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In this paper, we provide a theoretical framework that separates the control and learning tasks in a linear
system. This separation allows us to combine offline model-based control with online learning approaches and
thus circumvent current challenges in deriving optimal control strategies in applications where a large volume
of data is added to the system gradually in real time and not altogether in advance. We provide an analytical
example to illustrate the framework.

1. Introduction

Reinforcement learning (RL) (Bertsekas & Tsitsiklis, 1996; Sutton
& Barto, 1998) has emerged as an adaptive method to control sys-
tems (Sutton, Barto, & Williams, 1992) with unknown dynamics (Ko-
rdabad, Reinhardt, Anand, & Gros, 2023). There have also been re-
search efforts on developing learning approaches using Bayesian anal-
ysis to address such problems (Fisac et al., 2019). Other approaches
over the years have focused on direct or indirect RL methods includ-
ing robust learning-based (Aswani, Gonzalez, Sastry, & Tomlin, 2013;
Bouffard, Aswani, & Tomlin, 2012), learning-based model predictive
control (Hewing, Wabersich, Menner, & Zeilinger, 2020; Rosolia &
Borrelli, 2018; Zhang, Bujarbaruah, & Borrelli, 2020) on autonomous
racing cars (Rosolia & Borrelli, 2020), real-time learning (Malikopoulos,
2011; Malikopoulos, Papalambros, & Assanis, 2009) of powertrain sys-
tems with respect to the driver’s driving style (Malikopoulos, Assanis,
& Papalambros, 2009; Malikopoulos, Papalambros, & Assanis, 2010),
learning for traffic control (Wu, Kreidieh, Parvate, Vinitsky, & Bayen,
2017) for transferring optimal policies (Chalaki et al., 2020; Jang et al.,
2019), decentralized learning for stochastic games (Arslan & Yiiksel,
2017), learning for optimal social routing (Krichene, Castillo, & Bayen,
2018) and congestion games (Krichene, Drighes, & Bayen, 2015), and
learning for enhanced security against replay attacks in cyber—physical
systems (Sahoo & Vamvoudakis, 2020).

The implications of the strategies derived using a model, which is
typically different from the actual system, have been reported in Kara
and Yiiksel (2018). A recent paper (Subramanian, Sinha, Seraj, &
Mahajan, 2022) proposed approximate learning of an information state
to address problems when the dynamics of the actual system are
not known. Other efforts have combined adaptive control with RL

to derive control strategies in real time (Guha & Annaswamy, 2021).
Space constraints prevent us from discussing the complete list of papers
reported in the literature in this area. Two survey papers (Kiumarsi,
Vamvoudakis, Modares, & Lewis, 2018; Recht, 2019), however, include
a comprehensive review of the RL approaches.

In some applications, we encounter a volume of data gradually
incorporated into the system. To derive the optimal control strategy
in such applications, we typically use a model (Malikopoulos, 2016).
However, model-based control might not effectively facilitate optimal
solutions partly due to the existing discrepancy between the model and
the actual system. On the other hand, supervised learning approaches
might not always facilitate robust solutions using training data derived
offline. Similarly, RL approaches might impose undesired implications
on the system’s robustness.

In this paper, we investigate how to circumvent these challenges at
the intersection of learning and control. We derive sufficient statistics
that can represent the system’s growing data. This sufficient statistics
is called information state of the system and takes values in a time-
invariant space. This information state can be used to derive separated
control strategies, which are related to the separation between the
estimation of the information state and the derivation of the control
strategy. Given this separation, for any control strategy at time ¢,
the evolution of the information state of the system does not depend
on the control strategy at ¢ but only on the realization value of the
control at ¢t (Kumar & Varaiya, 1986). Thus, the evolution of the
information states is separated from the choice of the current control
strategy. Hence, the optimal control strategy is derived offline using
the information state, which can be learned online using standard
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techniques (Brand, 1999; Gyorfi & Kohler, 2007) while data are in-
corporated into the system. This approach departs from traditional
model-based and supervised (or unsupervised) learning approaches.
The framework could effectively facilitate optimal solutions in a wide
range of applications where a large volume of data is added to the
system gradually in real time and not altogether in advance, such as
emerging mobility systems, mobility markets, smart power grids, power
systems, social media platforms, robot cooperation, and the Internet of
Things.

The structure of the paper is organized as follows. In Section 2, we
present the formulation of the optimal control problem. In Section 3,
we introduce the separated control strategies. In Section 4, we illustrate
the framework with a simple analytical example. Finally, we draw
concluding remarks in Section 5.

2. Problem formulation
2.1. Notation

In our exposition, we denote by E[-] the expectation of random
variables, by P(-) the probability of an event, and by p(-) the proba-
bility density function. We denote by E2[-], P8(-), and p#(-) that the
expectation, probability, and probability density function, respectively,
depending on the choice of the control strategy g. Random variables
are denoted with upper case letters, and their realizations with lower
case letters, e.g., for a random variable X,, x, denotes its realization.
In some occasions, we denote the expected value of a random vari-
able with lower case letter, e.g., E[X,] = x,. Subscripts denote time.
The shorthand notation X,,.; denotes the vector of random variables
(Xg,....Xr), and the shorthand notation x,., denotes the vector of
their realization (x, ..., xp).

2.2. Modeling framework

We consider a linear system in which a volume of data is added to
the system gradually and not altogether in advance. We aim to find
sufficient statistics that can be used to compress the increasing data of
the system without loss of optimality (Striebel, 1965). These statistics
are a conditional probability of the system’s state at time 7 € R given
all data available up until ¢, which is called the information state of
the system. We use this information state to derive separated control
strategies. By deriving separated control strategies, we can derive the
optimal control strategy offline with respect to the information state
and then use learning methods to learn the information state online.

In particular, in our framework illustrated in Fig. 1, we seek to
use the actual linear system that we wish to optimally control online,
in parallel with a model of the system that is available. Let X,, t =
0,1,...,T, T € N, be a random variable that corresponds to the state
of the system’s model and X,, t = 0,1,...,T, be a random variable
that corresponds to the state of the actual system. Both X, and X,
are defined on an appropriate probability space and take values in R”,
n € N. The control U, of the actual system is a random variable defined
on the same probability space and takes values in R”, m € N. Given an
initial state X, the model of the linear system is

Xip1 =AX, +BU +DW,, t=0,1,...,T - 1, (1)

where A,,B,, and D, are matrices of appropriate dimensions, and W, €
R", r € N, is a random variable that corresponds to the external,
uncontrollable disturbance. Given the same initial state X, the actual
system is represented by

X =AX, +BU +DW, 1=0,1,...,T -1, (2)

where A,,B,, and D, are matrices of appropriate dimensions. The
sequence {W,; t=0,1,...,T — 1} is a sequence of independent random
variables independent of the initial state X|,.
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Fig. 1. The proposed framework on separating learning and control, where the
separated control strategy is applied to both the actual system and the system’s model
in parallel.

At the timer=0,1,...,7T—1, we make an observation Y, e R?, p e N,
of the model’s output described by the observation equation

Y,=CX,+E,Z, 3

where C,,E, are matrices of appropriate dimensions, and Z, € R,
s € N, is a random variable that represents the sensor’s noise. Similarly,
at time ¢, we make an observation f/, € R?, p € N, of the actual system,
described by the observation equation

Y, =C,X, +E,Z, )]

Note {Z,}, t = 0,...,T — 1, is a sequence of independent random
variables that are also independent of {W,}, r = 0,...,T — 1, and the
initial state X,.

A control strategy g = {g,} of the system yields a decision

U =gy Upyoy)s t=0,...,T =1, (5)

where the measurable function g, is the control law. The feasible set of
the control strategies is G, i.e., g€ G.

Problem 1 (Actual Linear System). Derive the optimal control strategy
g* € ¢ which minimizes the following cost of the actual system,

T-1
J@=F | Y (X, Up+er(Xp)| (6)
1=0

where the expectation in (6) is taken with respect to the joint probabil-
ity distribution of X, and U, imposed by the control strategy g € G;
¢(,) 1 XX VU; — R is the cost function of the system at 7, and
cr(-) : & - R is the cost function at T. The probability distribution
of the primitive random variables X,,, {W,}, {Z,}, the cost functions
{¢,(-,)}) for t = 0,...,T — 1 and c¢;(-), and the matrices C,,E, for
t=0,...,T — 1 are all known. However, the matrices A,,ﬁ,,f), are not
known fort=0,...,T —1.

3. Separating learning and control tasks

Letg={g; t=0,....,T—1}, g € G, be a control strategy which yields
a decision U, = g,(Y,.,, Uy.,_;) using the model of the linear system. We
establish an information state by using in parallel the system’s model
and the actual system as shown in Fig. 1.

The probability density function p(X,, X, | ¥;.,,Uy.,_,) is the infor-
mation state (defined formally next), denoted by IT,(Yy.,, Uy.,_ )(X,, X,).
To simplify notation, in what follows, the information state II,(Yj.,,
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Uy.,_1) (X,, X,) at t is denoted by IT, without the arguments, which will
be used only if it is required in our exposition.

Definition 1. The information state, IT,(Y;.,,Uy.,_,) (X, X,), is () a
function of (Yj.,,Uy.,_;), and (b) its evolution II, (Yy.,,1,Up.)
(X,41,X,41) at the next step 7 + 1 depends on IT,(Y;.,, Uy.,_)(X,, X)),
Y,;1, and U,.

Theorem 1.  The information state I1,(Y,.,,Uy.,_)(X,,X,) does not
depend on the control strategy g € G. Furthermore, there exists a function
¢, such that

M (Y01, Up: )Xy 15 Xiy1)
= ¢r [H,(Yo;,, UO:I—I)(Xt’XI)’ Yr+lsUr]’ )
foralt=0,1,...,T - 1.

The result of Theorem 1 is equivalent to the result of Malikopou-
los (2023b, Theorem 2) when the system’s information structure is
classical (van Schuppen & Villa, 2015; Yiiksel & Basar, 2013) and
the controller has perfect recall (Bertsekas, Bertsekas, Bertsekas, &
Bertsekas, 1995; Kumar & Varaiya, 1986).

Definition 2. A control strategy g € G, g = {g}, 1 =0,....T — 1,
is called separated if g, depends on Y,., = (Y;,....Y,) and Uj.,_, =
Uy, ..., U,_;) through the information state, i.e., U, =
& (I, (Yy.1. Uy, )(X,. X)) Let G* C G denote the set of all separated
control strategies.

Since the dynamics of the actual system are not known, we cannot
solve Problem 1. Thus, to obtain the optimal strategy in Problem 1, we
formulate the following problem that we solve offline using the system’s
model (1).

Problem 2. Derive offline the optimal separated strategy g* € G* to
minimize the following cost function

T-1
J (g %o.7) = B8 [2 [C,(X,,U,) B 1Y = Yt+1 |2
=0
+ CT(XT):| s
or, using (3) and (4),
T-1 )
J(g %y.7) =8 |:Z [C,(X,,U,) + 81X — Xl ]
=0
+ cT(XT)], ®)

where p adjusts the units of the norm accordingly, while the norm
penalizes the discrepancy between the expected values of the state of
the system’s model and the state of the actual system. Since we solve
(8) offline using model (1), no information about the actual system
is available, and thus the expected values %y.; = (%, ...,%y) of the
states X,.; = (X;, ..., Xy) of the actual system are not known. Hence,
when we derive the optimal control strategy g*, it is parameterized with
respect to all possible values %.;.

Next, to obtain offline the optimal separated control strategy in
Problem 2, we use the information state I7,(Y,.,, Uy.,_)(X,, X,). It can
be shown (Malikopoulos, 2023b) that we can derive a classical dynamic
program decomposition with respect to I, to yield a separated control
strategy, namely, a control strategy g = {g,}, 7 =0,...,T — 1 where g,
depends on Y., and U,., only through the information state, i.e., U, =
gt<Hx(Y0:x’UO:r—l)(Xx’Xt))-

The separated control strategy is derived offline, thus, it is pa-
rameterized with respect to the potential expected values %,.r of
the state X, of the actual system. Then, we apply the parameter-
ized strategy to the actual system and the system’s model in parallel
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(Fig. 1), and we collect data from both. Using these data, we compute
I1,(Yy.7, Up.p—1 (X141, X4 online.

Proposition 1. The information state IT,(Yy.,,Uy.,_1)(X,, X,) of the
system illustrated in Fig. 1 can be represented as a function of p(X, |
Yo Ugui—1)s P(X; | Yo11. Ugiioy), and p(Yy., | Uy y)-

Proof. Recall
,(Yy: - Up:-)(X, X)) = p(X,. X, | Yo, Upein)- ©
Next,
P(Xt’Xr [ Yo:1-Ug:i—1)
_ P()zt | X1, Y00 Ug:r1) - (X, Yo.1. Up:y1)
p(Yo:1>Up:p—1)

_ P(X; | Upipo1) - P(X3s Youp, Upircy)

P(Xo:1>Up:s—1)
=P(Xt | Up:i—1) - PCX; | Yo 1, Upr—p)- (10)

In the second equality, we used the fact that X, does not depend on X,
and Y;.;, and in the third equality, we applied Bayes’ rule.
Next, we write the first term in (10) as follows

p(X, | Upymp) = ZP(Xx | YO:nUO:z—l)‘P(YO:t [ Up:r-1)- an
Y’O:r

Substituting (11) into (10), the result follows. []

Remark 1. The conditional probability p(X, | Y;.;, Uy.,_;) can be
obtained easily using the model offline. The conditional probability
p(X, | Yy.,,Uy.,_;) can be obtained from the Kalman filter to estimate
X, first, and then through recursive equations starting from the initial
prior p(X, | Yy, Uy). The conditional probability p(¥,., | Up.,_;) can
be obtained using standard approaches (Brand, 1999; Gyorfi & Kohler,
2007). Ongoing research focuses on enhancing our understanding of
the computational implications in learning p(¥;., | Uy.,_,) in real time.

As we operate both the actual system and the model using the
separated control strategy (Fig. 1), we compute p(X, | ¥.,,Up.,_;) and
learn p(Yy., | Uy.,_,) that allows us to compute the information state
,(Yy.,, Uy.,_1)(X,, X,) (the conditional probability (p(X, | Yy.,, Up:;_1)
is known a priori from the model). Next, we show that when the
information state I1,(Yp.,,Uy.,_;)(X,, X,) becomes known, then the
separated control strategy is optimal for the actual system.

Theorem 2. Let ¢ € G* be an optimal separated control strategy
parameterized with respect to X7, derived offline using the system’s model,
that minimizes the following cost function,

T-1

. L2
J (g %o.7) = EB [Z [C,(X,,U,)+ﬁ X — Xl
=0

+ CT(XT)], 12)

in Problem 2. Then, if p(X,, X, | Yy.;, Uy:,_,) becomes known, then g is also
optimal for Problem 1,

T-1
J(g) =E® [Z (X, U+ cTo?T)] : (13)

=0
Proof. Suppose that the minimum value of the cost function ¢y (Xr)
occurs at X = xp € R". Hence,
er(Xp = xp) = ep(Xp = xp). a4

Suppose that the minimum value of the cost function ¢,(X,,U,) at
t=0,....,T — 1 occurs at X, = x, € R" and corresponds to the optimal
control U, = u;. Then, the minimum value in the one-time-step cost in
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(12) atr=0,...,T — 1 is when the expected value of the cost function
is ¢,(x,,u¥) and E[| X, — X,011’1=0, hence

. 52
nlllmIEg [c,(X,,u,) + 01X — Xl ] = ¢ (x,,u)). (15)
1

Since at each time t+ = 0,...,T — 1, the separated control strategy
g € G° yields a control input u] = g, (p(x,, %, | 9.1 Up:,_1)) such that

. A 2
uy = aIngllllnE[c,(X,,u,)+ﬂ X = Xl ]
1
= argmin ¢, (x,, u}), (16)
Uy

this implies that u] = u.

By summing up all minimum expected values of the cost function
¢(,-)ateacht=0,...,T—1 and ¢y (-) at t = T corresponding to g € ¢*,
we obtain (13). [

4. Illustrative example

In this section, we present a simple example of deriving the optimal
control strategy for a linear system by separating the learning and
control tasks. The purpose of the example is to demonstrate in simple
steps the proposed framework. The primitive random variables, i.e., the
initial state, X,,, and disturbance, W, of the system, are Gaussian
random variables with zero mean, variance 1, and covariance 0.5. The
state of the actual system is denoted by X » 1 =0,1,2. The evolution of
the system is described by the following equations

Xy = Xo»
X =R+ Uy + Wy =Xy + Uy + W,
X, =X,+U,. a7

We assume that we have a complete observation of the state, i.e.,

Y, =X, t=0,1,2. 18)

A control strategy g = {g,; t = 0,1}, g € G, where g, is the control
law, yields the control action U,, t = 0, 1, of the system, i.e.,

Us = 8(Yo) = &(Xo) = &(X0), (19)
Uy = g(Yp:1, Up) = &(Xg:1, Up) = &(Xg, X1, Up). (20)

We seek to derive the optimal control strategy g* € G of the system
represented in (17) which minimizes the following expected cost:

J(g = min
(g) ugEVy.u €V

1 R

zEg [(X2)? + (U (21)
We pretend that the dynamics of the system in (17) (the actual

system) are not known, but we have available the following model that

can be used to obtain g € G:

Xy = X,
X, =3X, +2U, +2W,,

X, =3X, +3U,, (22)
with

Y, =X, t=0,1,2. (23)

From (17) and (22), we note that there exists a discrepancy between
the actual system and the model that is available.

4.1. Optimal control strategy

First, we obtain the optimal control strategy g* € ¢ of the actual
system using (17).
The cost for the actual system (17) is

J(g = min

Trg v 2 2
uy€Vp,u €V} 2]E [(Xz) U ]
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. 1 Iyt 2 2
Julg 1 4
uoel%l,t[}elfl Z]E [(Xl +UD)"+UD ]

e SR [X + U+ Wy + Uy + (U)). 24)

If the dynamics of the actual system given in (17) were known, then
we could use (24) to derive the optimal control strategy g* € G. Since
the primitive random variables are Gaussian with zero mean, variance
1, and covariance 0.5, we can use the linear least-squares estimator to
compute the unique optimal solution of (24), which is

UO:—%XO, U, =—%X0— Iw. (25

2

4.2. Solution through separation between learning and control

In this section, we consider that the dynamics of the actual sys-
tem (17) are not known, but we have the model (22) of the system
available. Using this model, we can obtain the optimal control strategy
by applying the framework presented in Section 3. More specifically,
we use (22) and seek to derive the separated control strategy g € G*,
g = {g: t = 0,1}, where the control laws are g,(P(Xo, X, | ¥y))
and g (P(X,, X, | Y,,Y;,Up)), that minimizes the following cost (see
Theorem 2),

J(g: %9:2)

_ : 1roe 2 2

—Moeﬁbﬂlem 2E [(X)*+ U

+ X, — XD+ Xy — X0 | X0, X1, U | (26)

From (22) and taking f = 1, (26) becomes

J(g; %0:2)

o
1we 2 2
pedin_ 5E [(3X1+3U1) +(Uy)

F (X, = X%+ (X — %02 | Xo. X, Up ]

. 1 2
_Ee w.
“ 12}11:11 ” E [(3(3X0+2U0+2 w +3U;)

+(U1)2+(X1—X1)2+(X2—X2)2|X0’X17U0] . @27

The cost in (27) becomes equal to the original cost in (24), if the control
action U, and U, make the last two terms equal to zero, i.e.,

E8[X, — X,] = E8[3X, +2U, +2W, — X, | X;1 =0, (28)
E8[X, — X,] = E8[3X, +3U, — X, | Xo, X,,Up] = 0. (29)
From (28), it follows that

X, —3X, - 2W,
[ 1 20 leo]

= go(p(Xo. Xo | Xp)). (30

EE[U,] = E#

Similarly, from (29), it follows that

Eﬂug:lﬂ# |X0levUO]
ol
=E2[X2_9X° _36U°_6W° |X0,X1,Uo]
= g1 (p(X1, X1 | X0, X1, Up)).- @D

Thus, U, and U, in (30) and (31), respectively, are parameterized
with respect to the expected values of the state of the actual system,
i.e., %) = xy, X, and %,, and make the last two terms in (27) vanish.

Next, we use the control actions U, and U, derived by the separated
control strategies gy(p(Xo, X, | Xg)) and g (p(X;. X, | Xo, X1, Up)) in
(30) and (31), respectively, to control both the actual linear system
(17) and the model (22) (see Fig. 1). As we operate both systems,
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we compute the information states p(X,, X, | X,) and p(X;,X; |
Xy, X1,Uy). However, from Proposition 1, we know that to compute
p(Xg, Xy | Xo) and p(X,, X, | Xq.X,,Up), it is sufficient to compute
the conditional probabilities p(X, | X,), p(X; | Xq, X;,Up), and p(X,, |
Xy, X, Uyp), and to learn p(X,, X, | Uy, U,). Once we compute these
conditional probabilities, the expected values of U, and U, in (30) and
(31) become known.
By substituting (30) in (27), we obtain

X, -3X,-2W,

J(g:Xp.p) = min >

up€Vp.u €V

+ 2Wy) +3U,)" + (U2 | X, X, U, ]

%]Eg [ (33X, +2

. 1 o 2
= _E& 2
wetlin 21@ [(3x1+3ul) +(Uy)

|X0,X1,U0]

. 1 2
= -Eg[ 3(X, + Uy + W) +3U
ety 7B | (B0 + Uy + W) +301)

+(U1)2|X0’X1’Uo] . (32)

However, at r = 0, we do not consider U; and X,. Thus, the last
equation becomes

o1 2

SEE[(30X0 + Uy + W) | Xy 33

Jmin 5 (3(Xo + Uy + W)™ | X, (33)
The optimization problem above is to choose for each value X|, the best
estimate, in a mean squared error sense, of (X, +U,+W,), which yields
Uy = —%XO which is the same solution as in (25). By substituting (31)
into the model (22), we obtain

X, —9X, — 6U, — 6W,

X, =3X;+3 3
= 33X, +2Uy + 2Wp) + X, — 9X,, — 6U, — 6W,
=X,, (34

hence the expected total cost J(g; %,.,) in (26) becomes

J(g:%90) =  min %Eg[()?2)2+(U1)2]

ugEVy.u EVY
- L g[ ¢ 2 2]
= uoelﬁ,l,lurllevl 2E X, +U)"+ U (35)
The minimum in (35) at time ¢t = 1 can be found by taking the partial
derivative with respect to U; which yields

BE[(X, + U+ U))| = B2 (Xo + Up + Wy + Uy + )|
=0 (36)

that results in the same solution U; = ‘iXo - %WO as in (25).
5. Concluding remarks

In this paper, we presented a theoretical framework that provides a
data-driven approach for linear systems at the intersection of learning
and control. The framework separates the control and learning tasks
which allows us to combine offline model-based control with online
learning approaches and thus circumvent current challenges in deriving
optimal control strategies. One feature that distinguishes the framework
presented here from other learning-based or combined learning and
control approaches reported in the literature is that the large volume of
data added to the system is compressed to sufficient statistics, without
loss of optimality, that takes values in a time-invariant space. Hence,
as the volume of data added to the systems increases, the domain of
the control strategies does not increase with time. Ongoing research
investigates the computational implications of learning the information
state. In our exposition, we restricted attention to centralized control
systems. A potential future research direction includes expanding the
framework to decentralized systems (Malikopoulos, 2023a).
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