
&
t
r
s
y
o
i
B

B
r
2
t
&
l

European Journal of Control 80 (2024) 101043 

A
0
s

Contents lists available at ScienceDirect

European Journal of Control

journal homepage: www.sciencedirect.com/journal/european-journal-of-control

Combining learning and control in linear systems✩

Andreas A. Malikopoulos1
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA

A R T I C L E I N F O

Recommended by T. Parisini

Keywords:
Separation of learning and control
Stochastic optimal control
Information state
Markov decision theory

A B S T R A C T

In this paper, we provide a theoretical framework that separates the control and learning tasks in a linear
system. This separation allows us to combine offline model-based control with online learning approaches and
thus circumvent current challenges in deriving optimal control strategies in applications where a large volume
of data is added to the system gradually in real time and not altogether in advance. We provide an analytical
example to illustrate the framework.
1. Introduction

Reinforcement learning (RL) (Bertsekas & Tsitsiklis, 1996; Sutton
Barto, 1998) has emerged as an adaptive method to control sys-

ems (Sutton, Barto, & Williams, 1992) with unknown dynamics (Ko-
dabad, Reinhardt, Anand, & Gros, 2023). There have also been re-
earch efforts on developing learning approaches using Bayesian anal-
sis to address such problems (Fisac et al., 2019). Other approaches
ver the years have focused on direct or indirect RL methods includ-
ng robust learning-based (Aswani, Gonzalez, Sastry, & Tomlin, 2013;
ouffard, Aswani, & Tomlin, 2012), learning-based model predictive
control (Hewing, Wabersich, Menner, & Zeilinger, 2020; Rosolia &
orrelli, 2018; Zhang, Bujarbaruah, & Borrelli, 2020) on autonomous
acing cars (Rosolia & Borrelli, 2020), real-time learning (Malikopoulos,
011; Malikopoulos, Papalambros, & Assanis, 2009) of powertrain sys-
ems with respect to the driver’s driving style (Malikopoulos, Assanis,
Papalambros, 2009; Malikopoulos, Papalambros, & Assanis, 2010),

earning for traffic control (Wu, Kreidieh, Parvate, Vinitsky, & Bayen,
2017) for transferring optimal policies (Chalaki et al., 2020; Jang et al.,
2019), decentralized learning for stochastic games (Arslan & Yüksel,
2017), learning for optimal social routing (Krichene, Castillo, & Bayen,
2018) and congestion games (Krichene, Drighès, & Bayen, 2015), and
learning for enhanced security against replay attacks in cyber–physical
systems (Sahoo & Vamvoudakis, 2020).

The implications of the strategies derived using a model, which is
typically different from the actual system, have been reported in Kara
and Yüksel (2018). A recent paper (Subramanian, Sinha, Seraj, &
Mahajan, 2022) proposed approximate learning of an information state
to address problems when the dynamics of the actual system are
not known. Other efforts have combined adaptive control with RL
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to derive control strategies in real time (Guha & Annaswamy, 2021).
Space constraints prevent us from discussing the complete list of papers
reported in the literature in this area. Two survey papers (Kiumarsi,
Vamvoudakis, Modares, & Lewis, 2018; Recht, 2019), however, include
a comprehensive review of the RL approaches.

In some applications, we encounter a volume of data gradually
incorporated into the system. To derive the optimal control strategy
in such applications, we typically use a model (Malikopoulos, 2016).
However, model-based control might not effectively facilitate optimal
solutions partly due to the existing discrepancy between the model and
the actual system. On the other hand, supervised learning approaches
might not always facilitate robust solutions using training data derived
offline. Similarly, RL approaches might impose undesired implications
on the system’s robustness.

In this paper, we investigate how to circumvent these challenges at
the intersection of learning and control. We derive sufficient statistics
that can represent the system’s growing data. This sufficient statistics
is called information state of the system and takes values in a time-
invariant space. This information state can be used to derive separated
control strategies, which are related to the separation between the
estimation of the information state and the derivation of the control
strategy. Given this separation, for any control strategy at time 𝑡,
the evolution of the information state of the system does not depend
on the control strategy at 𝑡 but only on the realization value of the
control at 𝑡 (Kumar & Varaiya, 1986). Thus, the evolution of the
information states is separated from the choice of the current control
strategy. Hence, the optimal control strategy is derived offline using
the information state, which can be learned online using standard
https://doi.org/10.1016/j.ejcon.2024.101043
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techniques (Brand, 1999; Gyorfi & Kohler, 2007) while data are in-
corporated into the system. This approach departs from traditional
model-based and supervised (or unsupervised) learning approaches.
The framework could effectively facilitate optimal solutions in a wide
range of applications where a large volume of data is added to the
system gradually in real time and not altogether in advance, such as
emerging mobility systems, mobility markets, smart power grids, power
systems, social media platforms, robot cooperation, and the Internet of
Things.

The structure of the paper is organized as follows. In Section 2, we
resent the formulation of the optimal control problem. In Section 3,
e introduce the separated control strategies. In Section 4, we illustrate
he framework with a simple analytical example. Finally, we draw
oncluding remarks in Section 5.

. Problem formulation

.1. Notation

In our exposition, we denote by E[⋅] the expectation of random
ariables, by P(⋅) the probability of an event, and by 𝑝(⋅) the proba-
ility density function. We denote by E𝐠[⋅], P𝐠(⋅), and 𝑝𝐠(⋅) that the
xpectation, probability, and probability density function, respectively,
epending on the choice of the control strategy 𝐠. Random variables
re denoted with upper case letters, and their realizations with lower
ase letters, e.g., for a random variable 𝑋𝑡, 𝑥𝑡 denotes its realization.
n some occasions, we denote the expected value of a random vari-
ble with lower case letter, e.g., E[𝑋𝑡] = 𝑥𝑡. Subscripts denote time.
The shorthand notation 𝑋0∶𝑇 denotes the vector of random variables
𝑋0,… , 𝑋𝑇 ), and the shorthand notation 𝑥0∶𝑇 denotes the vector of
their realization (𝑥0,… , 𝑥𝑇 ).

2.2. Modeling framework

We consider a linear system in which a volume of data is added to
the system gradually and not altogether in advance. We aim to find
sufficient statistics that can be used to compress the increasing data of
the system without loss of optimality (Striebel, 1965). These statistics
are a conditional probability of the system’s state at time 𝑡 ∈ R≥0 given
all data available up until 𝑡, which is called the information state of
the system. We use this information state to derive separated control
strategies. By deriving separated control strategies, we can derive the
optimal control strategy offline with respect to the information state
and then use learning methods to learn the information state online.

In particular, in our framework illustrated in Fig. 1, we seek to
use the actual linear system that we wish to optimally control online,
in parallel with a model of the system that is available. Let 𝑋𝑡, 𝑡 =
0, 1,… , 𝑇 , 𝑇 ∈ N, be a random variable that corresponds to the state
of the system’s model and 𝑋̂𝑡, 𝑡 = 0, 1,… , 𝑇 , be a random variable
that corresponds to the state of the actual system. Both 𝑋𝑡 and 𝑋̂𝑡
are defined on an appropriate probability space and take values in R𝑛,
𝑛 ∈ N. The control 𝑈𝑡 of the actual system is a random variable defined
on the same probability space and takes values in R𝑚, 𝑚 ∈ N. Given an
initial state 𝑋0, the model of the linear system is

𝑋𝑡+1 = 𝐀𝑡𝑋𝑡 + 𝐁𝑡𝑈𝑡 + 𝐃𝑡𝑊𝑡, 𝑡 = 0, 1,… , 𝑇 − 1, (1)

where 𝐀𝑡,𝐁𝑡, and 𝐃𝑡 are matrices of appropriate dimensions, and 𝑊𝑡 ∈
R𝑟, 𝑟 ∈ N, is a random variable that corresponds to the external,
uncontrollable disturbance. Given the same initial state 𝑋0, the actual
system is represented by

𝑋̂𝑡+1 = 𝐀̂𝑡𝑋̂𝑡 + 𝐁̂𝑡𝑈𝑡 + 𝐃̂𝑡𝑊𝑡, 𝑡 = 0, 1,… , 𝑇 − 1, (2)

where 𝐀̂𝑡, 𝐁̂𝑡, and 𝐃̂𝑡 are matrices of appropriate dimensions. The
sequence {𝑊𝑡; 𝑡 = 0, 1,… , 𝑇 − 1} is a sequence of independent random

variables independent of the initial state 𝑋0.

2 
Fig. 1. The proposed framework on separating learning and control, where the
separated control strategy is applied to both the actual system and the system’s model
in parallel.

At the time 𝑡 = 0, 1,… , 𝑇−1, we make an observation 𝑌𝑡 ∈ R𝑝, 𝑝 ∈ N,
f the model’s output described by the observation equation

𝑡 = 𝐂𝑡𝑋𝑡 + 𝐄𝑡𝑍𝑡, (3)

here 𝐂𝑡,𝐄𝑡 are matrices of appropriate dimensions, and 𝑍𝑡 ∈ R𝑠,
∈ N, is a random variable that represents the sensor’s noise. Similarly,
t time 𝑡, we make an observation 𝑌𝑡 ∈ R𝑝, 𝑝 ∈ N, of the actual system,
escribed by the observation equation

̂𝑡 = 𝐂𝑡𝑋̂𝑡 + 𝐄𝑡𝑍𝑡, (4)

ote {𝑍𝑡}, 𝑡 = 0,… , 𝑇 − 1, is a sequence of independent random
ariables that are also independent of {𝑊𝑡}, 𝑡 = 0,… , 𝑇 − 1, and the
nitial state 𝑋0.
A control strategy 𝐠 = {𝑔𝑡} of the system yields a decision

𝑡 = 𝑔𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1), 𝑡 = 0,… , 𝑇 − 1, (5)

here the measurable function 𝑔𝑡 is the control law. The feasible set of
he control strategies is , i.e., 𝐠 ∈ .

roblem 1 (Actual Linear System). Derive the optimal control strategy
∗ ∈  which minimizes the following cost of the actual system,

̂(𝐠) = E𝐠

[𝑇−1
∑

𝑡=0
𝑐𝑡(𝑋̂𝑡, 𝑈𝑡) + 𝑐𝑇 (𝑋̂𝑇 )

]

, (6)

where the expectation in (6) is taken with respect to the joint probabil-
ity distribution of 𝑋̂𝑡 and 𝑈𝑡 imposed by the control strategy 𝐠 ∈ ;
𝑐𝑡(⋅, ⋅) ∶  × 𝑡 → R is the cost function of the system at 𝑡, and
𝑇 (⋅) ∶  → R is the cost function at 𝑇 . The probability distribution
of the primitive random variables 𝑋0, {𝑊𝑡}, {𝑍𝑡}, the cost functions
{𝑐𝑡(⋅, ⋅)} for 𝑡 = 0,… , 𝑇 − 1 and 𝑐𝑇 (⋅), and the matrices 𝐂𝑡,𝐄𝑡 for
𝑡 = 0,… , 𝑇 − 1 are all known. However, the matrices 𝐀̂𝑡, 𝐁̂𝑡, 𝐃̂𝑡 are not
known for 𝑡 = 0,… , 𝑇 − 1.

3. Separating learning and control tasks

Let 𝐠 = {𝑔𝑡; 𝑡 = 0,… , 𝑇−1}, 𝐠 ∈ , be a control strategy which yields
a decision 𝑈𝑡 = 𝑔𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1) using the model of the linear system. We
establish an information state by using in parallel the system’s model
and the actual system as shown in Fig. 1.

The probability density function 𝑝(𝑋𝑡, 𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1) is the infor-
mation state (defined formally next), denoted by𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡).

To simplify notation, in what follows, the information state 𝛱𝑡(𝑌0∶𝑡,
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𝑈0∶𝑡−1) (𝑋𝑡, 𝑋̂𝑡) at 𝑡 is denoted by 𝛱𝑡 without the arguments, which will
be used only if it is required in our exposition.

Definition 1. The information state, 𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1) (𝑋𝑡, 𝑋̂𝑡), is (a) a
function of (𝑌0∶𝑡, 𝑈0∶𝑡−1), and (b) its evolution 𝛱𝑡+1(𝑌0∶𝑡+1, 𝑈0∶𝑡)
(𝑋𝑡+1, 𝑋̂𝑡+1) at the next step 𝑡 + 1 depends on 𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡),
𝑡+1, and 𝑈𝑡.

heorem 1. The information state 𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡) does not
depend on the control strategy 𝐠 ∈ . Furthermore, there exists a function
𝑡 such that

𝑡+1(𝑌0∶𝑡+1, 𝑈0∶𝑡)(𝑋𝑡+1, 𝑋̂𝑡+1)

= 𝜙𝑡
[

𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡), 𝑌𝑡+1, 𝑈𝑡
]

, (7)

for all 𝑡 = 0, 1,… , 𝑇 − 1.

The result of Theorem 1 is equivalent to the result of Malikopou-
los (2023b, Theorem 2) when the system’s information structure is
classical (van Schuppen & Villa, 2015; Yüksel & Basar, 2013) and
the controller has perfect recall (Bertsekas, Bertsekas, Bertsekas, &
Bertsekas, 1995; Kumar & Varaiya, 1986).

Definition 2. A control strategy 𝐠 ∈ , 𝐠 = {𝑔𝑡}, 𝑡 = 0,… , 𝑇 − 1,
is called separated if 𝑔𝑡 depends on 𝑌0∶𝑡 = (𝑌0,… , 𝑌𝑡) and 𝑈0∶𝑡−1 =
(𝑈0,… , 𝑈𝑡−1) through the information state, i.e., 𝑈𝑡 =
𝑔𝑡
(

𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡)
)

. Let 𝑠 ⊆  denote the set of all separated
ontrol strategies.

Since the dynamics of the actual system are not known, we cannot
olve Problem 1. Thus, to obtain the optimal strategy in Problem 1, we
ormulate the following problem that we solve offline using the system’s
odel (1).

roblem 2. Derive offline the optimal separated strategy 𝐠∗ ∈ 𝑠 to
inimize the following cost function

(𝐠; 𝑥̂0∶𝑇 ) = E𝐠

[𝑇−1
∑

𝑡=0

[

𝑐𝑡(𝑋𝑡, 𝑈𝑡) + 𝛽 ⋅ |𝑌𝑡+1 − 𝑌𝑡+1|
2]

+ 𝑐𝑇 (𝑋𝑇 )

]

,

r, using (3) and (4),

(𝐠; 𝑥̂0∶𝑇 ) = E𝐠

[𝑇−1
∑

𝑡=0

[

𝑐𝑡(𝑋𝑡, 𝑈𝑡) + 𝛽 ⋅ |𝑋𝑡+1 − 𝑋̂𝑡+1|
2]

+ 𝑐𝑇 (𝑋𝑇 )

]

, (8)

here 𝛽 adjusts the units of the norm accordingly, while the norm
enalizes the discrepancy between the expected values of the state of
he system’s model and the state of the actual system. Since we solve
8) offline using model (1), no information about the actual system
s available, and thus the expected values 𝑥̂0∶𝑇 = (𝑥̂0,… , 𝑥̂𝑇 ) of the
tates 𝑋̂0∶𝑇 = (𝑋̂0,… , 𝑋̂𝑇 ) of the actual system are not known. Hence,
hen we derive the optimal control strategy 𝐠∗, it is parameterized with
espect to all possible values 𝑥̂0∶𝑇 .
Next, to obtain offline the optimal separated control strategy in

roblem 2, we use the information state 𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡). It can
e shown (Malikopoulos, 2023b) that we can derive a classical dynamic
rogram decomposition with respect to 𝛱𝑡 to yield a separated control
trategy, namely, a control strategy 𝐠 = {𝑔𝑡}, 𝑡 = 0,… , 𝑇 − 1 where 𝑔𝑡
epends on 𝑌0∶𝑡+1 and 𝑈0∶𝑡 only through the information state, i.e., 𝑈𝑡 =
𝑡
(

𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡)
)

.
The separated control strategy is derived offline, thus, it is pa-

ameterized with respect to the potential expected values 𝑥̂0∶𝑇 of
he state 𝑋̂𝑡 of the actual system. Then, we apply the parameter-
zed strategy to the actual system and the system’s model in parallel
3 
Fig. 1), and we collect data from both. Using these data, we compute
𝑡(𝑌0∶𝑇 , 𝑈0∶𝑇−1)(𝑋𝑡+1, 𝑋̂𝑡+1) online.

roposition 1. The information state 𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡) of the
system illustrated in Fig. 1 can be represented as a function of 𝑝(𝑋𝑡 ∣
𝑌0∶𝑡, 𝑈0∶𝑡−1), 𝑝(𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1), and 𝑝(𝑌0∶𝑡 ∣ 𝑈0∶𝑡−1).

Proof. Recall

𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡) = 𝑝(𝑋𝑡, 𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1). (9)

Next,

𝑝(𝑋𝑡, 𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1)

=
𝑝(𝑋̂𝑡 ∣ 𝑋𝑡, 𝑌0∶𝑡, 𝑈0∶𝑡−1) ⋅ 𝑝(𝑋𝑡, 𝑌0∶𝑡, 𝑈0∶𝑡−1)

𝑝(𝑌0∶𝑡, 𝑈0∶𝑡−1)

=
𝑝(𝑋̂𝑡 ∣ 𝑈0∶𝑡−1) ⋅ 𝑝(𝑋𝑡, 𝑌0∶𝑡, 𝑈0∶𝑡−1)

𝑝(𝑌0∶𝑡, 𝑈0∶𝑡−1)

= 𝑝(𝑋̂𝑡 ∣ 𝑈0∶𝑡−1) ⋅ 𝑝(𝑋𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1). (10)

In the second equality, we used the fact that 𝑋̂𝑡 does not depend on 𝑋𝑡
and 𝑌0∶𝑡, and in the third equality, we applied Bayes’ rule.

Next, we write the first term in (10) as follows

𝑝(𝑋̂𝑡 ∣ 𝑈0∶𝑡−1) =
∑

𝑌0∶𝑡

𝑝(𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1) ⋅ 𝑝(𝑌0∶𝑡 ∣ 𝑈0∶𝑡−1). (11)

Substituting (11) into (10), the result follows. □

Remark 1. The conditional probability 𝑝(𝑋𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1) can be
obtained easily using the model offline. The conditional probability
𝑝(𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1) can be obtained from the Kalman filter to estimate
𝑋̂𝑡 first, and then through recursive equations starting from the initial
prior 𝑝(𝑋̂0 ∣ 𝑌0, 𝑈0). The conditional probability 𝑝(𝑌0∶𝑡 ∣ 𝑈0∶𝑡−1) can
be obtained using standard approaches (Brand, 1999; Gyorfi & Kohler,
2007). Ongoing research focuses on enhancing our understanding of
the computational implications in learning 𝑝(𝑌0∶𝑡 ∣ 𝑈0∶𝑡−1) in real time.

As we operate both the actual system and the model using the
separated control strategy (Fig. 1), we compute 𝑝(𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1) and
learn 𝑝(𝑌0∶𝑡 ∣ 𝑈0∶𝑡−1) that allows us to compute the information state
𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡) (the conditional probability (𝑝(𝑋𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1)
is known a priori from the model). Next, we show that when the
information state 𝛱𝑡(𝑌0∶𝑡, 𝑈0∶𝑡−1)(𝑋𝑡, 𝑋̂𝑡) becomes known, then the
separated control strategy is optimal for the actual system.

Theorem 2. Let 𝐠 ∈ 𝑠 be an optimal separated control strategy
parameterized with respect to 𝑥̂0∶𝑇 , derived offline using the system’s model,
that minimizes the following cost function,

𝐽 (𝐠; 𝑥̂0∶𝑇 ) ∶= E𝐠

[𝑇−1
∑

𝑡=0

[

𝑐𝑡(𝑋𝑡, 𝑈𝑡) + 𝛽 ⋅ |𝑋𝑡+1 − 𝑋̂𝑡+1|
2]

+ 𝑐𝑇 (𝑋𝑇 )

]

, (12)

in Problem 2. Then, if 𝑝(𝑋𝑡, 𝑋̂𝑡 ∣ 𝑌0∶𝑡, 𝑈0∶𝑡−1) becomes known, then 𝐠 is also
optimal for Problem 1,

𝐽 (𝐠) = E𝐠

[𝑇−1
∑

𝑡=0
𝑐𝑡(𝑋̂𝑡, 𝑈𝑡) + 𝑐𝑇 (𝑋̂𝑇 )

]

. (13)

Proof. Suppose that the minimum value of the cost function 𝑐𝑇 (𝑋𝑇 )
occurs at 𝑋𝑇 = 𝑥𝑇 ∈ R𝑛. Hence,

𝑐𝑇 (𝑋𝑇 = 𝑥𝑇 ) = 𝑐𝑇 (𝑋̂𝑇 = 𝑥𝑇 ). (14)

Suppose that the minimum value of the cost function 𝑐𝑡(𝑋𝑡, 𝑈𝑡) at
𝑡 = 0,… , 𝑇 − 1 occurs at 𝑋𝑡 = 𝑥𝑡 ∈ R𝑛 and corresponds to the optimal
control 𝑈 = 𝑢∗. Then, the minimum value in the one-time-step cost in
𝑡 𝑡
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(12) at 𝑡 = 0,… , 𝑇 − 1 is when the expected value of the cost function
s 𝑐𝑡(𝑥𝑡, 𝑢∗𝑡 ) and E[|𝑋𝑡+1 − 𝑋̂𝑡+1|

2] = 0, hence

in
𝑢𝑡

E𝐠
[

𝑐𝑡(𝑋𝑡, 𝑢𝑡) + 𝛽 ⋅ |𝑋𝑡+1 − 𝑋̂𝑡+1|
2] = 𝑐𝑡(𝑥𝑡, 𝑢∗𝑡 ). (15)

Since at each time 𝑡 = 0,… , 𝑇 − 1, the separated control strategy
𝐠 ∈ 𝑠 yields a control input 𝑢′𝑡 = 𝑔𝑡

(

𝑝(𝑥𝑡, 𝑥̂𝑡 ∣ 𝑦0∶𝑡, 𝑢0∶𝑡−1)
)

such that

𝑢′𝑡 = argmin
𝑢𝑡

E
[

𝑐𝑡(𝑋𝑡, 𝑢𝑡) + 𝛽 ⋅ |𝑋𝑡+1 − 𝑋̂𝑡+1|
2]

= argmin
𝑢𝑡

𝑐𝑡(𝑥𝑡, 𝑢∗𝑡 ), (16)

this implies that 𝑢′𝑡 = 𝑢∗𝑡 .
By summing up all minimum expected values of the cost function

𝑐𝑡(⋅, ⋅) at each 𝑡 = 0,… , 𝑇 −1 and 𝑐𝑇 (⋅) at 𝑡 = 𝑇 corresponding to 𝐠 ∈ 𝑠,
we obtain (13). □

4. Illustrative example

In this section, we present a simple example of deriving the optimal
control strategy for a linear system by separating the learning and
control tasks. The purpose of the example is to demonstrate in simple
steps the proposed framework. The primitive random variables, i.e., the
initial state, 𝑋0, and disturbance, 𝑊0, of the system, are Gaussian
random variables with zero mean, variance 1, and covariance 0.5. The
state of the actual system is denoted by 𝑋̂𝑡, 𝑡 = 0, 1, 2. The evolution of
the system is described by the following equations

𝑋̂0 = 𝑋0,

𝑋̂1 = 𝑋̂0 + 𝑈0 +𝑊0 = 𝑋0 + 𝑈0 +𝑊0,

𝑋̂2 = 𝑋̂1 + 𝑈1. (17)

We assume that we have a complete observation of the state, i.e.,

𝑌𝑡 = 𝑋̂𝑡, 𝑡 = 0, 1, 2. (18)

A control strategy 𝐠 = {𝑔𝑡; 𝑡 = 0, 1}, 𝐠 ∈ , where 𝑔𝑡 is the control
law, yields the control action 𝑈𝑡, 𝑡 = 0, 1, of the system, i.e.,

𝑈0 = 𝑔0(𝑌0) = 𝑔0(𝑋̂0) = 𝑔0(𝑋0), (19)

𝑈1 = 𝑔1(𝑌0∶1, 𝑈0) = 𝑔1(𝑋̂0∶1, 𝑈0) = 𝑔1(𝑋0, 𝑋̂1, 𝑈0). (20)

We seek to derive the optimal control strategy 𝐠∗ ∈  of the system
represented in (17) which minimizes the following expected cost:

𝐽 (𝐠) = min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠 [(𝑋̂2)2 + (𝑈1)2

]

. (21)

We pretend that the dynamics of the system in (17) (the actual
system) are not known, but we have available the following model that
can be used to obtain 𝐠 ∈ :

𝑋0 = 𝑋0,

𝑋1 = 3𝑋0 + 2𝑈0 + 2𝑊0,

𝑋2 = 3𝑋1 + 3𝑈1, (22)

with

𝑌𝑡 = 𝑋𝑡, 𝑡 = 0, 1, 2. (23)

From (17) and (22), we note that there exists a discrepancy between
the actual system and the model that is available.

4.1. Optimal control strategy

First, we obtain the optimal control strategy 𝐠∗ ∈  of the actual
system using (17).

The cost for the actual system (17) is

𝐽 (𝐠) = min 1E𝐠 [(𝑋̂2)2 + (𝑈1)2
]

𝑢0∈0 ,𝑢1∈1 2 (

4 
= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠 [(𝑋̂1 + 𝑈1)2 + (𝑈1)2

]

= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠 [(𝑋0 + 𝑈0 +𝑊0 + 𝑈1)2 + (𝑈1)2

]

. (24)

If the dynamics of the actual system given in (17) were known, then
e could use (24) to derive the optimal control strategy 𝐠∗ ∈ . Since
he primitive random variables are Gaussian with zero mean, variance
, and covariance 0.5, we can use the linear least-squares estimator to
ompute the unique optimal solution of (24), which is

0 = −1
2
𝑋0, 𝑈1 = −1

4
𝑋0 −

1
2
𝑊0. (25)

.2. Solution through separation between learning and control

In this section, we consider that the dynamics of the actual sys-
em (17) are not known, but we have the model (22) of the system
available. Using this model, we can obtain the optimal control strategy
by applying the framework presented in Section 3. More specifically,
we use (22) and seek to derive the separated control strategy 𝐠 ∈ 𝑠,
𝐠 = {𝑔𝑡; 𝑡 = 0, 1}, where the control laws are 𝑔0

(

P(𝑋0, 𝑋̂0 ∣ 𝑌0)
)

and 𝑔1
(

P(𝑋1, 𝑋̂1 ∣ 𝑌0, 𝑌1, 𝑈0)
)

, that minimizes the following cost (see
Theorem 2),

𝐽 (𝐠; 𝑥̂0∶2)

= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠 [ (𝑋2)2 + (𝑈1)2

+ 𝛽(𝑋1 − 𝑋̂1)2 + 𝛽(𝑋2 − 𝑋̂2)2 ∣ 𝑋0, 𝑋1, 𝑈0
]

. (26)

rom (22) and taking 𝛽 = 1, (26) becomes

𝐽 (𝐠; 𝑥̂0∶2)

= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠

[

(3𝑋1 + 3𝑈1)2 + (𝑈1)2

+ (𝑋1 − 𝑋̂1)2 + (𝑋2 − 𝑋̂2)2 ∣ 𝑋0, 𝑋1, 𝑈0

]

= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠

[

(

3(3𝑋0 + 2𝑈0 + 2𝑊0) + 3𝑈1
)2

+ (𝑈1)2 + (𝑋1 − 𝑋̂1)2 + (𝑋2 − 𝑋̂2)2 ∣ 𝑋0, 𝑋1, 𝑈0

]

. (27)

he cost in (27) becomes equal to the original cost in (24), if the control
ction 𝑈0 and 𝑈1 make the last two terms equal to zero, i.e.,
𝐠[𝑋1 − 𝑋̂1] = E𝐠[3𝑋0 + 2𝑈0 + 2𝑊0 − 𝑋̂1 ∣ 𝑋0] = 0, (28)
𝐠[𝑋2 − 𝑋̂2] = E𝐠[3𝑋1 + 3𝑈1 − 𝑋̂2 ∣ 𝑋0, 𝑋1, 𝑈0] = 0. (29)

From (28), it follows that

𝐠[𝑈0] = E𝐠
[ 𝑋̂1 − 3𝑋0 − 2𝑊0

2
∣ 𝑋0

]

= 𝑔0
(

𝑝(𝑋0, 𝑋̂0 ∣ 𝑋0)
)

. (30)

Similarly, from (29), it follows that

E𝐠[𝑈1] = E𝐠
[ 𝑋̂2 − 3𝑋1

3
∣ 𝑋0, 𝑋1, 𝑈0

]

= E𝐠
[ 𝑋̂2 − 3(3𝑋0 + 2𝑈0 + 2𝑊0)

3
∣ 𝑋0, 𝑋1, 𝑈0

]

= E𝐠
[ 𝑋̂2 − 9𝑋0 − 6𝑈0 − 6𝑊0

3
∣ 𝑋0, 𝑋1, 𝑈0

]

= 𝑔1
(

𝑝(𝑋1, 𝑋̂1 ∣ 𝑋0, 𝑋1, 𝑈0)
)

. (31)

Thus, 𝑈0 and 𝑈1 in (30) and (31), respectively, are parameterized
with respect to the expected values of the state of the actual system,
i.e., 𝑥̂0 = 𝑥0, 𝑥̂1 and 𝑥̂2, and make the last two terms in (27) vanish.

Next, we use the control actions 𝑈0 and 𝑈1 derived by the separated
control strategies 𝑔0

(

𝑝(𝑋0, 𝑋̂0 ∣ 𝑋0)
)

and 𝑔1
(

𝑝(𝑋1, 𝑋̂1 ∣ 𝑋0, 𝑋1, 𝑈0)
)

in
(30) and (31), respectively, to control both the actual linear system

17) and the model (22) (see Fig. 1). As we operate both systems,
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we compute the information states 𝑝(𝑋0, 𝑋̂0 ∣ 𝑋0) and 𝑝(𝑋1, 𝑋̂1 ∣
0, 𝑋1, 𝑈0). However, from Proposition 1, we know that to compute

𝑝(𝑋0, 𝑋̂0 ∣ 𝑋0) and 𝑝(𝑋1, 𝑋̂1 ∣ 𝑋0, 𝑋1, 𝑈0), it is sufficient to compute
the conditional probabilities 𝑝(𝑋0 ∣ 𝑋0), 𝑝(𝑋1 ∣ 𝑋0, 𝑋1, 𝑈0), and 𝑝(𝑋̂0 ∣
𝑋̂0, 𝑋̂1, 𝑈0), and to learn 𝑝(𝑋̂0, 𝑋̂1 ∣ 𝑈0, 𝑈1). Once we compute these
conditional probabilities, the expected values of 𝑈0 and 𝑈1 in (30) and
(31) become known.

By substituting (30) in (27), we obtain

𝐽 (𝐠; 𝑥̂0∶2) = min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠

[

(

3(3𝑋0 + 2
𝑋̂1 − 3𝑋0 − 2𝑊0

2

+ 2𝑊0) + 3𝑈1
)2 + (𝑈1)2 ∣ 𝑋0, 𝑋1, 𝑈0

]

= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠

[

(

3𝑋̂1 + 3𝑈1
)2 + (𝑈1)2

∣ 𝑋0, 𝑋1, 𝑈0

]

= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠

[

(

3(𝑋0 + 𝑈0 +𝑊0) + 3𝑈1
)2

+ (𝑈1)2 ∣ 𝑋0, 𝑋1, 𝑈0

]

. (32)

However, at 𝑡 = 0, we do not consider 𝑈1 and 𝑋1. Thus, the last
equation becomes

min
𝑢0∈0

1
2
E𝐠

[

(

3(𝑋0 + 𝑈0 +𝑊0)
)2 ∣ 𝑋0

]

. (33)

The optimization problem above is to choose for each value 𝑋0 the best
estimate, in a mean squared error sense, of (𝑋0+𝑈0+𝑊0), which yields
𝑈0 = − 1

2𝑋0 which is the same solution as in (25). By substituting (31)
into the model (22), we obtain

𝑋2 = 3𝑋1 + 3
𝑋̂2 − 9𝑋0 − 6𝑈0 − 6𝑊0

3
= 3(3𝑋0 + 2𝑈0 + 2𝑊0) + 𝑋̂2 − 9𝑋0 − 6𝑈0 − 6𝑊0

= 𝑋̂2, (34)

ence the expected total cost 𝐽 (𝐠; 𝑥̂0∶2) in (26) becomes

(𝐠; 𝑥̂0∶2) = min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠

[

(𝑋̂2)2 + (𝑈1)2
]

= min
𝑢0∈0 ,𝑢1∈1

1
2
E𝐠

[

(𝑋̂1 + 𝑈1)2 + (𝑈1)2
]

. (35)

The minimum in (35) at time 𝑡 = 1 can be found by taking the partial
derivative with respect to 𝑈1 which yields

E𝐠
[

(

𝑋̂1 + 𝑈1 + 𝑈1
)

]

= E𝐠
[

(

𝑋0 + 𝑈0 +𝑊0 + 𝑈1 + 𝑈1
)

]

= 0 (36)

that results in the same solution 𝑈1 = − 1
4𝑋0 −

1
2𝑊0 as in (25).

. Concluding remarks

In this paper, we presented a theoretical framework that provides a
ata-driven approach for linear systems at the intersection of learning
nd control. The framework separates the control and learning tasks
hich allows us to combine offline model-based control with online
earning approaches and thus circumvent current challenges in deriving
ptimal control strategies. One feature that distinguishes the framework
resented here from other learning-based or combined learning and
ontrol approaches reported in the literature is that the large volume of
ata added to the system is compressed to sufficient statistics, without
oss of optimality, that takes values in a time-invariant space. Hence,
s the volume of data added to the systems increases, the domain of
he control strategies does not increase with time. Ongoing research
nvestigates the computational implications of learning the information
tate. In our exposition, we restricted attention to centralized control
ystems. A potential future research direction includes expanding the
ramework to decentralized systems (Malikopoulos, 2023a).
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