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Establishing limits of entanglement in open quantum systems is a problem of fundamental interest, with strong

implications for applications in quantum information science. Here, we study the limits of entanglement stabi-

lization between remote qubits. We theoretically investigate the loss resilience of driven-dissipative entanglement

between remote qubits coupled to a chiral waveguide. We find that by coupling a pair of storage qubits to the

two driven qubits, the steady state can be tailored such that the storage qubits show a degree of entanglement

that is higher than what can be achieved with only two driven qubits coupled to the waveguide. By reducing the

degree of entanglement of the driven qubits, we show that the entanglement between the storage qubits becomes

more resilient to waveguide loss. Our analytical and numerical results offer insights into how waveguide loss

limits the degree of entanglement in this driven-dissipative system, and they offer important guidance for remote

entanglement stabilization in the laboratory, for example using superconducting circuits.

DOI: 10.1103/PhysRevResearch.6.033212

I. INTRODUCTION

Quantum reservoir engineering is a powerful paradigm to

make use of the environment of a system to engineer or sta-

bilize its quantum state [1]. With entanglement being one of

the defining features of quantum mechanics, it is particularly

interesting to understand the conditions under which spatially

distributed entangled states can be stabilized. Protocols for

stabilizing entanglement are typically based on engineering

the coupling between the qubits and a shared lossy environ-

ment such that the collective dissipation of the qubits relaxes

them into an entangled state [2–7]. Entanglement stabilization

has also been experimentally demonstrated on multiple phys-

ical platforms including trapped ions [8] and superconducting

circuits [7,9–11].

Here, we are particularly interested in entanglement stabi-

lization between remote qubits: qubits that are not coupled

directly or even hybridized through a “bus” mode. Such a

stabilization protocol—which is independent of the distance

between the qubits—is also interesting from the perspective

of quantum information processing. With the recent surge of

interest in quantum networks, it has become important to be

able to deterministically distribute entangled states between

spatially separated qubits [12–14]. In this context, we are

interested in stabilizing and storing an entangled state dis-

tributed across two nodes of a network. Our central aim is

to understand how residual, nonengineered dissipation that is

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

not a part of the stabilization scheme impacts stabilization

performance and how it may be possible to overcome the

resulting limitations.

We take as the starting point of our investigation a well-

understood result: two qubits dissipatively coupled to a

one-dimensional (1D) chiral waveguide can be driven into an

entangled steady state [5,6]. Furthermore, it has been recently

shown in Ref. [15] that if we replace the two qubits coupled to

the chiral waveguide with chains of N qubits, the system can

relax into a highly entangled state that approaches a product

of Bell pairs. This is illustrated in Fig. 1(a) for N = 2, which

is the focus of this work. This serves as a basis for stabilizing

remote entanglement, and also storing the entangled state by

preventing it from directly decaying into the waveguide.

Surprisingly, we find that by passively coupling a pair of

storage qubits to the original system of two qubits coupled

to the waveguide, not only do we stabilize entanglement in

the storage pair, but the entanglement of the storage pair can

exceed the maximum entanglement achievable in the original

protocol, given any degree of photon loss in the waveguide.

While the increase in the degree of entanglement is not huge,

it is intriguing in itself to wonder why the storage qubits

are more loss-resilient compared to the driven qubits. We

find that the photon loss in the waveguide effectively acts as

a relaxation process on the upstream driven qubit. Remark-

ably, the exact solution found in Ref. [15] has a parameter

regime that minimizes the population of the driven qubits,

thus mitigating the effect of this induced relaxation process,

and yet it stabilizes a Bell pair on the storage qubits. This

results in an increase in the degree of entanglement of the

storage qubits (compared with the original protocol) at the

expense of the driven qubits. Our findings are complemented

by an analytical understanding of the system in this regime:
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FIG. 1. (a) A schematic of two-qubit chains with the boundary

qubits coupled to a unidirectional waveguide. The boundary qubits

are driven by a common Rabi drive with strength �. Ji,i+1 is the

rate at which neighboring qubits in a chain exchange excitations.

Waveguide loss is modeled using a fictitious beam-splitter that allows

a photon to pass through with probability η2. (b) Sketch of a possible

circuit quantum electrodynamics implementation of the schematic

in (a) with N = 2. (c) Steady-state concurrence of the system with

N = 1 for different degrees of waveguide loss. See Sec. II B for

details. (d) Time evolution of the concurrence for the ratios �/γ

marked by circles in (c). The dotted vertical lines show the effective

on-site decay time on the upstream qubit due to waveguide loss.

by adiabatically eliminating the driven qubits, we find that

the effective drives on the storage qubits have a “built-in”

asymmetry that counters waveguide loss, making them more

loss-resilient compared to the protocol with only two driven

qubits. Finally, we find that due to the interplay between the

driving, dissipation, and qubit-qubit couplings, there is an

experimentally feasible parameter regime in which the storage

qubit entanglement always exceeds the best entanglement of

the original two-qubit protocol.

This paper is organized as follows. In Sec. II, we review

how two qubits coupled to a 1D chiral waveguide relax into

an entangled state, and we provide an explanation for how

waveguide loss limits the degree of entanglement of the steady

state. In Sec. III, we discuss how adding a pair of storage

qubits leads to a slightly improved resilience of the entangled

state against waveguide loss. We explain the mechanism be-

hind this improvement and quantify the gain in entanglement

over the maximum entanglement achievable with only two

driven qubits. Section IV discusses the prospects of adding

more qubits to each node and potential limits on how robust

the steady state can be against waveguide loss.

II. STABILIZING TWO-QUBIT REMOTE

ENTANGLEMENT

A. A driven cascaded network of qubits

We begin by considering a pair of qubit nodes connected

via a unidirectional waveguide. Each node consists of a chain

of qubits exchange-coupled with strength Ji,i+1. The first qubit

is radiatively coupled to the waveguide with strength γ , and

Rabi driven with strength �, as illustrated in Fig. 1(a). We

stress that the waveguide is a continuum of modes; the qubits

are not coupled to a single waveguide mode. Moreover, as

we show next, the purpose of the waveguide is to engineer

collective dissipation between the qubits, not to mediate any

type of coherent coupling. Thus, it is essential that the qubits

are radiatively coupled to a continuum. The N = 1 limit of

this system, consisting of two driven qubits coupled to a

unidirectional waveguide, has been studied previously and

has been shown to have a steady state that can be highly

entangled [5,6]. We briefly revisit this result for completeness,

and then discuss how this system performs in the presence of

waveguide loss.

The cascaded network of qubits can be modeled by the sys-

tem Hamiltonian consisting of the qubits, the waveguide, and

their interaction. Using a Markov approximation and tracing

out the waveguide modes, we can obtain the equation of mo-

tion of the reduced two-qubit system, as originally described

in [16,17]. Alternatively, we can employ the SLH formalism

[18] to identify an SLH triple (scattering matrix, Lindbladian,

Hamiltonian) for each element in the network, and then use

series composition rules to obtain the effective SLH triple for

the cascaded system (see Appendix A for details). The master

equation for a cascaded system of two driven qubits can then

be written as

ρ̂ = −i[Ĥ , ρ̂] + γD[ĉ]ρ̂, (1)

where γ is the coupling strength between the qubits

and the waveguide, and D[X̂ ]ρ̂ = X̂ ρ̂X̂ † − {X̂ †X̂ , ρ̂}/2. The

waveguide-coupled Hamiltonian is given by

Ĥ =
�

2

(

σ̂ x
A + σ̂ x

B

)

+
�

2

(

σ̂ z
A − σ̂ z

B

)

+ i
γ

2
(σ̂+

A σ̂−
B − H.c.),

(2)

and the joint collapse operator is given by

ĉ = σ̂−
A + σ̂−

B . (3)

The Hamiltonian is written in the rotating frame of the com-

mon Rabi drive, which has strength � and is detuned by �

(−�) from qubit A (B). The last term in Eq. (2) describes the

waveguide-mediated interaction between the qubits. The joint

collapse operator ĉ arises from the interference between pho-

tons emitted from the two qubits. Note that we have assumed

here that the waveguide is at 0 K, which is justified in the

context of circuit QED. Superconducting circuits operate at

around 10 mK and transmons typically have resonant frequen-

cies around 5 GHz. This leads to a thermal photon population

of around 4 × 10−11. Thus, qubit excitation processes by the

waveguide are exceedingly rare, so we neglect them.

To find a pure state of this system, we look for a dark state

(a state that gives zero when the collapse operator is applied to

it), which describes a state of the system in which no photons

propagate beyond the two qubits. One can see [5,6,19] that

there is a dark state of this system that is also an eigenstate of

the Hamiltonian with a zero eigenvalue, and therefore a steady

state of the system, given by

|ψ0〉 = |00〉 +
√

2�

2� − iγ
|S〉, (4)
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up to a normalization constant. |S〉 = (|01〉 − |10〉)/
√

2 is

the singlet state. For �2 � �2 + γ 2/4, the dark steady state

is entangled. The unidirectional nature of the waveguide

gives rise to steady-state entanglement that is independent

of the physical distance between the qubits. From an ap-

plication perspective, this protocol is thus highly interesting

for realizing on-demand entanglement between distant qubits.

With superconducting qubits, for example, one could envision

distributing entanglement across “modules” of a quantum pro-

cessor [20–25] [Fig. 1(b)]. To assess the practical potential of

this protocol, however, we must first understand how waveg-

uide loss affects the attainable degree of entanglement. In the

following, our goal is to gain an intuitive picture of the effect

of waveguide loss, as well as develop approaches to improve

resilience against this loss.

B. Understanding the effect of waveguide loss

We begin by deriving the collapse operators for our system

in the presence of waveguide loss. We again use the SLH

formalism for our cascaded system. A fictitious beam splitter

is introduced in between the two qubits, described by the

probability η2 that the photon gets transmitted from A to B

(see Appendix A for details). This leads to a multiplicative

factor of η in the waveguide-mediated qubit-qubit coupling

term in the Hamiltonian, giving

Ĥ =
�

2

(

σ̂ x
A + σ̂ x

B

)

+
�

2

(

σ̂ z
A − σ̂ z

B

)

+ iη
γ

2
(σ̂+

A σ̂−
B − H.c.).

(5)

More interestingly, the collective loss operator becomes

asymmetric in qubit-waveguide coupling, and a second loss

operator on the upstream qubit is introduced, given by

ĉ1 = ησ̂−
A + σ̂−

B , ĉ2 =
√

1 − η2σ̂−
A . (6)

The asymmetry in the collective loss operator ĉ1 is not au-

tomatically detrimental—in principle, it could be countered

simply by changing one of the qubit-waveguide coupling rates

to restore “matching.” That leaves ĉ2 as the detrimental effect

of waveguide loss on this system. The loss operator ĉ2 de-

scribes losing a photon during propagation from qubit A to

qubit B, which can be interpreted effectively as on-site loss

on qubit A.

For the remainder of the paper, we assume for simplicity

that the drive detuning � = 0; nothing essential is lost by

making this assumption. If the two qubits may not be easily

tuned to the same frequency, it may be necessary to have � �=
0. The effect of � �= 0 is to effectively renormalize γ to γ +
2i� where it appears in the steady state. See Appendix B for

details. The effect of this effective on-site loss manifests as a

reduction of the maximum concurrence, as shown in Fig. 1(c).

For each value of waveguide loss, we simulate the Lindblad

master equation as a function of the ratio �/γ and compute

the concurrence of the steady state. We see that for each η2, the

concurrence initially increases with �/γ up to a maximum,

after which it begins to fall. To understand why increasing

�/γ beyond this point causes a reduction in the concurrence,

we consider the rates involved in this dissipative system. For

each value of η2, we extract �/γ at the maximum and plot

the time evolution of the concurrence for those parameters

in Fig. 1(d). First, the system has a characteristic relaxation

time that increases with �/γ . This can be explained by the

Liouvillian gap of the system, which characterizes the slowest

relaxation rate in the Liouvillian spectrum, and thus its inverse

characterizes the relaxation timescale τrel. In this system, the

relaxation time scales as τrel ∼ (�/γ )2, i.e., the relaxation

timescale grows quadratically with drive strength [2,7]. As

a result, there is a tradeoff between the relaxation time and

the degree of stabilized entanglement. Second, we can see

from Eq. (6) that the effective on-site loss on the upstream

qubit introduces a decay rate given by γloss = γ (1 − η2), thus

limiting the T1 of qubit A1 to T1 < 1/γloss.

Heuristically, when the relaxation time exceeds this in-

duced decay, τrel > T1, the system cannot effectively stabilize

greater entanglement because the upstream qubit decays too

quickly. For each η2 in Fig. 1(d), the dotted lines mark the time

1/γloss(η), which is the timescale associated with loss-induced

decay. We see that these times qualitatively predict the onset

of the concurrence plateau. The effect of waveguide loss on

this stabilization protocol can thus clearly not be canceled

entirely by adjusting coupling rates. We discuss in Sec. III

how the steady state can be made more loss-resilient by adding

additional qubits.

C. Possible circuit QED implementation

With an understanding of how loss affects the steady-

state concurrence of this system, we turn to a discussion

of implementation using superconducting circuits. The most

straightforward circuit implementation consists of transmon

qubit modules connected through a unidirectional waveg-

uide as illustrated in Fig. 1(b). A microwave circulator in

the waveguide connecting the qubits ensures unidirectional

photon propagation. The qubit-waveguide coupling γ is de-

termined by the strength of the capacitive coupling shown in

Fig. 1(b). Similar circuits have been previously implemented

for remote entanglement protocols that rely on the first qubit

emitting a photon that propagates through a unidirectional

waveguide and gets captured by the second qubit [23–25].

Based on the transmission loss reported in these papers, and

more recent qubit module interconnect designs [20], we es-

timate that waveguide loss corresponding to η2 = 0.9 is well

within reach. Figure 1(c) shows the steady-state concurrence

achievable with this amount of waveguide loss and the re-

quired ratio of drive strength and qubit-waveguide coupling.

III. PROTECTING STEADY-STATE ENTANGLEMENT

FROM WAVEGUIDE LOSS

A. Coupling to storage qubits

One possible idea for improving resilience is to add an

additional pair of qubits: For one, it is useful in general to

be able to store the entangled state as a resource for further

processing. Therefore, it would make sense to transfer the en-

tanglement to a pair of qubits that is not directly coupled to a

loss channel. Further, envisioning the scheme as a resource for

entanglement generation, one could further imagine that many

storage qubits could be added to each node. In that direction,

it could be of interest to stabilize large entangled states us-

ing a single dissipative channel. This could be achieved, for
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example, by propagating entanglement among qubits in a

node using gates.

As a practical matter, particularly in the context of circuit

QED, it is also important to consider the possible difficulty

with reading out the qubits. In the case of this driven-

dissipative protocol, one would turn off the Rabi drive before

performing dispersive readout of the qubits, as is typically

practiced in protocols involving driven transmons [26,27].

Since the qubits are coupled to the waveguide, the state would

decay during the readout process. For ideal qubits that have no

intrinsic relaxation, decay during the readout process could be

minimized by reducing γ while maintaining the required �/γ

ratio. In an experiment, however, the qubits will have finite

relaxation times that would compete with the decay rate into

the waveguide given by γ . We show in Appendix C that for

qubits with a T1 = 100 µs coupled to a chiral waveguide with

η2 = 0.9, the coupling to the waveguide γ must be greater

than 1 MHz in order to achieve a concurrence of 0.56. This

would mean that when the drives are turned off, the qubit

would decay in approximately 160 ns. We note that recently

demonstrated fast high-fidelity readout times are comparable

to this decay time [28,29], hence preventing high-fidelity,

single-shot readout of the quantum state. It is therefore also

practically useful to be able to measure the entangled state in

a pair of storage qubits that are decoupled from the waveguide.

Reference [15] has shown that a system of two identical

chains of coupled qubits coupled to the first pair has a pure

steady state that stabilizes entanglement between the chains

for any nonzero driving. Therefore, by coupling storage qubits

to the waveguide-coupled pair, the system automatically sta-

bilizes entanglement in the storage qubits. Remarkably, we

find that when there is loss in the waveguide, adding a pair

of storage qubits increases the system’s resilience against

waveguide loss. While the improvement is modest, it is of

fundamental interest to understand why there should be any

increase in resilience. To that end, we give first a heuristic

argument as to why we might expect an improvement, then we

analytically show (in part) how the increased resilience arises,

and we quantify the performance improvement. We also find,

as a practical matter, that the regime of maximally increased

performance is reasonably achievable experimentally; the dis-

sipation, driving, and hopping strengths should be similar in

magnitude, and the region of improvement does not require

fine-tuning.

We start from the two-qubit entanglement stabilization

protocol outlined in Sec. II, with the ideal (i.e., lossless waveg-

uide, η = 1) Hamiltonian Eq. (2) and collective jump operator

Eq. (3). At each node A (B), we add a second qubit that is

exchange-coupled with strength J12,A(B) to the first qubit [see

Fig. 1(a)]. The Hamiltonian of the full four-qubit system is

Ĥ4qb = Ĥ2qb +
∑

s=A,B

J12,s(σ̂
+
s,1σ̂

−
s,2 + H.c.), (7)

where Ĥ2qb is the entanglement stabilization Hamiltonian

Eq. (2) (acting on qubits A1 and B1). As mentioned earlier

in the text, we assume for simplicity that the drive detuning

� = 0. The first pair of qubits, A1 and B1, remain coupled to

the waveguide through the collective loss dissipation Eq. (3)

(in the ideal waveguide limit).

B. Steady-state entanglement

The four-qubit system is the N = 2 case of the general

(N+N)-qubit double chain studied in Ref. [15]. In that work,

it was shown that if the exchange couplings have a mirror

symmetry, Ji,i+1;A = Ji,i+1;B, then the entire double chain has a

pure steady state for arbitrary parameters, with entanglement

between the two chains for any driving � �= 0. Following this,

we assume that the exchange couplings are equal, J12,A =
J12,B ≡ J12. Therefore, the (2 + 2)-qubit system has the pure

entangled steady state (up to normalization)

|ψ2〉 =
(

�

γ
|S1T2〉 +

1
√

2
|01T2〉

)

−
J12

�
|0102〉. (8)

Here the states are as follows: the singlet |S1〉 = (|0A,11B,1〉 −
|1A,10B,1〉)/

√
2 of qubits on site 1, the triplet |T2〉 =

(|0A,21B,2〉 + |1A,20B,2〉)/
√

2 on site 2, and the two-qubit vac-

uum |0 j〉 = |0A, j0B, j〉 on either site j.

The steady state approaches a maximally entangled state

|ψ2〉 = |S1T2〉 when � � γ and � � J12. For the purpose of

stabilizing and protecting entanglement, however, we wish to

work in a regime in which only the second pair of qubits is

entangled. By inspection of Eq. (8), we see that this can be

achieved for

γ � � � J12. (9)

In this regime, the vacuum component |0102〉 and the max-

imally entangled component |S1T2〉 of the steady state are

negligible compared to the |01T2〉 component. Thus, the sec-

ond qubit pair can be arbitrarily close to a perfect Bell pair,

irrespective of the entanglement of the first pair. Note that

this is the N = 2 case of the single “charge-density wave”

predicted to exist in these chains [15].

The ability to parametrically control the amount of entan-

glement stabilized on the second qubit pair independently of

the entanglement on the first pair plays a crucial role in the

increased resilience of the four-qubit system against loss in

the waveguide. By using the first pair of qubits as a “sacri-

ficial” pair whose entanglement is intentionally made worse,

we can improve the entanglement of the second pair beyond

that which can be achieved for the two-qubit scheme for any

waveguide transmission η2 for which the two-qubit protocol

can stabilize entanglement.

C. Inherent resilience to waveguide loss

We account for waveguide loss in the four-qubit system

exactly following Sec. II B. The collective loss dissipator

Eq. (3) is replaced by the two dissipators of Eq. (6), where η

is the waveguide transmission amplitude, and the dissipation-

induced exchange term in Ĥ2qb [cf. Eq. (5)] is modified as

in Sec. II B. Just as in the two-qubit system, there is no pure

steady state for any η < 1 due to the single-qubit loss induced

on qubit A1. However, notice that if the first pair of qubits is

in vacuum, then the effective single-qubit loss cannot disrupt

the steady state; such a steady state would remain a dark state

of the dissipation [30].

Guided by this insight, and recalling that the exact solution

Eq. (8) approaches such a state with near zero population on

the first qubit pair in the parameter regime set by J12 � � and
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FIG. 2. (a) Steady-state concurrence of the outer pair of qubits

in the 2 + 2 system as a function of both driving �/γ and hopping

J12/γ . Waveguide transmission probability is η2 = 90%. The color

scale is centered at the maximum concurrence of the 1 + 1 system

(with symmetric driving �A = �B = �). The red region indicates

the range of � and J12 for which the 2 + 2 system stabilizes more

entanglement than the 1 + 1 system, Cmax
1 ≈ 0.57, which is achieved

for η2 = 0.9 with a driving strength �/γ ≈ 1.16. Note that the

color scale is not symmetric about Cmax
1 ; the minimum is at zero

concurrence and the maximum is at the maximum concurrence of

the 2 + 2 system for this waveguide loss, which is found numerically

to be Cmax
2 ≈ 0.61. (b) Comparison of maximum concurrence for the

1 + 1 system, optimizing over �, and the maximum concurrence for

the outer pair of the 2 + 2 system in the weak �, weak J12 limit,

optimizing over J12/�, and optimized over � and J12.

�2 � γ J12, we are led to the strategy of using the first pair of

qubits as a sacrificial pair in order to stabilize entanglement

on the second pair. The utility of this strategy is verified

numerically in Fig. 2(a), which shows that, as J12,� → 0

(while holding J12/� fixed), the concurrence on the second

pair of qubits is nonvanishing, approaching a constant value

dependent on the ratio J12/�. Moreover, there is a regime of

constant J12/� (with � > J12) for which the 2 + 2 scheme

yields higher concurrence for the η2 used in the figure. A

heuristic argument for the constant, nonvanishing concurrence

with J12,� → 0 is discussed in Appendix D. We find nu-

merically that for all transmission probabilities η2 for which

the 1 + 1 system stabilizes entanglement, there is a parameter

regime in which the 2 + 2 system yields better concurrence

than the 1 + 1 system.

To better understand why the 2 + 2 system is more robust

to waveguide loss than the 1 + 1 system, we first consider

the regime of weak hopping and driving, J12,� � γ . In this

regime, the first pair of qubits is almost completely in vacuum.

Thus, we can adiabatically eliminate these qubits to find an

effective master equation for the reduced density matrix of

the second pair, ρ̂2 = TrA1,B1[ρ̂], given by

∂t ρ̂2 = −i[Ĥeff , ρ̂2] +
2

∑

j=1

D[L̂ j,eff ]ρ̂2, (10)

Ĥeff =
�eff

2

[

σ̂ x
A,2 + (2η − 1)σ̂ x

B,2

]

+
iηγeff

2
(σ̂+

A,2σ̂
−
B,2 − H.c.), (11)

L̂1,eff = √
γeff (ησ̂−

A,2 + σ̂−
B,2), (12)

L̂2,eff = √
γeff

√

1 − η2σ̂−
A,2. (13)

See Appendix E for details. The effective master equation is

precisely of the form of the two-qubit scheme with waveguide

loss, but with asymmetric driving strengths on the two qubits.

The renormalized drive strength is �eff = 2�J12/γ , and dis-

sipation strength is γeff = 4J2
12/γ . Notice that the waveguide

transmission amplitude η is not renormalized.

The driving asymmetry of the effective master equa-

tion is η-dependent and recovers the ideal symmetric driving

strengths for η → 1. Because η is not renormalized, any im-

provement of the stabilized concurrence of the 2 + 2 system

in the J12,� � γ regime must be due to the asymmetry in the

driving strength. Indeed, we find in Fig. 2(b) that over a wide

range of η, the effective asymmetric driving of the effective

theory (in the weak �, J12 limit) yields higher concurrence

than the symmetric driving [the 1 + 1 system with optimal

� in Fig. 2(b)]. Intuitively, we expect that some degree of

drive asymmetry should improve the stabilized entanglement

because the waveguide loss induces additional single-qubit

loss on the upstream qubit, thus a stronger drive—relative to

the drive on the downstream qubit—is needed to compensate

for the greater loss.

We also find that the effective master equation recovers the

numerically observed result that as J12,� → 0, the concur-

rence on the second qubit pair depends only on �/J12 [see

Fig. 2(a)]. Since the concurrence of the 1 + 1 system is con-

trolled only by �eff/γeff , we find that in terms of the original

system parameter, �eff/γeff = �/2J12, thus the concurrence is

dependent only on the ratio �/J12 and not on their strengths

relative to γ . A heuristic explanation for this behavior is

given in Appendix D. Finally, we observe numerically that

for J12 ∼ � � γ , there is a regime for which the concurrence

is even higher compared to the 1 + 1 concurrence. This effect

is shown in Fig. 2(a) as the head of the red matchstick region.

A full analytic understanding of this “bump” in concurrence

remains an open question, but we speculate that it may be

due to a kind of “impedance matching” among the driving,

hopping, and dissipation dynamics. The improvement of the

“bump” region over the weak driving regime is shown as the

dashed curve in Fig. 2(b).

D. Universal improvement over two-qubit protocol

As we have shown, the higher stabilized entanglement of

the 2 + 2 system compared with the 1 + 1 system can be
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FIG. 3. (a) Optimized concurrence of the 1 + 1 system and

the outer pair of the 2 + 2 system as a function of transmission

probability η2. For each system we optimize over the upstream

(downstream) Rabi drive �A (�B) and for the 2 + 2 system we

optimize over J12. For comparison, we also plot the best concurrence

of the 2 + 2 system with equal �A = �B [cf. Fig. 2(b)]. Inset: the

difference in concurrence between the optimized 2 + 2 system and

the optimized 1 + 1 system is plotted as a function of transmis-

sion probability. (b) The optimized drive strengths �A / �B of the

upstream/downstream qubits and J12 for the two systems plotted as

functions of the transmission probability.

partially explained by the asymmetry of the effective Rabi

drive strengths in the weak driving and weak hopping regime.

One may naturally wonder whether the 1 + 1 system could

achieve the same entanglement as the 2 + 2 system if we

optimized over the driven qubits’ drives, �A and �B, sepa-

rately. We find numerically that when allowing the applied

driving strengths to have asymmetry, the 2 + 2 system always

has better concurrence on the outer pair of qubits than the

1 + 1 system for a given η2. In Fig. 3(a) we show the max-

imum achievable concurrence of the (1 + 1)-qubit protocol,

optimized over the driving strengths �A,�B, and the (2 + 2)-

qubit protocol, optimized over �A, �B, and J12, as a function

of waveguide transmission probability η2. We find that the

2 + 2 system stabilizes at least as much concurrence as the

1 + 1 system for any η2 > 0, including for η2 not shown in

the figure. We also show the numerically optimized param-

eters J12, �A, and �B versus waveguide transmission η2 in

Fig. 3(b), and we find that except when the waveguide loss is

very small (η2 ≈ 1), the optimal parameters are J12 ≈ � < γ .

Furthermore, note that the asymmetry of the 2 + 2 drives is

relatively much smaller than the 1 + 1 drives, suggesting that

effective renormalization continues into the optimal parameter

regime. We emphasize that the improvement in stabilized

concurrence of the 2 + 2 system over the 1 + 1 system is

maximized for parameters �A,B ≈ J12 ≈ γ , and it does not

require one parameter to be much larger or much smaller than

the others. As Fig. 2(a) shows, the improvement in stabilized

concurrence does not require extremely precise matching of

parameter strengths. Deviations of the hopping rate J12 or the

driving strength � of upwards of 20% away from the optimal

values can be tolerated for η2 = 90%.

IV. ADDING MORE QUBITS TO EACH CHAIN

We have shown that by adding a second pair of qubits and

sacrificing the driven pair, we can obtain greater stabilized

entanglement in the face of waveguide loss. Given the exact

solution for arbitrarily long chains found in Ref. [15], a natural

question might be whether there are advantages to coupling

more qubits to the end of each chain. Here we show that

in principle, the intuition that guides us to sacrifice the first

pair for N = 2 can apply to longer chains, while leaving the

question of actual performance improvements open for future

work. We also discuss the inherent challenges with adding

more qubits to each chain.

A. Stabilizing entanglement in longer chains

We can add pairs of qubits to the ends of the chains in the

exact same manner as we added the second pair in Sec. III.

We couple a qubit onto the end of each chain, maintaining

equal hopping rates J j, j+1;A = J j, j+1;B = J j, j+1. If this mirror

symmetry is maintained, the exact solution of the ideal case

found in Ref. [15] applies. The general form of the exact

steady state is of a so-called “hole pair condensate” in which

the maximally entangled state |ST ST · · · 〉 is doped with pairs

of adjacent holes (a hole on site j being a two-qubit vacuum

on qubits A j and B j) placed along the chain. For any finite

driving, 0 < � < ∞, the chain is populated with all possible

numbers of hole pairs. The disorder in the hopping rates J j, j+1

affects the spatial distribution of the hole pair wave functions.

Specifically, the amplitude for a hole pair to span a strong

bond is greater than average, and the amplitude for a hole pair

to span a weak bond is smaller. We can exploit this property of

the hopping rates to keep the first pair of qubits near vacuum

to counteract the effects of waveguide loss, as we did for the

N = 2 system in Sec. III.

Guided by the heuristic argument of Sec. III, we first show

that in principle, large entanglement can be stabilized on qubit

pairs 3 through N in an (N + N)-qubit system, while keeping

the first pair near vacuum, by operating in a weak driving and

weak hopping regime. The general form of the exact steady

state for chains of length N is

|ψN 〉 =
(

1 +
iγ

2�
τ̂1

)

× exp

⎡

£

iγ

2�2

∑

j

(−1) jJ j, j+1τ̂ j τ̂ j+1

¤

⎦|ST ST · · · 〉,

(14)

where the operator τ̂ j removes the Bell pair from the two

qubits on site j: τ̂ j |(S/T ) j〉 =
√

2|0 j〉 (see Ref. [15] for
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details). The exponential term describes the hole pair con-

densate, and there is a boundary correction that removes a

single Bell pair from the dissipative qubit pair. We find that

if we work in the weak driving regime � � γ , the Bell state

occupation of the first pair of qubits is always suppressed by

the boundary correction term. Then if we let the hopping rates

be J12 � J23 ≈ J3,4 ≈ · · · ≈ JN−1,N , the hole pairs are most

strongly weighted on the first two pairs of qubits, leaving the

rest of the chain relatively more entangled. Finally, notice that

if � �
√

γ J j, j+1 for every j > 1, then the hole pairs on those

sites are suppressed. Thus we arrive at the parameter regime

that generalizes the heuristic arguments from Sec. III,

γ � � ≈ J12 � J23 ≈ J34 ≈ · · · , (15)

�, J12 �
√

γ J23 ≈
√

γ J34 ≈ · · · . (16)

We expect that this regime provides a starting point to opti-

mize the entanglement in the rest of the chain in the presence

of waveguide loss. As an example, the ideal exact steady state

of the N = 3 system is given by

|ψ3〉 =
[

|00S〉 −
�

√
2J12

|0T S〉
]

− i
�2

γ J12

|ST S〉 −
J23

J12

|S00〉 − i
J23/J12

�/γ
|000〉, (17)

up to normalization. In the parameter regime given by

Eqs. (15) and (16), the bracketed terms of this state are dom-

inant. Thus, we find that the third pair of qubits is highly

entangled, while the second pair can be somewhat entangled

depending on the ratio �/J12. All other terms are suppressed

by the weak drive � � γ or the weak hopping J23 � J12.

Note that the requirement for �, J12 �
√

γ J j, j+1 becomes

apparent in, e.g., the coefficient of the vacuum state |000〉. For

longer chains in the weak driving and weak hopping regime,

one finds that there is a pair of terms equivalent to the brack-

eted pair above, given by |00ST ST · · · 〉 and |0T ST ST · · · 〉.
Thus by sacrificing the first pair, and to an extent the second

pair, large entanglement can be stabilized along the rest of the

chains.

B. Potential limits on resilience against waveguide loss

We found in Sec. III that the optimal concurrence of the

second pair of qubits in the N = 2 system occurs not deep

in the weak driving limit but when � ≈ J12 � γ . We expect

a similar result for longer chains, where the weak driving

limit guides our intuition for choosing the relative strength

of parameters, but ultimately, numerical optimization yields

the best performance. It remains an open question, however,

whether longer chains would continue to show improved re-

silience against waveguide loss compared to shorter chains.

One practical limiting factor is the relaxation time of the

system. As discussed in Ref. [15], there is numerical evidence

to suggest that the relaxation time of longer chains is con-

sistent with the typical boundary driven free-fermion scaling

with system size of τrel ∼ N3. Even for an ideal lossless

waveguide, this poses an experimental challenge for longer

chains due to the intrinsic loss and dephasing of the qubits.

If the relaxation time becomes comparable to the typical

qubit T1 or T2, these unwanted sources of dissipation will

disrupt the entanglement stabilization. To counteract that, one

must engineer stronger qubit-waveguide coupling γ as well

as stronger driving � and hopping rates J j, j+1. The limits

on the strength of the coupling and driving rates compared

to intrinsic qubit dissipation rates thus limits the length of

experimentally feasible chains. It remains an open question

what the ultimate performance of an N + N system can be

under waveguide loss and realistic intrinsic qubit dissipation.

V. CONCLUSION

We have proposed a driven-dissipative remote entangle-

ment protocol and studied its resilience to waveguide loss. By

understanding the loss mechanism that limits entanglement in

the originally proposed scheme [5], and taking advantage of

the pure steady state of the four-qubit system consisting of a

driven pair and a storage pair, we propose a protocol that is

more resilient to waveguide loss. Based on the intuition that

waveguide loss can be countered by limiting the population on

the driven qubits, we have identified an advantageous param-

eter regime characterized by weak drives and weak hopping

between the driven and storage qubits. We find numerically

that the degree of entanglement of the storage qubits in this

regime is higher than the maximum possible entanglement

that can be achieved with only two driven qubits. We explain

this observation analytically by adiabatically eliminating the

driven qubits to obtain an effective master equation for the

storage qubits. We discuss practical limitations for adding

more pairs of qubits to this scheme. However, the ultimate

performance of a system with N > 2 pairs of qubits under

waveguide loss remains to be explored.

While the driven-dissipative dynamics of the two-qubit

system are well understood for a lossless waveguide [5,6], our

work provides an additional understanding of the dynamics

in the presence of inevitable loss, and it provides guidance

on how to tailor operation parameters that yield better perfor-

mance with photon loss. Our result is also interesting from

a practical perspective, particularly in the context of circuit

QED, where it may be difficult to faithfully measure qubits

that are strongly coupled to a waveguide. Our work gives thus

important guidance for practical implementation of driven-

dissipative entanglement in the laboratory.
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APPENDIX A: USING THE SLH FORMALISM

TO DERIVE THE MASTER EQUATION

The SLH formalism provides a method to derive the

Hamiltonian and collapse operators for a quantum network

using simple algebraic manipulations [18]. Each component

is specified by a triple (S, L, H ) that describes how it interacts
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with input and output fields. S is the scattering matrix for the

component, L contains its coupling to external fields, and H is

the Hamiltonian. The cascaded network of two qubits coupled

to a unidirectional waveguide can be modeled using three

components in series configuration: qubit A, followed by a

fictitious beam splitter, followed by qubit B. The beam splitter

has a probability η2 of allowing a photon to propagate through

from qubit A to qubit B. This allows us to model photon loss

in the waveguide. The SLH triple for the ith qubit is given by

S = I, L = √
γ

(

σ̂−
i

0

)

, Ĥ =
�

2
σ̂ z

i +
�

2
σ̂ x

i .

The Hamiltonian is in the frame of the drive, which is detuned

from the qubit frequency by �. The SLH triple for the beam

splitter is given by

S =

(

η −
√

1 − η2
√

1 − η2 η

)

, L = 0, Ĥ = 0,

where η2 is the probability that a photon propagates through

from qubit A to qubit B. For two components connected in

series, the product rule used to calculate the SLH triple for the

network is

(S2, L2, H2)�(S1, L1, H1)

=
(

S2S1, L2 + S2L1, H1 + H2 +
1

2i
(L†

2S2L1 − L
†
1S

†
2L2)

)

.

(A1)

Using Eq. (A1), we obtain the following SLH triple for our

cascaded system:
(( √

η
√

1 − η

−
√

1 − η
√

η

)

,
√

γ

(√

1 − η2σ̂−
A

ησ̂−
A + σ̂−

B

)

, Ĥ

)

, (A2)

where the Hamiltonian is given by

Ĥ =
(�A

2
σ̂ z

A +
�A

2
σ̂ x

A

)

+
(�B

2
σ̂ z

B +
�B

2
σ̂ x

B

)

− i
η γ

2
(σ̂−

A σ̂+
B − σ̂+

A σ̂−
B ) (A3)

and the collapse operators are

ĉ1 = ησ̂−
A + σ̂−

B , ĉ2 =
√

1 − η2σ̂−
A . (A4)

Finally, taking �B = �A and �B = −�A, we obtain Eqs. (5)

and (6).

APPENDIX B: STABILIZING ENTANGLEMENT

WITH DETUNED DRIVING

In the main text, we analyze the loss-resilience and entan-

glement stabilization of the N = 2 system assuming that the

drive detuning is � = 0 [cf. Eq. (2)]. Nevertheless, we ini-

tially include the detuning and show that the two-qubit (N =
1) scheme stabilizes entanglement with � �= 0 to highlight

an important feature of this scheme: the two driven qubits do

not need to be precisely matched in frequency for it to work.

Instead, if one has two qubits with frequencies ωA and ωB, a

drive applied at the center frequency ωd = |ωB − ωA|/2 will

stabilize the entangled steady state Eq. (4). Remarkably, the
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FIG. 4. Steady-state concurrence of the two-qubit system for

(a) qubits with T1 = 100 µs and (b) qubits with no intrinsic relax-

ation. The dashed contour lines are at concurrence C = 0.56; η2 =
0.9. Notice in (a) that the high concurrence region is pushed towards

higher drive and coupling strengths due to intrinsic qubit relaxation.

In (b), the concurrence depends only on the ratio �/γ as discussed

in the main text.

general exact steady state for two length-N chains remains in-

tact with � �= 0 (assuming all nondriven qubits are resonantly

exchange-coupled) [15]. There is only a reparametrization of

the steady state: where γ appears in, e.g., the N = 2 state

Eq. (8) or the N = 3 state Eq. (17), drive detuning can be

incorporated by replacement,

γ �→ γ + 2i�. (B1)

A short calculation shows that this replacement works because

in the Hamiltonian Eq. (2) the dissipation-induced exchange

∝γ and the opposite drive detuning ∝� act identically on the

|01〉 and |S1〉. Thus, the energy-eigenstate condition that deter-

mines the steady state only changes by this reparametrization.

The analysis in the main text that follows the assumption

� = 0 is similarly essentially unchanged. Note that when loss

in the waveguide is included, the dissipation rates are not

reparametrized. For example, the induced loss rate on qubit

A1 remains γloss = γ (1 − η2). Otherwise, in the analysis of

Sec. III, everything proceeds the same but the reparametriza-

tion γ �→ γ + 2i� when comparing the driving and exchange

rates to the “loss” rate. This implies, for example, that the

optimal parameter regime to maximize stabilized concurrence

is � ≈ J12 ≈
√

γ 2 + 4�2.

APPENDIX C: MINIMUM REQUIRED QUBIT-WAVEGUIDE

COUPLING DUE TO FINITE QUBIT LIFETIME

We show in Fig. 1(c) that the ratio �/γ determines the

maximal achievable concurrence for given waveguide loss.

However, finite qubit relaxation times require the magnitudes

of � and γ to be above certain minimum values. This occurs

because the intrinsic loss rate of the qubit competes with the

decay rate into the waveguide γ . As an example, we simu-

late the system with η2 = 0.9, and qubit lifetimes of 100 µs.

Figure 4(a) shows how the high concurrence region is pushed

towards larger drive and coupling strengths, relative to the

ideal case of zero intrinsic relaxation, shown in Fig. 4(b).

The dotted contour lines are at C = 0.56. To achieve this

concurrence, the coupling strength to the waveguide γ should

be at least 1 MHz. This corresponds to a waveguide-induced

qubit relaxation time of around 160 ns.
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APPENDIX D: CONSTANT CONCURRENCE

IN THE WEAK DRIVING REGIME

In Fig. 2(a), we find that for fixed �/J12 ∼ 1, in the weak

driving limit � � γ , the concurrence of the second qubit pair

appears to saturate at a fixed value instead of falling to zero as

one might expect when the driving becomes extremely weak.

This turns out to be a generic feature of the system in the weak

driving limit: for any nonzero waveguide transmission η2 > 0

and in the limit � → 0, the concurrence of the second pair

limits to a constant nonzero value that depends only on η2

and the constant ratio �/J12, not on �/γ . Here we provide a

heuristic argument for why the concurrence does not vanish in

this limit.

Because the primary effect of waveguide loss is to induce

unwanted single qubit T1 decay on the upstream qubit (see

Appendix A), this is the primary mechanism by which the

stabilization of entanglement is disrupted. We can gain in-

sight into how much of an effect the induced T1 decay has

by comparing the relaxation rate of the ideal system to the

rate at which excitations are lost due to the induced T1. If

the system relaxes quickly compared to the loss rate, then

we expect a greater amount of stabilized entanglement. As

we discuss in Sec. III, the weak driving and weak hopping

regime, J12 � � � γ , yields an ideal steady state with very

little population on the first pair of qubits [cf. Eq. (8)]. We

also expect that due to the weak driving, the population on

the first pair of qubits remains very little throughout the entire

stabilization, and we approximate the population on the first

pair at all times by the steady-state population, given by

〈n̂1〉 =
2(�/γ )4

2(�/γ )4 + (�/γ )2 + 2(J12/γ )2
, (D1)

where n̂1 = |S1〉〈S1| measures the singlet excitation, which is

twice the excitation population on the lossy qubit. We estimate

the rate at which excitations are lost due to the induced T1 for

J12 � � � γ by

�loss = 〈n̂1〉(1 − η2)γ ≈ (�/γ )2(1 − η2)γ , (D2)

where (1 − η2)γ is the induced loss rate [cf. (6)].

To estimate the relaxation rate of the ideal system, we first

assume the weak driving and weak hopping regime J12 �
� � γ . In this regime, the stabilization of entanglement on

the second pair of qubits is well-described by the effective

two-qubit master equation derived in Appendix E. Moreover,

we can numerically verify that the relaxation rate of the full

2 + 2 system is well-approximated (up to a ∼1 prefactor)

by the relaxation rate of the effective theory. In particular,

the parameter dependence of the relaxation rate is correctly

predicted. Using the result from Ref. [2] that for �/γ � 1,

the relaxation rate of the 1 + 1 system is �rel ∼ γ 3/�2 for

drive strength � and dissipation rate γ , we find numerically

that this scaling holds for � � γ . Thus, applying this result

to the effective master equation, and noting that �eff/γeff =
�/2J12 � 1, we find

�rel ≈
γ 3

eff

�2
eff

�
J4

12

�2γ 2
γ . (D3)

In the weak driving limit, holding �/J12 fixed, the relax-

ation rate thus scales with driving strength as �rel ∼ (�/γ )2.

Comparing with the induced T1 loss rate �loss ∼ (�/γ )2, we

find that as � → 0,
�rel

�loss

→ const. (D4)

Therefore, irrespective of the amount of stabilized concur-

rence on the second pair, we find that in the weak driving and

weak hopping limit, the stabilized concurrence saturates to a

fixed value.

APPENDIX E: ADIABATIC ELIMINATION

AND EFFECTIVE TWO-QUBIT THEORY

Here we derive the effective two-qubit master equation [cf.

Eq. (10)] for the 2 + 2 system in the weak driving limit

�/γ � 1. We thus treat the driving as a perturbation. We also

assume the hopping is weak, J12/γ � 1, and treat it as per-

turbation. Starting from the master equation with waveguide

loss,

∂t ρ̂ = −i[Ĥ , ρ̂] + γD[ĉ1]ρ̂ + γD[ĉ2]ρ̂, (E1)

with the Hamiltonian and jump terms given by Eqs. (7) and

(6), respectively. We take the drive detuning � = 0 here for

simplicity (nothing essential is lost). Following the operator

formalism of Ref. [31], we take the “ground-state manifold”

to be all states with the first pair of qubits (A1 and B1) in

vacuum |(00)1〉, and the “excited-state manifold” to be the rest

of the Hilbert space. The excited-state manifold thus includes

the three sets of states with |01〉, |10〉, and |11〉 on the first pair.

Note that doubly exciting the first pair from the ground-state

manifold to |11〉 is second order in the perturbations (driving

and hopping), thus we make a simplifying approximation

and exclude the doubly excited state from the excited-state

manifold. Thus, we define the ground-state manifold and

excited-state manifold projection operators as

P̂g = (|00〉〈00|)1 ⊗ 1̂2, (E2)

P̂e = (|10〉〈10| + |01〉〈01|)1 ⊗ Î2 − P̂g, (E3)

where 1̂2 is the identity acting on the second pair of qubits A2

and B2.

We decompose the Hamiltonian into four terms Ĥ = Ĥg +
Ĥe + V̂+ + V̂−. The first two terms are the projections into the

two manifolds, and the latter two terms are the off-diagonal

elements connecting the manifolds; V̂+ describes excitation

from the ground-state manifold to the excited-state manifold,

and V̂− = V̂
†
+ describes deexcitation:

Ĥg = P̂gĤ P̂g = 0, (E4)

Ĥe = P̂eĤ P̂e =
iηγ

2
(σ̂+

A,1σ̂
−
B,1 − H.c.), (E5)

V̂+ = P̂eĤP̂g (E6)

= J12(|0〉〈0|B,1σ̂
+
A,1σ̂

−
A,2 + |0〉〈0|A,1σ̂

+
B,1σ̂

−
B,2)

+
�

2
(|0〉〈0|B,1σ̂

+
A,1 + |0〉〈0|A,1σ̂

+
B,1),

V̂− = P̂gĤ P̂e

= J12(|0〉〈0|B,1σ̂
+
A,2σ̂

−
A,1 + |0〉〈0|A,1σ̂

+
B,2σ̂

−
B,1)

+
�

2
(|0〉〈0|B,1σ̂

−
A,1 + |0〉〈0|A,1σ̂

−
B,1). (E7)
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Note that if we retained the doubly excited states, Ĥe would

have terms ∝�, J12, but those terms always involve transitions

into or out of the doubly excited state on the first pair of qubits.

We seek an effective theory of the system in the ground-

state manifold, which takes the form

∂t ρ̂eff = −i[Ĥeff , ρ̂eff ] + D[L̂1,eff ]ρ̂eff + D[L̂2,eff ]ρ̂eff , (E8)

where the effective Hamiltonian and effective jump operators

are given by

Ĥeff = Ĥg − 1
2
V̂−

[

Ĥ−1
NH +

(

Ĥ−1
NH

)†]

V̂+, (E9)

L̂k,eff = √
γ ĉkĤ−1

NHV̂+. (E10)

Here the non-Hermitian Hamiltonian ĤNH describes evolution

in the excited-state manifold due to the Hamiltonian and dis-

sipation:

ĤNH = Ĥe −
iγ

2
(ĉ†

1ĉ1 + ĉ
†
2ĉ2)

= −
iγ

2
(σ̂+

A,1σ̂
−
A,1 + σ̂+

B,1σ̂
−
B,1 + 2ησ̂+

B,1σ̂
−
A,1). (E11)

Notice that ĤNH only acts on the first pair of qubits.

To compute the effective theory, we must invert the non-

Hermitian Hamiltonian. This task is made easy by the fact that

it acts only on the first pair of qubits, as we only need to eval-

uate its matrix elements within the excited-state manifold on

the first pair spanned by {|01〉1, |10〉1}. Within this manifold,

Ĥ−1
NH =

2i

γ
(σ̂−

A,1σ̂
+
A,1σ̂

+
B,1σ̂

−
B,1 + σ̂+

A,1σ̂
−
A,1σ̂

−
B,1σ̂

+
B,1 − 2ησ̂−

A,1σ̂
+
B,1)

(E12)

is the inverse. We are thus ready to directly evaluate Eqs. (E9)

and (E10). Up to irrelevant global phases, the jump operators

evaluate to

L̂′
1,eff =

2J12√
γ

(σ̂−
B,2 − ησ̂−

A,2) +
�

√
γ

(1 − η), (E13)

L̂′
2,eff =

√

1 − η2
2J12√

γ
σ̂−

A,2 +
√

1 − η2
�

√
γ

, (E14)

and the effective Hamiltonian evaluates to

Ĥ ′
eff = −

i

2
η

4J2
12

γ
(σ̂+

A,2σ̂
−
B,2 − σ̂+

B,2σ̂
−
A,2)

+ iη
�J12

γ
(σ̂−

A,2 − σ̂−
B,2 − H.c.). (E15)

Note that the jump operators have constant, nonoperator terms

∝ �. Lindblad dissipators with jump terms of the form L̂ =
X̂ + a can always be decomposed into a dissipator of only

the operator X̂ and a Hamiltonian term via D[X̂ + a]ρ̂ =
D[X̂ ]ρ̂ − i[(ia∗X̂/2 + H.c.), ρ̂]. Applying this to L̂′

j,eff , we

arrive at a new set of jump operators and an effective Hamil-

tonian,

L̂1,eff =
2J12√

γ
(ησ̂−

A,2 − σ̂−
B,2), (E16)

L̂2,eff =
√

1 − η2
2J12√

γ
σ̂−

A,2, (E17)

Ĥeff =
1

2

2�J12

γ

(

σ̂
y

A,2 − (2η − 1)σ̂
y

B,2

)

−
i

2
η

4J2
12

γ
(σ̂+

A,2σ̂
−
B,2 − H.c.). (E18)

Here we immediately identify the effective parameters γeff =
4J2

12/γ and �eff = 2�J12/γ . As a final step, we make local

±π/2 rotations about Z on the A2 and B2 qubits, respectively.

This flips the relative sign between ησ̂−
A,2 and σ̂−

B,2 in L̂1,eff and

the sign of the exchange term in the Hamiltonian, and it rotates

the Rabi drives from σ̂ y to σ̂ x (and flips the relative sign), thus

we arrive at the effective master equation quoted in the main

text.
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ĉ1|S1〉 �= 0. The two-qubit vacuum is the unique dark state of

the two dissipators.

[31] F. Reiter and A. S. Sørensen, Effective operator formalism for

open quantum systems, Phys. Rev. A 85, 032111 (2012).

033212-11


