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Abstract— In this paper, we develop a control framework for
the coordination of multiple robots as they navigate through
crowded environments. Our framework comprises of a local
model predictive control (MPC) for each robot and a social long
short-term memory model that forecasts pedestrians’ trajectories.
We formulate the local MPC formulation for each individual
robot that includes both individual and shared objectives, in
which the latter encourages the emergence of coordination
among robots. Next, we consider the multi-robot navigation
and human-robot interaction, respectively, as a potential game
and a two-player game, then employ an iterative best response
approach to solve the resulting optimization problems in a
centralized and distributed fashion. Finally, we demonstrate the
effectiveness of coordination among robots in simulated crowd
navigation.

I. INTRODUCTION

Social crowd navigation for mobile robots among human
pedestrians remains a challenging task due to complex
human-robot and human-human interactions, as well as the
uncertainty and unpredictability of human behavior. Moreover,
robots’ behavior in crowd navigation is not only required to
be safe, robust, and efficient like other robotic applications
but also needs to ensure social compatibility in motion with
human pedestrians. This is why social crowd navigation has
attracted considerable attention in recent years [1].

There have been several applications where a team [2]
of autonomous systems must operate while interacting
with humans, such as connected and automated driving in
mixed traffic [3], robotic assistance devices [4], etc. Multi-
robot navigation in crowds is a typical application of such
cyber-physical-human systems [5] that is significantly more
challenging than single robots, as it involves multi-agent
coordination and control for human-robot interaction. In this
paper, we aim to consider and address the problem of multi-
robot cooperative navigation in crowds.

The navigation problem for robots in crowds can be
approached through two main strategies: decoupled prediction
and planning and coupled prediction and planning .In the
decoupled approach, human agents are considered dynamic
obstacles and thus, mobility-based interactions are ignored.
As a result, “freezing robot problem” and “reciprocal dance
problem” can occur and cause discomfort to pedestrians
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nearby. In contrast, mutual interactions between human and
robot agents are embedded in the coupled approach by
appropriately incorporating human motion prediction into the
problem of robot navigation. This approach has been observed
somewhat to mitigate the freezing robot and reciprocal dance
problems, thereby making it a recent trend in crowd navigation
research [1].

Several recent studies in crowd navigation have developed
reinforcement learning (RL) methods in which a control policy
for a robot is approximated by deep neural networks, e.g.,
collision avoidance deep RL (CADRL) [6], long short-term
memory (LSTM)-RL [7] , socially aware RL (SARL) [8], as
well as graph-based techniques [9]. However, the efficacy of
RL policies is often degraded if the robot encounters new
scenarios that are different from the training scenario [10].

On the other hand, optimization-based approaches such
as model predictive control (MPC) do not depend on offline
training and can generalize well with appropriate parameter
tuning. In MPC, we optimize the trajectories of robots over
a finite control horizon given certain prediction models of
human trajectories. Various human prediction models have
been used together with MPC in the literature, such as
constant velocity [11], [12], Kalman filters [13], intention-
enhanced optimal reciprocal collision avoidance [14], social
generative adversarial networks (GAN) [15], and LSTM [16].
Due to the complexity of human behavior, recent data-driven
methods such as Social-LSTM [17], Social-GAN [18], Social-
NCE [19], sparse Gaussian processes [20] have demonstrated
more accurate trajectory prediction compared to domain
knowledge-based models. Thus, combining machine learning
techniques with MPC has the potential to enhance the efficacy
of overall navigation.

While there are increasing studies on social navigation for
an individual robot in crowds, the problem of multi-robot
cooperative navigation among human pedestrians has not been
fully explored. In this paper, we propose an interaction-aware
control framework to coordinate robots among human pedes-
trians using game-theoretic MPC and deep learning-based
human trajectory prediction. To the best of our knowledge, the
most relevant study to our work in the literature is [21], which
focused on multi-robot collision avoidance while the humans
were modeled as dynamic obstacles with constant velocities.
Thus, the human-robot interaction was not considered. We
first formulate an MPC problem to find the optimal control
actions for the robots in a receding horizon fashion and
integrate Social-LSTM, a state-of-the-art trajectory prediction
model, into the MPC formulation. To solve the resulting
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problem, we utilize the concept of the potential game [22]
for multi-robot coordination combined with a two-player
game for human-robot interaction to develop two algorithms
for centralized and distributed MPC. We demonstrate the
effectiveness of our proposed framework through numerical
simulations of a crowd navigation scenario, wherein the robots
exhibit coordinated flocking behavior while simultaneously
navigating toward their respective goals.

The rest of the paper is organized as follows. In Section II,
we present our problem statement for multi-robot navigation
in crowds. We formulate the MPC framework with the Social-
LSTM human trajectory model in Sections III and IV. In
Section V, we present two algorithms to solve the problem in
centralized and distributed manners. We show the simulation
results and analysis in Section VI and provide conclusions
in Section VII.

II. PROBLEM STATEMENT

We consider an environment W ⊂ R2 with N ∈ N agents
including M ∈ N robots and N − M human pedestrians,
illustrated in Fig. 1. We denote R = {1, . . . ,M}, H =
{N −M + 1, . . . , N}, and RH = R∪H the sets of robots,
pedestrians, and all agents respectively.

At time step k ∈ N, let si,k = [sxi,k, s
y
i,k]

⊤ ∈ W ,
vi,k = [vxi,k, v

y
i,k]

⊤ ∈ R2, and ai,k = [axi,k, a
y
i,k]

⊤ ∈ R2 be
the vectors corresponding to position, velocity, and accelera-
tion of the robot i ∈ R in Cartesian coordinates, respectively,
where each vector consists of two components for x− and
y− axis. Let xi,k = [s⊤i,k,v

⊤
i,k]

⊤ and ui,k = ai,k be the
vectors of states and control actions for the robot i at time
step k, respectively, while sj,k ∈ W denotes the position of
pedestrian j ∈ H at time step k. For simplicity in notation,
we use Xi,t1:t2 for agent i ∈ RH to denote the concatenated
arbitrary vector X from time step t1 to time step t2. We
denote the state and action spaces for robot i as Xi and Ui,
i.e., xi,k ∈ Xi and ui,k ∈ Ui, respectively.

Assumption 1. We assume that Xi and Ui are nonempty,
compact, and connected sets for all i ∈ R.

The goal of social multi-robot navigation is to navigate
each robot i from the initial positions siniti ∈ W to their goals
sgoali ∈ W while interacting with the human pedestrians to
avoid collisions and minimizing any discomfort during motion.
We consider the following assumption to facilitate positioning
and communication between the robots for coordination.

Assumption 2. The robots’ and pedestrians’ real-time
positions can be obtained by a positioning system and stored
by a central coordinator (e.g., a computer). The robots and
the coordinator can exchange information through wireless
communication.

III. MODEL PREDICTIVE CONTROL WITH SOCIAL-LSTM
In our proposed framework, we combine a Social-LSTM

model, which predicts the future trajectories of human
pedestrians with an MPC formulation to derive the optimal
control actions for the robots. Next, we formally define the
Social-LSTM model and MPC formulation in detail.

Fig. 1: An example of multi-robot navigation in a crowd.

A. Human Motion Prediction using Social-LSTM

Let t ∈ N be the current time step, H ∈ Z+ be the
control/prediction horizon length, and It = {t, t+ 1 . . . , t+
H−1} be the set of time steps in the next control horizon. The
human prediction model aims at predicting the trajectories of
pedestrians over a prediction horizon of length H given the
observations over L ∈ Z+ previous time-steps of all agents’
trajectories. Social-LSTM was developed in [17] for jointly
predicting the multi-step trajectory of multiple agents. Inspired
by [23], we consider recursive prediction for the pedestrians’
positions using the single-step Social-LSTM model denoted
by ϕ(·) : R2|RH|L → R2|H| as follows

sH,k+1 = ϕ(sRH,k−L+1:k), ∀k ∈ It. (1)

Note that we have made several modifications to the prediction
model (1) compared to the original Social-LSTM model
proposed in the work of [17]. First, the Social-LSTM model
in [17] performs simultaneous prediction for all N agents, i.e.,
both robots and humans. However, in (1), we precisely extract
the positions of human pedestrians from the joint predictions.
Additionally, we consider the Social-LSTM model with
single-step prediction, where predictions are made recursively
throughout the control horizon at each time step instead of
a multi-step prediction for the entire control horizon. The
recursive technique yields a coupled prediction and planning
approach while using the multi-step prediction model leads to
a decoupled prediction and planning approach, i.e., ignoring
the mutual dependence between humans’ and robots’ future
behavior. Last, at each time-step of the control horizon, the
humans’ predicted positions in previous time-steps are used
as the inputs of the Social-LSTM model, while the predicted
positions of the robots are discarded since the future robots’
positions depend on the solution of the MPC problem.

Remark 1. Though we utilize Social-LSTM [17] as the human
motion prediction model, other deep learning models such
as [18], [19], [24] can be used alternatively.

B. Model Predictive Control Formulation

Henceforth, for ease of notation, we omit the time subscript
of the variables if it refers to all time-steps within the control
horizon. For example, we use ui, xi, and sj , ∀i ∈ R, j ∈
H, instead of ui,t:t+H−1, xi,t+1:t+H , and sj,t+1:t+H . We
consider that the dynamics of each robot are governed by a
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discrete-time double-integrator model:

si,k+1 = si,k + τvi,k +
1

2
τ2ai,k,

vi,k+1 = vi,k + τai,k,
(2)

where τ ∈ R+ is the sampling time period. Each robot has
an individual objective Ji(ui,xi, sH) and a shared objective
with other robots J−i(xi,x−i), where we define x⊤

−i =
[x⊤

j ]∀j∈R,j ̸=i as the concatenation of the state vectors of
all other robots in the set R. We consider pairwise shared
objectives between robots

J−i(xi,x−i) =
∑

j∈R\{i}

Jij(xi,xj). (3)

We formulate the local MPC problem for robot i at time t:

minimize
ui

Ji(ui,xi, sH) +
∑

j∈R\{i}

Jij(xi,xj),

subject to: (1), (2),ui,k ∈ Ui,xi,k+1 ∈ Xi, ∀k ∈ It,
given: sRH,t−L+1:t,xi,t.

(4)

Note that any constraints, e.g., collision avoidance constraints,
can be included in the objective function by penalty functions
with sufficiently large weights.

Assumption 3. We assume that the individual objective Ji
and shared objective Jij , for all i, j ∈ R, are continuous
and differentiable functions everywhere over X and U .

IV. MULTI-ROBOT COOPERATIVE NAVIGATION

In this section, we illustrate the MPC formulation (4)
by considering the scenario illustrated in Fig. 1, where
multiple robots navigate to their goals among several human
pedestrians. The robots need to reach their goals and avoid
collision with human pedestrians and other robots. Moreover,
since the robots move in the same direction, they can
coordinate for moving in a flock while navigating to the
goals. We assume that the states and control inputs of robots
i ∈ R are subjected to the following bound constraints:

−vmax ≤ vxi,k, v
y
i,k ≤ vmax, −amax ≤ axi,k, a

y
i,k ≤ amax, (5)

where vmax ∈ R+ and amax ∈ R+ are the maximum speed
and acceleration of the robots, respectively.

We formulate individual and shared objectives by weighted
sums of several features. For robot i, we consider a tracking
minimization to a desired reference trajectory

Jgoal
i (si)=

∑t+H−1
k=t (si,k+1 − srefi,k+1)

⊤(si,k+1 − srefi,k+1)∥∥∥si,t − sgoali

∥∥∥
2
+ δ

,

(6)
where srefi,k+1 is the desired position at time k+1. The feature
is normalized by the distance to the goal where δ ∈ R+ is
a small positive number. Consequently, the significance of
the goal-reaching objective increases as the robot approaches
its intended destination. We compute the desired reference

trajectory for robot i based on a straight line to its goal

srefi,k+1=srefi,k+min
{
τvmax,

∥∥∥sgoali − srefi,k

∥∥∥} sgoali − srefi,t∥∥∥sgoali − srefi,t

∥∥∥ ,
(7)

for k ∈ It and sref0,t = s0,t. In addition, we minimize the
acceleration and jerk of the robot’s motion by:

Jacce
i (ui) =

t+H−1∑
k=t

u⊤
i,kui,k, (8)

J jerk
i (ui) =

t+H−1∑
k=t

(ui,k − ui,k−1)
⊤(ui,k − ui,k−1). (9)

To prevent collision between a robot and any human pedes-
trian, we impose the following constraint that the distance
between the robot and each pedestrian is greater than a safe
speed-dependent distance

gij(xi,k+1, sj,k+1) = d2min + ρ ∥vi,k+1∥22
− ∥si,k+1 − sj,k+1∥22 ≤ 0,

(10)

∀i ∈ R, j ∈ H, where dmin ∈ R+ is a minimum allowed
distance and ρ ∈ R+ is a scaling factor. We include a speed-
dependent term in the above constraint to ensure that the
robot stays farther away from the humans while moving at
high speed, leading to less human discomfort. Similarly, we
consider an inter-robot collision avoidance constraint

gij(xi,k+1,xj,k+1) = d2min−∥si,k+1 − sj,k+1∥22 ≤ 0, (11)

∀ i, j ∈ R. The omission of a speed-dependent term in (11)
is justified by the desire to maintain consistency with the
subsequent shared objective, encouraging robots to move
towards their goals while staying close to one another.

We incorporate the collision avoidance constraint into the
objective function as a soft constraint by using a smoothed
max penalty function as follows

Jcoll
ij (xi,xj) =

t+H−1∑
k=t

smax
(
gij(xi,k+1,xj,k+1)

)
. (12)

The smoothed max penalty function is defined as smax(z) =
1
µ log

(
exp(µz) + 1

)
, where µ ∈ R+ is a parameter that

adjusts the smoothness of the penalty function. Additionally,
the shared objective between robots i and j includes the
following flocking control objective:

Jfloc
ij (xi,xj) =

t+H−1∑
k=t

(
∥si,k+1 − sj,k+1∥2 − dij

)2
, (13)

where dij ∈ R+ is the desired distance between two robots
while moving in a flock. For everywhere differentiability,
we approximate the L2-norm by ∥z∥2 ≈

√
z⊤z + δ, where

δ ∈ R+ is a small positive number.
Hence, the individual objective can be given by:

Ji(ui,xi, sH) = ωgoal
i Jgoal

i (xi) + ωacce
i Jacce

i (ui)

+ ωjerk
i J jerk

i (ui) +
∑
j∈H

ωcoll
ij Jcoll

ij (xi, sj),
(14)
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and the shared objective is given as follows,

Jij(xi,xj) = ωcoll
ij Jcoll

ij (xi,xj) + ωfloc
ij Jfloc

ij (xi,xj). (15)

V. CENTRALIZED VS DISTRIBUTED MODEL PREDICTIVE
CONTROL

Game theory is an effective tool for formulating and
analyzing different types of interactions among agents. As a
result, game-theoretic planning and control have been used
widely in multi-agent coordination [25] and human-robot
interaction [26], [27]. In this section, we derive centralized
and distributed MPC algorithms based on an iterative best-
response approach. For the centralized method, we recast
(4) as a potential game between the robots combined with a
two-player game between the robots and the humans.

A. Centralized MPC (CMPC)

1) Multi Robot Coordination as a Potential Game: Given
the MPC problem (4) for each robot, we define a game for
multi-robot navigation as follows.

Definition 1. At each time-step t for control/prediction
horizon length It, we define an M -player game for multi-
robot navigation as GR

t :=
{
R,UR, {Ci,t}i∈R

}
, where

UR := UH
1 × UH

2 × · · · × UH
M while UH

i is the set of
all action sequences of robot i in It over a horizon H
(also referred to as a strategy set). Let ui ∈ UH

i be a valid
strategy for robot i and a joint strategy adopted by other
players be denoted by u−i := [u⊤

j ]
⊤
j∈R\{i} ∈ UH

−i. Then,
the cumulative cost for each robot i over It is denoted by
Ci,t(ui,u−i) := Ji(·) + J−i(·) , which can be evaluated by
the objective function in (4).

The following definition of a continuous exact potential
game was presented in [22], [27].

Definition 2. If for every robot i ∈ R, ui is a nonempty,
compact, and connected set (extending Assumption 1), Ci,t(·)
is a continuous and differentiable function (Assumption 3),
then the game GR

t is a continuous exact potential game if
and only if there exists a function Ft : UR → R that is
continuous and differentiable on UR and satisfies

∂Ci,t(ui,u−i)

∂ui
=

∂Ft(ui,u−i)

∂ui
, ∀ui ∈ UH

i ,u−i ∈ UH
−i,

(16)
where UH

i and UH
−i are the strategy sets as defined previously.

The function Ft is called a potential function of the game.

Remark 2. The conditions in Definition 1 hold for multi-robot
cooperative navigation presented in Section IV as given in (5),
the domains Ui and Xi are nonempty, compact and connected,
while the individual and shared objective functions shown in
(14) and (15) are everywhere continuous and differentiable.

Lemma 1. GR
t is a continuous exact potential game if

Jij(xi,xj) = Jji(xj ,xi) and the potential function at time
step t is computed by

Ft(uR, sH) =
∑
i∈R

Ji(ui,xi, sH)+
∑

i,j∈R,i ̸=j

Jij(xi,xj), (17)

Algorithm 1 IBR-based centralized MPC

Require: t, H , jmax, ξ, u(0)
R , x(0)

R , sRH,t−L+1:t.
1: for j = 1, 2, . . . , jmax do
2: Predict s(j)

H using (1) given x
(j−1)
R and sRH,t−L+1:t.

3: Solve (18) given s
(j)
H to obtain u

(j)
R and x

(j)
R .

4: Compute F
(j)
t = Ft(u

(j)
R , s

(j)
H ).

5: if
∣∣∣F (j)

t − F
(j−1)
t

∣∣∣ ≤ ξ then

6: return u
(j)
R

7: end if
8: end for
9: return u

(jmax)
R

where given the system dynamics (2), the right-hand side of
(17) can be expressed as a function of the joint strategy uR
and the pedestrians’ predicted trajectory sH in the left-hand
side.

The proof for Lemma 1 directly follows from the proof
of Theorem 8 in [27]. In order to satisfy Lemma 1 for the
scenario presented in Section IV, we choose ωcoll

ij = ωcoll
ji

and ωfloc
ij = ωfloc

ji , ∀i, j ∈ R, i ̸= j.
2) Human-Robot Interaction as a Two-Player Game: Since

a Nash equilibrium can be found by optimizing the potential
function of the game at each time step, we can implement the
multi-robot navigation algorithm in a centralized manner, i.e.,
using only a central coordinator, by solving the following
centralized MPC problem:

minimize
uR

Ft(uR, sH),

subject to: (1), (2),uR ∈ UR,xi,k+1 ∈ Xi,

given: sRH,t−L+1:t,xR,t,

(18)

where the constraints hold for all i ∈ R and k ∈ It. Due to
the complexity of the Social-LSTM network, solving the MPC
problem (18) would be computationally intractable. Therefore,
we employ iterative best response (IBR), a commonly used
algorithm in game theory, to find a Nash equilibrium. We
first define a two-player game for human-robot interaction.

Definition 3. At each time-step t, we define a two-
player game for human-robot interaction as GRH

t :={
{R,H}, {UR,R2|H||It|}, {Ft(uR, sH), It(sR, sH)}

}
,

where

It(sR, sH) =
∑
k∈It

∥sH,k+1 − ϕ(sRH,k−L+1:k)∥2 . (19)

In this game, the group of robots and the group of humans
are considered two players; each player’s strategy is defined
by the trajectories over the next control horizon. The cost
function for robots is the objective function in (18), while
the cost function for human pedestrians is computed by the
deviation to the predicted trajectories given by (1). In other
words, we assume that the best strategy for human pedestrians
is to follow the trajectories given by the output of the Social-
LSTM model (1). The prediction model is expected to encode
the fundamentals of pedestrian motion, such as collision
avoidance, path following, and comfort.
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In the IBR approach, a single agent updates its strategy
at each iteration based on its best response to the others’
strategies. Therefore, given the human-robot interaction
game (Definition 3), we can solve (18) by sequentially
computing the Social-LSTM prediction and optimizing the
MPC objective function. All the steps are performed by
the coordinator until the difference in the potential function
evaluated at two consecutive iterations is smaller than a
threshold ξ ∈ R+, or a maximum number of iterations
jmax ∈ N is reached. The details are provided in Algorithm 1.
If the algorithm converges, the converged point is a Nash
equilibrium [28], [29]. However, it does not always converge;
in the worst case, it may cycle between strategies.

B. Distributed MPC (DMPC)

We also developed an IBR-based distributed MPC algo-
rithm in which the coordinator and the robots collaborate and
communicate to solve the problem. Each robot repeatedly
solves its local MPC problem (4) given the current best-
response trajectories of other robots in parallel. The robots’
current best-response trajectories can be exchanged with the
other robots through communication between the coordinator
and the robots. Though the IBR approach advances towards
a Nash equilibrium in a continuous exact potential game,
convergence may not be achieved within a finite number of
iterations [27]. Hence, to improve the convergence of the
IBR algorithm, we can modify the algorithm based on the
concept of ϵ-Nash equilibrium [30], defined as follows:

Definition 4. A strategy (u∗
1,u

∗
2, . . . ,u

∗
M ) is an ϵ-Nash

equilibrium if and only if ∃ ϵ ∈ R+ such that ∀i ∈ R;

Ci,t(u
∗
i ,u

∗
−i) ≤ Ci,t(u

′
i,u

∗
−i) + ϵ, ∀u′

i ∈ UH
i . (20)

Combining the IBR approach for the multi-robot navigation
game and the human-robot interaction game, we derive
Algorithm 2 for solving the distributed MPC problem. It starts
with an initial guess x

(0)
R of the best-response trajectories

for the robots. At each iteration j, the coordinator predicts
s
(j)
H , i.e., the trajectories over the next control horizon of

human pedestrians by the Social-LSTM model (1) where
the inputs utilize the robots’ trajectories from the previous
iteration. The coordinator transmits s

(j)
H to all the robots.

Next, each robot solves its local MPC problem given other
robots’ best-response trajectories in parallel and decides
to accept or reject the new solution based on whether or
not it can improve the cost function by at least ϵ. Then,
each robot i transmits the current best-response trajectories
x
(j)
i to the coordinator and receives x

(j)
−i . The algorithm

is terminated if the coordinator detects that the condition
Ci,t(u

(j)
i ,u

(j)
−i ) ≤ Ci,t(u

(j−1)
i ,u

(j)
−i ) + ϵ is true ∀i ∈ R, or

if j = jmax.

VI. SIMULATION RESULTS

A. Simulation Setup

We conducted simulated crowd navigation experiments in
Python with the CrowdNav environment [8], wherein human
pedestrians are simulated using ORCA [31]. We utilized

Algorithm 2 IBR-based distributed MPC

Require: t, H , jmax, ϵ, u(0)
R , x(0)

R , sRH,t−L+1:t.
1: for j = 1, . . . , jmax do
2: Coordinator predicts s

(j)
H by (1) and transmits to R.

3: for robot i ∈ R do (IN PARALLEL)
4: Solve (4) given s

(j)
H and x

(j−1)
−i to obtain u

(j)
i and x

(j)
i .

5: if Ci,t(u
(j)
i ,u

(j−1)
−i )>Ci,t(u

(j−1)
i ,u

(j−1)
−i )− ϵ then

6: u
(j)
i ← u

(j−1)
i

7: end if
8: Compute and transmit x(j)

i to the coordinator.
9: end for

10: Coordinator receives x
(j)
i from R, then transmits x

(j)
−i to

each robot i ∈ R.
11: for robot i ∈ R do (IN PARALLEL)
12: if Ci,t(u

(j)
i ,u

(j)
−i ) ≤ Ci,t(u

(j−1)
i ,u

(j)
−i ) + ϵ then

13: Convi ← True
14: else
15: Convi ← False
16: end if
17: Transmit Convi to the coordinator.
18: end for
19: if Coordinator detects Convi = True, ∀i ∈ R then
20: return u

(j)
R

21: end if
22: end for
23: return u

(jmax)
R

Trajnet++ benchmark for training Social-LSTM models on the
ETH dataset [32]. CasADi [33] and IPOPT solver [34] were
used for formulating and solving the nonlinear MPC problems,
respectively. The framework parameters were chosen as given
in Table III. The simulations were executed on an MSI
computer with an Intel Core i9 CPU, 64GB RAM, and
a GeForce RTX 3080 Ti GPU. Some of the results can be
visualized online1.

B. Results and Discussions

The trajectories of the robots and human pedestrians in a
circular crossing simulation with 3 robots and 7 pedestrians
are shown in Fig. 2. As can be seen, due to the flocking
objective, the robots move from their origins to form a flock
with other robots. The flock of robots can navigate among
the humans without any collisions. The robots depart from
the flock when they are close to their goals, and all the robots
eventually reach their goals within 16.4 s.

To further assess the effectiveness of the proposed frame-
work, we analyzed performance on the following metrics:

• Success rate: % of simulations in which all agents reach
their destinations.

• Average travel time: Time(s) for all robots to reach
their destinations (in simulations with success).

• Collision rate: % of simulations that the minimum
distance between the robots and the pedestrians is less
than 0.8m (violation of personal space).

• Discomfort rate: % of simulations wherein a robot’s
projected path intersects with a human’s projected path.
The projected path is defined as a line segment from
the current agent’s position along with the direction of

1https://sites.google.com/view/crowdmrn
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TABLE I: Comparison between centralized MPC (CMPC) and distributed MPC (DMPC).

Numbers of Pedestrians 5 6 7 8 9

Metrics
Methods CMPC DMPC CMPC DMPC CMPC DMPC CMPC DMPC CMPC DMPC

Success rate (%) 94.0 93.4 91.9 91.8 90.0 88.7 86.7 86.9 84.5 83.9
Average travel time (s) 17.9 18.1 18.6 18.7 19.1 19.2 19.6 19.8 20.1 20.3

Collision rate (%) 0.2 0.3 0.8 0.6 1.3 1.1 1.1 1.1 1.2 1.9
Discomfort rate (%) 0.5 0.6 1.2 1.5 1.3 1.1 1.4 1.3 2.1 1.8

TABLE II: Comparison between centralized MPC with (F) and without (NF) the flocking objective.

Numbers of Pedestrians 5 6 7 8 9

Metrics
Methods F NF F NF F NF F NF F NF

Success rate (%) 94.0 96.7 91.9 94.0 90.0 93.8 86.6 88.8 84.7 86.1
Average travel time (s) 17.9 17.6 18.6 18.4 19.1 18.8 19.6 19.3 20.1 19.8

Collision rate (%) 0.2 0.2 0.8 0.9 1.3 0.4 1.1 1.8 1.2 2.4
Discomfort rate (%) 0.5 1.4 1.2 2.2 1.3 2.0 1.4 2.2 2.1 2.6
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Fig. 2: Positions of the robots and human pedestrians at several time steps in a circular crossing simulation. Humans’ and
robots’ positions are marked by unfilled and solid circles, respectively, while red stars represent robots’ destinations.

TABLE III: Parameters of the MPC problem.

Parameters Values Parameters Values

H 4 L 8

τ 0.4 s ωgoal
i 10.0

ωacce
i 10−1 ωjerk

i 10−1

ωcoll
i 107 ωfloc

i 10
vmax 1.0m/s amax 2.0m/s2

ρ 0.5 s dmin 0.8m
µ 30 jmax 10
ξ 10−3 ϵ 10−3

the agent’s velocity and the length proportional to speed.
The proportional factor is chosen as 1.2 s.

The success rate and average travel time quantify the
efficiency, while the collision rate and discomfort rate are
related to social conformity [35] of the navigation algorithms.
Those validation metrics are computed by averaging 1000
simulations with randomized initial conditions, including 500
circular crossing simulations and 500 perpendicular crossing
simulations [35]. We compared the metrics for centralized
MPC and distributed MPC in Table I with different numbers
of human pedestrians. First, it can be observed that the
performance deteriorates as the crowd density increases. The
centralized and distributed MPC algorithms perform similarly,
with the centralized approach taking a narrow lead across
most metrics.

Furthermore, we evaluated the benefits of flocking control
in reducing personal space violations and discomfort to
humans. The results for CMPC with and without the flocking

control objective are tallied in Table II. The collision and
discomfort rates can be reduced by including the flocking
objective. Still, the robots generally take longer to reach their
goals and decrease the number of successful simulations.
The results indicate that moving in a flock can indirectly
improve social conformity, but there is a higher chance of
“freezing robots” when the flock of robots cannot find a safe
yet efficient trajectory to avoid deadlock. This suggests a
high-level reference trajectory generator can be combined
with the proposed framework to avoid such situations.

VII. CONCLUSIONS

In this paper, we addressed the problem of cooperative
navigation for multiple robots in crowds by combining game-
theoretic MPC and a Social-LSTM human trajectory predic-
tion model. We employed an iterative best-response approach
to develop two algorithms for solving the MPC problem in
centralized and distributed manners. The simulation results
demonstrated the effectiveness of the control framework.
Potential directions for future research are to solve the
MPC problem with fast-distributed optimization algorithms,
investigate the effects of shared objectives, and validate the
control framework through experiments.
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