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Abstract—Many cyber-physical-human systems (CPHSs)
involve a human decision-maker who acts using recom-
mendations from an artificial intelligence (Al) platform. In
such CPHS applications, the human decision-maker may
depart from an optimal recommended decision and instead
implement a different one for various reasons, resulting in
a loss in performance. In this letter, we develop a rigorous
framework to overcome this challenge. In our framework,
humans may deviate from Al recommendations as they
interpret the system’s state differently to the Al platform. We
establish the structural properties of optimal recommenda-
tion strategies and develop an approximate human model
(AHM) used by the Al. We provide theoretical bounds on the
optimality gap that arises from an AHM and illustrate the
efficacy of our results in a numerical example.

Index Terms—Cyber-physical human systems, human-Al
interaction, human model, recommender systems.

[. INTRODUCTION

N SEVERAL cyber-physical-human systems (CPHSs),

e.g., aircraft co-pilot [1], autonomous driving [2], and social
media [3], a human decision-maker may receive recommenda-
tions from an artificial intelligence (Al) platform while holding
the ultimate responsibility of making decisions. For example,
consider a traffic environment [4] where a human driver
receives a route recommendation from an Al platform that
runs a central traffic management system. In such applications,
the human’s actual decision may depart from a recommended
decision for various reasons [5], including: (1) different
interpretations of the system’s state to the Al platform; (2)
different objectives than those designated for the AI; or (3)
high confidence in their inherent decision-making ability. This
human influence during decision-making [6] renders CPHSs
challenging to control [7].

To better understand this phenomenon, there has been recent
interest in learning [8] and empirically developing models for
human behavior [9] during collaborations with Al platforms.
It has been established that humans are likely to adhere
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to recommendations that are easy to interpret and reaffirm
their preconceived opinions [10]. Alternatively, humans may
disregard recommendations that cause discomfort [11] or
misinterpret recommendations [12], worsening the overall
performance [13]. In response to these findings, many research
efforts have focused on increasing human trust in Al [14] and
adoption of recommendations [15]. However, there remains a
need to design Al recommendations that account for human
behavior.

The adherence-aware Markov decision process is one
approach to formalize human-Al interactions by limiting
human behavior to two choices: they may either accept or
reject Al suggestions, as dictated by their adherence proba-
bility [16]. In this context, optimal recommendations can be
derived for humans using Q-learning [17]. Furthermore, this
framework has motivated reinforcement learning approaches
that consider whether an Al platform should abstain from
recommending decisions [18]. While promising, these results
rely upon the simple model of human behavior. Human-AlI col-
laboration has also been analyzed under other specific models
for human behavior, including opinion aggregation [12] and
trust evolution [19]. However, the resulting recommendations
typically require knowledge of an “internal state space” of
the human, and require observations of the internal state to
learn a human model. Practically, we may not have access to
human internal states nor to a reliable model for their evolution
in most CPHS applications. Thus, we need a more general
approach to Al recommendations with relaxed assumptions.

In this letter, we present such a general framework
for effective Al recommendations to humans in CPHSs.
We impose minimal assumptions on human behavior and
develop our theory to support both empirical modeling and
learning from interactions. Our contributions in this letter
are (1) a framework for learning-based recommendations
in CPHSs that generalizes many state-of-the-art models for
human-behavior [12], [17], [19] through a human-AI POMDP
(Lemma 1) and the structure of optimal recommendation
strategies (Theorem 1); and (2) the introduction of an
“approximate human model” (Definition 1) that yields approx-
imate recommendation strategies with performance guarantees
(Theorem 2). We illustrate the efficacy of our framework in a
numerical example.

The remainder of this letter proceeds as follows. In
Section II, we present our formulation. In Section III, we
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analyze the structure of optimal recommendations, propose an
approximate human model, and derive approximation bounds.
In Section IV, we present a numerical example, and in
Section V, we draw concluding remarks.

A. Notation

We denote random variables by upper case letters and
their realizations by the corresponding lower case letters. The
random variable X is said to take values in a set X if its
realizations are restricted to &’. For integers a < b, X, is
shorthand for (X,, X,+1, - .., Xp). We denote the probability of
a random variable X taking a realization x € X’ given Y takes
realization y € ) concisely as PX =x | Y =y) =PX =
x |y) = P(x|y). Similarly, P(X | y) represents the complete
distribution on X given realization y. Finally, P(X|Y) is itself
a random variable taking realizations in the space A(X) of
distributions on X. The indicator function I[-] returns O if the
condition within [-] is true and O otherwise.

[I. PROBLEM FORMULATION

We consider an Al platform that recommends decisions to a
human in a CPHS. The human is responsible for implementing
actions that influence the system’s evolution. In this context,
the human implements a decision by incorporating the plat-
form’s recommendations with an instinctive understanding of
the situation, as illustrated in Fig. 1. Thus, the AI platform
must account for the possibility that a human may re-interpret
or disregard the recommended actions. The CPHS has a finite
state space X, and the human selects actions from a finite
feasible set /. The system evolves over discrete time steps
until a finite horizon T € N. At each time r € T =
{0, 1, ..., T}, the state of the system is denoted by the random
variable X, € X and the action implemented by the human
is denoted by the random variable UP € U. Starting at the
initial state Xo € X, the system evolves for all ¢ as X,y =
fXq, U;‘, W;), where W; € W is a random variable that
corresponds to an uncontrollable disturbance. The disturbances
form a sequence of independent random variables {W; : t € T}
that are also independent of the initial state Xj.

The system state X; is observed by both the human and
the Al platform at each t+ € 7. The platform generates a
recommendation to guide the human’s eventual action. This
recommendation is denoted by a random variable U% that
takes values in the human’s space of feasible actions U. At
each r € T, the platform provides Uf‘i based on the history
H, = (Xo, Ul(;:zfl’ Ugflfl) taking values in the set H; =
XD 5 1% where Hy = Xo. The recommendation strategy is
gl = (ggi, cee, g*}i), with recommendation laws g?i TH, > U
leading to U = gdi(H,) for all t € T.

At each ¢t € 7T, the human receives the recommendation
before deciding which action to implement. This decision is
also affected by their own internal state, denoted by the ran-
dom variable S; taking values in a finite space S. An internal
state represents a combination of the human’s interpretation
of the system state, amenability towards Al suggestions, self-
confidence, or a variety of other factors affecting the human’s
choices. Starting at Sp = fé‘(Xo,No) € S, the internal state
evolves for all £ € T as S = f(S;, Uf‘i,X,H, N;11), where

I<@> Observation H {&:{—%‘i Al computing
(“,Q, Disturbance l

(@ Human @ Human
Decision Instinct
@ Feedback

=

[@ Recommendation

Fig. 1. Control loop of the recommendation problem.

N; is an uncontrolled disturbance that takes values in a finite
set A for all + € 7. This disturbance represents stochastic
uncertainties in the evolution of the human’s internal state. The
sequence of uncertainties {N; : t € T} are independent of each
other, of Xy, and of the disturbances {W; : t € T}. Then, the
human uses a control law g" : S x U — U to implement the
action UM = g"(S,, U¥) at each r € 7. Note that we consider
the influence of the history H; in the human’s action implicitly
through the internal state S;, and we consider the influence of
the internal state S; on the system’s next state X;; indirectly
through the human’s action U?. Subsequently, both the human
and the Al platform receive shared feedback from the system,
generated using the reward function r : X xU — [/min  max]
where rMinyMaX ¢ R We denote this feedback by the random
variable R, = r(X;, U;‘) = r(X;, g"(S,, Uf‘i)). The AI platform
seeks to maximize the expected total reward:

(e = Egai[iyl_r(xhgh@ U?i))} n
t=0

where E£"[.] is the expectation with respect to the joint
distribution imposed by strategy g%, when human actions use
the control law gh, and y € (0, 1) is a discount factor. This
yields the following optimization problem for the platform.

Problem 1: The Al platform seeks an optimal recommen-
dation strategy g*ai, such that J (g*ai) >J (gai), given the sets
{X, W, U} and function f.

An optimal strategy g** exists because all variables are
finite valued, but it may not be computable without knowledge
of S, g", and f. We impose the following assumptions.

Assumption 1: The action of the human UM and the reward
R; are perfectly observed by the Al platform at each r € 7.

Assumption 1 implies that the human and the AI platform
receive consistent rewards and allows the platform to antici-
pate the human. Additional analysis is needed when humans
interpret rewards differently to a platform, e.g., economic
systems [9]. Similarly, the Al platform’s observation of human
actions facilitates our learning approach and in its absence, the
platform may be unable to identify the human’s influence [18].

[1l. RECOMMENDATION FRAMEWORK

In this section, we develop our theoretical framework
to compute optimal recommendations. In Section III-A, we
analyze an Al platform with access to the true model for
a human’s behavior. This analysis yields a structural form
for optimal Al recommendations. Building upon this structure
and taking inspiration from recent work in partially observed
reinforcement learning [20], [21], we define the notion of
an approximate human model (AHM) in Section III-B. We
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show that an Al platform can use an AHM to compute
recommendations with performance guarantees. Finally, we
propose an approach to construct an AHM in Section III-C.

A. Optimal Recommendation Strategies

We start our exposition by considering that the Al platform
knows a priori an exact human model consisting of the set
of internal states S, an initial distribution on Sy, the function
f1(-), and the human’s control law g"(-). However, the platform
does not observe S; at any ¢t € 7. Next, we prove that such
a system constitutes a partially observable Markov decision
process (named the human-Al POMDP) for the platform.

Lemma 1: Given a human model, Problem 1 is equivalent
to computing the optimal strategy in a POMDP with state
(X;,S) € X x S, input U¥ e U, observation (X, U" |) €
X x U, and reward R; € [r™2, /M) for all t € 7.

Proof: We establish that X' x & is the state space for the
POMDP by showing that it predicts (i) the reward and (ii)
the joint distribution on the next state and observation. For
(i), recall from Section II that R, = r(X;, g"(S;, U%)) at each
t € T. For (ii), for all + € T, consider any jointly feasi-
ble realization m; = (xo., So:, ”8; N ug. t) of the associated
random variable M; = (Xo., So:, U 0—12 US ). Using the
Markov property, we state that P (x4 1, s¢11, ut | my) = I(u? =
& o1, )P (s | 512, )P G |, 6o, ) =
Pxrr1, St41, u, | X;, Sz, U 1) where I(-) is the indicator func-
tion. Thus, X x & satlsﬁes the Markov property for the state
and next observation, rendering it a valid state space for the
POMDP. Finally, the expected total discounted reward under
any strategy g% in this POMDP is the same as (1), implying
that this POMDP yields the solution to Problem 1. |

We can construct a dynamic programming (DP) decomposi-
tion for the human-AI POMDP in Lemma 1 using the history
H; at each r € T. To this end, for each realization h, € H;
and u?i € U, for all t € T, we define the value functions

0o ) = E[r(X0 UN) + 7 - Vet He) | b '] 2)

Vithy) = max 0y (i, "), 3)

uteld

where, Vryi(hr41) = 0 identically, U}‘ = g"(s,, U,ai), and
Hi1 = (Hp, Xp1, UM, U¥) for all t. The recommendation
law computed by thrs DP at each t € T is g*a‘(h,) =
arg max ai O (hy, u? 1), Standard arguments for POMDPs can
be used to prove that the resulting recommendation strategy
g = g’(;“} is an optimal solution to the POMDP and
consequently, to Problem 1 [22]. However, this DP decompo-
sition suffers from an increase in computational complexity
as the history grows in size with time f. Furthermore, it
does not provide insights into the underlying structure of
optimal recommendation strategies. Typically, these challenges
are overcome in POMDPs using an information state that
compresses the history into a sufficient statistic [23]. Thus, we
construct an information state for the human-AI POMDP. To
begin, we define a sufficient statistic for all 7 € T as the Al’s
belief on the internal state B, := P(S; | H;) € A(S). Note that
the belief is itself a random variable taking values in the space
of distributions. We denote its realization by the lowercase

b; € A(S). Next, we prove two important properties of the
sufficient statistic.

Lemma 2: For any  given realization A =
(X0:¢, L?Si:,_l, IZSZI_I) € H; of the history at time ¢z € 7T, the
internal state and system state are conditionally independent,
ie., for any s; € S and x; € X

P(S: =56, Xp = x¢ [ ) = bt(St)'l(xt = 5Ct)~ 4

Proof: Let hy = (Rou, U, i, ) € Hys5p € Sandx; € X
denote the realizations of the associated random variables for
all t € 7. The result holds directly from the fact that the
realization of X; is included in the history %; and using the
definition of the realized belief b;(s;) = P(S; = s; | hy). [ |

Lemma 3: We can construct a function ¥ : A(S) x U X
X — A(S) independent of the choice of g% (given a control
action U;di), such that

=¥ (B, U, Xi41),

Proof: For all t+ € T and any realizations s,+1 € S; and
1 = (g, X401, ut,ut') € Hiy1, using the law of total
probability we obtain byt (si+1) = P(s,+1 |h,,xt+1 ut, al) =
Zst P(siy1 154, M, Lx) - PGelhy) = Y(by, M; Y X 1) (Se41)-
Thus, we can construct  that satisfies (5) independent of the
choice of g#. |

Next, we propose an information state as I1; :== (B, X;) for
all r € T, and establish that IT, can evaluate the expected cost
and next observations in the human AI POMDP.

Lemma 4: For all + € 7T, given realizations h =
(x0:1+ ub'[ 1 ”0z ) € Hy, u;‘i e U, and 7; = (by, x;), we have
that E[r(X;, U ) | Ay, ‘”] E[rX;, Uth) | 774, u?i].

Proof: At arly t € T, we can write that
El[r(X;, U )|ht7 ¥ = Zy, r(x,,g (8¢, u 1)) P(St | y, al) =
Zs, r(xt,g (¢, u? )) bi(s)) = E[r(X;, Uh) | 7y, ul ] where, we
use Lemma 2 in the second equality. |

Lemma 5: For all + € 7T, for any realizations h, =
(x0:ta”8i;z—1’“8;t—1) € H; and ufi € U, the corresponding
realization s; of I, satisfies for all x,+; € A and u? elu:

By VieT. ®)

P(Xt+1 = Xt+1, U? = M? | Ay, M;”)
= P<Xt+l = Xt+1, U;h = M? | 71, M,ai)~ (6)

Proof: To prove the result, consider the realizations x,1 €
X and u? € U for any + € 7T. Using the law of
total probability and Markov property, we can expand the
probability in (6) as P(xt_H,ut | Ay, ai) = P41 |x,,u,)
'Z” I[Mt = & (St,l/lt )] bt(st) - P(xH-laut |7Tta al) WhCI'C
we use Lemma 2 in the first equality. |

Using the preceding results, we establish that IT, is an
information state that it yields an optimal DP decomposition.

Theorem 1: For all + € 7T, the random variable I1, =
(B;, X;) is an information state of the human-AI POMDP.
Furthermore, for all realizations 77; € A(S) x X and u?’ eu,
let 0 (s, m) = E[r(X:, U )+ vy - Vt+1(nt+l) |y, uf'] and
Vi(m;) := max il Oy (my, uf 7y, where VT+1(7TT+1) = 0. Then,
an optimal recommendation law in Problem 1 is g; () =
arg max ai 0, (m;, uf 1y for all ¢.

Proof: Lemmas 3 - 5 establish that I1; is sufficient to
evaluate the expected cost, evolves in a state-like manner, and
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is sufficient to predict future observations for all ¢ € T, hence
it satisfies the standard conditions reported in [20, Definition 3]
of an information state. As a direct consequence of the
properties [20, Th. 5] and Lemma 1, the recommendation
strategy g*4 = g*a‘ is an optimal solution to Problem 1. W

Theorem 1 establishes that there is no loss of optimality
when the AI platform utilizes the belief B; to compute
optimal recommendations at each ¢t € 7. However, in most
applications, the platform will not have access to an exact
model for human behavior to compute B;. Thus, in the next
subsection, we define the notion of an AHM that can either
be designed heuristically or learned from data to compute
approximate recommendations.

Remark 1: In Problem 1, consider instead that the system’s
state X; is partially observed by both the human and the
Al platform, i.e., both the Al and human receive an obser-
vation Y; = h(X;,Z;) € Y with noise Z; € Z. Then,
the internal state’s evolution can be expressed as S;41 =
S, US, Y41, Ny) for t € T and So = fI(Yp). Similarly,
the history at any ¢t € T is H; = (Yo, Ugft_l, U(})llt—l)' Here,
we can use a similar sequence of arguments as in Theorem 1
to prove that (B, Q;) is an information state for Problem 1,
where Q; = P(X; | H;) € A(X) is a belief on the state X, at
time ¢ held independent of the belief B, on the internal state
S;. This result is proved in our online preprint [24].

B. Approximate Human Model

In this subsection, we define the notion of an AHM that can
be used by an Al platform instead of an exact human model.

Definition 1: An approximate human model consists of a
Borel space S, an evolution equation or . Hy — S, and a
probability mass function & : & x U — A(U), such that the
approximate internal state S‘, = 6,(H,) satisfies for all t € T:

1) Evolution in a belief-like manner: There exists a function
I/Af S xUXxX > 8 independent of the choice of
recommendation strategy g%, such that

Seet = (80, U, Xis). )

2) Approximate prediction of human actions: For any
realization /; € H; and u' € U, the probability distribution
induced by [ is such that for some & > O:

sV (P (U 1 ), (UF ) G )) <o ®)

where 8TV (-, -) is the total variation distance and Pgh(-) is
the conditional probability distribution induced on U? by the
human’s choice of control law gP.

Remark 2: The total variation distance between any two
probability mass functions P and Q on a finite set .4 is defined
as STV(P,Q) = 3 Y yc4 IP(@ — Qa)!.

Remark 3: The AHM is directly inspired by the properties
of the belief B, in Section III-A. The first property imposes
the structure in Lemma 3 and the second property is essential
to approximate the results of Lemmas 4 - 5 later in Lemma 6.

Remark 4: From Definition 1, any empirically designed
or learned model qualifies as an AHM if it satisfies the
conditions (7) and (8). Note that (7) can be ensured for
an AHM by construction, and (8) can be verified using

an empirical distribution from sampled observations of U!
without knowledge of the true distribution Pgh(Uh | ht, ai).

Given an AHM, we define the random variable 1'[; =
(St,X,) for all + € 7. Next, we prove that I"I, approximates
the information state of the human-Al POMDP at each ¢, and
it yields an approximate recommendation strategy using the
f0110w1ng DP decomposition. For all # € T, for all realizations
7€ 8 x X and u¥ € U, we recursively define

Qt<ﬁt, u;f“) : E[r(Xt, U,) + yvtﬂ(ntﬂ) | 7., u;ﬂ], )
Vi(#) = max Q,(ﬁ,, u;ﬁ), (10)

uteld

where VT+1(7%T+1) = 0 identically. Then, the corresponding
recommendation law is gfai(ﬁ,) = arg max,i Q;(ﬁt, u‘;‘i) for
all € 7. In (9), the distribution on U[h is [i; from the AHM.
Note that the DP in (9)—(10) takes the same structural form
as (2)—(3) while utilizing 7; instead of h; at each ¢. Next, we
prove an essential property.

Lemma 6: At any t € T, for any realizations h; € H,; and
u';‘i € U, the corresponding realization 7; € S x X satisfies:

a) ‘Egh [r(X,, Uth) | hs, u;”] — Eﬂ[r(X, U,h) | 7T, M?i]

<2/ g, b
b) aTV(Pgh (X;-t-l, U,h|hr, ) P (XH‘I’ U 7. al)) =&
(12)

Proof At any t € T, for a glven realization h; =
(X0:15 Uy s ”0: 1) € H; of the history, 7, = (6;(hy), x1).

a) To prove (11), we expand the expected rewards
under the distributions generated by P and u, ie.,
B [r(X;, UD) | By, ] — ERLr(X, UD) | 6100, x )] =
| rCa @) - PSR = Yoo (o, i)
,&(Ld1 | 6¢(hy), u?i)| < 2rM3% . ¢ where, in the inequality, we
use the definition of total variation distance in Remark 2, and
the fact that ¥™®* is an upper bound on the reward.

b) To prove (12), we first use the definition of the
total vhariation distance and Bayes’ law to write that
8TV (PS i, UP | ) PRXi U | fru)) =
me b 2|P (XH-I,U; | heyu ]) - Pﬂ(itﬂsfl? | 7, M?l)| =

S 3PS G | k@) - PG| b -
PAZpr |y, u,) ,&(~ | 6:(hy), u? 1)]. Here, using the
Markov property, pg X1 | Py, ut) = PQ®m1lx, u?) =
P(x,+1|nt,u,) = P“(x,+1|rr,,u?) where, in the second

equality, we use the fact that 7; contains x; as a component;
and in the fourth equality, we note that the transition prob-
ability is 1ndependent of fi. Substituting this result, we have
that 8TV(PY" (X1, UM | hyo ), PAXpi1, UM | i) <
1Y PG | ) PEG | ) — 4G | 610,
)| < 8TV (PE" (UP | by, u), A(UR | Gi(hy), i) < e, where,
we use Remark 2, P(%;41|7;, u?) <1, and (8). [ ]
Using Lemma 6, we establish that the recommendation
strategy g = 24 from (9)~(10) is an approximation.
Theorem 2: Let ||V]|oo be an upper bound on Vi(#,) for
all 7; and ¢ € T. Then, g computed using (9)—(10) is an
approximate recommendation strategy in Problem 1 with an
optimality gap of 4¢ - (F™* 4 Z,T=1 yt. (Voo + rMax)).
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STATE TRANSITION PROBABILITIES

TABLE |

State
Action 0 1 2 3 4
A [0.9, 0.1, 0.0, 0.0, 0.0] [0.2, 0.7, 0.1, 0.0, 0.0] [0.0, 0.2, 0.7, 0.1, 0.0]  [0.0, 0.0, 0.2, 0.7, 0.1]  [0.0, 0.0, 0.0, 0.0, 1.0]
B [0.7, 0.2, 0.1, 0.0, 0.0] [0.1, 0.6, 0.2, 0.1, 0.0] [0.0, 0.1, 0.6, 0.2, 0.1]  [0.0, 0.0, 0.1, 0.6, 0.3]  [0.0, 0.0, 0.0, 0.0, 1.0]
C [0.5, 0.3, 0.1, 0.1, 0.0] [0.0, 0.4, 0.4, 0.1, 0.1] [0.0, 0.0, 0.4, 0.4, 0.2]  [0.0, 0.0, 0.0, 0.4, 0.6] [0.0, 0.0, 0.0, 0.0, 1.0]
D [1.0, 0.0, 0.0, 0.0, 0.0] [0.5, 0.5, 0.0, 0.0, 0.0] [0.1, 0.6, 0.3, 0.0, 0.0] [0.0, 0.2, 0.6, 0.2, 0.0] [0.0, 0.0, 0.2, 0.6, 0.2]
E [1.0, 0.0, 0.0, 0.0, 0.0] [0.8, 0.2, 0.0, 0.0, 0.0] [04, 0.5, 0.1, 0.0, 0.0] [0.1, 04, 0.4, 0.1, 0.0] [0.0, 0.1, 0.4, 0.4, 0.1]

Proof: Lemma 6 establishes that the random variable I, =
(S, X;) is sufficient to approximately evaluate the expected
cost in (11) and is sufficient to approximately predict future
observations in (12) for all + € 7. Furthermore, from (7)
in Definition 1 and system dynamics, we conclude that
f[, evolves in a state-like manner. Hence, it satisfies the
conditions reported in [22, Definition 2] to qualify as an (e, §)-
approximate information state for the human-AI POMDP, with
€ = 2r™* . ¢ and § = . The result follows by substituting €
and ¢ into the performance bounds in [22, Th. 3]. [ |

Remark 5: Consider the partially observed system
described in Remark 1. Using arguments analogous to
Theorem 2, an AHM similar to that in Definition 1 can
be utilized in this scenario and that the corresponding
approximate information state is I, = (:9,, Q;), where Q;, =
P(X; | H) € A(X). This result is rigorously proved in our
online preprint [24].

C. Constructing an Approximate Human Model

supervised learning to learn the AHM in
Definition 1. We assume that we can access multiple real-
ized trajectories (x,Jrl,u?,u';‘i .t € T) generated using an
exploratory Al strategy and used for training. Then, we select
two function approximators as follows: (1) The encoder is
a recurrent neural network (e.g., LSTM or GRU) denoted
by ¢ : S x X x U? — S whose hidden state will be
treated as S, at each ¢+ € T. Thus, the inputs to ¢ are
(S; 1, Xq, U? 1 Ua11 1) and its output is S, Note that typically,
a larger S would lead to greater computational complexity but
a better ability to model human behavior. Thus, this selection
should be made in cognizance of the available training data,
computational resources, and task complexity. (2) The decoder
is a feed-forward neural network p : SxU — AlU),
whose inputs at each r € T are S, U%) and whose output
is the conditional distribution ft, represented conveniently as
a vector in the probability simplex A(L{) During training,
we pass the realizations (5;—1, x;, ? U ) into the encoder
and then the realizations (5;, u?i) into the decoder. Then, the
“target” at time ¢ is the realized human action u! from the
corresponding datapoint Thus, we select a training loss L =

Zt Olog(,u,(u,)) where u(ut) is the probability of the
specific realization " in the distribution 2. This loss function
approximates the Kullback-Leibler divergence between the
true distribution and £, which forms an upper bound on the
total variation distance in (8) by Pinker’s inequality. Then, we
have the following approaches to construct and train an AHM:

1) Combining empirical models with learning: The main
idea is to empirically select an AHM space S and evolution

We use

TABLE Il
REWARDS
State
Action 0 1 2 3 4

A 00 07 10 -05 -1.0
B 00 05 10 -02 -04
C 00 03 07 0.1 -0.1
D 00 01 05 0.1 0.2
E 00 00 00 02 0.5

equation . The choice of S is based on factors affecting
human behavior within a specific application and ensures
S’,+1 = 1/}(3}, Uf‘i, X;41) for all € T. For example, in the par-
tial adherence model [16], [17], 3’, is the human’s unchanging
probability of adherence at each 7, or the opinion aggregation
model [12], where S, 1s the hurnan s self-confidence. In the
Erevrous two examples, S,+ | = S, To learn an AHM, we feed
S; from the empirical model and Ual to the decoder p at each
t and train p with loss L.

2) Using only supervised learning: When we cannot use
domain knowledge, we learn an AHM from data by assuming
an encoder-decoder architecture. We consider the encoder ¢
and feed its internal state S; with U¥ to the decoder p at each
t € T. We train the complete network assembly with loss L.

IV. NUMERICAL EXAMPLE

In this section, we illustrate our results with a simple
example. We consider a machine operation and maintenance
problem with a human operator who receives suggestions from
an Al platform. The state X; € {0, 1, 2, 3, 4} represents the
status of the machine at each ¢ € 7. The possible actions are

= {A, B, C, D, E}, where A is “rest”, B is “minor operate”,
C is “major operate”, D is “minor fix”” and E is “major fix”. At
each r € T, the status evolves using the transition probabilities
in Table I, and the rewards are in Table II.

We consider a human operator, whose internal state is a
tuple S; = (0 A;), where ®;, € {0,0.1,...,1} denotes
their trust at any + € T and A, € {0,1} denotes their
adherence. Trust determines the probability of adherence and
adherence determines whether the human implements Al
recommendations. If Uf‘i = A, the human recovers trust by
resting, i.e., ®;41 = ©;+40.3. If recommendation is a “minor”
work, i.e., Uf‘i = B or D, then the trust goes down by ©;;] =
®;—0.02. Similarly, if the recommendation is a “major” work,

e., Uf‘i = C or E, then ©,;; = ©; — 0.05. Meanwhile, the
trust is also affected by the state of the machine, e.g., the trust
drops by ©;41 = 0, —0.05if X;, =3 or ;41 = 0, — 0.1
if X, = 4, i.e., when the machine is functioning poorly. Then,
the adherence A, takes values with the distribution P(A; =
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TABLE IlI

AVERAGE REWARDS OVER 500 SIMULATIONS [2] N. Venkatesh, V.-A. Le, A. Dave, and A. A. Malikopoulos,

“Connected and automated vehicles in mixed-traffic: Learning

human driver Behavior for effective on-ramp merging,”

Initial T=20 T =30 in Proc. 62nd IEEE Conf. Decis. Control (CDC), 2023,
Trust | Naive DP  Recommendation | Naive DP  Recommendation pp. 92-97.

0.2 0.416 0.608 0.447 0.604 [3] A. Dave, I. V. Chremos, and A. A. Malikopoulos, “Social media

0.4 1.380 1.939 1.384 1.992 and misleading information in a democracy: A mechanism design

0.6 2.401 3.244 2.401 3.610 approach,” IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2633-2639,
0.8 3.203 4.422 3.203 4.924 May 2022.

1.0 4.288 5.316 4.197 6.293 [4] H. Bang, A. Dave, and A. A. Malikopoulos, “Routing in mixed

1 | ©,) = ©,. The human implements the action U" = U?i if
A;=1and UM = Aif A, = 0.

We construct an AHM using the first approach in
Section III-C. The encoder ¢ has 3 linear layers of sizes
(3, 30), (30, 20), (20, 2) with ReLU activation in between,
and GRU with hidden size of 1. At each r € T, the first
layer receives (X, U?_l fi_l) as an input, and with the
hidden state C;_1, the GRU yields hidden state C; € [—1, 1]
with tanh activation. Then, the hidden state C; and new
recommendation U% becomes an input of the decoder p,
which has 3 linear layers of sizes (2, 12), (12, 12), (12, 5) with
ReLU activation. We train this AHM over 10, 000 trajectories
generated by randomizing the human’s initial state and system
evolution, with 7 = 20 and a learning rate 0.005 with loss
L from Section III-C. Then, to simplify the DP, we discretize
the output of the GRU to after training it to ensure that
S, = vC) € 8 = {—1,-,09,...,1}, where v(-) is a
mapping from [ — 1, 1] to the nearest point in S. Using this
model, we solve the DP in (9)—(10) for only 5 time steps to
reduce computational complexity and obtain an approximate
recommendation strategy £"'. As a baseline, we also compute
a naive strategy by solving the optimal DP for both T =
20 and T = 30 time horizons, without including a human
in the system. Our results are obtained by running 500
simulations for time horizon 7 = 20 and 7 = 30 using the
“naively optimal” strategy as well as the approximate strategy
implemented with a receding horizon of 5 steps. These results
are summarized in Table III. For all different initial trust and
time horizon, our approximate recommendation performed at
least 24% and at most 50% better than the baseline method,
which highlights the utility of the learned AHM.

Remark 6: A numerical example for the AHM with the
partially observed systems in Remark 1 is in our preprint [24].

V. CONCLUDING REMARKS

In this letter, we developed a framework for CPHS with
partially observed data with the human-Al POMDP. We
established the structural form of optimal recommendations
and provided an AHM for approximate recommendations.
Finally, we presented an approach to constructing AHMs from
data and illustrated its utility in a numerical example. Some
limitations of this letter to be addressed in future work include
scaling the approach with reinforcement learning, extending it
to continuous domains, and applying it to practical applications
involving complex human tasks.
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