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Abstract

Desiccation, the extreme loss of water, poses a significant challenge to living
organisms. Desiccation-tolerant organisms combat this in part by accumulating
desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within
their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their
own, combinations of the two can work synergistically to provide enhanced pro-
tection and survival. This review summarises our understanding of the interactions
between DT-IDPs and osmolytes during desiccation, and explores possible molecular
mechanisms underlying them. Using recent literature on DT-IDPs and on the broader
study of IDP-osmolyte interactions, we propose several hypotheses that explain
interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques
from literature on DT-IDPs that we feel are useful to the study of IDPs in other
contexts.
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1. The role of IDPs and osmolytes in desiccation
tolerance

Water is required for all metabolism and active life. Thus, one of
organismal physiology’s most captivating mysteries is the ability of certain
organisms to survive prolonged periods in a desiccated state. Desiccation
tolerance is observed across the tree of life and has evolved independently
many times.1,2 In order to achieve desiccation tolerance, desiccation-tol-
erant organisms enter into an anhydrobiotic (from Greek, meaning “life
without water”) state. In this state, metabolism drops to non-detectable
levels, but often resumes quickly upon rehydration.3,4

The physiological and biochemical changes that occur in living
organisms and cells during desiccation are myriad.3–8 As the extracellular
environment becomes increasingly hyperosmotic, water rapidly effluxes
from the cell, concentrating and crowding the cytoplasm.9,10 This is det-
rimental to the cell in several ways. At the ultrastructural level, the cell
shrinking causes a disorganisation of the cytoplasm, triggering changes in
organellar form and function.11,12 At the molecular level, water loss dis-
rupts the network of hydrogen bonds that helps maintain the fold of
globular proteins, causing them to unfold and aggregate.9,13,14 Water loss
also affects membranes by destabilising them and promoting their phase
transition from a liquid crystalline to a gel state.3,8 It can further cause the
accumulation of reactive oxygen species and the degradation of nucleic
acids.3,8,15,16 Combined, these changes make desiccation catastrophic for
cells, and thus it is to be expected that anhydrobiotic organisms have
evolved robust mechanisms for coping with these stresses.17

The exact mechanisms through which cells survive desiccation have
been the subject of intense study.4,18–23 Most, if not all, desiccation-tol-
erant organisms enrich osmolytes, especially disaccharides and polyols,
during the drying process (Table 1).24–28 In many organisms, this enrich-
ment reaches extremely high levels, such that single osmolytes can account
for up to 15% of an organism’s dry mass after desiccation.4,29,30 Several
studies have concluded that osmolytes are essential for desiccation tolerance
in a variety of different organisms.27,31 Furthermore, enriched osmolytes
are sufficient to increase the survival of desiccation-intolerant cells, and to
stabilise labile macromolecules in vitro.14,28,32–35

In addition to osmolytes, several different families of intrinsically dis-
ordered proteins have been identified as mediators of desiccation tolerance,
which we will refer to collectively as desiccation tolerance IDPs (DT-IDPs).6
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First identified in plants, DT-IDPs have now been identified in all kingdoms
of life and appear to be ubiquitous among desiccation-tolerant organisms
(Table 1).4,6,19 They have been reported to perform a large number of
diverse functions in vitro and in vivo. These include, but are not limited to,
maintaining proteostasis, forming vitreous solids, stabilising membranes, and
slowing metabolism.53–57

Far from being a uniform set of proteins, DT-IDPs can be divided into
several evolutionarily distant groups, which can be broken down further
into distinct families. One prominent group of DT-IDP is late embry-
ogenesis abundant (LEA) proteins. LEA proteins have been known in the
stress tolerance field for nearly 40 years, but many of the mechanisms
underlying their function remain elusive.18,36,58 As is implied by their

Table 1 A non-exhaustive list of different desiccation tolerant organisms, their
DT-IDPs, and some of their co-enriched osmolytes.
Organism Osmolytes Proteins References

Arabidopsis
thaliana
(Mustard plant)

Proline, trehalose,
sucrose, raffinose,
glycerol, glycine
betaine

LEA proteins,
FLOE1, sHSPs

22,23,36,37,38

Hypsibius
exemplaris
(Tardigrade)

Trehalose LEA proteins,
TDPs, sHSPs

28,35,39

Caenorhabditis
elegans
(Nematode)

Trehalose, glycerol LEA proteins,
sHSPs

30,40,41

Saccharomyces
cerevisiae
(Budding yeast)

Trehalose, glycerol sHSPs 8,42,43

Adineta vaga
(Bdelloid
rotifer)

Unknown, lack
trehalose

LEA proteins,
sHSPs

44-46

Artemia franciscana
(Brine shrimp)

Trehalose, glycerol LEA proteins,
sHSPs

4,47–49

Physcomitrella
patens
(Land moss)

Mannitol, proline LEA proteins,
sHSPs, FLOE
homologs

38,50–52
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name, LEA proteins are heavily enriched in the late embryonic phases of
plant seed development, during which many seeds become desiccation
tolerant concomitantly as they dry. LEA proteins are thought to help
maintain the seeds viability until imbibition and germination
occurs.18,22,59 While LEA proteins were first identified in plants, they have
subsequently been identified in a variety of organisms across many king-
doms of life.21,60,61

Several other families of DT-IDPs are unique to the phylum tardigrada.
These include the secreted-, mitochondrial-, and cytoplasmic-abundant heat
soluble (SAHS, MAHS, and CAHS, respectively) proteins.62,63 Together,
these families are categorised as tardigrade disordered proteins (TDPs) and are
essential for desiccation tolerance in tardigrades. The best studied TDPs,
CAHS proteins, are capable of protecting labile molecules both in vitro and
in vivo.6,14,28,34,35,64–66 They also readily self-assemble into fibrous hydro-
gels, which while dispensable for in vivo osmotic stress tolerance and in vitro
proteostasis, have been found to enhance the proteins’ protective func-
tions.35,57,64,67–69

In addition to DT-IDPs, there are many desiccation tolerance media-
tors that are only partially disordered. Small heat shock proteins (sHSPs) are
well-folded proteins that contain intrinsically disordered regions
(IDRs).70,71 They are thought to play a role as active chaperones in
desiccating cells.72–74

The exact mechanism through which DT-IDPs protect cells and cel-
lular constituents from the rigours of drying is an area with many out-
standing questions. One important facet of IDP biology in this regard is the
fact that the ensemble and function of IDPs is heavily influenced by
changes in their chemical environment. Due to the susceptibility of an
IDP’s ensemble to environmental change, it may be surprising that IDPs
play important roles in desiccation, during which there are massive changes
to the intracellular chemistry. However, accumulating evidence indicates
that these changes to the intracellular environment may enhance the
protective function of DT-IDPs. A prominent example is the presence of
osmolytes, which several research groups have documented as working
synergistically with DT-IDPs.28,60,75,76

There are several functional outcomes that could occur upon the
interaction of an IDP with an osmolyte. A synergistic interaction is one in
which the function of the resulting mixture is greater than the sum of its
parts. Conversely, an osmolyte-IDP mixture may function additively (equal
to the sum of its parts) or antagonistically (less than the sum of its parts).

42 Vincent Nicholson, Emma Meese and Thomas C. Boothby



Specifically, synergistic interactions between DT-IDPs and osmolytes have
been described in desiccation tolerance literature for nearly 20 years.60

However, past research on this subject has described this phenomenon
without thoroughly investigating its nature, leaving several unanswered
questions. For example, even though a wide variety of osmolytes have been
implicated in desiccation tolerance, there is a large amount of literature that
explores synergy with just a single osmolyte: trehalose. Additionally, the
exact molecular mechanisms underlying osmolyte-IDP synergy are not well
understood.

In this chapter, we explore interactions between IDPs and osmolytes in
the context of the extreme chemistry of desiccation. We will summarise
the empirical evidence that supports functional cooperativity between
osmolytes and IDPs in desiccating systems. We will highlight what is
known not only about trehalose-induced synergy, but also the potential of
other small molecules to induce synergy. Using a simple model for the
effect of solution chemistry on protein folding, we outline several
hypotheses surrounding the underlying molecular mechanism behind
osmolyte-IDP interactions in the context of desiccation.

2. Empirical evidence for osmolyte-IDP synergy during
desiccation

Each group of desiccation tolerance mediators described above
contains members that have been observed to work synergistically with at
least one osmolyte.60 This section will explore existing literature about
osmolyte-IDP synergy during desiccation, highlight recent progress, and
identify key gaps in the literature that beg further study.

2.1 Late embryogenesis abundant proteins
Of all DT-IDPs, LEA proteins have by far the most documented examples
of synergy with osmolytes. The first observation of synergy between an
LEA protein and osmolyte was with AavLEA1, a LEA protein from the
nematode Aphelenchus avenae and trehalose.60 Synergy was assessed using
lactate dehydrogenase (LDH), a desiccation-sensitive enzyme, which can
be protected during drying by the addition of excipients.60 While both
trehalose and AavLEA1 were found to protect LDH independently, a
mixture of the two protected significantly better than the sum of their parts.
In this study, BSA, a well-folded protein with a similar ability to AavLEA1
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to preserve LDH on its own, was unable to work synergistically with
osmolytes.60 This suggests that the synergistic effect was dependent on the
disordered nature of AavLEA1.

Synergy with trehalose has also been demonstrated in AfrLEA6, a LEA
protein from brine shrimp.75 Synergy was assessed using several in vitro
enzyme functional assays, including LDH.75 Intriguingly, trehalose appeared
to induce this synergistic effect despite not noticeably affecting the secondary
structure of AfrLEA6.61 The mechanism(s) underlying synergy between
AavLEA1 or AfrLEA6 and trehalose have remained elusive.

In addition, the synergy of LEA proteins has been assessed compara-
tively.76 Using the LDH assay, 5 LEA proteins were assessed for synergistic
protection when paired with two osmolytes: trehalose and sucrose.76

Synergy was shown in 4 of the 5 LEAs. Importantly, LEA proteins were
most synergistic when paired with an osmolyte that is enriched in the same
organism during drying. One LEA protein, AvLEA1C, was not synergistic
with either osmolyte. This protein was derived from a bdelloid rotifer
which enriches neither trehalose nor sucrose during desiccation. On the
whole, this suggests two key points. First, that synergy between LEA
proteins and osmolytes is relatively widespread, and second, synergy is
enhanced by endogenous osmolytes, suggesting a potential coevolution of
DT-IDP sequence and the chemical environment.76 Like in the AfrLEA6
study,61 no changes in secondary structure were observed here.76

2.2 Tardigrade disordered proteins
Like LEA proteins, synergy has been observed between osmolytes and
TDPs.28 Trehalose, which is enriched in tardigrades during desiccation,
increased the protective capacity of a representative TDP, CAHS D, by
several fold.28 Performing the same experiment with sucrose, which is not
enriched by tardigrades, produced a significantly weaker synergistic effect.
Interestingly, synergy with trehalose only manifests at or above the bio-
logical ratio of trehalose to CAHS protein found in dry tardigrades. In
addition, synergy between trehalose and several different CAHS proteins
was shown to be enhanced in vivo relative to the in vitro LDH assay.28

Also using CAHS D, synergy has been studied in the context of
promoting certain structural changes.76 Trehalose and sucrose were
probed for their impact on CAHS D’s local ensemble (secondary struc-
ture), global ensemble (expansion/compaction), and quaternary structure.
Ultimately, the results from this study suggest that synergistic osmolytes
do not heavily influence the local or global ensemble but instead induce
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the oligomerization of CAHS D. While CAHS D polymerises into a
fibrous hydrogel without the influence of any osmolytes, it does so at a
lower concentration when either trehalose or sucrose is present, with
trehalose being more effective than sucrose. Another osmolyte, glycine
betaine, inhibits oligomerization of CAHS D and is antagonistic to CAHS
D’s protective function.

This work further demonstrates that this phenomenon may be
explained from a physical chemistry perspective using transfer free energies
(TFEs), a set of experimentally derived values that can be used to
approximate the effect of an osmolyte on a protein’s fold.77 These values
are specific to each combination of one amino acid and one osmolyte, and
are additive such that they can be summed to approximate an omsolyte’s
effect on the conformational change of a whole protein. The following
equation can be applied to calculate the Gtr , which measures the change
in free energy a protein undergoes upon transfer from water to a solution
containing 1M of some osmolyte, assuming no change in the protein’s
conformation.

=
=

G gtr
N i

i N
1

Here, is the surface area of an amino acid residue in square angstroms,
and g is the transfer free energy for that amino acid per square angstrom of
exposed surface area.77–79 Finally, N represents a particular amino acid, and
i is the numerical index for all instances of that amino acid.77–80 Negative
Gtr represent “attractive” solution environments, in which the osmolyte

acts as a denaturant, and positive Gtr values represent “repulsive” solution
environments, in which the osmolyte promotes structure. By simply
comparing the Gtr of two protein conformations, one can mathematically
approximate which conformational changes are favourable or unfavourable
in the presence of some osmolyte.77

This method is well established for measuring the effect of osmolytes on
well folded proteins, but is not commonly applied to IDP conformational
changes.76,77 It is, however, particularly powerful in the case of DT-IDPs.
Not only do DT-IDPs (like all IDPs) have a high solvent-accessible surface
area, which increases the strength of their interactions with osmolytes, but
DT-IDPs function in the context of extremely high osmolyte concentra-
tions, which further exaggerates this effect.3

In the case of CAHS D, transfer free energy predicts that trehalose and
sucrose promote the dimeric state of the protein (which would promote
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gelation), and that glycine betaine promotes the monomeric state (inhi-
biting gelation). This prediction generally agrees with structural and
functional experiments on CAHS D-osmolyte interactions.

2.3 Small heat-shock proteins
Many sHSPs contain IDRs. While they are not fully disordered and thus
cannot be considered DT-IDPs, several studies have investigated the effect
of osmolytes on sHSPs. Literature dating back to the mid 90’s has char-
acterised synergistic interactions between sHSPs and trehalose.81 As it
stands, only two studies have documented synergy between sHSPs and
osmolytes during drying, both using trehalose,82,83 however, synergy has
been demonstrated in other contexts such as thermal stress and oxidative
stress.81–85 For example, Kim et al. demonstrated that while HSP12 and
trehalose can promote yeast survival, when mixed together they provide
protection that is significantly greater than the sum of their individual
parts.83 Existing literature does not make an attempt to characterise the
exact mechanism through which trehalose induces synergy in
sHSPs.82,83 However, the effect appears in a range of sHSPs from different
species, indicating that synergy between IDPs/IDRs and osmolytes might
be a common mechanism for surviving various types of stress.82,83 The
relevance of sHSPs to biology extends well beyond just desiccation, and
further investigation of their synergy with osmolytes further will likely
continue to be fruitful.86

2.4 Key gaps in knowledge
The existing knowledge summarised above informs us about the nature of
DT-IDP osmolyte interactions, but they leave several unanswered ques-
tions and major gaps in our understanding.

• All but two of the studies limit themselves to a single osmolyte: tre-
halose. While trehalose is certainly important to desiccation tolerance in
many organisms, it is certainly not the only relevant osmolyte. Notably,
some desiccation-tolerant organisms make no trehalose at all during
desiccation.44,45,87

• While there appears to be a relationship between osmolyte-induced
oligomerization and synergy in TDPs, no such relationship has been
identified in LEA proteins or in sHSPs.76 Lastly, it is currently unclear
what differentiates synergistic interactions from antagonistic ones, but
TFE has been proposed as a possible explanation.
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3. Deciphering the molecular basis of osmolyte-IDP
synergy

A long-term goal in the protein biochemistry field has been to
predict the impact of solution chemistry on a protein’s fold. As such, there
is nearly 60 years of literature dedicated to the subject. While this chapter
cannot begin to explore protein-solution interactions from a theoretical or
mathematical perspective, we direct readers to the dozens of articles on the
subject, especially the works of Martin Gruebele, Wayne Bolen, and
Charles Tanford.77,88,89

For the purposes of this review, we summarise this theoretical work
with a simple but effective model in which “repulsive” osmolytes pre-
ferentially promote the burial of specific protein residues and “attractive”
osmolytes preferentially promote the exposure of specific protein residues
(Fig. 1). This model is relevant to the regulation of both intra-chain and
inter-chain interactions, leading to diverse effects on proteins at all struc-
tural levels. Using this model, we can conceptualise hypotheses that
potentially explain the structural basis for osmolyte-IDP synergy during
desiccation.

Given the diversity of DT-IDPs, there are a large number of possible
mechanisms through which synergy with osmolytes could arise. The below
hypotheses are supported by evidence from the broader study of osmolyte-
IDP interactions, and from biophysical studies of DT-IDPs. However, we

Fig. 1 Overview of how IDP ensembles could be influenced by the repulsiveness or
attractiveness of their solution environment. (A) In a single protein chain, repulsive
osmolytes induce global compaction and structuralization (red), while attractive
osmolytes induce global expansion and disorder (blue). (B) Repulsive osmolytes stabilise
protein-protein interactions (red) while attractive osmolytes stabilise dispersity (blue).
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wish to stress that these hypotheses are not mutually exclusive. In addition,
the mechanism(s) for synergy in one family of DT-IDPs may be, and likely
are, different from mechanism(s) of synergy in other DT-IDP families.

3.1 Alpha helicity
A prominent hypothesis explaining synergy in DT-IDPs is that osmolytes
induce the formation of alpha-helical secondary structure (Fig. 2A). Many
DT-IDPs undergo a disorder-to-helix transition during the drying pro-
cess.68,90–92 Many research articles have suggested a link between this tran-
sition and a DT-IDP’s ultimate function,90,92 but only recently has this been
demonstrated empirically.66 Outside of desiccation tolerance, it is well
documented that osmolytes can induce particular secondary structures,
including helicity, in IDPs.93–98 This generally involves an attraction inter-
action between the osmolyte with the protein’s R groups, and a repulsive
interaction between the osmolyte and the protein’s backbone.99–101

LeBlanc and Hand (2021), which investigated synergy between the
LEA protein AfrLEA6 and trehalose, implies this exact relationship.75 By
incubating solutions of AfrLEA6 at different relative humidities, they

Fig. 2 Possible structural bases for osmolyte-induced synergy. In each panel, osmo-
lytes (green circles) induce a change in the structure of a DT-IDP (blue). (A) Local
secondary structure (helical adoption). (B) Global dimensions (expansion). (C) Homo-
oligomerization. (D) Hetero-oligomierzation (DT-IDP: DT-IDP). (E) Hetero-oligomeriza-
tion (DT-IDP: Client). (F) Phase change into an LLPS droplet (top) or hydrogel (bottom).
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observe an increase in helicity, as water content decreases, that correlates
with an increase in the function of the protein. They do not demonstrate,
however, that this is the mechanism by which AfrLEA6 behaves syner-
gistically with trehalose. KC et al. measured the secondary structure of six
different DT-IDPs at varying concentrations of trehalose and sucrose.
Strikingly, while these mixtures result in synergistic protection, neither
osmolyte induces changes in secondary structure of the proteins in the
hydrated state. Similarly, while each of these proteins became more helical
upon drying, the presence of trehalose or sucrose did not affect this
structural adoption.76 Finally, it has been shown that the LEA protein
AtLEA4–5 does not suffer reduced function when its helicity is broken
through the insertion of prolines, although this is measured through
freezing stress instead of desiccation stress.102 Nonetheless, the diversity of
DT-IDPs leaves the possibility that helicity is important for synergy in
some, but not all systems.

3.2 Global dimensions
Another potential mechanism underlying osmolyte-IDP synergy during
desiccation relates to the global dimensions of DT-IDPs. The molecular
shielding hypothesis argues that DT-IDPs protect aggregation-prone pro-
teins during desiccation by physically blocking the interaction of proteins
that would otherwise aggregate.19,60,103 Under this hypothesis, one might
assume that DT-IDPs that are generally more expanded would occupy
more space and thus prevent the association of aggregation-prone proteins.
Such conformations could be stabilised by the presence of osmolytes
(Fig. 2B). Indeed, several reports from non-desiccation-related research
demonstrate that the global dimensions of IDPs are highly sensitive to the
presence of osmolytes, and that osmolytes can induce global expansion
through an attractive interaction.94,97,104,105

Despite this, a screen of DT-IDPs’ structural plasticity in vivo found
that their global dimensions decrease drastically when overexpressed in cells
undergoing hyperosmotic shock.98 In addition, KC et al. (2024) suggests
that the global dimensions of LEAs and TDPs are insensitive to the pre-
sence of common desiccation-enriched osmolytes, even at the same molar
concentrations that result in synergy.76

3.3 Homo-oligomerization
In addition to local and global changes to the DT-IDP ensemble, there are
several promising hypotheses related to quaternary structure. Oligomerization
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is commonly observed in DT-IDPs.57,64,67–69,106 There is a large body of
evidence indicating that LEA proteins form low-level oligomers, and TDPs
are known to self-assemble into cytoskeleton-like networks.18,57,64,67–69 Both
TDP and LEA researchers have suggested that oligomerization may be
important to the function of their respective proteins.18,64,67–69 If one looks
beyond desiccation tolerance literature, one finds many examples of osmolytes
inducing or stabilising oligomerization of IDPs.107–112 This points to a model
in which osmolytes may modulate the function of DT-IDPs by inducing or
stabilising oligomerized states through repulsive interactions (Fig. 2C).

There is already some research to support the idea that small molecules
can modulate the formation of homo-oligomers in DT-IDPs. High con-
centrations of glycerol (>5 osM) induce the dimerisation of the LEA
protein COR15A.109 However, the authors do not directly attribute this
effect to osmolyte-IDP interactions, but rather to non-specific effects
arising from high solution osmolarity.109 Another study demonstrated the
ability of metal ions to induce the formation of “fuzzy complexes” in the
LEA protein AtLEA4–5.110 While both of these papers demonstrate oli-
gomerization induced by the presence of osmolytes, neither of them show
a specific structure-function relationship. As discussed above, some evi-
dence suggests osmolyte-inducible oligomerization of the TDP, CAHS D,
which correlates with the protein’s protective function.76 It also applies a
general computational approach that may predict osmolyte-inducible oli-
gomerization in other DT-IDPs. Together, these studies make osmolyte-
induced oligomerization an especially strong hypothesis for the molecular
basis of synergy.

3.4 Hetero-oligomerization
An alternative hypothesis for synergy looks at protein-protein interactions
in a different light. In the same way that osmolytes can stabilise homotypic
protein interactions, they could also stabilise heterotypic protein interac-
tions (Fig. 2D). Importantly, many desiccation-tolerant organisms make
more than one type of DT-IDP.6,18,58 For example, there are 51 LEA
proteins in Arabidopsis thaliana alone.36 Several studies which investigated in
vivo heterotypic interactions between LEA proteins using bimolecular
fluorescence complementation found strong evidence that some combi-
nations of LEA proteins associate with one another, while others do
not.106,113 The exact nature of these interactions are unclear, but the
authors of these studies speculate that heterotypic interactions could be
important for the protective function of LEA proteins.
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Another hypothesis relating oligomerization and synergy has to do with
IDP-client interactions. For example, if a LEA protein protects a sensitive
enzyme by directly associating with it, osmolytes may promote or stabilise
this interaction (Fig. 2E). However, Crilly et al. presented evidence implying
that CAHS D (a TDP) and PvLEA4 (a LEA protein) interact with their
clients through mainly non-specific interactions.114 It is unclear whether or
not osmolytes are able to stabilise such interactions. In this light, it is
important to note that sHSPs, acting as chaperones, are confirmed to
undergo specific interactions with their clients.115 Thus, the stabilisation of
protein-client interactions remains a promising explanation for osmolyte
induced synergy during desiccation, at least in some systems. More research
is needed to elucidate the relevance of protein-client interactions to osmo-
lyte-induced synergy. This can likely be accomplished using LOVE NMR,
molecular dynamics simulations, microscale thermophoresis, or several other
techniques.114,116–118

3.5 Phase behaviour and localisation
A final mechanism through which osmolytes may modulate DT-IDP function
is through inducing changes in phase behaviour or localisation (Fig. 2F). Many
IDPs are capable of forming biomolecular condensates—large networks of
macromolecules whose stable interactions overcome the entropic drive to
disperse.119,120 A commonly studied example is liquid-liquid phase separation
(LLPS), which is the tendency for biomolecules to sequester themselves into
membraneless condensates.121,122 Research outside of desiccation tolerance has
indicated that osmolytes can stabilise LLPS droplets.123,124 The missing link is a
direct correlation between LLPS and the function of DT-IDPs, which has yet
to be demonstrated.18,125 Another example of biomolecular condensation in
DT-IDPs is the formation of hydrogels, which is observed in some TDPs and
at least one LEA protein.19,57,64,67,126 Hydrogel formation is not required,
but promotes the protective function of TDPs, both in vitro and
in vivo.57,64,68 KC et al. (2024) suggests that the presence of synergistic
osmolytes promotes the formation of hydrogels in CAHS D, whereas antag-
onistic osmolytes directly inhibit it.76 It is unclear, however, whether or not
this is merely a consequence of osmolytes promoting or inhibiting lower-level
oligomerization.76

3.6 Overview
Having explored a wide variety of potential hypotheses explaining synergy
in DT-IDPs (Fig. 2), it should be clear that there are many unanswered
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questions in the field of IDP-osmolyte interactions during desiccation.
DT-IDPs are highly diverse in their function and structure and have evolved
to function in different organisms under different conditions. Osmolytes too
are diverse in the nature of their interactions with IDPs. The hypotheses
above are not an exhaustive list of all possibilities, but rather a partial col-
lection of ideas supported by existing literature. We feel it is important to
note that synergy may arise in a desiccated osmolyte-IDP mixture without
any change in the IDP ensemble at all. One study found that the presence of
LEA proteins was sufficient to change the physical properties of the vitreous
solids formed by dried sucrose.127 Vitreous solids are known to have a
protective function inside desiccated cells, meaning that a change in the
structure of vitreous solids could increase their efficacy and explain osmolyte-
IDP synergy.12,35,65,128–133 The list of possible explanations for synergy is
vast, but we hope that the hypotheses above may guide future research into
osmolyte-IDP interactions during desiccation.

Fig. 3 Two hypotheses depicting the effect of osmolytes on the ensemble of DT-IDPs.
Waddingon’s landscape is used to depict the conformational outcomes of DT-IDPs
before and after drying. Gravity represents the thermodynamic forces imposed on DT-
IDPs during drying without osmolytes present. The red arrow represents the ther-
modynamic forces imposed on DT-IDPs by osmolytes. (A) Osmolytes act cooperatively
with other influences to reach the same end state. This enhances the stability of the
end-state structure (bottom). (B) Osmolytes act perpendicularly with other influences,
resulting in the formation of emergent structures.
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4. Conclusions and future perspectives

Beyond stress tolerance, desiccation is a potentially fruitful model for
studying osmolyte-IDP interactions. Studying IDPs is difficult both in vivo
and in vitro thanks to their lack of a stable three-dimensional structure and
their propensity for transient, non-specific binding. This means that
osmolyte-IDP interactions can be difficult to characterise, often mani-
festing as subtle changes in an IDP ensemble or in some binding equili-
brium. Desiccation makes osmolyte-IDP interactions far easier to study by
acting as an exaggerated version of normal cellular conditions. Desiccation
increases the concentration of both IDPs and osmolytes in any system,
which increases the magnitude of osmolyte-IDP interactions relative to
aqueous conditions. In addition, the function readouts for in vitro and in
vivo assays used in the desiccation field are straightforward and quantitative.
As such, desiccation tolerance provides researchers with a situation where
the enrichment of IDPs and changing osmolyte levels are extreme as well as
easily characterised in terms of function.

Importantly, there are several unanswered questions and gaps in our
knowledge that must be addressed by future research. The existing lit-
erature on osmolyte-IDP synergy during desiccation is focused over-
whelmingly on trehalose, despite the fact that it is not the only osmolyte
produced by desiccation-tolerant organisms and is in fact absent from some
desiccation-tolerant organisms altogether.28,44,45 Several other desiccation-
enriched osmolytes, such as glycerol and TMAO, would be excellent
candidates for future research.28,134 Additionally, more work is needed to
understand the molecular mechanisms behind synergy. While there is
evidence linking oligomerization and synergy in CAHS proteins, no such
evidence currently exists for LEA proteins or sHSPs. Given the fact that the
ensemble of LEA proteins seem to be unaffected by the presence of
osmolytes in both the fully aqueous and fully dehydrated state, it is likely
necessary to probe intermediate stages of drying.

Another major unanswered question relates to the exact role of
osmolyte during desiccation. As discussed in this chapter, DT-IDPs are
capable of disorder-to-order transitions during desiccation even when no
osmolytes are present. This leaves two possibilities for the potential role of
osmolytes. Osmolytes may influence DT-IDPs in a manner that is coop-
erative with the thermodynamic influences created during desiccation,
meaning that they simply stabilise structure that would otherwise form
anyway (Fig. 3). On the other hand, they may act perpendicularly with the
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thermodynamic influences of desiccation to promote the formation of
emergent structures (Fig. 3). There are examples of osmolytes showing
both emergent and cooperative effects in non-desiccation-related
IDPs.94,135,136 When it comes to DT-IDPs specifically, KC et al. (2024)
suggests a cooperative role for osmolytes with CAHS D, but this finding
might not apply to every DT-IDP.76

An important implication of the study of synergy relates to organismal
cross-tolerance. We feel it is likely that observations related to synergistic
interactions during desiccation may also inform us about synergy during
other stresses, and especially during freezing. Many organisms exhibit cross-
tolerance between freezing and desiccation stress, and many DT-IDPs are
enriched during both freezing and desiccation.18,35,137 Likewise, osmolytes
are enriched to high levels in organisms during freezing stress.37,138

We expect that several of the techniques and approaches highlighted
in this review will be instrumental to answering these questions going
forward. Two that we expect will be particularly important are the use of
TFE to quantify the effects of osmolytes on an IDPs ensemble, and the
use of LOVE NMR to probe the function of DT-IDPs at the residue
level.76,114 Both of these techniques are relatively new to the desiccation
tolerance field and to the study of IDPs as a whole. Importantly, both of
these techniques are not limited to the study of desiccating systems, and
will likely be useful towards the study of osmolyte-IDP interactions in
other contexts.

In conclusion, desiccation provides the ideal conditions for synergy
between IDPs and osmolytes to occur. Within the desiccation tolerance
field, these interactions have become increasingly important to under-
standing the desiccation response in different species. Knowledge of these
processes has applications relevant to guarding the global food supply by
increasing the drought resilience of crops, and to expanding access to
medicine by protecting sensitive pharmaceuticals in the dry state. Looking
beyond just desiccation tolerance, we see that the study of osmolyte-IDP
interactions in desiccating systems can increase our understanding of these
interactions in the hydrated state.
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