PHYSICAL REVIEW RESEARCH 6, 033212 (2024)

Loss resilience of driven-dissipative remote entanglement in chiral waveguide
quantum electrodynamics

Abdullah Irfan®,' Mingxing Yao®,?> Andrew Lingenfelter®,%* Xi Cao®,' Aashish A. Clerk,” and Wolfgang Pfaff® -+
'Department of Physics, University of lllinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2 Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
3Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
*Materials Research Laboratory, University of lllinois at Urbana-Champaign, Urbana, lllinois 61801, USA

® (Received 19 April 2024; accepted 30 July 2024; published 23 August 2024)

Establishing limits of entanglement in open quantum systems is a problem of fundamental interest, with strong
implications for applications in quantum information science. Here, we study the limits of entanglement stabi-
lization between remote qubits. We theoretically investigate the loss resilience of driven-dissipative entanglement
between remote qubits coupled to a chiral waveguide. We find that by coupling a pair of storage qubits to the
two driven qubits, the steady state can be tailored such that the storage qubits show a degree of entanglement
that is higher than what can be achieved with only two driven qubits coupled to the waveguide. By reducing the
degree of entanglement of the driven qubits, we show that the entanglement between the storage qubits becomes
more resilient to waveguide loss. Our analytical and numerical results offer insights into how waveguide loss
limits the degree of entanglement in this driven-dissipative system, and they offer important guidance for remote
entanglement stabilization in the laboratory, for example using superconducting circuits.
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I. INTRODUCTION

Quantum reservoir engineering is a powerful paradigm to
make use of the environment of a system to engineer or sta-
bilize its quantum state [1]. With entanglement being one of
the defining features of quantum mechanics, it is particularly
interesting to understand the conditions under which spatially
distributed entangled states can be stabilized. Protocols for
stabilizing entanglement are typically based on engineering
the coupling between the qubits and a shared lossy environ-
ment such that the collective dissipation of the qubits relaxes
them into an entangled state [2—7]. Entanglement stabilization
has also been experimentally demonstrated on multiple phys-
ical platforms including trapped ions [8] and superconducting
circuits [7,9-11].

Here, we are particularly interested in entanglement stabi-
lization between remote qubits: qubits that are not coupled
directly or even hybridized through a “bus” mode. Such a
stabilization protocol—which is independent of the distance
between the qubits—is also interesting from the perspective
of quantum information processing. With the recent surge of
interest in quantum networks, it has become important to be
able to deterministically distribute entangled states between
spatially separated qubits [12—14]. In this context, we are
interested in stabilizing and storing an entangled state dis-
tributed across two nodes of a network. Our central aim is
to understand how residual, nonengineered dissipation that is
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not a part of the stabilization scheme impacts stabilization
performance and how it may be possible to overcome the
resulting limitations.

We take as the starting point of our investigation a well-
understood result: two qubits dissipatively coupled to a
one-dimensional (1D) chiral waveguide can be driven into an
entangled steady state [5,6]. Furthermore, it has been recently
shown in Ref. [15] that if we replace the two qubits coupled to
the chiral waveguide with chains of N qubits, the system can
relax into a highly entangled state that approaches a product
of Bell pairs. This is illustrated in Fig. 1(a) for N = 2, which
is the focus of this work. This serves as a basis for stabilizing
remote entanglement, and also storing the entangled state by
preventing it from directly decaying into the waveguide.

Surprisingly, we find that by passively coupling a pair of
storage qubits to the original system of two qubits coupled
to the waveguide, not only do we stabilize entanglement in
the storage pair, but the entanglement of the storage pair can
exceed the maximum entanglement achievable in the original
protocol, given any degree of photon loss in the waveguide.
While the increase in the degree of entanglement is not huge,
it is intriguing in itself to wonder why the storage qubits
are more loss-resilient compared to the driven qubits. We
find that the photon loss in the waveguide effectively acts as
a relaxation process on the upstream driven qubit. Remark-
ably, the exact solution found in Ref. [15] has a parameter
regime that minimizes the population of the driven qubits,
thus mitigating the effect of this induced relaxation process,
and yet it stabilizes a Bell pair on the storage qubits. This
results in an increase in the degree of entanglement of the
storage qubits (compared with the original protocol) at the
expense of the driven qubits. Our findings are complemented
by an analytical understanding of the system in this regime:
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FIG. 1. (a) A schematic of two-qubit chains with the boundary
qubits coupled to a unidirectional waveguide. The boundary qubits
are driven by a common Rabi drive with strength Q. J; ;1 is the
rate at which neighboring qubits in a chain exchange excitations.
Waveguide loss is modeled using a fictitious beam-splitter that allows
a photon to pass through with probability n2. (b) Sketch of a possible
circuit quantum electrodynamics implementation of the schematic
in (a) with N = 2. (c) Steady-state concurrence of the system with
N =1 for different degrees of waveguide loss. See Sec. IIB for
details. (d) Time evolution of the concurrence for the ratios 2/y
marked by circles in (c). The dotted vertical lines show the effective
on-site decay time on the upstream qubit due to waveguide loss.

by adiabatically eliminating the driven qubits, we find that
the effective drives on the storage qubits have a “built-in”
asymmetry that counters waveguide loss, making them more
loss-resilient compared to the protocol with only two driven
qubits. Finally, we find that due to the interplay between the
driving, dissipation, and qubit-qubit couplings, there is an
experimentally feasible parameter regime in which the storage
qubit entanglement always exceeds the best entanglement of
the original two-qubit protocol.

This paper is organized as follows. In Sec. II, we review
how two qubits coupled to a 1D chiral waveguide relax into
an entangled state, and we provide an explanation for how
waveguide loss limits the degree of entanglement of the steady
state. In Sec. III, we discuss how adding a pair of storage
qubits leads to a slightly improved resilience of the entangled
state against waveguide loss. We explain the mechanism be-
hind this improvement and quantify the gain in entanglement
over the maximum entanglement achievable with only two
driven qubits. Section IV discusses the prospects of adding
more qubits to each node and potential limits on how robust
the steady state can be against waveguide loss.

II. STABILIZING TWO-QUBIT REMOTE
ENTANGLEMENT

A. A driven cascaded network of qubits

We begin by considering a pair of qubit nodes connected
via a unidirectional waveguide. Each node consists of a chain

are not coupled to a single waveguide mode. Moreover, as
we show next, the purpose of the waveguide is to engineer
collective dissipation between the qubits, not to mediate any
type of coherent coupling. Thus, it is essential that the qubits
are radiatively coupled to a continuum. The N = 1 limit of
this system, consisting of two driven qubits coupled to a
unidirectional waveguide, has been studied previously and
has been shown to have a steady state that can be highly
entangled [5,6]. We briefly revisit this result for completeness,
and then discuss how this system performs in the presence of
waveguide loss.

The cascaded network of qubits can be modeled by the sys-
tem Hamiltonian consisting of the qubits, the waveguide, and
their interaction. Using a Markov approximation and tracing
out the waveguide modes, we can obtain the equation of mo-
tion of the reduced two-qubit system, as originally described
in [16,17]. Alternatively, we can employ the SLH formalism
[18] to identify an SLH triple (scattering matrix, Lindbladian,
Hamiltonian) for each element in the network, and then use
series composition rules to obtain the effective SLH triple for
the cascaded system (see Appendix A for details). The master
equation for a cascaded system of two driven qubits can then
be written as

p = —ilH, p] + yDle1p, ey

where y 1is the coupling strength between the qubits
and the waveguide, and D[X]p = XpX™ — {X7X, p}/2. The
waveguide-coupled Hamiltonian is given by

A

Q A
H=—(6;+63)+=(6; —6;) + z—(&j&B‘ —H.c.),

2 2
@)
and the joint collapse operator is given by
=6, +65. 3)

The Hamiltonian is written in the rotating frame of the com-
mon Rabi drive, which has strength € and is detuned by A
(—A) from qubit A (B). The last term in Eq. (2) describes the
waveguide-mediated interaction between the qubits. The joint
collapse operator ¢ arises from the interference between pho-
tons emitted from the two qubits. Note that we have assumed
here that the waveguide is at 0K, which is justified in the
context of circuit QED. Superconducting circuits operate at
around 10 mK and transmons typically have resonant frequen-
cies around 5 GHz. This leads to a thermal photon population
of around 4 x 10~!!, Thus, qubit excitation processes by the
waveguide are exceedingly rare, so we neglect them.

To find a pure state of this system, we look for a dark state
(a state that gives zero when the collapse operator is applied to
it), which describes a state of the system in which no photons
propagate beyond the two qubits. One can see [5,6,19] that
there is a dark state of this system that is also an eigenstate of
the Hamiltonian with a zero eigenvalue, and therefore a steady
state of the system, given by

V28
[¥o) = |00) + mw)» 4
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up to a normalization constant. |S) = (|01) — |10>)/\/§ is
the singlet state. For Q2 > A? + y?/4, the dark steady state
is entangled. The unidirectional nature of the waveguide
gives rise to steady-state entanglement that is independent
of the physical distance between the qubits. From an ap-
plication perspective, this protocol is thus highly interesting
for realizing on-demand entanglement between distant qubits.
With superconducting qubits, for example, one could envision
distributing entanglement across ‘“modules” of a quantum pro-
cessor [20-25] [Fig. 1(b)]. To assess the practical potential of
this protocol, however, we must first understand how waveg-
uide loss affects the attainable degree of entanglement. In the
following, our goal is to gain an intuitive picture of the effect
of waveguide loss, as well as develop approaches to improve
resilience against this loss.

B. Understanding the effect of waveguide loss

We begin by deriving the collapse operators for our system
in the presence of waveguide loss. We again use the SLH
formalism for our cascaded system. A fictitious beam splitter
is introduced in between the two qubits, described by the
probability »? that the photon gets transmitted from A to B
(see Appendix A for details). This leads to a multiplicative
factor of n in the waveguide-mediated qubit-qubit coupling
term in the Hamiltonian, giving

RY: A Y A
H =2 (6} +063) + 5 (67— 65) + ln%(aA 65 —Hec.).
&)
More interestingly, the collective loss operator becomes
asymmetric in qubit-waveguide coupling, and a second loss
operator on the upstream qubit is introduced, given by

& =1 —n26;. (©6)

The asymmetry in the collective loss operator ¢; is not au-
tomatically detrimental—in principle, it could be countered
simply by changing one of the qubit-waveguide coupling rates
to restore “matching.” That leaves ¢, as the detrimental effect
of waveguide loss on this system. The loss operator ¢, de-
scribes losing a photon during propagation from qubit A to
qubit B, which can be interpreted effectively as on-site loss
on qubit A.

For the remainder of the paper, we assume for simplicity
that the drive detuning A = 0; nothing essential is lost by
making this assumption. If the two qubits may not be easily
tuned to the same frequency, it may be necessary to have A #
0. The effect of A # 0 is to effectively renormalize y to y +
2i A where it appears in the steady state. See Appendix B for
details. The effect of this effective on-site loss manifests as a
reduction of the maximum concurrence, as shown in Fig. 1(c).
For each value of waveguide loss, we simulate the Lindblad
master equation as a function of the ratio 2/y and compute
the concurrence of the steady state. We see that for each nz, the
concurrence initially increases with €/y up to a maximum,
after which it begins to fall. To understand why increasing
2/y beyond this point causes a reduction in the concurrence,
we consider the rates involved in this dissipative system. For
each value of 72, we extract /y at the maximum and plot
the time evolution of the concurrence for those parameters

& = n6; + 65,

in Fig. 1(d). First, the system has a characteristic relaxation
time that increases with €/y. This can be explained by the
Liouvillian gap of the system, which characterizes the slowest
relaxation rate in the Liouvillian spectrum, and thus its inverse
characterizes the relaxation timescale 7. In this system, the
relaxation time scales as Ty ~ (Q/y)z, i.e., the relaxation
timescale grows quadratically with drive strength [2,7]. As
a result, there is a tradeoff between the relaxation time and
the degree of stabilized entanglement. Second, we can see
from Eq. (6) that the effective on-site loss on the upstream
qubit introduces a decay rate given by yiss = ¥ (1 — 1?), thus
limiting the 7} of qubit A; to 77 < 1/¥joss-

Heuristically, when the relaxation time exceeds this in-
duced decay, 1] > T7, the system cannot effectively stabilize
greater entanglement because the upstream qubit decays too
quickly. For each ? in Fig. 1(d), the dotted lines mark the time
1/10ss(n), which is the timescale associated with loss-induced
decay. We see that these times qualitatively predict the onset
of the concurrence plateau. The effect of waveguide loss on
this stabilization protocol can thus clearly not be canceled
entirely by adjusting coupling rates. We discuss in Sec. III
how the steady state can be made more loss-resilient by adding
additional qubits.

C. Possible circuit QED implementation

With an understanding of how loss affects the steady-
state concurrence of this system, we turn to a discussion
of implementation using superconducting circuits. The most
straightforward circuit implementation consists of transmon
qubit modules connected through a unidirectional waveg-
uide as illustrated in Fig. 1(b). A microwave circulator in
the waveguide connecting the qubits ensures unidirectional
photon propagation. The qubit-waveguide coupling y is de-
termined by the strength of the capacitive coupling shown in
Fig. 1(b). Similar circuits have been previously implemented
for remote entanglement protocols that rely on the first qubit
emitting a photon that propagates through a unidirectional
waveguide and gets captured by the second qubit [23-25].
Based on the transmission loss reported in these papers, and
more recent qubit module interconnect designs [20], we es-
timate that waveguide loss corresponding to 7% = 0.9 is well
within reach. Figure 1(c) shows the steady-state concurrence
achievable with this amount of waveguide loss and the re-
quired ratio of drive strength and qubit-waveguide coupling.

III. PROTECTING STEADY-STATE ENTANGLEMENT
FROM WAVEGUIDE LOSS

A. Coupling to storage qubits

One possible idea for improving resilience is to add an
additional pair of qubits: For one, it is useful in general to
be able to store the entangled state as a resource for further
processing. Therefore, it would make sense to transfer the en-
tanglement to a pair of qubits that is not directly coupled to a
loss channel. Further, envisioning the scheme as a resource for
entanglement generation, one could further imagine that many
storage qubits could be added to each node. In that direction,
it could be of interest to stabilize large entangled states us-
ing a single dissipative channel. This could be achieved, for
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example, by propagating entanglement among qubits in a
node using gates.

As a practical matter, particularly in the context of circuit
QED, it is also important to consider the possible difficulty
with reading out the qubits. In the case of this driven-
dissipative protocol, one would turn off the Rabi drive before
performing dispersive readout of the qubits, as is typically
practiced in protocols involving driven transmons [26,27].
Since the qubits are coupled to the waveguide, the state would
decay during the readout process. For ideal qubits that have no
intrinsic relaxation, decay during the readout process could be
minimized by reducing y while maintaining the required 2/y
ratio. In an experiment, however, the qubits will have finite
relaxation times that would compete with the decay rate into
the waveguide given by y. We show in Appendix C that for
qubits with a 7] = 100 us coupled to a chiral waveguide with
n*> = 0.9, the coupling to the waveguide y must be greater
than 1 MHz in order to achieve a concurrence of 0.56. This
would mean that when the drives are turned off, the qubit
would decay in approximately 160 ns. We note that recently
demonstrated fast high-fidelity readout times are comparable
to this decay time [28,29], hence preventing high-fidelity,
single-shot readout of the quantum state. It is therefore also
practically useful to be able to measure the entangled state in
a pair of storage qubits that are decoupled from the waveguide.

Reference [15] has shown that a system of two identical
chains of coupled qubits coupled to the first pair has a pure
steady state that stabilizes entanglement between the chains
for any nonzero driving. Therefore, by coupling storage qubits
to the waveguide-coupled pair, the system automatically sta-
bilizes entanglement in the storage qubits. Remarkably, we
find that when there is loss in the waveguide, adding a pair
of storage qubits increases the system’s resilience against
waveguide loss. While the improvement is modest, it is of
fundamental interest to understand why there should be any
increase in resilience. To that end, we give first a heuristic
argument as to why we might expect an improvement, then we
analytically show (in part) how the increased resilience arises,
and we quantify the performance improvement. We also find,
as a practical matter, that the regime of maximally increased
performance is reasonably achievable experimentally; the dis-
sipation, driving, and hopping strengths should be similar in
magnitude, and the region of improvement does not require
fine-tuning.

We start from the two-qubit entanglement stabilization
protocol outlined in Sec. II, with the ideal (i.e., lossless waveg-
uide, n = 1) Hamiltonian Eq. (2) and collective jump operator
Eq. (3). At each node A (B), we add a second qubit that is
exchange-coupled with strength Ji; 4¢p) to the first qubit [see
Fig. 1(a)]. The Hamiltonian of the full four-qubit system is

Hugo = Hogy + Z Jins(6,76,, +He), @)
s=A.B

where ﬂqu is the entanglement stabilization Hamiltonian
Eq. (2) (acting on qubits A; and B;). As mentioned earlier
in the text, we assume for simplicity that the drive detuning
A = 0. The first pair of qubits, A; and Bj, remain coupled to
the waveguide through the collective loss dissipation Eq. (3)
(in the ideal waveguide limit).

B. Steady-state entanglement

The four-qubit system is the N = 2 case of the general
(N+N)-qubit double chain studied in Ref. [15]. In that work,
it was shown that if the exchange couplings have a mirror
symmetry, J; i+1.4 = Ji.i+1:5, then the entire double chain has a
pure steady state for arbitrary parameters, with entanglement
between the two chains for any driving 2 # 0. Following this,
we assume that the exchange couplings are equal, Jjz 4 =
J12.8 = J12. Therefore, the (2 + 2)-qubit system has the pure
entangled steady state (up to normalization)

25D+ —=10,13)) - 72j0,0 8
W2>_<V|12>+x/§|12>> Q|12)~ (3)
Here the states are as follows: the singlet |S1) = (|04,115,1) —
|1A,103,1))/«/§ of qubits on site 1, the triplet |75) =
(10421p2) + |1A,203,2))/\/§ on site 2, and the two-qubit vac-
uum |0;) = |04, ;0p, ;) on either site j.

The steady state approaches a maximally entangled state
[Y2) = |81 1) when Q > y and Q > Jj,. For the purpose of
stabilizing and protecting entanglement, however, we wish to
work in a regime in which only the second pair of qubits is
entangled. By inspection of Eq. (8), we see that this can be
achieved for

y > Q> Jn. €))

In this regime, the vacuum component [0;0,) and the max-
imally entangled component |S;7;) of the steady state are
negligible compared to the |0;73) component. Thus, the sec-
ond qubit pair can be arbitrarily close to a perfect Bell pair,
irrespective of the entanglement of the first pair. Note that
this is the N = 2 case of the single “charge-density wave”
predicted to exist in these chains [15].

The ability to parametrically control the amount of entan-
glement stabilized on the second qubit pair independently of
the entanglement on the first pair plays a crucial role in the
increased resilience of the four-qubit system against loss in
the waveguide. By using the first pair of qubits as a “sacri-
ficial” pair whose entanglement is intentionally made worse,
we can improve the entanglement of the second pair beyond
that which can be achieved for the two-qubit scheme for any
waveguide transmission 1> for which the two-qubit protocol
can stabilize entanglement.

C. Inherent resilience to waveguide loss

We account for waveguide loss in the four-qubit system
exactly following Sec. IIB. The collective loss dissipator
Eq. (3) is replaced by the two dissipators of Eq. (6), where n
is the waveguide transmission amplitude, and the dissipation-
induced exchange term in ﬁqu [cf. Eq. (5)] is modified as
in Sec. II B. Just as in the two-qubit system, there is no pure
steady state for any n < 1 due to the single-qubit loss induced
on qubit A;. However, notice that if the first pair of qubits is
in vacuum, then the effective single-qubit loss cannot disrupt
the steady state; such a steady state would remain a dark state
of the dissipation [30].

Guided by this insight, and recalling that the exact solution
Eq. (8) approaches such a state with near zero population on
the first qubit pair in the parameter regime set by Jj, < €2 and
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FIG. 2. (a) Steady-state concurrence of the outer pair of qubits
in the 2 4 2 system as a function of both driving 2/y and hopping
Ji2/y. Waveguide transmission probability is n? = 90%. The color
scale is centered at the maximum concurrence of the 1 + 1 system
(with symmetric driving Q24 = Qp = Q). The red region indicates
the range of Q and J;, for which the 2 + 2 system stabilizes more
entanglement than the 1 + 1 system, C[™* = 0.57, which is achieved
for n?> = 0.9 with a driving strength Q/y ~ 1.16. Note that the
color scale is not symmetric about C"*; the minimum is at zero
concurrence and the maximum is at the maximum concurrence of
the 2 + 2 system for this waveguide loss, which is found numerically
to be CI'** ~ 0.61. (b) Comparison of maximum concurrence for the
1 4 1 system, optimizing over €2, and the maximum concurrence for
the outer pair of the 2 4 2 system in the weak €2, weak J;, limit,
optimizing over Jj, /€2, and optimized over €2 and J;,.

Q? « yJiz, we are led to the strategy of using the first pair of
qubits as a sacrificial pair in order to stabilize entanglement
on the second pair. The utility of this strategy is verified
numerically in Fig. 2(a), which shows that, as Jj;, 2 — 0
(while holding J;,/S2 fixed), the concurrence on the second
pair of qubits is nonvanishing, approaching a constant value
dependent on the ratio Jj,/€2. Moreover, there is a regime of
constant Ji,/Q2 (with Q > Jj;) for which the 2 + 2 scheme
yields higher concurrence for the n* used in the figure. A
heuristic argument for the constant, nonvanishing concurrence
with Jj, Q@ — 0 is discussed in Appendix D. We find nu-
merically that for all transmission probabilities 5> for which
the 1 + 1 system stabilizes entanglement, there is a parameter
regime in which the 2 + 2 system yields better concurrence
than the 1 + 1 system.

To better understand why the 2 4 2 system is more robust
to waveguide loss than the 1+ 1 system, we first consider

the regime of weak hopping and driving, Ji2, 2 < y. In this
regime, the first pair of qubits is almost completely in vacuum.
Thus, we can adiabatically eliminate these qubits to find an
effective master equation for the reduced density matrix of
the second pair, p, = Tra; p1[0], given by

2

& pr = —ilHetr, po] + Z,D[i‘j,eff]:bb (10
=1

N Q ff . ~x
Hefr = ; [GA,Z +@2n - 1)03,2]

INVeft .4 A
+ T“‘(a/;ﬁZUR2 —H.c), (1)
Z:l,eff = yeff(né\'A_,z + 6[{2), (12)

Loett = /Yerrv/1 — N6, - (13)

See Appendix E for details. The effective master equation is
precisely of the form of the two-qubit scheme with waveguide
loss, but with asymmetric driving strengths on the two qubits.
The renormalized drive strength is Q. = 22J1,/y, and dis-
sipation strength is yerr = 4J3,/y. Notice that the waveguide
transmission amplitude 7 is not renormalized.

The driving asymmetry of the effective master equa-
tion is n-dependent and recovers the ideal symmetric driving
strengths for n — 1. Because 7 is not renormalized, any im-
provement of the stabilized concurrence of the 2 4 2 system
in the Ji», 2 < y regime must be due to the asymmetry in the
driving strength. Indeed, we find in Fig. 2(b) that over a wide
range of n, the effective asymmetric driving of the effective
theory (in the weak €2, Ji, limit) yields higher concurrence
than the symmetric driving [the 1 4 1 system with optimal
Q in Fig. 2(b)]. Intuitively, we expect that some degree of
drive asymmetry should improve the stabilized entanglement
because the waveguide loss induces additional single-qubit
loss on the upstream qubit, thus a stronger drive—relative to
the drive on the downstream qubit—is needed to compensate
for the greater loss.

We also find that the effective master equation recovers the
numerically observed result that as Jj,, 2 — 0, the concur-
rence on the second qubit pair depends only on 2/J;, [see
Fig. 2(a)]. Since the concurrence of the 1 + 1 system is con-
trolled only by Q2¢/vefr, we find that in terms of the original
system parameter, Qe / Vet = $2/2J12, thus the concurrence is
dependent only on the ratio €2/J;, and not on their strengths
relative to y. A heuristic explanation for this behavior is
given in Appendix D. Finally, we observe numerically that
for Ji; ~ Q < y, there is a regime for which the concurrence
is even higher compared to the 1 4 1 concurrence. This effect
is shown in Fig. 2(a) as the head of the red matchstick region.
A full analytic understanding of this “bump” in concurrence
remains an open question, but we speculate that it may be
due to a kind of “impedance matching” among the driving,
hopping, and dissipation dynamics. The improvement of the
“bump” region over the weak driving regime is shown as the
dashed curve in Fig. 2(b).

D. Universal improvement over two-qubit protocol

As we have shown, the higher stabilized entanglement of
the 2 4+ 2 system compared with the 1+ 1 system can be
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FIG. 3. (a) Optimized concurrence of the 1+ 1 system and
the outer pair of the 2 + 2 system as a function of transmission
probability n%. For each system we optimize over the upstream
(downstream) Rabi drive €24 (25) and for the 2 4 2 system we
optimize over Jj,. For comparison, we also plot the best concurrence
of the 2 4 2 system with equal 4 = Q5 [cf. Fig. 2(b)]. Inset: the
difference in concurrence between the optimized 2 4 2 system and
the optimized 1+ 1 system is plotted as a function of transmis-
sion probability. (b) The optimized drive strengths €, / Q5 of the
upstream/downstream qubits and Jj, for the two systems plotted as
functions of the transmission probability.

partially explained by the asymmetry of the effective Rabi
drive strengths in the weak driving and weak hopping regime.
One may naturally wonder whether the 1 4 1 system could
achieve the same entanglement as the 2 4 2 system if we
optimized over the driven qubits’ drives, 24 and Qp, sepa-
rately. We find numerically that when allowing the applied
driving strengths to have asymmetry, the 2 + 2 system always
has better concurrence on the outer pair of qubits than the
1 + 1 system for a given 1°. In Fig. 3(a) we show the max-
imum achievable concurrence of the (1 4+ 1)-qubit protocol,
optimized over the driving strengths €24, 25, and the (2 4 2)-
qubit protocol, optimized over 24, 25, and Ji,, as a function
of waveguide transmission probability n?. We find that the
2 4 2 system stabilizes at least as much concurrence as the
1 + 1 system for any n?> > 0, including for 5> not shown in
the figure. We also show the numerically optimized param-
eters Jip, Q4, and Qp versus waveguide transmission n* in
Fig. 3(b), and we find that except when the waveguide loss is
very small (n? A 1), the optimal parameters are Jj, &~ Q < y.
Furthermore, note that the asymmetry of the 2 + 2 drives is
relatively much smaller than the 1 4 1 drives, suggesting that
effective renormalization continues into the optimal parameter

A. Stabilizing entanglement in longer chains

We can add pairs of qubits to the ends of the chains in the
exact same manner as we added the second pair in Sec. III.
We couple a qubit onto the end of each chain, maintaining
equal hopping rates J; jy1.4 = Jj j+1;8 = Jj, j+1. If this mirror
symmetry is maintained, the exact solution of the ideal case
found in Ref. [15] applies. The general form of the exact
steady state is of a so-called “hole pair condensate” in which
the maximally entangled state [ST ST - - - ) is doped with pairs
of adjacent holes (a hole on site j being a two-qubit vacuum
on qubits A; and B;) placed along the chain. For any finite
driving, 0 < € < oo, the chain is populated with all possible
numbers of hole pairs. The disorder in the hopping rates J; j 41
affects the spatial distribution of the hole pair wave functions.
Specifically, the amplitude for a hole pair to span a strong
bond is greater than average, and the amplitude for a hole pair
to span a weak bond is smaller. We can exploit this property of
the hopping rates to keep the first pair of qubits near vacuum
to counteract the effects of waveguide loss, as we did for the
N = 2 system in Sec. III.

Guided by the heuristic argument of Sec. III, we first show
that in principle, large entanglement can be stabilized on qubit
pairs 3 through N in an (N + N)-qubit system, while keeping
the first pair near vacuum, by operating in a weak driving and
weak hopping regime. The general form of the exact steady
state for chains of length N is

Wy) = (1 + %ﬂ)

iy ; . n
X exp WZ(—l)JJj,jHrjer |STST ---),
J

(14)

where the operator £; removes the Bell pair from the two
qubits on site j: T;[(S/T);) =«/§|Oj) (see Ref. [15] for
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details). The exponential term describes the hole pair con-
densate, and there is a boundary correction that removes a
single Bell pair from the dissipative qubit pair. We find that
if we work in the weak driving regime 2 < y, the Bell state
occupation of the first pair of qubits is always suppressed by
the boundary correction term. Then if we let the hopping rates
be Jio > Jozs & J34 X --- &~ Jy_1 N, the hole pairs are most
strongly weighted on the first two pairs of qubits, leaving the
rest of the chain relatively more entangled. Finally, notice that
if @ > /yJ; j41 forevery j > 1, then the hole pairs on those
sites are suppressed. Thus we arrive at the parameter regime
that generalizes the heuristic arguments from Sec. 111,

y>QrJp»>Inrlyr-, (15)

Qw’l2>>@%@%..._ (16)

We expect that this regime provides a starting point to opti-
mize the entanglement in the rest of the chain in the presence
of waveguide loss. As an example, the ideal exact steady state
of the N = 3 system is given by

Q
=||00S) — ——|0T'S
1¥3) [I ) «/§J12| )}

Q2 J I3 /]
~ i 557y - B s00) — 20T
Ji2 Qly

vJi2

up to normalization. In the parameter regime given by
Egs. (15) and (16), the bracketed terms of this state are dom-
inant. Thus, we find that the third pair of qubits is highly
entangled, while the second pair can be somewhat entangled
depending on the ratio €2/J;,. All other terms are suppressed
by the weak drive Q « y or the weak hopping J»; < Ji3.
Note that the requirement for 2,J;» > ,/yJ; j+1 becomes
apparent in, e.g., the coefficient of the vacuum state |000). For
longer chains in the weak driving and weak hopping regime,
one finds that there is a pair of terms equivalent to the brack-
eted pair above, given by |00STST ---) and |0T ST ST ---).
Thus by sacrificing the first pair, and to an extent the second
pair, large entanglement can be stabilized along the rest of the
chains.

1000y, (17)

B. Potential limits on resilience against waveguide loss

We found in Sec. III that the optimal concurrence of the
second pair of qubits in the N = 2 system occurs not deep
in the weak driving limit but when Q ~ J; < y. We expect
a similar result for longer chains, where the weak driving
limit guides our intuition for choosing the relative strength
of parameters, but ultimately, numerical optimization yields
the best performance. It remains an open question, however,
whether longer chains would continue to show improved re-
silience against waveguide loss compared to shorter chains.

One practical limiting factor is the relaxation time of the
system. As discussed in Ref. [15], there is numerical evidence
to suggest that the relaxation time of longer chains is con-
sistent with the typical boundary driven free-fermion scaling
with system size of Ty ~ N3. Even for an ideal lossless
waveguide, this poses an experimental challenge for longer
chains due to the intrinsic loss and dephasing of the qubits.
If the relaxation time becomes comparable to the typical

qubit 77 or T,, these unwanted sources of dissipation will
disrupt the entanglement stabilization. To counteract that, one
must engineer stronger qubit-waveguide coupling y as well
as stronger driving € and hopping rates J; ;. The limits
on the strength of the coupling and driving rates compared
to intrinsic qubit dissipation rates thus limits the length of
experimentally feasible chains. It remains an open question
what the ultimate performance of an N + N system can be
under waveguide loss and realistic intrinsic qubit dissipation.

V. CONCLUSION

We have proposed a driven-dissipative remote entangle-
ment protocol and studied its resilience to waveguide loss. By
understanding the loss mechanism that limits entanglement in
the originally proposed scheme [5], and taking advantage of
the pure steady state of the four-qubit system consisting of a
driven pair and a storage pair, we propose a protocol that is
more resilient to waveguide loss. Based on the intuition that
waveguide loss can be countered by limiting the population on
the driven qubits, we have identified an advantageous param-
eter regime characterized by weak drives and weak hopping
between the driven and storage qubits. We find numerically
that the degree of entanglement of the storage qubits in this
regime is higher than the maximum possible entanglement
that can be achieved with only two driven qubits. We explain
this observation analytically by adiabatically eliminating the
driven qubits to obtain an effective master equation for the
storage qubits. We discuss practical limitations for adding
more pairs of qubits to this scheme. However, the ultimate
performance of a system with N > 2 pairs of qubits under
waveguide loss remains to be explored.

While the driven-dissipative dynamics of the two-qubit
system are well understood for a lossless waveguide [5,6], our
work provides an additional understanding of the dynamics
in the presence of inevitable loss, and it provides guidance
on how to tailor operation parameters that yield better perfor-
mance with photon loss. Our result is also interesting from
a practical perspective, particularly in the context of circuit
QED, where it may be difficult to faithfully measure qubits
that are strongly coupled to a waveguide. Our work gives thus
important guidance for practical implementation of driven-
dissipative entanglement in the laboratory.
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APPENDIX A: USING THE SLH FORMALISM
TO DERIVE THE MASTER EQUATION

The SLH formalism provides a method to derive the
Hamiltonian and collapse operators for a quantum network
using simple algebraic manipulations [18]. Each component
is specified by a triple (S, L, H) that describes how it interacts
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with input and output fields. S is the scattering matrix for the
component, L contains its coupling to external fields, and H is
the Hamiltonian. The cascaded network of two qubits coupled
to a unidirectional waveguide can be modeled using three
components in series configuration: qubit A, followed by a
fictitious beam splitter, followed by qubit B. The beam splitter
has a probability 5? of allowing a photon to propagate through
from qubit A to qubit B. This allows us to model photon loss
in the waveguide. The SLH triple for the ith qubit is given by

S=1, L:ﬁ("é), H= 267+ 6

The Hamiltonian is in the frame of the drive, which is detuned
from the qubit frequency by A. The SLH triple for the beam
splitter is given by

where n? is the probability that a photon propagates through
from qubit A to qubit B. For two components connected in
series, the product rule used to calculate the SLH triple for the
network is

(82, Lo, H2)<1(S1, L1, Hy)
1 .
= ($251. Lo + oLl Hy + Ho + S (WisLi - LiSiLy)).
(A1)

Using Eq. (Al), we obtain the following SLH triple for our
cascaded system:

i VTR T g
((—m i )’ﬁ<na;+ag>’*’>’ “

where the Hamiltonian is given by

N Ag . Qa4 Ap .. Qp .
A= (3ei+56)+ (F6+50)

2 2
- i%(&;&; —6165) (A3)
and the collapse operators are
& =16, +65, &=+1-n%6,. (A4)

Finally, taking Qp = Q4 and Ag = —Ay4, we obtain Eqgs. (5)
and (6).

APPENDIX B: STABILIZING ENTANGLEMENT
WITH DETUNED DRIVING

In the main text, we analyze the loss-resilience and entan-
glement stabilization of the N = 2 system assuming that the
drive detuning is A = 0 [cf. Eq. (2)]. Nevertheless, we ini-
tially include the detuning and show that the two-qubit (N =
1) scheme stabilizes entanglement with A # 0 to highlight
an important feature of this scheme: the two driven qubits do
not need to be precisely matched in frequency for it to work.
Instead, if one has two qubits with frequencies w4 and wg, a
drive applied at the center frequency wq = |wp — wa|/2 will
stabilize the entangled steady state Eq. (4). Remarkably, the

—_
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FIG. 4. Steady-state concurrence of the two-qubit system for
(a) qubits with 77 = 100 us and (b) qubits with no intrinsic relax-
ation. The dashed contour lines are at concurrence C = 0.56; n?> =
0.9. Notice in (a) that the high concurrence region is pushed towards
higher drive and coupling strengths due to intrinsic qubit relaxation.
In (b), the concurrence depends only on the ratio €2/y as discussed
in the main text.

general exact steady state for two length-N chains remains in-
tact with A # 0 (assuming all nondriven qubits are resonantly
exchange-coupled) [15]. There is only a reparametrization of
the steady state: where y appears in, e.g., the N = 2 state
Eq. (8) or the N = 3 state Eq. (17), drive detuning can be
incorporated by replacement,

y =y +2iA. B

A short calculation shows that this replacement works because
in the Hamiltonian Eq. (2) the dissipation-induced exchange
oy and the opposite drive detuning oA act identically on the
|01) and |S}). Thus, the energy-eigenstate condition that deter-
mines the steady state only changes by this reparametrization.

The analysis in the main text that follows the assumption
A = 0is similarly essentially unchanged. Note that when loss
in the waveguide is included, the dissipation rates are not
reparametrized. For example, the induced loss rate on qubit
A} remains yjo5s = ¥ (1 — n?). Otherwise, in the analysis of
Sec. III, everything proceeds the same but the reparametriza-
tion y — y + 2iA when comparing the driving and exchange
rates to the “loss” rate. This implies, for example, that the
optimal parameter regime to maximize stabilized concurrence

is Q ~ Jip x \/)/2+4A2.

APPENDIX C: MINIMUM REQUIRED QUBIT-WAVEGUIDE
COUPLING DUE TO FINITE QUBIT LIFETIME

We show in Fig. 1(c) that the ratio ©2/y determines the
maximal achievable concurrence for given waveguide loss.
However, finite qubit relaxation times require the magnitudes
of Q and y to be above certain minimum values. This occurs
because the intrinsic loss rate of the qubit competes with the
decay rate into the waveguide y. As an example, we simu-
late the system with n?> = 0.9, and qubit lifetimes of 100 us.
Figure 4(a) shows how the high concurrence region is pushed
towards larger drive and coupling strengths, relative to the
ideal case of zero intrinsic relaxation, shown in Fig. 4(b).
The dotted contour lines are at C = 0.56. To achieve this
concurrence, the coupling strength to the waveguide y should
be at least 1 MHz. This corresponds to a waveguide-induced
qubit relaxation time of around 160 ns.
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APPENDIX D: CONSTANT CONCURRENCE
IN THE WEAK DRIVING REGIME

In Fig. 2(a), we find that for fixed €2/J1, ~ 1, in the weak
driving limit Q < y, the concurrence of the second qubit pair
appears to saturate at a fixed value instead of falling to zero as
one might expect when the driving becomes extremely weak.
This turns out to be a generic feature of the system in the weak
driving limit: for any nonzero waveguide transmission 7> > 0
and in the limit 2 — 0, the concurrence of the second pair
limits to a constant nonzero value that depends only on 1>
and the constant ratio €2/J;,, not on ©2/y. Here we provide a
heuristic argument for why the concurrence does not vanish in
this limit.

Because the primary effect of waveguide loss is to induce
unwanted single qubit 77 decay on the upstream qubit (see
Appendix A), this is the primary mechanism by which the
stabilization of entanglement is disrupted. We can gain in-
sight into how much of an effect the induced 7; decay has
by comparing the relaxation rate of the ideal system to the
rate at which excitations are lost due to the induced 7j. If
the system relaxes quickly compared to the loss rate, then
we expect a greater amount of stabilized entanglement. As
we discuss in Sec. III, the weak driving and weak hopping
regime, J1; < Q K y, yields an ideal steady state with very
little population on the first pair of qubits [cf. Eq. (8)]. We
also expect that due to the weak driving, the population on
the first pair of qubits remains very little throughout the entire
stabilization, and we approximate the population on the first
pair at all times by the steady-state population, given by

_ 29/y)*
2/ + @y P+ 20 /v

where 71; = |S1) (S| measures the singlet excitation, which is
twice the excitation population on the lossy qubit. We estimate
the rate at which excitations are lost due to the induced 77 for
Ji2 SQ K yby

Tioss = (A1)(1 — n?)y ~ (Q/y )Y (1 — n)y,

where (1 — %)y is the induced loss rate [cf. (6)].

To estimate the relaxation rate of the ideal system, we first
assume the weak driving and weak hopping regime Jj; <
Q < y. In this regime, the stabilization of entanglement on
the second pair of qubits is well-described by the effective
two-qubit master equation derived in Appendix E. Moreover,
we can numerically verify that the relaxation rate of the full
2 42 system is well-approximated (up to a ~1 prefactor)
by the relaxation rate of the effective theory. In particular,
the parameter dependence of the relaxation rate is correctly
predicted. Using the result from Ref. [2] that for Q2/y > 1,
the relaxation rate of the 1 4+ 1 system is Iy ~ y3/Q? for
drive strength © and dissipation rate y, we find numerically
that this scaling holds for 2 y. Thus, applying this result
to the effective master equation, and noting that Qs /yerr =
Q/2J1; 2 1, we find

(1)

(D1)

(D2)

4
~ i

- Yt y
Q7

1_‘rel ~

(D3)

In the weak driving limit, holding €2/J;, fixed, the relax-
ation rate thus scales with driving strength as I'; ~ (Q/y)>.

Comparing with the induced T; loss rate I'jos ~ (€2/ v)?, we
find that as Q — 0,

1—‘rel
—> const.
r loss
Therefore, irrespective of the amount of stabilized concur-
rence on the second pair, we find that in the weak driving and
weak hopping limit, the stabilized concurrence saturates to a
fixed value.

(D4)

APPENDIX E: ADIABATIC ELIMINATION
AND EFFECTIVE TWO-QUBIT THEORY

Here we derive the effective two-qubit master equation [cf.
Eq. (10)] for the 2 42 system in the weak driving limit
Q/y < 1. We thus treat the driving as a perturbation. We also
assume the hopping is weak, Ji»/y < 1, and treat it as per-
turbation. Starting from the master equation with waveguide
loss,

8,p = —ilH, pl +yDle11p +yDle2lp,  (ED)
with the Hamiltonian and jump terms given by Eqgs. (7) and
(6), respectively. We take the drive detuning A = O here for
simplicity (nothing essential is lost). Following the operator
formalism of Ref. [31], we take the “ground-state manifold”
to be all states with the first pair of qubits (A; and B;) in
vacuum |(00);), and the “excited-state manifold” to be the rest
of the Hilbert space. The excited-state manifold thus includes
the three sets of states with |01), |10}, and |11) on the first pair.
Note that doubly exciting the first pair from the ground-state
manifold to |11) is second order in the perturbations (driving
and hopping), thus we make a simplifying approximation
and exclude the doubly excited state from the excited-state
manifold. Thus, we define the ground-state manifold and
excited-state manifold projection operators as

P, = (100)(00]); ® 1, (E2)
P, = (10)(10[ + 0101y ® [, = B, (E3)

where 1, is the identity acting on the second pair of qubits A,
and B,.

We decompose the Hamiltonian into four terms H = H, +
H, +V, + V_. The first two terms are the projections into the
two manifolds, and the latter two terms are the off-diagonal
elements connecting the manifolds; V., describes excitation
from the ground-state manifold to the excited-state manifold,
and V_ =V describes deexcitation:

H,=PHP, =0, (E4)

N |
H,=FPHP, = T(UA,IO—B.I —Hc.), (E5)
V, = BHP, (E6)

= J12(10)(015,16, ;645 +10) (04,165 ,65 )

% A+ A+
+ (|0><0|B,]O—A71 +|O><O|A’IO—B,1)’

2
V.= BAP,
= J12(10)(015.18, 65, + 10){014.185267)

Q
+ (100151641 +10){014.165,1)- (E7)
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Note that if we retained the doubly excited states, H, would
have terms €2, J}, but those terms always involve transitions
into or out of the doubly excited state on the first pair of qubits.

We seek an effective theory of the system in the ground-
state manifold, which takes the form

3 Pett = —ilHef, Petr] + DIL1 efr1Pee + DILo et pesrs  (E8)

where the effective Hamiltonian and effective jump operators
are given by

et = Hy = $V-[Ag + (Ad) 1V, (E9)
Lyert = /v &by Vs (E10)

Here the non-Hermitian Hamiltonian Hyy describes evolution
in the excited-state manifold due to the Hamiltonian and dis-
sipation:

A

A Y i At a
Hyy = H, — ?(Clcl +&,62)

WV it ae | At oa- At A
= =5 (841641 + 65185, + 2065,6, ). (E1D)
Notice that Hxy only acts on the first pair of qubits.
To compute the effective theory, we must invert the non-
Hermitian Hamiltonian. This task is made easy by the fact that
it acts only on the first pair of qubits, as we only need to eval-

uate its matrix elements within the excited-state manifold on
the first pair spanned by {|01);, |10);}. Within this manifold,

2i
g—1 _ <t At oAt _
H = V(UA 164105 1051 +‘7A 164, 1“31‘731 216, 1031)
(E12)

is the inverse. We are thus ready to directly evaluate Eqs. (E9)
and (E10). Up to irrelevant global phases, the jump operators

evaluate to

B = 2265 i)+ (=, (EI3)
eff — U — 1o, - = —1n)
1eff NG B2 A2 N
2J12 . _
LZBff_\/l—n —0A2+ 1 —n?— (E14)
and the effective Hamiltonian evaluates to
N i 45> o
ot = zﬂi( G405 — "1;2%,2)
Qo
+ 1777(%’2 —6p,y— H.c.). (E15)

Note that the jump operators have constant, nonoperator terms
o . Lindblad dissipators with jump terms of the form L =
X + a can always be decomposed into a dissipator of only
the operator X and a Hamiltonian term via D[X + alp =
DIX1p — i[(ia*X /2 + H.c.), p]. Applying this to I:;,ef_f, we
arrive at a new set of jump operators and an effective Hamil-
tonian,

- 2J
i 12

lLeff = ——= (M6, , —6p,), (E16)
¢ \/7 A2 B2
2]
Lo =+/1—1 io“, (E17)
~ 12QJ,; Ay
=5 (61, — 21— 1)6y,)
i 4J% o
- E”J 61,65, —H.c)). (E18)

Here we immediately identify the effective parameters yer =
4J122/7/ and Qe = 2QJ12/y. As a final step, we make local
47 /2 rotations about Z on the A, and B; qubits, respectively
This flips the relative sign between né, a2 and & 65, in Ll off and
the sign of the exchange term in the Hamiltonian, and it rotates
the Rabi drives from &Y to 6* (and flips the relative sign), thus
we arrive at the effective master equation quoted in the main
text.
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