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Abstract—This paper proposes a routing framework in
mixed transportation systems for improving mobility equity.
We present a strategic routing game that governs interactions
between compliant and noncompliant vehicles, where noncom-
pliant vehicles are modeled with cognitive hierarchy theory.
Then, we introduce a mobility equity metric (MEM) to quantify
the accessibility and fairness in the transportation network. We
integrate the MEM into the routing framework to optimize
it with adjustable weights for different transportation modes.
The proposed approach bridges the gap between technological
advancements and societal goals in mixed transportation sys-
tems to enhance efficiency and equity. We provide numerical
examples and analysis of the results.

I. INTRODUCTION

UE to ongoing global urbanization and burgeoning

urban populations, our society now faces not only the
challenges of traffic congestion but also the associated soci-
etal issues, such as disparities in transportation opportunities,
reduced accessibility to essential services for marginalized
communities, and increased social isolation due to lengthy
commutes. Emerging mobility systems have received signif-
icant attention as a solution that can mitigate congestion,
enhance safety, improve comfort, and optimize costs.

Numerous studies have addressed the coordination of
connected and automated vehicles (CAVs) to achieve effi-
cient operational methods in emerging mobility systems. For
example, a series of research papers addressed coordination
problems in different traffic scenarios such as lane-changing
[1], merging on-ramps in mixed traffic [2], [3], signalized
intersection [4], and roundabouts [5]. These results have
also been extended to the network level with vehicle-flow
optimization. Research efforts have also addressed various
congestion-aware routing strategies considering mixed traffic
contexts [6] or targeting electric vehicles [7]. Some ap-
proaches combine efficient routing with coordination strate-
gies [8], [9] or learned traveler preference to achieve social
objectives [10]. However, exploring effective operational
strategies that can mitigate the societal challenges of emerg-
ing mobility systems remains an open question.

The primary component of the societal challenges in
emerging mobility systems is the uneven distribution of
modes of transportation and accessibility to various urban
resources. In response, research initiatives have arisen to
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address concerns of mobility equity in a transportation net-
work. As a concept, mobility equity has been examined
from many diverse perspectives. Notably, research has delved
into socioeconomic parity across different strata of society,
spatially equitable allocation of infrastructure, and the distri-
bution of resources aligned with societal needs (for a detailed
overview, see [11]). For instance, some studies examined the
impact of individual characteristics, i.e., personal needs and
abilities, on the effectiveness of the equity analysis [12].
Meanwhile, other studies explored the link between social
exclusion and transport disadvantages in accessibility [13] or
provided a way of examining equity based on the transport
choices [14]. These investigations underscore the urgency of
creating transportation systems that cater to the needs of all
segments of society, enhancing accessibility and social inclu-
sivity. Despite the discrete examination of these challenges,
however, there still needs to be more comprehensive efforts
to interlink mobility equity with emerging mobility systems.
Integrating the principles of mobility equity into the realm
of emerging transportation modes still presents a gap in the
existing body of knowledge.

To resolve these challenges, in this paper, we propose a
routing framework in mixed transportation systems, where
human-driven vehicles co-exist with CAVs, to improve mo-
bility equity. Our approach addresses different modes of
transportation, accommodating private vehicles with vary-
ing levels of compliance. First, we formulate a routing
framework that suggests system-optimal solutions tailored
explicitly to compliant vehicles. To account for noncompliant
vehicles’ movement, we leverage the cognitive hierarchy
model [15], inspired by many studies that have applied the
cognitive hierarchy model to predict human decisions in
transportation systems. For example, Li et al. [16] utilized
the cognitive hierarchy model in a game theoretic approach
to manage the interaction between automated vehicles and
human-driven vehicles. More recently, Feng and Wang [17]
utilized a cognitive hierarchy model to predict acceptance or
rejection of the drivers in on-demand platforms.

By incorporating a cognitive hierarchy model, we can
design a strategic game that governs interactions between
compliant and noncompliant vehicles within the transporta-
tion system. Moreover, we introduce a mobility equity metric
(MEM) to provide a quantifiable assessment of mobility
equity. This metric captures essential aspects of accessibility,
accounting for both geographical distances and monetary
costs. We then derive the MEM optimization problem in-
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modes. This comprehensive framework not only accounts
for compliance variations and individual travel preferences
but also integrates the overarching goal of equity into the
decision-making process.

The main contributions of this work are the (1) introduc-
tion of the MEM that can help resolve difficulties resulting
from a lack of standard/clear metrics for mobility equity
[18]; (2) formulation and solution of the MEM optimization
integrated with a multi-modal routing framework, which
offers a unique perspective on mobility optimization and
equity enhancement and (3) development of variations of
the MEM that support the analysis in small networks.

The remainder of this paper is organized as follows. In
Section II, we formulate a routing problem within mixed
transportation systems. We introduce a mathematical defi-
nition of MEM in Section III and present the MEM opti-
mization framework in Section IV. Section V showcases a
numerical example with practical implementation strategies
on a smaller network and subsequently analyzes results.
Finally, in Section VI, we provide concluding remarks and
discuss directions for future research.

II. ROUTING IN MIXED TRANSPORTATION

This section presents a routing framework of a mixed
transportation system with various modes of transportation,
including public transportation and privately owned vehicles.
The private vehicles are comprised of human-driven vehicles
and CAVs. We assume that public transportation and CAVs
follow the system’s route suggestion while private human-
driven vehicles may or may not comply with the sugges-
tion. We seek to provide system-wide optimal suggestions
to all compliant vehicles, including public transportation,
CAVs, and private human-driven vehicles. However, such
suggestions must account for non-compliant private vehicles
(NPVs) decisions. Thus, we distinguish between compliant
private vehicles (CPVs) and NPVs in our formulation.

Consider a road network given by a directed graph G =
(V,€), where V C N is a set of nodes and £ C V x V
is a set of edges. We consider O and D as the set of
origins and destinations, respectively. Let N' = {1,..., N},
N € N, denote a set of trips, each comprising of an origin-
destination pair, and M a set of modes of transportation
available for system-wide routing, e.g., public transportation,
shared mobility, private vehicles. For each trip n € N,
information of origin o, € O, destination d,, € D, and
compliant travel demand rate o, € Rso for each mode
m € M is given. We let x4, € R be the flow on
edge (i,j) € & traveling for the trip n with the specific
mode m. Then, the total complying-vehicle flow is given by
a9 =37 >« .. Note that we distinguish the flow of
NPVs on edge (4,7) by denoting it with ¢V € R>¢. Given
both the total complying and noncomplying flows on edge
(i,7), we estimate travel time using the Bureau of Public
Roads (BPR) function denoted by

o y By iy g\
t”(x” +q”):t6j' (1_1,_0.15 (x,}/—:—]q> )) (1)

where t is the free-flow travel time and ~% is capacity of
the road on edge (3, j).

Recall that our system can provide socially equitable sug-
gestions only to compliant vehicles willing to accept those
while NPVs seek to maximize their utility strategically. The
routing process resulting from the interactions between these
entities can be formulated as a game. Next, we describe the
system-centric optimization problem for compliant vehicles
and follow it with the decision-making model for NPVs to
describe the interactions within this game.

1) System-Centric Routing: To suggest socially-equitable
routes to the complying-vehicle flow, we solve the following
flow optimization problem.

Problem 1 (System-Centric Routing).
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where w.,, is the weight for transportation mode m.

The constraints ensure the flow matches the demand
rate and connects corresponding origins and destinations.
Problem 1 is a convex problem as the BPR function is convex
in its domain and constraints are linear.

2) Strategic Rouing for NPVs: In recent research articles,
NPVs have been modeled as one group whose interactions
result in a Wardrop equilibrium (see [19] and references
therein). Wardrop equilibrium is reached at steady state after
transient phases wherein travelers continuously adjust their
route selection. In a real traffic scenario, however, it requires
perfectly rational drivers with access to all information of
other NPVs or a significant amount of time for drivers to
interact with each other and reach equilibrium. Therefore, as
an alternative, we introduce the cognitive hierarchy model
(see Fig. 1) to describe the behavior of NPVs. This model
categorizes human drivers into different levels of decision-
making rationality. At each level, human drivers can an-
ticipate lower-level drivers’ decisions and make “smarter”
decisions. For instance, level-0 drivers decide based on
publicly available information. Meanwhile, level-1 drivers
anticipate level-0O drivers’ decisions and select better paths,
and level-2 drivers can anticipate level-0 and level-1 drivers.
According to the experimental results, humans can most
commonly anticipate others’ decisions up to level-2 [20],
[21]; thus, we restrict our model to level-2 decision-making.
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Fig. 1: Conceptual diagram of cognitive hierarchy model.

Remark 1. The cognitive hierarchy model is suitable for
considering the behavior of NPVs when the percentage of
compliant vehicles is high. This can occur in the presence
of a large number of CAVs and public transportation. In
this case, the traffic flow generated by compliant vehicles
can represent the traffic situation across the network, thus
making it reasonable to assume that a level-0 driver cannot
anticipate behaviors beyond this information. However, if the
majority of the drivers are noncompliant, this would result
in a massive gap between their anticipation and experience
of traffic on the roads. In this situation, they can potentially
learn the dynamics and try to anticipate others’ decisions.

For each trip n € N, we also have the demand rate for
each (-level NPV, ¢ = 0,1, 2, from the origin o, € O to
the corresponding destination d,, € D. For an /-level NPV
traveling for trip n, we define assignment vector Ay, € 21l
where the element a%n takes value of 1 if the /-level NPV
for trip n uses the edge (4, j) and takes value of O otherwise.
We solve the following problem for each NPV to determine
their path.

Problem 2 (Strategic Routing of ¢-Level NPV).

-1
i 3 3 00 (4507 )
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where qzj = ZnEN Qe - a;{n and qq p, is the flow of (-level
NPVs for trip n.

Problem 2 is a routing problem for a single NPV, which
can be solved using any graph search algorithm such as
Dijkstra or A*. As each /-level NPV only anticipates lower-
level NPVs, all NPVs at the same level make the same
routing decision.

Note that ¢/ in Problem 1 is the flow of NPVs, and £/ in
Problems 1 and 2 is the flow of all the compliant vehicles.

As the problems are coupled and affect each other, they form
a strategic game. To resolve this game, we iteratively solve
them until the solutions converge to an equilibrium. Since
there is no theoretical guarantee of convergence, we provide
a way to induce convergence in Section IV-A.

Remark 2. The solution to Problem 1 is sensitive to the
choice of weights. Therefore, it is required to have principled
ways of selecting appropriate weights. In the next section,
we introduce a mobility equity metric that evaluates the
accessibility and equity of transportation resources in a net-
work. This metric will allow us to select socially appropriate
weights.

III. MOBILITY EQUITY METRIC

Mobility equity refers to the fair distribution of transporta-
tion resources and opportunities among diverse communities,
regardless of socioeconomic status, location, or other factors.
Although people are bringing attention to mobility equity,
there has yet to be a strict definition and a convention on its
effective quantification. In this section, we propose a mobility
equity metric (MEM) that quantifies the degree to which
transportation services cater to the needs of different demo-
graphic groups, highlighting any discrepancies in access. In
this metric, we aim to account for various factors pertaining
to mobility, such as accessibility to essential services (e.g.,
healthcare, education, and employment), affordability, travel
time, and availability of multiple modes of transportation.
Next, we present the mathematical definition.

Let M be the set of all modes of transportation, S be the
set of essential service types, and « be the price sensitivity.
For each m € M and s € S, we let ¢, denote the cost per
passenger mile of utilizing transportation mode m, 3° denote
the priority level of service type s, and o2, (7,,) denote the
average number of accessible service s within time threshold
T, from all selected origins in the network.

Definition 1. For a given transportation network G with
modes in M and service types in S, the mobility equity
metric is

MEM = ) e7"om.
meM

Y Bon(rm)p. @

SES

Here, e~ "“m ensures that MEM decreases with an increase
in the cost per passenger mile, and 3°03, (7,,) ensures that
MEM increases with respect to an increase of accessibility
to the essential services. These terms collectively prioritize
increasing access to services at lower costs to passengers to
increase MEM.

Remark 3. An advantage of the MEM defined in (4) is
that, in practice, it can be computed purely using publicly
available data. For example, the base flows in a traffic
network can be measured over time, the number of services
0% (Tm) can be counted using an isochrone map for the
base traffic conditions, and the costs of transportation can
be computed from travel times and fuel consumption.
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Fig. 2: Structure of the socially-optimal routing problem.

Remark 4. Recall that of,(-) represents the average number
of accessible services from selected origins in the network.
We anticipate that by selecting these origins carefully to
include diverse social groups, it is possible to consider the
impact of social factors on mobility equity. Subsequently,
the MEM can facilitate a fair distribution of transportation
resources.

Next, we formulate an optimization problem to integrate
the MEM from Definition 1 into the routing framework
presented in Section II. This allows us to develop a mobility-
equity-focused approach to select the weights to prioritize
various modes of transportation in system-centric routing, as
described in Remark 2.

IV. MOBILITY EQUITY OPTIMIZATION

In this section, we formulate the MEM optimization
problem in the mixed-transportation network. The problem
aims to maximize the MEM by improving accessibility to
the services with cost-efficient modes of transportation. Here,
accessibility is captured by counting the number of accessible
services within a time threshold. In our routing formulation,
solutions to Problem 1 and Problem 2 will be the net flow
on the network, which can be used to estimate travel time
for given origins and destinations. Note that the net flow is
determined for given weights w. Thus, we can formulate the
MEM optimization problem with respect to the weights.

Problem 3 (Mobility Equity Maximization).

Maximize MEM
v ®)
subject to: 6PV(w) < 7,
where 0" is the average travel-time difference between CPVs
and NPVs, and vy is the upper limit of the difference.

Figure 2 illustrates the structure of integrating routing and
MEM optimization. For each possible w, it is required to
solve Problem 1 and Problem 2 repeatedly until their solution
converges. Therefore, Problem 3 can only be solved numer-
ically. We impose a constraint on the travel-time difference
oP¥ between CPVs and NPVs because the routing framework
would sacrifice CPVs’ travel time to maximize MEM. With-
out this constraint, CPVs would no longer comply if their
time loss increases to a certain level. Thus, we impose the
upper bound v in order to keep their time loss bearable.

Remark 5. In practice, CPVs in the system-centric routing
tend to have longer travel times than the NPVs. Thus,
their disincentive towards complying is captured by the

differences in travel time between CPVs and NPVs, which
we bound by the constant ~y. Though we do not explicitly
explore this direction, the constant v should be determined
through monetary incentives provided to drivers to maintain
compliance.

A. Inducing Convergence

One potential cause of challenge to solve Problem 3 is
a lack of convergence of flows in the routing game (right-
hand side of Fig. 2) induced by a specific choice of weights.
In this subsection, we explain the “chattering behavior” in
the routing game and propose a resolution to this concern
by controlling the flows of compliant vehicles in the system-
centric problem. The chattering behavior may originate from
the fact that to optimize the MEM, the system-centric routing
problem may receive weights prioritizing the travel time for
public vehicles with a smaller cost per passenger mile over
CPVs. To understand this phenomenon, consider a single
origin and destination with two possible paths p; and py. For
the compliant vehicles, the optimal solution to Problem 1 is
to assign a shorter-time path p; to the public transportation
and a longer-time path p to the CPVs. Then, NPVs select
p1 for their benefit because p; is still the shortest-time path.
This results in a scenario where public transportation and
NPVs travel in traffic congestion while CPVs travel using a
longer but less crowded path. In the next iteration, compliant
vehicles would thus be assigned different paths so that public
transportation can travel faster. In response to these flow
changes, NPVs would also change their decision to travel
on the same path as public transportation because it would
always be the less congested path. Due to the repeated nature
of these interactions, routing decisions may chatter over time
as the system-centric routing attempts to prioritize public
vehicles and NPVs keep following.

In case chattering occurs, we impose an addition constraint
given by > > xi = fY,where f is the total com-
pliant vehicles flow on edge (i,7) at the previous iteration.
This constraint ensures compliant vehicle flow is the same as
the previous iteration while improving public transportation
travel time. Although compliant vehicles changed their paths,
there is no incentive for NPVs to change their path because
the total flow on the roads remains the same.

V. NUMERICAL IMPLEMENTATION

In this section, we provide a numerical implementation
and analysis of the results. To prove our concept, we
consider a small network with 12 nodes and 54 edges,
as illustrated in Fig. 3. We introduce 10 travel demands
(2 origins and 5 destinations) and randomly generated de-
mand rates, where origins and destinations are considered
as residential areas and essential services, respectively. In
our implementation, we address a single type of service,
i.e., |S| = 1, and mode of transportation given by M =
{public transportation, CPVs}. We assume that travel de-
mands exist for all possible origin-destination pairs and that
the demand rates are known a priori.
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Fig. 3: Small network for simulation with two origins and
five destinations.

To evaluate MEM, we need the average number of services
accessible within the time threshold 7,,, given by

d
s 2 0c0 (a;)n “2dep H[t% < Tm})

T (Tm) = 5 , (©

ZOEO A

where o, is the compliant travel demand rate departing at
o using mode m, I[-] is the indicator function yielding the
number of services within {0, d}, and t; is an average travel
time for o to d via mode m. The number of services counted
with 3, I[t5% < 7] is weighted with the flow af, to

consider the different levels of influence for different travel
demands. Here, we determine tfﬁd by

Z(i,j)eg £+ (.73” + qu) : xigt,n
ij
2 (i j)ee T
where n € N is the travel corresponding to the origin-
destination pair (o, d).

o, d __
ty" =

; (7

A. Continuous Approximation of Mobility Equity Metric

For a network with numerous origins and destinations,
using the indicator I produces meaningful changes to the
MEM because small shifts in travel time result in a change
in the number of services accessible within a time threshold.
In contrast, for small networks, using the indicator function
I to capture the accessibility may barely affect MEM for
variations in travel time. To produce meaningful results for
a small network, we approximate the indicator function with
a continuous function that is more sensitive to changes in
travel time. The approximate function is given by

1

=1 ey

®)
where k € R is a parameter of the slope. As k increases,
the function gets closer to the original indicator function,
while it becomes sensitive to the input as k£ decreases. By
adopting (8) instead of indicator function I, (6) can provide
distinguishable outcomes even in a small network.

B. Numerical Simulation Results

Given the network and travel demands, we first ran sim-
ulations to analyze the effect of the compliance rate on the
MEM. Figure 4a illustrates the travel time of each trans-
portation mode for different trips for different noncompliance

rates (NCR). The figure shows that the overall travel time
increases with the NCR because increasing NPVs generates
traffic congestion and reduces the benefit of system-centric
routing.

Figure 4b shows the simulation for the first and second
routing iterations. For public transportation with longer travel
time than CPVs, our routing framework modified the flow
so that CPVs yield the roads to public transportation without
affecting NPVs’ travel time. This result shows that our
method successfully modified the flow without incentivizing
NPVs to deviate from their previous routing decisions.

Next, we conducted simulations for different weights for
the modes of transportation. Figure 4c is the simulation
results at a microscopic level for three different weights.
It shows that the travel-time difference between CPVs and
NPVs increases as the weight of public transportation in-
creases. This aligns with the intuition wherein the CPVs
increasingly sacrifice their travel time as the system priori-
tizes public transportation. Figure 5 illustrates MEM and the
time difference dP"(w) for both different weights and differ-
ent noncompliance rates. Overall, as the weight on public
transportation increased, the MEM and the time difference
have increased. This tendency has appeared because both
public transportation and NPVs benefited in travel time at
the expense of CPVs’ travel time. Moreover, MEM increased
as the noncompliance rate decreased because more vehicles
were involved in system-centric routing. For specific non-
compliance rates, there exist points where MEM dramatically
jumps while the time difference slightly increases. Thus, one
can account for the results and provide incentives using a
mechanism design to increase the limit and enhance MEM
even more.

VI. CONCLUDING REMARKS

In this paper, we presented a routing framework in a
mixed transportation system for improving mobility equity
in the network. We formulated a routing game between all
compliant vehicles and NPVs. Then, we proposed MEM and
formulated the MEM optimization problem. We presented a
numerical example and implementation method that yields
meaningful results in a small network. Through the simula-
tions, we verified that our framework works for improving
MEM. Future work should consider using MEM in real-road
networks and account for the effect of compliance rate by
designing monetary incentives.
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