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Abstract—Many cyber-physical-human systems (CPHSs)
involve a human decision-maker who acts using recom-
mendations from an artificial intelligence (AI) platform. In
such CPHS applications, the human decision-maker may
depart from an optimal recommended decision and instead
implement a different one for various reasons, resulting in
a loss in performance. In this letter, we develop a rigorous
framework to overcome this challenge. In our framework,
humans may deviate from AI recommendations as they
interpret the system’s state differently to the AI platform. We
establish the structural properties of optimal recommenda-
tion strategies and develop an approximate human model
(AHM) used by the AI. We provide theoretical bounds on the
optimality gap that arises from an AHM and illustrate the
efficacy of our results in a numerical example.

Index Terms—Cyber-physical human systems, human-AI
interaction, human model, recommender systems.

I. INTRODUCTION

I
N SEVERAL cyber-physical-human systems (CPHSs),

e.g., aircraft co-pilot [1], autonomous driving [2], and social

media [3], a human decision-maker may receive recommenda-

tions from an artificial intelligence (AI) platform while holding

the ultimate responsibility of making decisions. For example,

consider a traffic environment [4] where a human driver

receives a route recommendation from an AI platform that

runs a central traffic management system. In such applications,

the human’s actual decision may depart from a recommended

decision for various reasons [5], including: (1) different

interpretations of the system’s state to the AI platform; (2)

different objectives than those designated for the AI; or (3)

high confidence in their inherent decision-making ability. This

human influence during decision-making [6] renders CPHSs

challenging to control [7].

To better understand this phenomenon, there has been recent

interest in learning [8] and empirically developing models for

human behavior [9] during collaborations with AI platforms.

It has been established that humans are likely to adhere

Manuscript received 8 March 2024; revised 11 May 2024; accepted
29 May 2024. Date of publication 5 June 2024; date of current version
26 June 2024. This work was supported by the NSF under Grant CNS-
2149520 and Grant CMMI-2219761. Recommended by Senior Editor
K. Savla. (Corresponding author: Aditya Dave.)

The authors are with the School of Civil and Environmental
Engineering, Cornell University, Ithaca, NY 14850 USA (e-mail:
a.dave@cornell.edu; hb489@cornell.edu; amaliko@cornell.edu).

Digital Object Identifier 10.1109/LCSYS.2024.3410145

to recommendations that are easy to interpret and reaffirm

their preconceived opinions [10]. Alternatively, humans may

disregard recommendations that cause discomfort [11] or

misinterpret recommendations [12], worsening the overall

performance [13]. In response to these findings, many research

efforts have focused on increasing human trust in AI [14] and

adoption of recommendations [15]. However, there remains a

need to design AI recommendations that account for human

behavior.

The adherence-aware Markov decision process is one

approach to formalize human-AI interactions by limiting

human behavior to two choices: they may either accept or

reject AI suggestions, as dictated by their adherence proba-

bility [16]. In this context, optimal recommendations can be

derived for humans using Q-learning [17]. Furthermore, this

framework has motivated reinforcement learning approaches

that consider whether an AI platform should abstain from

recommending decisions [18]. While promising, these results

rely upon the simple model of human behavior. Human-AI col-

laboration has also been analyzed under other specific models

for human behavior, including opinion aggregation [12] and

trust evolution [19]. However, the resulting recommendations

typically require knowledge of an “internal state space” of

the human, and require observations of the internal state to

learn a human model. Practically, we may not have access to

human internal states nor to a reliable model for their evolution

in most CPHS applications. Thus, we need a more general

approach to AI recommendations with relaxed assumptions.

In this letter, we present such a general framework

for effective AI recommendations to humans in CPHSs.

We impose minimal assumptions on human behavior and

develop our theory to support both empirical modeling and

learning from interactions. Our contributions in this letter

are (1) a framework for learning-based recommendations

in CPHSs that generalizes many state-of-the-art models for

human-behavior [12], [17], [19] through a human-AI POMDP

(Lemma 1) and the structure of optimal recommendation

strategies (Theorem 1); and (2) the introduction of an

“approximate human model” (Definition 1) that yields approx-

imate recommendation strategies with performance guarantees

(Theorem 2). We illustrate the efficacy of our framework in a

numerical example.

The remainder of this letter proceeds as follows. In

Section II, we present our formulation. In Section III, we
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analyze the structure of optimal recommendations, propose an

approximate human model, and derive approximation bounds.

In Section IV, we present a numerical example, and in

Section V, we draw concluding remarks.

A. Notation

We denote random variables by upper case letters and

their realizations by the corresponding lower case letters. The

random variable X is said to take values in a set X if its

realizations are restricted to X . For integers a < b, Xa:b is

shorthand for (Xa, Xa+1, . . . , Xb). We denote the probability of

a random variable X taking a realization x ∈ X given Y takes

realization y ∈ Y concisely as P(X = x | Y = y) = P(X =
x | y) = P(x|y). Similarly, P(X | y) represents the complete

distribution on X given realization y. Finally, P(X|Y) is itself

a random variable taking realizations in the space �(X ) of

distributions on X. The indicator function I[·] returns 0 if the

condition within [·] is true and 0 otherwise.

II. PROBLEM FORMULATION

We consider an AI platform that recommends decisions to a

human in a CPHS. The human is responsible for implementing

actions that influence the system’s evolution. In this context,

the human implements a decision by incorporating the plat-

form’s recommendations with an instinctive understanding of

the situation, as illustrated in Fig. 1. Thus, the AI platform

must account for the possibility that a human may re-interpret

or disregard the recommended actions. The CPHS has a finite

state space X , and the human selects actions from a finite

feasible set U . The system evolves over discrete time steps

until a finite horizon T ∈ N. At each time t ∈ T =
{0, 1, . . . , T}, the state of the system is denoted by the random

variable Xt ∈ X and the action implemented by the human

is denoted by the random variable Uh
t ∈ U . Starting at the

initial state X0 ∈ X , the system evolves for all t as Xt+1 =
f (Xt, Uh

t , Wt), where Wt ∈ W is a random variable that

corresponds to an uncontrollable disturbance. The disturbances

form a sequence of independent random variables {Wt : t ∈ T }
that are also independent of the initial state X0.

The system state Xt is observed by both the human and

the AI platform at each t ∈ T . The platform generates a

recommendation to guide the human’s eventual action. This

recommendation is denoted by a random variable Uai
t that

takes values in the human’s space of feasible actions U . At

each t ∈ T , the platform provides Uai
t based on the history

Ht = (X0:t, Uh
0:t−1, Uai

0:t−1) taking values in the set Ht =

X (t+1)×U2t, where H0 = X0. The recommendation strategy is

g
ai = (gai

0 , . . . , gai
T ), with recommendation laws gai

t : Ht → U

leading to Uai
t = gai

t (Ht) for all t ∈ T .

At each t ∈ T , the human receives the recommendation

before deciding which action to implement. This decision is

also affected by their own internal state, denoted by the ran-

dom variable St taking values in a finite space S . An internal

state represents a combination of the human’s interpretation

of the system state, amenability towards AI suggestions, self-

confidence, or a variety of other factors affecting the human’s

choices. Starting at S0 = f h
0 (X0, N0) ∈ S , the internal state

evolves for all t ∈ T as St+1 = f h(St, Uai
t , Xt+1, Nt+1), where

Fig. 1. Control loop of the recommendation problem.

Nt is an uncontrolled disturbance that takes values in a finite

set N for all t ∈ T . This disturbance represents stochastic

uncertainties in the evolution of the human’s internal state. The

sequence of uncertainties {Nt : t ∈ T } are independent of each

other, of X0, and of the disturbances {Wt : t ∈ T }. Then, the

human uses a control law gh : S × U → U to implement the

action Uh
t = gh(St, Uai

t ) at each t ∈ T . Note that we consider

the influence of the history Ht in the human’s action implicitly

through the internal state St, and we consider the influence of

the internal state St on the system’s next state Xt+1 indirectly

through the human’s action Uh
t . Subsequently, both the human

and the AI platform receive shared feedback from the system,

generated using the reward function r : X ×U → [rmin, rmax],

where rmin, rmax ∈ R. We denote this feedback by the random

variable Rt = r(Xt, Uh
t ) = r(Xt, gh(St, Uai

t )). The AI platform

seeks to maximize the expected total reward:

J
(

g
ai
)

= Eg
ai

[ T
∑

t=0

γ t·r
(

Xt, gh
(

St, Uai
t

))

]

, (1)

where Eg
ai

[·] is the expectation with respect to the joint

distribution imposed by strategy g
ai, when human actions use

the control law gh, and γ ∈ (0, 1) is a discount factor. This

yields the following optimization problem for the platform.

Problem 1: The AI platform seeks an optimal recommen-

dation strategy g
∗ai, such that J(g∗ai) ≥ J(gai), given the sets

{X ,W,U} and function f .

An optimal strategy g
∗ai exists because all variables are

finite valued, but it may not be computable without knowledge

of S , gh, and f h. We impose the following assumptions.

Assumption 1: The action of the human Uh
t and the reward

Rt are perfectly observed by the AI platform at each t ∈ T .

Assumption 1 implies that the human and the AI platform

receive consistent rewards and allows the platform to antici-

pate the human. Additional analysis is needed when humans

interpret rewards differently to a platform, e.g., economic

systems [9]. Similarly, the AI platform’s observation of human

actions facilitates our learning approach and in its absence, the

platform may be unable to identify the human’s influence [18].

III. RECOMMENDATION FRAMEWORK

In this section, we develop our theoretical framework

to compute optimal recommendations. In Section III-A, we

analyze an AI platform with access to the true model for

a human’s behavior. This analysis yields a structural form

for optimal AI recommendations. Building upon this structure

and taking inspiration from recent work in partially observed

reinforcement learning [20], [21], we define the notion of

an approximate human model (AHM) in Section III-B. We

Authorized licensed use limited to: Cornell University Library. Downloaded on June 27,2024 at 11:17:58 UTC from IEEE Xplore.  Restrictions apply. 



DAVE et al.: FRAMEWORK FOR EFFECTIVE AI RECOMMENDATIONS IN CPHSs 1381

show that an AI platform can use an AHM to compute

recommendations with performance guarantees. Finally, we

propose an approach to construct an AHM in Section III-C.

A. Optimal Recommendation Strategies

We start our exposition by considering that the AI platform

knows a priori an exact human model consisting of the set

of internal states S , an initial distribution on S0, the function

f h(·), and the human’s control law gh(·). However, the platform

does not observe St at any t ∈ T . Next, we prove that such

a system constitutes a partially observable Markov decision

process (named the human-AI POMDP) for the platform.

Lemma 1: Given a human model, Problem 1 is equivalent

to computing the optimal strategy in a POMDP with state

(Xt, St) ∈ X × S , input Uai
t ∈ U , observation (Xt, Uh

t−1) ∈

X × U , and reward Rt ∈ [rmin, rmax] for all t ∈ T .

Proof: We establish that X × S is the state space for the

POMDP by showing that it predicts (i) the reward and (ii)

the joint distribution on the next state and observation. For

(i), recall from Section II that Rt = r(Xt, gh(St, Uai
t )) at each

t ∈ T . For (ii), for all t ∈ T , consider any jointly feasi-

ble realization mt = (x0:t, s0:t, uh
0:t−1, uai

0:t) of the associated

random variable Mt = (X0:t, S0:t, Uh
0:t−1, Uai

0:t). Using the

Markov property, we state that P(xt+1, st+1, uh
t | mt) = I(uh

t =

gh(st, uai
t )) ·Pf h

(st+1 | st, xt+1, uai
t ) ·Pgh

(xt+1 | xt, gh(st, uai
t )) =

P(xt+1, st+1, uh
t | xt, st, uai

t ), where I(·) is the indicator func-

tion. Thus, X × S satisfies the Markov property for the state

and next observation, rendering it a valid state space for the

POMDP. Finally, the expected total discounted reward under

any strategy g
ai in this POMDP is the same as (1), implying

that this POMDP yields the solution to Problem 1.

We can construct a dynamic programming (DP) decomposi-

tion for the human-AI POMDP in Lemma 1 using the history

Ht at each t ∈ T . To this end, for each realization ht ∈ Ht

and uai
t ∈ U , for all t ∈ T , we define the value functions

Qt

(

ht, uai
t

)

:= E
[

r
(

Xt, Uh
t

)

+ γ · Vt+1(Ht+1) | ht, uai
t

]

, (2)

Vt(ht) := max
uai

t ∈U
Qt

(

ht, uai
t

)

, (3)

where, VT+1(hT+1) := 0 identically, Uh
t = gh(St, Uai

t ), and

Ht+1 = (Ht, Xt+1, Uh
t , Uai

t ) for all t. The recommendation

law computed by this DP at each t ∈ T is g∗ai
t (ht) :=

arg maxuai
t

Qt(ht, uai
t ). Standard arguments for POMDPs can

be used to prove that the resulting recommendation strategy

g
∗ai := g∗ai

0:T is an optimal solution to the POMDP and

consequently, to Problem 1 [22]. However, this DP decompo-

sition suffers from an increase in computational complexity

as the history grows in size with time t. Furthermore, it

does not provide insights into the underlying structure of

optimal recommendation strategies. Typically, these challenges

are overcome in POMDPs using an information state that

compresses the history into a sufficient statistic [23]. Thus, we

construct an information state for the human-AI POMDP. To

begin, we define a sufficient statistic for all t ∈ T as the AI’s

belief on the internal state Bt := P(St | Ht) ∈ �(S). Note that

the belief is itself a random variable taking values in the space

of distributions. We denote its realization by the lowercase

bt ∈ �(S). Next, we prove two important properties of the

sufficient statistic.

Lemma 2: For any given realization ht =
(x̃0:t, ũai

0:t−1, ũh
0:t−1) ∈ Ht of the history at time t ∈ T , the

internal state and system state are conditionally independent,

i.e., for any st ∈ S and xt ∈ X :

P(St = st, Xt = xt | ht) = bt(st)·I
(

xt = x̃t

)

. (4)

Proof: Let ht = (x̃0:t, ũai
0:t−1, ũh

0:t−1) ∈ Ht, st ∈ S and xt ∈ X

denote the realizations of the associated random variables for

all t ∈ T . The result holds directly from the fact that the

realization of Xt is included in the history ht and using the

definition of the realized belief bt(st) = P(St = st | ht).

Lemma 3: We can construct a function ψ : �(S) × U ×
X → �(S) independent of the choice of g

ai (given a control

action Uai
t ), such that

Bt+1 = ψ
(

Bt, Uai
t , Xt+1

)

, ∀t ∈ T . (5)

Proof: For all t ∈ T and any realizations st+1 ∈ St and

ht+1 = (ht, xt+1, uh
t , uai

t ) ∈ Ht+1, using the law of total

probability we obtain bt+1(st+1) = P(st+1 | ht, xt+1, uh
t , uai

t ) =
∑

s̃t
P(st+1 | s̃t, uai

t , xt+1) · P(s̃t | ht) =: ψ(bt, uai
t , xt+1)(st+1).

Thus, we can construct ψ that satisfies (5) independent of the

choice of g
ai.

Next, we propose an information state as �t := (Bt, Xt) for

all t ∈ T , and establish that �t can evaluate the expected cost

and next observations in the human AI POMDP.

Lemma 4: For all t ∈ T , given realizations ht =
(x0:t, uai

0:t−1, uh
0:t−1) ∈ Ht, uai

t ∈ U , and πt = (bt, xt), we have

that E[r(Xt, Uh
t ) | ht, uai

t ] = E[r(Xt, Uh
t ) | πt, uai

t ].

Proof: At any t ∈ T , we can write that

E[r(Xt, Uh
t ) | ht, uai

t ] =
∑

st
r(xt, gh(st, uai

t ))·P(st | ht, uai
t ) =

∑

st
r(xt, gh(st, uai

t ))·bt(st) = E[r(Xt, Uh
t ) | πt, uai

t ] where, we

use Lemma 2 in the second equality.

Lemma 5: For all t ∈ T , for any realizations ht =
(x0:t, uai

0:t−1, uh
0:t−1) ∈ Ht and uai

t ∈ U , the corresponding

realization πt of �t satisfies for all xt+1 ∈ X and uh
t ∈ U :

P
(

Xt+1 = xt+1, Uh
t = uh

t | ht, uai
t

)

= P
(

Xt+1 = xt+1, Uh
t = uh

t | πt, uai
t

)

. (6)

Proof: To prove the result, consider the realizations xt+1 ∈
X and uh

t ∈ U for any t ∈ T . Using the law of

total probability and Markov property, we can expand the

probability in (6) as P(xt+1, uh
t | ht, uai

t ) = P(xt+1 | xt, uh
t )

·
∑

s̃t
I[uh

t = gh
t (s̃t, uai

t )]·bt(s̃t) = P(xt+1, uh
t | πt, uai

t ), where,

we use Lemma 2 in the first equality.

Using the preceding results, we establish that �t is an

information state that it yields an optimal DP decomposition.

Theorem 1: For all t ∈ T , the random variable �t =
(Bt, Xt) is an information state of the human-AI POMDP.

Furthermore, for all realizations πt ∈ �(S) × X and uai
t ∈ U ,

let Q̄t(πt, uai
t ) := E[r(Xt, Uh

t ) + γ · V̄t+1(�t+1) | πt, uai
t ] and

V̄t(πt) := maxuai
t ∈U Q̄t(πt, uai

t ), where V̄T+1(πT+1) := 0. Then,

an optimal recommendation law in Problem 1 is ḡ∗ai
t (πt) :=

arg maxuai
t

Q̄t(πt, uai
t ) for all t.

Proof: Lemmas 3 - 5 establish that �t is sufficient to

evaluate the expected cost, evolves in a state-like manner, and
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is sufficient to predict future observations for all t ∈ T , hence

it satisfies the standard conditions reported in [20, Definition 3]

of an information state. As a direct consequence of the

properties [20, Th. 5] and Lemma 1, the recommendation

strategy ḡ
∗ai = ḡ∗ai

0:T is an optimal solution to Problem 1.

Theorem 1 establishes that there is no loss of optimality

when the AI platform utilizes the belief Bt to compute

optimal recommendations at each t ∈ T . However, in most

applications, the platform will not have access to an exact

model for human behavior to compute Bt. Thus, in the next

subsection, we define the notion of an AHM that can either

be designed heuristically or learned from data to compute

approximate recommendations.

Remark 1: In Problem 1, consider instead that the system’s

state Xt is partially observed by both the human and the

AI platform, i.e., both the AI and human receive an obser-

vation Yt = h(Xt, Zt) ∈ Y with noise Zt ∈ Z . Then,

the internal state’s evolution can be expressed as St+1 =
f h(St, Uai

t , Yt+1, Nt) for t ∈ T and S0 = f h
0 (Y0). Similarly,

the history at any t ∈ T is Ht = (Y0:t, Uai
0:t−1, Uh

0:t−1). Here,

we can use a similar sequence of arguments as in Theorem 1

to prove that (Bt, Qt) is an information state for Problem 1,

where Qt = P(Xt | Ht) ∈ �(X ) is a belief on the state Xt at

time t held independent of the belief Bt on the internal state

St. This result is proved in our online preprint [24].

B. Approximate Human Model

In this subsection, we define the notion of an AHM that can

be used by an AI platform instead of an exact human model.

Definition 1: An approximate human model consists of a

Borel space Ŝ , an evolution equation σ̂t : Ht → Ŝ , and a

probability mass function µ̂ : Ŝ × U → �(U), such that the

approximate internal state Ŝt := σ̂t(Ht) satisfies for all t ∈ T :

1) Evolution in a belief-like manner: There exists a function

ψ̂ : Ŝ × U × X → Ŝ independent of the choice of

recommendation strategy g
ai, such that

Ŝt+1 = ψ̂

(

Ŝt, Uai
t , Xt+1

)

. (7)

2) Approximate prediction of human actions: For any

realization ht ∈ Ht and uai
t ∈ U , the probability distribution

induced by µ̂ is such that for some ε > 0:

δTV
(

Pgh
(

Uh
t | ht, uai

t

)

, µ̂

(

Uh
t | σ̂t(ht), uai

t

))

≤ ε, (8)

where δTV(·, ·) is the total variation distance and Pgh
(·) is

the conditional probability distribution induced on Uh
t by the

human’s choice of control law gh.

Remark 2: The total variation distance between any two

probability mass functions P and Q on a finite set A is defined

as δTV(P, Q) := 1
2

∑

a∈A |P(a) − Q(a)|.
Remark 3: The AHM is directly inspired by the properties

of the belief Bt in Section III-A. The first property imposes

the structure in Lemma 3 and the second property is essential

to approximate the results of Lemmas 4 - 5 later in Lemma 6.

Remark 4: From Definition 1, any empirically designed

or learned model qualifies as an AHM if it satisfies the

conditions (7) and (8). Note that (7) can be ensured for

an AHM by construction, and (8) can be verified using

an empirical distribution from sampled observations of Uh
t

without knowledge of the true distribution Pgh
(Uh

t | ht, uai
t ).

Given an AHM, we define the random variable �̂t :=
(Ŝt, Xt) for all t ∈ T . Next, we prove that �̂t approximates

the information state of the human-AI POMDP at each t, and

it yields an approximate recommendation strategy using the

following DP decomposition. For all t ∈ T , for all realizations

π̂t ∈ Ŝ × X and uai
t ∈ U , we recursively define

Q̂t

(

π̂t, uai
t

)

:= E
[

r
(

Xt, Uh
t

)

+ γ V̂t+1

(

�̂t+1

)

| π̂t, uai
t

]

, (9)

V̂t

(

π̂t

)

:= max
uai

t ∈U
Q̂t

(

π̂t, uai
t

)

, (10)

where V̂T+1(π̂T+1) := 0 identically. Then, the corresponding

recommendation law is ĝ∗ai
t (π̂t) := arg maxuai

t
Q̂t(π̂t, uai

t ) for

all t ∈ T . In (9), the distribution on Uh
t is µ̂t from the AHM.

Note that the DP in (9)–(10) takes the same structural form

as (2)–(3) while utilizing π̂t instead of ht at each t. Next, we

prove an essential property.

Lemma 6: At any t ∈ T , for any realizations ht ∈ Ht and

uai
t ∈ U , the corresponding realization π̂t ∈ Ŝ × X satisfies:

a)

∣

∣

∣
Egh

[

r
(

Xt, Uh
t

)

| ht, uai
t

]

− Eµ̂
[

r
(

Xt, Uh
t

)

| π̂t, uai
t

]
∣

∣

∣

≤ 2rmax · ε, (11)

b) δTV
(

Pgh
(

Xt+1, Uh
t |ht, uai

t

)

, Pµ̂
(

Xt+1, Uh
t |π̂t, uai

t

))

≤ ε.

(12)

Proof: At any t ∈ T , for a given realization ht =
(x0:t, uai

0:t−1, uh
0:t−1) ∈ Ht of the history, π̂t = (σ̂t(ht), xt).

a) To prove (11), we expand the expected rewards

under the distributions generated by Pgh
and µ̂, i.e.,

|Egh
[r(Xt, Uh

t ) | ht, uai
t ] − Eµ̂[r(Xt, Uh

t ) | σ̂t(ht), xt, uai
t ]| =

|
∑

ũh
t

r(xt, ũh
t ) · Pgh

(uh
t | ht, uai

t ) −
∑

ũh
t

r(xt, ũh
t ) ·

µ̂(uh
t | σ̂t(ht), uai

t )| ≤ 2rmax · ε, where, in the inequality, we

use the definition of total variation distance in Remark 2, and

the fact that rmax is an upper bound on the reward.

b) To prove (12), we first use the definition of the

total variation distance and Bayes’ law to write that

δTV(Pgh
(Xt+1, Uh

t | ht, uai
t ), Pµ̂(Xt+1, Uh

t | π̂t, uai
t )) =

∑

x̃t+1,ũ
h
t

1
2
|Pgh

(x̃t+1, ũh
t | ht, uai

t ) − Pµ̂(x̃t+1, ũh
t | π̂t, uai

t )| =
∑

x̃t+1,ũ
h
t

1
2
|Pgh

(x̃t+1 | ht, ũh
t ) · Pgh

(ũh
t | ht, uai

t ) −

Pµ̂(x̃t+1 | ht, ũh
t ) · µ̂(ũh

t | σ̂t(ht), uai
t )|. Here, using the

Markov property, Pgh
(x̃t+1 | ht, ũh

t ) = P(x̃t+1|xt, uh
t ) =

P(x̃t+1|π̂t, uh
t ) = Pµ̂(x̃t+1|π̂t, uh

t ), where, in the second

equality, we use the fact that π̂t contains xt as a component;

and in the fourth equality, we note that the transition prob-

ability is independent of µ̂. Substituting this result, we have

that δTV(Pgh
(Xt+1, Uh

t | ht, uai
t ), Pµ̂(Xt+1, Uh

t | π̂t, uai
t )) ≤

1
2

∑

x̃t+1,ũ
h
t

P(x̃t+1|π̂t, ũh
t ) · |Pgh

(ũh
t | ht, uai

t ) − µ̂(ũh
t | σ̂t(ht),

uai
t )| ≤ δTV(Pgh

(Uh
t | ht, uai

t ), µ̂(Uh
t | σ̂t(ht), uai

t )) ≤ ε, where,

we use Remark 2, P(x̃t+1|π̂t, uh
t ) ≤ 1, and (8).

Using Lemma 6, we establish that the recommendation

strategy ĝ
∗ai
t = ĝ∗ai

0:t from (9)–(10) is an approximation.

Theorem 2: Let ||V̂||∞ be an upper bound on V̂t(π̂t) for

all π̂t and t ∈ T . Then, ĝ
∗ai
t computed using (9)–(10) is an

approximate recommendation strategy in Problem 1 with an

optimality gap of 4ε · (rmax +
∑T

t=1 γ t · (||V̂||∞ + rmax)).
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TABLE I
STATE TRANSITION PROBABILITIES

Proof: Lemma 6 establishes that the random variable �̂t =
(Ŝt, Xt) is sufficient to approximately evaluate the expected

cost in (11) and is sufficient to approximately predict future

observations in (12) for all t ∈ T . Furthermore, from (7)

in Definition 1 and system dynamics, we conclude that

�̂t evolves in a state-like manner. Hence, it satisfies the

conditions reported in [22, Definition 2] to qualify as an (ε, δ)-

approximate information state for the human-AI POMDP, with

ε = 2rmax · ε and δ = ε. The result follows by substituting ε

and δ into the performance bounds in [22, Th. 3].

Remark 5: Consider the partially observed system

described in Remark 1. Using arguments analogous to

Theorem 2, an AHM similar to that in Definition 1 can

be utilized in this scenario and that the corresponding

approximate information state is �̂t := (Ŝt, Qt), where Qt =
P(Xt | Ht) ∈ �(X ). This result is rigorously proved in our

online preprint [24].

C. Constructing an Approximate Human Model

We use supervised learning to learn the AHM in

Definition 1. We assume that we can access multiple real-

ized trajectories (xt+1, uh
t , uai

t : t ∈ T ) generated using an

exploratory AI strategy and used for training. Then, we select

two function approximators as follows: (1) The encoder is

a recurrent neural network (e.g., LSTM or GRU) denoted

by φ : Ŝ × X × U2 → Ŝ whose hidden state will be

treated as Ŝt at each t ∈ T . Thus, the inputs to φ are

(Ŝt−1, Xt, Uh
t−1, Uai

t−1) and its output is Ŝt. Note that typically,

a larger Ŝ would lead to greater computational complexity but

a better ability to model human behavior. Thus, this selection

should be made in cognizance of the available training data,

computational resources, and task complexity. (2) The decoder

is a feed-forward neural network ρ : Ŝ × U → �(U),

whose inputs at each t ∈ T are (Ŝt, Uai
t ) and whose output

is the conditional distribution µ̂, represented conveniently as

a vector in the probability simplex �(U). During training,

we pass the realizations (ŝt−1, xt, uh
t−1, uai

t−1) into the encoder

and then the realizations (ŝt, uai
t ) into the decoder. Then, the

“target” at time t is the realized human action uh
t from the

corresponding datapoint. Thus, we select a training loss L =
−

∑B
t=0 log(µ̂t(u

h
t )), where µ̂(uh

t ) is the probability of the

specific realization uh
t in the distribution µ̂. This loss function

approximates the Kullback–Leibler divergence between the

true distribution and µ̂, which forms an upper bound on the

total variation distance in (8) by Pinker’s inequality. Then, we

have the following approaches to construct and train an AHM:

1) Combining empirical models with learning: The main

idea is to empirically select an AHM space Ŝ and evolution

TABLE II
REWARDS

equation ψ̂ . The choice of Ŝ is based on factors affecting

human behavior within a specific application and ensures

Ŝt+1 = ψ̂(Ŝt, Uai
t , Xt+1) for all t ∈ T . For example, in the par-

tial adherence model [16], [17], Ŝt is the human’s unchanging

probability of adherence at each t, or the opinion aggregation

model [12], where Ŝt is the human’s self-confidence. In the

previous two examples, Ŝt+1 = Ŝt. To learn an AHM, we feed

Ŝt from the empirical model and Uai
t to the decoder ρ at each

t and train ρ with loss L.

2) Using only supervised learning: When we cannot use

domain knowledge, we learn an AHM from data by assuming

an encoder-decoder architecture. We consider the encoder φ

and feed its internal state Ŝt with Uai
t to the decoder ρ at each

t ∈ T . We train the complete network assembly with loss L.

IV. NUMERICAL EXAMPLE

In this section, we illustrate our results with a simple

example. We consider a machine operation and maintenance

problem with a human operator who receives suggestions from

an AI platform. The state Xt ∈ {0, 1, 2, 3, 4} represents the

status of the machine at each t ∈ T . The possible actions are

U = {A, B, C, D, E}, where A is “rest”, B is “minor operate”,

C is “major operate”, D is “minor fix” and E is “major fix”. At

each t ∈ T , the status evolves using the transition probabilities

in Table I, and the rewards are in Table II.

We consider a human operator, whose internal state is a

tuple St = (
t, At), where 
t ∈ {0, 0.1, . . . , 1} denotes

their trust at any t ∈ T and At ∈ {0, 1} denotes their

adherence. Trust determines the probability of adherence and

adherence determines whether the human implements AI

recommendations. If Uai
t = A, the human recovers trust by

resting, i.e., 
t+1 = 
t +0.3. If recommendation is a “minor”

work, i.e., Uai
t = B or D, then the trust goes down by 
t+1 =


t−0.02. Similarly, if the recommendation is a “major” work,

i.e., Uai
t = C or E, then 
t+1 = 
t − 0.05. Meanwhile, the

trust is also affected by the state of the machine, e.g., the trust

drops by 
t+1 = 
t − 0.05 if Xt = 3 or 
t+1 = 
t − 0.1

if Xt = 4, i.e., when the machine is functioning poorly. Then,

the adherence At takes values with the distribution P(At =
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TABLE III
AVERAGE REWARDS OVER 500 SIMULATIONS

1 | 
t) = 
t. The human implements the action Uh
t = Uai

t if

At = 1 and Uh
t = A if At = 0.

We construct an AHM using the first approach in

Section III-C. The encoder φ has 3 linear layers of sizes

(3, 30), (30, 20), (20, 2) with ReLU activation in between,

and GRU with hidden size of 1. At each t ∈ T , the first

layer receives (Xt, Uh
t−1, Uai

t−1) as an input, and with the

hidden state Ct−1, the GRU yields hidden state Ct ∈ [−1, 1]

with tanh activation. Then, the hidden state Ct and new

recommendation Uai
t becomes an input of the decoder ρ,

which has 3 linear layers of sizes (2, 12), (12, 12), (12, 5) with

ReLU activation. We train this AHM over 10, 000 trajectories

generated by randomizing the human’s initial state and system

evolution, with T = 20 and a learning rate 0.005 with loss

L from Section III-C. Then, to simplify the DP, we discretize

the output of the GRU to after training it to ensure that

Ŝt = ν(Ct) ∈ Ŝ = {−1,−, 0.9, . . . , 1}, where ν(·) is a

mapping from [ − 1, 1] to the nearest point in Ŝ . Using this

model, we solve the DP in (9)–(10) for only 5 time steps to

reduce computational complexity and obtain an approximate

recommendation strategy ĝ
∗ai

. As a baseline, we also compute

a naive strategy by solving the optimal DP for both T =
20 and T = 30 time horizons, without including a human

in the system. Our results are obtained by running 500

simulations for time horizon T = 20 and T = 30 using the

“naively optimal” strategy as well as the approximate strategy

implemented with a receding horizon of 5 steps. These results

are summarized in Table III. For all different initial trust and

time horizon, our approximate recommendation performed at

least 24% and at most 50% better than the baseline method,

which highlights the utility of the learned AHM.

Remark 6: A numerical example for the AHM with the

partially observed systems in Remark 1 is in our preprint [24].

V. CONCLUDING REMARKS

In this letter, we developed a framework for CPHS with

partially observed data with the human-AI POMDP. We

established the structural form of optimal recommendations

and provided an AHM for approximate recommendations.

Finally, we presented an approach to constructing AHMs from

data and illustrated its utility in a numerical example. Some

limitations of this letter to be addressed in future work include

scaling the approach with reinforcement learning, extending it

to continuous domains, and applying it to practical applications

involving complex human tasks.
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