmetry and realizes nonreciproc-
ity with in-situ control. The experimentally realized device
displays a high degree of directionality, and we have
verified its performance in both isolation and circulation
measurements. Our circuit design consists of a minimal
number of modes, and can be described by a simple model.
With only few system parameters that can be calibrated
independently, our model successfully captures the mea-
sured device performance quantitatively and without free
fit parameters. Based on this model, we predict that sub-1%
inefficiency is within reach when using the chiral coupler
as a qubit-integrated circulator or quantum signal router,
without the need for significant improvement in device
quality. Looking forward, directly integrating our chiral
coupler with qubits on-chip will be a stepping stone for
harnessing nonreciprocity for scalable quantum proces-
sors. Integrated into readout circuitry, the coupler may
enable an isolator-free qubit readout scheme [2,34,37—39].
On the other hand, using the coupler as a quantum signal
routing element, it can enable driven-dissipative remote
entanglement [16,64,65], and the transfer of arbitrary
quantum states in all-to-all connected quantum networks
[17—19,66].
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APPENDIX A: MODEL

Here we give a detailed derivation of our model for
the chiral coupler. We first treat the chiral coupler as a
three-port device and derive the input-output relations for
each port. Then the full S matrix of the device is derived
using these input-output relations. We then discuss the
waveguide-mediated coupling and how to cancel it with
a bus-mediated coupling. Finally, we discuss the model for
quantum state transfer in a cascaded system of two chiral
emitters/absorbers implemented with our chiral coupler.

1. Input-output relations

We first assume that there is no internal damping in the
device. We treat the chiral coupler as a three-port device,
as shown in Figs. 1(b) and 1(d). The full Hamiltonian can
be written as

H= Hsys + Hp + Hy, (Al)

in which Hgs = Hs+ H, + H. describes the system
Hamiltonian for the chiral coupler. Here, H; describes the
a and b modes,

H, = woalay + wpb'b + woalar; (A2)

H,, describes the parametric frequency conversion process,
H, = 10 ™ alb + g (e “r ) alb + hec., (A3)

where w, is the pump frequency for the conversion pro-
cess; and H, describes the bus-mediated coupling between
a; and a; mode,

H. = g(ala + aia)). (A4)

For clarity we write H,. as a separate term, rather than
absorbing it into the system Hamiltonian. It is used to can-
cel the waveguide-mediated coupling; its origin and how
cancelation is achieved are discussed further below.
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The second term on the left-hand side of Eq. (A1) is the bath Hamiltonian:
Hy = / do o (dy()dr(®) + d} (@)dL(©) + d} (©)dy()). (A5)

Here dg()L) are the ladder operators for right (left) propagating modes in the transmission line and satisfy commutation

relations [d; (w),d (a) )] = 6(w — @)8; jr, where j,j’ = L, R, b. The system-bath interaction Hy, is given by

Hsb—l

«/_ > @V d (@)a; + eV diw)ay) + rdy(@)b —he. | (A6)
—1 2

where x; is the position of a; along the common transmission line and v is the speed of light in the transmission line. Here
we use the first Markov approximation, that is, the coupling strength y; is independent of frequency.
The input-output relation for the b port can be obtained in the usual way [11],

Ay (1) — i (1) = /7 (1), (A7)
and the dynamics for b are described by
—i[b, Hyys] — — Sy (1). (A8)

The equations of motion for mode a; and a; and input-output relation of the transmission line modes can be obtained in
a similar way. We first set x; = 0 and define t = x, /v for simplicity (without loss of generality). The equation of motion
for di(w) (k = L, R) is given by

dy = —ildy, H]
= —i[dy, Hy + Hg]

—iod+ Y ([ Lty ). (49)

j=1.2

The solution is

di(w, 1) = e U0 g (w, 1)) + Z [ [ 3 / df e =0l 1>"lw*a (/)} (A10)

j=12
where dj(w, tp) is the initial value for d at frequency . Similarly, the equation of motion for a; is given by
dj = —l[aj , H]
= _i[ajaHsys] - i[ajaHb + Hy]

1 X oy
= —ila;, Hys] — Nz f do./v; <e_lw%dL(60, D + €V dy(o, f)) . (A1)

To solve the equation for g;, we need the last two terms in Eq. (A11), which follow from Eq. (A10). For d;, for example,
we obtain

1 .
—— [ do/yie " vd(w, 1)
V2 ./ g t

1 Y _ [V _ / 5’
- dw yie 0= iw(t— to)dL(w tO) + E ke / dl/ iw(t— ) w4 a; /(f)
V2m ./ ’

j'=12

! G i
= —/dwﬁe (+770) g, (w, to)+—/dw/ ity [ JSyvpe T )a;/(l/)]. (A12)
2w f=y '
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For simplicity, we set x; < x,. We write the input field modes propagating in the L(R) direction as

in

1 )
=—— | dwe 0 d (w,1)). Al3
“ = m / (@, f) (A13)

Then Eq. (A12) can be simplified to

1 i i j j < .
\/T_n/dw Ve 9T dy(w, 1) = J7d" (¢+’%) —al(t)—i— /Y774 ( _ )@(, — ), (A14)

where j = 1 if j =2, and vice versa. Here ®(j — ;') is the Heaviside step function. We have used the §-function
representation

oo
/ dwe @ = 278(1— 1) (A15)

o0

in the above derivation. The integral for dr can be obtained in the same way:
L/dw % dp(w,1) = ST (t— ﬁ) —a 0+ Sy 7a ;T' OG —j) (A16)
\/ﬂ i RWW, 1) = \/Vjdp v J YiVi4g; J)-

We use the free-evolution approximation, O(t — ((|x; — x;/])/v)) = O(t)e™ "5 ="D/") This approximation is valid when
the delay time for photons from a; to a, is much shorter than the time scale of the evolution of the system. The operator
equation for g; can then be written as

Ix/ —x5|

a; = —ila;, Hys) — yja; (1) — Jyjy;e @ ’ a; — we‘iwo%diL“ — weiwo%dg‘. (A17)

The term /y; y;e"w(’(t*((‘xf =/ v))ajv corresponds to the waveguide-mediated coupling ;. In order to derive the input-

output relation for the propagating mode in the transmission line, we note that the solution to Eq. (A9) can be written
differently if we choose to integrate from a time ¢, > #:

de(@,0) = e D di(w,t;) = > [ e f dfe == g (r)} (A18)

; 2
j=1.2
Consider the integral (1/+/27) [ dod; (o, t):

1
— [ dwd(w,
_mwa(wt)

dwe™ @0 d, (w, o) + —/

3 [ )]

1
-7/ of @
dwe—zw(t t/)dL(a) tf) _ _/ / Z |: —lw Xf)aj(t’):| , (A19)

el
NG
and we write the output modes as

M = dwe ™" dy(w, 7). (A20)

7 |
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We then arrive at the input-output relation for the leftward propagating modes:

& —dr = 3 e a; (). (A21)

j=12

Similarly, we obtain for the rightward propagating modes:

dt—di =Y e a0, (A22)

j=12

The spatial separation between a; and a, mode is A/4, and we can set x; = 0,x, = A/4. By applying this condition to
Eqgs. (A7), (A8), (A17), (A21), and (A22) and using the expression for Hy, H,, H., we recover the input output relation
and equation of motion discussed in the Model section of the main text.

2..S matrix

The S matrix of the chiral coupler can be obtained by solving the input-output relation and operator equations
together in the frequency domain. We start from Eqgs. (1), (2), and (3). Taking the Fourier transform on both sides, we
obtain

—idoa) (@g) = —iwoa) (@) — ig1e¥'b(@g + w,) — yia1(@p)
— iy/71V2a2(@0) — igeax (@) — /1d} (@0) — \/y1dR (@) (A23)
—idpb(@p) = —iwpb(@p) — igie” " ay (@p — wp) — igre™ P ar(@p — wp) — %b(@b) — /7b™ (@) (A24)
—idoar (@g) = —iwoaz(@o) — ig2eb(&y + w,) — y2a2(@o)
— i\/y1y2a1 (o) — igea;(®g) — Vze_i%diLn((f)o) - Vze_i%dgl(ébo), (A25)

where @, and @, are probe frequencies for the a;(;) and b modes; these are frequencies close to the resonant frequencies
wo and wy, in practice. The parametric conversion process requires the frequency matching condition w, = w, — wy =
wp — @o; we define a frequency detuning § = @y — wy = wp — @p. Then we obtain

i8ay — ig1e¥'b — yiay — iy y1vaa: — igety — JPid — JyidE =0, (A26)
i8b —igie ¥\ a; — igre P2a, — %b — Mbi“ =0, (A27)
i8ay — ig2e'2b — yray — i/y1yaa1 — igear — Vze_i%diLn - )’ze_i%d}? =0. (A28)

We omit the frequency dependence for the operators for simplicity, as now they are all measured at their corresponding
probing frequencies. These equations, together with the input-output relations, yield the S matrix of the chiral coupler.
The S parameters are given by (here, for simplicity, let y; =y, =y =y, g1 =g =g, andy = —g.):

Ly s
B 4? cos (Agp) B 4z§ sin (Ag) — 4§ +C _2(D+E)
Sh=——7—", Sn= , Sy=——,
A A A
4i% sin (Ag) — 42 4 C 4% cos (A _
g Mgsin(Ag) md O dgcos(Ae) o _2D-E) (A29)
21 , S» , S )
A A A
2% (je~ie1 — oien) 2% (je~io1 4 o7i2) 4 — @iy)Otiy)
Ss1 == , Sp=-=% , Spy=—TE—
B B B

where we have introduced Ag = @1 — @3, 4 = (=4 + (6 + iy) (28 + iy))/g*) (8 +iy)/2)), B =4 — (26 + iy)?)/
g%, C= (25 +iy)(8* + y?)/g®), D = 1 ((y (—is + y))/g?), and E = €“2((y (8 + iy))/g*). Each S parameter is
obtained with other input signals set to 0 and the above result is used to generate the S matrix in Fig. 1(c) with Ap = £ /2.
For the more realistic case where y; # ¥, a similar solution can be obtained by choosing g. = —./y172.
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3. Cancelation of waveguide-mediated coupling

As explained previously, there is a waveguide-mediated
coupling between the a; and a; modes that needs to be
canceled. The coupling term arises from the second term
on the right-hand side of Eq. (Al1), which is due to the
interaction between a; and bath (the common transmission
line) modes. This term reads

) \x]- —x7|
aj = — ije*lwo%aj_,_... , (A30)
which can be effectively written as
. \x]- —x5|
élj == [_imelwoﬂa]‘raj +h.C.,aj:| 4+ ...
(A31)

Specifically for our case, where |x; —x;| =A/4 and
assuming y; = y, we have

a =---—1 [—iye_i%q;rq; + h.c.,aj] + .-

= —i[-yaa +he,a]+- . (A32)
Therefore this term acts as an effective interaction term
between a; and a;,, which may be absorbed into the system

Hamiltonian as an extra coupling term: Hyy = —y (aTaz +

ala;). In the derivation of this interaction, we only assume
a general system-bath interaction, as given in Eq. (A6). As
shown explicitly in Fig. 13, this extra coupling is detrimen-
tal to the directionality of the chiral coupler, and needs to
be eliminated.

The cancelation is realized by exploiting a “quantum
bus” coupling [56-59] between the a; and @, modes
through the b mode. To understand the origin of this inter-
action, let us consider the three modes a;, a, and b, with
coupling between each other. The Hamiltonian can be
written as

Hyys = woaial + a)oazaz + a)bbTb

+ (gua;raz + gbawlkb + gba;b + h.c.), (A33)
where for simplicity we assume that the a modes have the
same frequency (wy) and the same coupling (gp) to the b
mode. We also assume a dispersive coupling regime (i.e.,
g K A), where A = wp — wy is the frequency detuning
between the modes. We can then apply a Schrieffer-Wolff
transformation. The transfer matrix is given by

S = %(a'{b —ab" +alb — ayb"). (A34)
The Hamiltonian transforms as
I:Ibus == eSHbuseisa (A35)

and we use the Baker-Campbell-Hausdorff formula,

_ 1
Hbus = Hbus + [S’ Hbus] + E[S, [Ss Hbus]] + - (A36)

Since g < A, we can treat the mode couplings as a
perturbation, and write the Hamiltonian as

Hys = Hy + V., (A37)

where ngs = woaIal + a)oa;az + wpb’h and V= (glzalu
ai +gbaalrb+gba;b+h.c.). Up to first order in V, the

transformed Hamiltonian in the dressed basis is now
I g F ;o f A
Hyys = wya,a1 + wyayas + wpb'b

2
+ |:g12 + gzb] (aiaz + ala;), (A38)

where w) = wy — g2/ A, and w}, = w, + g7/ A are the new
mode frequencies in the dressed basis. Note that we have
already worked in this dressed basis in the main text and
derivations in previous sections, with the * omitted. This
extra coupling between the two a modes, g7/A, is gen-
erated because both a; and a; modes are coupled to the
b mode. Together with the original coupling between the
two a modes, we reach the “cancelation coupling,” g., in
the main text:

2

8
g =gn+ Kb-

(A39)
Its frequency-tunable nature allows us to reach the desired
coupling strength by biasing b to the right frequency.
Equation (A39) is used for fitting the cancelation ratio data
shown in Fig. 2(c).

4. On-demand directional photon emission and
absorption

To investigate quantum signal routing, we consider the
case of on-demand photon emission and absorption: b is
initialized with one excitation, and we aim to release this
excitation coherently as a traveling photon, with direc-
tional control. Conversely , we want the ability to absorb
traveling wavepackets into excitations in b. In general, this
requires a tunable coupling between the mode and its bath
[15]. These tasks can be realized with the chiral coupler by
parametrically controlling the couplings g(f) between the
b mode and two a modes.

Here, we provide a semiclassical time-domain solution
to this question by solving the input-output relations and
equations of motion for the mode operators. The target
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FIG. 5. Numerical solutions for on-demand photon emission
and absorption. (a) Photon flux to the left (blue) and right (pink)
as a function of time. Colors from light to dark represent y,, =
0.5y, 1.0y, 1.5y, respectively. (b) Average photon number in b
mode as a function of time during the photon absorption pro-
cess. Colors from light to dark represent y,, = 0.5y,1.0y,1.5y,
respectively. (c),(d) Parametric pump amplitudes as a function of
time for on-demand pitch and catch of the wavepackets in (a).
Parameters used in the calculation: y /27 = 1 MHz, y,,/2m =0
MHz, ypn = 0.5y, 1.0y, 1.5y, o1 =7/2, o = —1/2.

wavepacket is chosen to have the form

o) = @sech (@O s

> (A40)

where 1/ypy is the full width at half maximum for the
wavepacket in the time domain. The form is chosen
because it provides an analytic solution for the shape of
the parametric pumps [20]; other shapes may be solved
for numerically. For the on-demand directional photon

_Z[Oa Hb + Hsb] -
j=12

/deﬁ( ¥t 410,41+

emission, we first initialize the b mode in a coherent state
with one photon on average (i.e., (b'h) = 1). In in the
equations of motion and input-output relations, we set all
inputs to 0, and solve with initial condition a; = 0,a; =
0,5 = 1. The analytically obtained form of the magnitude
of the parametric pump is given by

—¥pho/Vpn tanh (224) + 2y /7pn
|g1(2) (t)| - ( (Vp )) 2 (Vph )
1—tanh( ——1) ) cosh
_8\/ yph + y 2 -
(A41)

The solutions for the pumps and emitted field as a function
of time, for the case of a rightward emitted wavepacket,
are shown in Figs. 5(a) and 5(c). Directionality is achieved
by controlling the relative phases between the two pumps.

On-demand photon absorption can be calculated in a
similar way. Because the incoming wavepacket ¢(f) is
time-symmetric, the absorption process is the time inverse
of the emission. Absorption can thus be achieved by set-
ting g12)(#) = gi2)(—1). When solving the equations of
motion, we set d}?(t) = ¢(f), keep all other inputs 0,
and initial conditions are a; = 0,a;, = 0,b = 0. Example
solutions for photon absorption are shown in Figs. 5(b)
and 5(d).

These calculations provide semiclassical evidence for
directional emission and absorption capability of the chiral
coupler. To discuss its performance (e.g., transfer fidelity)
when routing quantum signals, we present a quantum
description below.

5. Quantum state transfer

We begin by deriving the quantum master equation for

a single chiral coupler. Similarly to Eq. (A11), we now
consider the equation for an operator O:

O = —i[O, Hsys]

— i[O, Hy + Hg]. (A42)

The second term on the right-hand side yields

e F di[0,q] — V[0, a]1d, — ¢V [0,4] V)

+ Nrs / dw/75(d)[0,b] — [0, b1dy)

v (410,41 - 10,014

2
"2

(( oot (ginyT 4 eion (a"“)T) [0,4)] - [0, a1 (e—"“’o%"d;“ + ei‘”o%dg‘))
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‘ lj —xs | ‘ by ;|
n Z m (e_m()([_j“j)ajf[o, a;] — elwo(t_ S )[O, a;]a])

+ V7 (6™ [0, ] — [0,5T1H™) + % (b'10,b] — [0,b11b), (A43)

where we used Egs. (A14) and (A16), and a similar result for ™ from input-output theory. Now consider the expectation
value of this operator (O) in the Heisenberg picture. We use the cyclic invariance of the trace operation and we also
assume the initial state of the propagating mode to be the vacuum state, thus setting ¥ — 0, d}" — 0, and d — 0:

d(0) do dprot
— L = Tr| —pu | = Tr| 022
dt r[dt'o“] r[ dt]

1 1 .
= ~iTr | O.[Hys. pail + D 2010 pront; = 51y pi)] + 150 bprach’ = 5 b7, pra)

=12
by — X1 P Lo h
+ Z 2, /v v;Ocos | wo aj Protdt; — E(pwtq, a; + a; a; piot)
j=1.2
. . lx1 — x2|
— i/Y1720sin (on [aIaz + ala;, Prot] | - (Ad44)

Because the operator O is an arbitrary local operator of the chiral coupler, its expectation value can be obtained inde-
pendently of the partial trace of the propagating modes. Thus, the reduced master equation for the chiral coupler can be
written as

dp ) , X — x5
= ~ilHy + H].p] + > @y D(ay)p +2,/y;7; cos <a)o

j=12

)D(aj,aj)p) + vD()p, (A45)

where p = Trp(pyt) is the density matrix of the chiral coupler, Tr,(.) is the partial trace with respect to the propagating
modes, and Hj’ =YY sin (wo((Ix; —x71)/ v))(afaz + ala;) corresponds to the waveguide-mediated coupling between
the @ modes. When the physical separation between the @ modes is A/4 and y; = y, = y, the Hamiltonian will lead to the
equations we used in the main text.

Next, we can derive from this the full quantum master equation of two chiral couplers that share the same transmission
line. The bath Hamiltonian for this case is

Hp = / do o (dy()dr() + d} ()dL () + d) (@)dy, (@) + d} (@)dy, (), (A46)
and the system-bath interaction Hamiltonian is

1

4 _ N 2
Hop =i [ do > V7 (P dl@a + eV dy@ia ) + Y Sy d) @ —he. | (A47)
T X X
Jj=1 j=1

where ds_) is the ladder operator for the propagating mode in the semi-infinite transmission line on b’s port of the jth
chiral coupler, and y,, is the external coupling of the corresponding b mode. The input-output relations for the b modes
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remain the same as the single coupler case. The solution for the propagating mode in the transmission line is given by

4 - t ) oy
di(w,1) = e di(w, 1) + Z[ | / di et D g (z’)] (A48)
i3 27 Jyy

Then, for an arbitrary local operator of the chiral coupler, we can obtain
— i[O, Hg + Hsg]

4
1 i —iwi —iwi ia)'l
= E/dwzﬁ(elwi d[0,q)]+ eV d}[0, 4] — e V[0, a]1dy — &7 [o,aj]dR)
j=1
2
t t
+ = / dw,; ¥ (@, 10.,1 = [0.5]1d)

_ i VT (6% @D+ et @)) 10,011~ [0,a]1 (70T df + e dp))
j=1

! A —iwg <I7M> i (17 x; —xk\) ’
+ZV] ( [0, Cl] [O,aj]a/) +ZZVV]V!€ (e v aZ[Osaj] —e o [O,aj]ak>

J=1 k#j

+Z[ , (6M'10.81 - [o,bj]b}")+%(b][O,b;]—[o,b}]b,-)]. (A49)

Then consider the same expectation value (O) and set all the initial state of the propagating mode to be the vacuum state:

d{o do d
L =Tr [E'Dtm} =Tr [0 'Owt:|

dt dt

4 2
+ 1 A
= —iTr 05 [Hsys’ ptot] + Z 23/] |:O (ajptota} - E{a} a;, ptot}>i| + Z Vb/ 0 (bj ptotbj' - E{b} bj, ptot})

j=1 Jj=1

4 4
X — x| 1 ¥
+ YD 2770 cos <wo — aj provct, — 5 (Podfai + a6 pror)

Jj=1 k#ji
Xkl
—1 Z Z VY VO sin (wo [ajak + aja}:, Prot] | - (A50)
j=1 k>j

This reduces to a master equation for the two connected chiral couplers:

% = il + H), o143 2D p+ZVb,D(b 1o+ Y 25T cos (wol ')D(aj,akm (AS1)

j=1 Jj=1 k#j

where H; = Z;‘: | ZL SNGT sin (wo((Jx; — xx[)/ v))(a;ak +a; az) is the waveguide-mediated coupling between the a

modes.
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FIG. 6. Quantum state transfer simulations. The Wigner func-
tions of the state sent (top row) via a first chiral coupler and
received (bottom row) by a second chiral coupler are shown
for two different states. Parameters used in the calculation are:
y/2m = 5MHz, y;//2m = 0 MHz, y,n = 0.1y

Using the master equation (A51) we can now compute
numerically state transfer fidelities. To illustrate this here,
we consider an ideal situation (no experimental imperfec-
tions), and two different types of initial states: Fock state
superpositions, and cat states (i.e., coherent state superpo-
sitions). At t = 0, the » mode in the first chiral coupler
is initialized with the chosen initial state. The parametric
pumps for both chiral coupler are then activated, with a
phase setting such that the first device emits the state to
the right, while the second one absorbs radiation coming
from left. The amplitude of the pumps is set according
to Eq. (A41), with t — ¢ and ¢t — —¢ for emission and
absorption processes, respectively. The calculated Wigner
functions for the states sent and received by the two chiral
couplers are shown in Fig. 6. As the model only requires
linear modes with parametric interactions, the chiral cou-
pler is not limited within the basis of |0) and |1), but allows
us to work with different encoding schemes, which shows
its potential to route complex quantum states throughout a
network.

APPENDIX B: EXPERIMENTAL SETUP

The circuit was fabricated by the Superconducting
Qubits at Lincoln Laboratory (SQUILL) Foundry at MIT
Lincoln Laboratory. The designed SNAIL junction param-
eters are: L; = 3.0 nH (Z; value for one junction on the
three-junction arm) and o = 0.29 for a; and ay; L; = 2.5
nH and o = 0.29 for b.

Measurements were performed using an Oxford Tri-
ton 500 dilution refrigerator, at a base temperature of 10

mK. The experimental setup is shown in Fig. 7; most of
the wiring follows common best practices in circuit QED
experiments [67].

APPENDIX C: PERFORMANCE ANALYSIS AND
IMPERFECTIONS

We have already established the model for the chiral
coupler in the ideal case. We now go one step further and
discuss performance limits imposed by nonideal param-
eters. We first discuss the impact of internal damping
rate, and how the performance can be improved by using
a SNAIL with smaller «. We then discuss the effect of
imperfect cancelation of waveguide-mediated coupling.

1. Effect of damping

Including the effect from finite internal damping, the
relevant equations of motion become

A 2 .
a; = —iwpa; — iglel(wpf+<ﬂ1)b _ 2y '; Vz,l)al
—iyay — igeay — Jydy — /vy, (C1)
b= —iwpb — igle_i(wpf'f‘fﬁl)al

_igye i@t g, _ (Vb";—y’lb)b — Jmb™, (C2)

Qy + yi2)
G

—iya) —ig.a, — \/?e_’%diL“ - ﬁei%d}?, (C3)

a, = —iwydy — igzel(wpt-’_wz)b —

where Vi1, Vi2,vip are the internal damping rates of
ai, ay, b, respectively. To discriminate between the effect of
finite internal Q and detrimental effects from pumping we
have measured S, under different conditions (Fig. 8). We
observe similar Sy, indicating that the parametric pumps
do not introduce excess damping and the device insertion
loss is a result of internal damping.

To further understand the behavior of the chiral coupler
with a finite internal O, we calculate the S;; by solving
this set of equations together with the input-output rela-
tions. Predictions for S,; with finite internal damping rates
are shown in Fig. 9(a). The result shown in Fig. 4(a) is
obtained by finding the minimum of S,; over a larger range
of the y;,/y ratio. The increase of the internal damping
rate of the SNAIL mode thus clearly results in a decrease
of both insertion loss and isolation of the chiral coupler.

This internal loss also impacts state transfer fidelity in a
cascaded system. We consider an example where the ini-
tial state (|0) + [1))/ V2 is transferred from the first chiral
coupler to the second, and the process is simulated using
the full quantum model developed in the previous section.
The transfer fidelity as a function of y;,/y is shown in
Fig. 9(b).
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Experimental setup. Most of the wiring and filtering follows typical best practices [67]. Relevant additional specifics are as

follows. Low-pass (LP) filters: probe lines, 12 GHz (K&L 5L.250-10200); pump lines, additional 2.8 GHz LP filters (Mini-Circuits
ZLSS-A2R8G-S+); flux lines, two LP filters (Mini-Circuits VLFX-80 and Mini-Circuits SLP 1.9) and a bias tee (Mini-Circuits ZFBT-
4R2GW+). Output line configuration: two cascaded double-stage isolators (Low Noise Factory LNF-ISCIC4_12A), high electron
mobility transistor (HEMT) amplifier (Low Noise Factory LNF-LNC4_8C); additional circulator (Low Noise Factory) for reflectome-
try on mode b; room temperature low-noise amplifier (Low Noise Factory LNF-LNR4_14C). Room temperature electronics: dc source
for flux bias, Yokogawa GS200; VNA, Keysight P9374A; rf source (WW src) used in gyration measurements, SignalCore SC5511A;
spectrum analyzer (SA) used in gyration measurements, Keysight N9030B. Pump tones were synthesized with a Xilinx RFSoC board,
programmed using the open-source QICK software [68].

2. Flux noise

Lowering damping of the internal modes of the chiral
coupler would immediately result in improved perfor-
mance. As shown in Fig. 10, the measured linewidth of
mode «; displays a trend that qualitatively matches its flux

sensitivity. Because there is an obvious difference (by a
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factor of about 3) in the SNAIL linewidth between the flux
insensitive point and the operation point, we believe that
flux noise is a major reason for damping or dephasing, and
thus of lowered performance. One promising approach to
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FIG. 8. [Insertion loss with and without pumps. Normalized S,

measured in two different cases at the best waveguide-mediated
coupling cancelation point. (a) Both parametric pumps are off
[the top data shown in Fig. 2(b)]. (b) Parametric pumps are on
with a relative pump phase set to 7/2 [the pink data shown in
Fig. 3(b)].

reducing the impact of the flux noise is to use a SNAIL
with a smaller . We note that energy loss and dephas-
ing could not be distinguished in our network analyzer
measurements, as both manifest as line broadening in the
frequency domain. An improved noise model could be
established, for example, using ringdown measurements.
The SNAIL is designed to be a dipole circuit element
with third-order nonlinearity and minimal fourth-order
nonlinearity [60]. A typical SNAIL is a superconducting
loop of three Josephson junctions and a single smaller
junction shunted by a large capacitor. The whole loop is
threaded with magnetic flux ®.y;. The Hamiltonian for the

(a)

—_
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o
Z
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-5.0 =
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probe detuning (MHz) Yi,alY

FIG. 9. Calculated impact of internal damping on the perfor-
mance of the chiral coupler. (a) Numerical solution for S,; at
passing (top) and isolation (bottom) settings with finite inter-
nal damping rate; for simplicity we set y;; = y,2 = V,,. Passing
(pink) and blocking (blue) predictions are shown as a function
of probe frequency detuning at different y;, versus y ratios. The
colors from dark to light represent y, ,/y = 0.01,0.1, 0.2, respec-
tively. (b) The fidelity of transferring (|0) 4 |1))/ V2 from one
chiral coupler to another as a function of the ratio between y;,
and y.

dffd@ex: (GHz)

0.225
reduced external flux

FIG. 10. SNAIL linewidth and flux sensitivity. (Left axis,
dots) Measured linewidth of a; as a function of external flux.
(Right axis, line) Calculated flux sensitivity of the mode fre-
quency as a function of external flux.

SNAIL is

Hg = 4E-n* — aE; cos(p) — 3E; cos ((t@;_—@) R
(C4)

where E¢ is the charging energy of the SNAIL mode, # is
the charge operator, E; is the Josephson energy is of the
small junction, « is the ratio between Josephson energy
between the large and small junctions, ¢ is the phase over
the small junction, and @ey; is the reduced external flux. We
an expand the inductive part HY of this Hamiltonian near
the energy minimum point (¢min):

E
Hé‘ = 7J(02 (‘.0 - (pmin)z +c3 ((.0 - q)min)3

+ ca(p — §0min)4 +--0), (C5)
where the coefficients for each order are functions of « and
QPext> Ci = Ci(0t, Pext). As an example, normalized SNAIL
coefficients as a function of external flux calculated with
the design values of a@; are shown in Fig. 11(a).

To estimate the SNAIL mode dephasing rate due to the
flux noise, we assume the chiral coupler is operated at
the fourth- order nonlinearity cancelation point. Given the
coefficients above, the SNAIL mode can then be quan-
tized, with the resonant frequency ws = /8Ec(cz2E;). The

dephasing rate of the SNAIL Ff is a function of the flux
noise power spectrum, Sgyx (@):

da)s
I ¢ — Sgux (@).
5 d(pext !

(Co)
Here we assume the flux noise is the same across the fre-
quency tuning range. Then the dephasing rate is set by the
frequency sensitivity to the external flux, which is pro-
portional to the derivative of SNAIL coefficient ¢, with
respect to the external flux. This derivative is shown in
Fig. 11(b) as a function of «. In Fig. 4(d) of the main text,
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their maximum values. The solid line, dashed line, and dash-
dotted line represent the c¢;, c¢3, and ¢4 values, respectively.  FIG. 12. Impact of pump leakage. (a) Numerical solution for

Ideally, the SNAIL is operated at the point where the fourth-order
nonlinearity is suppressed. The black dashed line represents the
operation point for the data shown in the main text. (b) The slope
of ¢, at the fourth-order cancelation point as a function of SNAIL
« value. The black dashed line represents the parameter of our
current device.

the impact of « is estimated by setting the internal damp-
ing rate proportional to the value at « = 0.29 according to
the calculated derivative value. We note that by choosing
a SNAIL with @ = 0.1, we predict an improvement by a
factor of 3 compared to our current device.

3. Effect of Kerr nonlinearity

In order to match the A /4 separation condition, it is dif-
ficult to operate the SNAIL exactly at the Kerr free point.
The black dashed line in Fig. 11(a) shows the operation
flux value for the a;, mode, where the residual Kerr non-
linearity is 25% of the maximum value. However, the use
of the SNAIL largely suppresses this fourth-order nonlin-
earity, and we do not observe an obvious pump induced
Kerr shift when operating the device. We do note that the
issue of matching the frequency for A /4 separation to the
Kerr free point does not put a fundamental limitation on the
design and it can be optimized with a more precise circuit
parameter control in the fabrication process.

4. Effect of pump leakage

Pump leakage can be modeled as an extra mode con-
version term in the equation of operators. For example,
including a pump leakage term in [Eq. (A24)] results in

— ioay (@)

= —iwpa) (@) — i(g1€¥" + €2262)b(@y + w))
— y1a1(@) — iy/y1y2a2(@0) — igeaz (o)

— /7d (@) — Y7idg (@),

where the term eg,e™2b (@ + w,) represents the effect of
ay’s pump on the a; mode. ¢ is the pump leakage ratio

(€7

S, at passing (top) and isolation (bottom) settings with differ-
ent pump leakage ratio; for simplicity we set y;1 = yi2 = Viq.
Passing (pink) and blocking (blue) predictions are shown as a
function of probe frequency detuning at different y,,/y ratios.
The colors from dark to light represent € = 0.0, 0.2, 0.5, respec-
tively. (b) Measured S,; as a function of pump frequency and
probe frequency. Both a; and a, are biased at the same frequency
and the parametric pump for a; <> b is applied to the system with
a changing frequency. The dashed and solid arrow indicate the a;
and a, mode, respectively.

between the two pump lines. The pump leakage from a;
to a, can be modeled similarly. In Fig. 12(a), we show
the predictions for Sp; with different pump leakage ratios.
The increase of the pump leakage ratio clearly results in a
decrease of both insertion loss and isolation of the chiral
coupler.

To evaluate the pump leakage in our experiment, we
have first biased both a; and a; to the same frequency and
then applied the pump inducing mode conversion a; <> b.
The measured S, as a function of the pump frequency is
shown in Fig. 12(b). We can observe the pump induced
mode splitting pattern on the a; mode while the a, mode
remains unchanged under the pump. This observation
suggests that there is no noticeable pump leakage.

5. Effect of imperfect waveguide-mediated coupling
cancelation

Another important factor that affects the performance
of the chiral coupler is the imperfect cancelation of the
waveguide-mediated coupling (i.e., |g.| # |y |). The effect
of this case be seen, for example, in imperfect directional
emission of shaped wavepackets. In Fig. 13(a) we show the
calculated outgoing photon flux as a function of time after
b is initialized with one photon, and drives are applied to
emit the state. The “pitched” photon is partially emitted in
the wrong direction as the coupling cancelation deviates
from the ideal case. This leads to decoherence in a net-
work: the purity of the state received by a second party
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FIG. 13. Effect of residual waveguide-mediated coupling on

directionality. (a) Left (blue) and right (magenta) emitted photon
flux as a function of time. Colors from light to dark represent
lge/v|=1.0,0.8,0.5, respectively. (b) Purity of the received
state when transferring state (|0) + [1))/ V2 as a function of
8/v-

(when attempting to transfer (]0) + |1))/ V/2) as function
of the ratio g./y is shown in Fig. 13(b).

6. Calibrating waveguide-mediate coupling cancelation

The degree of the cancelation is inferred by measuring
the S; trace when both a modes are biased at their opera-
tion point without applying pumps. Ideally, unit transmis-
sion is achieved at the cancelation point, and a dip will
emerge as we deviate from it. The depth of the dip reflects
the degree of the cancelation. In practice, we still see a
finite dip near the perfect cancelation point, due to the
internal damping rate of the SNAIL mode. With finite y;

normalized S»; (dB)

probe detuning (MHz)

FIG. 14. Coupling cancelation measurement. Note that we
offset the traces by a 5 dB for visual clarity. The cancela-
tion ratio g./y = 1.04,0.72,1.28,0.55, 1.60 from top to bottom
correspondingly. The degree of waveguide-mediated coupling
cancelation is obtained by measuring S,; at the operation point
without pumping. The dip of the curve reflects the degree of can-
celation. The cancelation ratio is obtained by fitting the data to
the model given in Eq. (C8).

5 =0.76 MHz ©
. 2= 0.77 MHz, £
[as] om
s 0 o
W 20 W g
S & =0.97 MHz e
g -0 3
[
-5 0 5 o
probe detuning (MHz) pump phase (degrees)
FIG. 15. Isolation and gyration at different pump powers. (left)

Normalized $,; data as a function of probe frequency (right) Peak
output power at port b as a function of probe frequency. A power
offset of —94 dBm estimated from fridge wiring is added to the
theory curve for the isolation measurement. Note that the isola-
tion performance is not optimal for both small and large g values;
this is explained by the fact that ideal nonreciprocity requires
matching coherent and dissipative dynamics of the modes [52].

and g. # vy, S»; at g = 0 becomes

So1 = [4g% + 8gcve — 487 + yirvia + 218 (yi1 + vin)1/
[8y2 + 482 + 8gcye — 482 + Virvia

+ 2i8(vi1 + ¥i2) + 2ve(4i8 + yin +vi2)]. (C8)
It is easy to verify that with g, = —y. = —y, Yi1 = vi2 =
0, this turns back into the ideal case [Eq. (A29)].

In order to locate the cancelation point, we fit the data
to the model given in Eq. (C8). We show S,; measured at
different cancelation points in Fig. 14. The coupling cance-
lation ratio shown in Fig. 2(c) in the main text is obtained
from this fit.

7. Isolation and circulation performance

By taking into account all parameters and models dis-
cussed above, our theory shows good quantitative agree-
ment with measured isolation and circulation data across
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a wider range of pump powers. In Fig. 15, we show both
isolation and circulation data obtained at different pump
powers. The theory curves are obtained with parameters
independently calibrated as discussed in the main text.
g was obtained by extrapolation of the data shown in
Fig. 2(e). We stress that a single set of circuit parameters
(Table I in the main text) was used for predicting all data
in Fig. 15.
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