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Abstract—In this letter, we address the problem of
improving the feasible domain of the solution of a con-
trol framework for coordinating connected and automated
vehicles (CAVs) at signal-free intersections. The framework
provides the optimal trajectories of CAVs to cross the
intersection safely without stop-and-go driving. However,
when traffic volume exceeds a certain level, finding a fea-
sible solution for a CAV may become unattainable. We use
concepts from numerical mathematics to identify appropri-
ate polynomials that can serve as alternative trajectories
of the CAVs, expanding the domain of the feasible CAV
trajectories. We then select the final trajectories through an
optimization problem that aims at minimizing jerk. Finally,
we demonstrate the efficacy of our approach through
numerical simulations.

Index Terms—Connected automated vehicles, traffic
flow, and interpolation.

. INTRODUCTION

N RECENT decades, society has witnessed a commendable

efforts towards improving emerging mobility systems [1].
One significant sector of this improvement is associated with
the use of connected and automated vehicles (CAVs) [2]. It
has been shown that the use of CAVs can lead to a safer traffic
network, improve fuel consumption, and maximize throughput
on the roads [3]. Several research efforts have provided
approaches on how CAVs can create a more sustainable
traffic network [4]. Adaptive cruise control and cooperative
adaptive cruise control have been extensively discussed in the
literature [5]. These approaches allow for a vehicle to define its
speed/orientation trajectories according to the environment in
which it exists. Attention has been given to ecological adaptive
cruise control [6], which also considers environmental aspects.

Studies have shown that a crucial reason for bottlenecks
in the U.S. is associated with congestion on merging on-
ramps, intersections, and roundabouts [7]. Many researchers
have investigated how CAVs can contribute to such scenarios
using different kinds of approaches like time-optimal control
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strategies [8], [9], reinforcement learning [10], [11] and model
predictive control [12], [13].

However, challenges have emerged in optimal control strate-
gies when unconstrained solutions are infeasible, necessitating
non-real-time processes such as piecing together constrained
and unconstrained arcs. From a theoretical point of view, in [14]
and [15], the authors discuss that state-constrained continuous-
time optimization is an intractable and difficult problem to
solve. From the application point of view, in [16], the authors
proposed a controller for coordinating CAVs on merging ramps,
highlighting the computational obstacles of constrained solu-
tions. Conditions that ensure feasible unconstrained trajectories
were presented in [17] and [18], underscoring the impracticality
of constrained ones. The importance of enhancing feasibility
was emphasized in [8] whereas piecing together arcs is also
necessary in [9]. To the best of our knowledge, there is no
existing approach in the literature that avoids piecing together
arcs while minimizing energy consumption when no feasible
unconstrained solution exists.

In this letter, we analyze the decentralized control frame-
work reported in [19] and address its limitations related to
operating feasibility. The framework provides the optimal
time trajectory for each CAV that arrives at an intersection’s
control region. When no feasible unconstrained solution exists,
we introduce an alternative approach that enables CAVs to
determine their trajectories online. Our approach extends the
problem formulation in [19], which confines the optimal
unconstrained trajectory to a third order polynomial. By recog-
nizing that a third order polynomial solution can be restrictive,
employing a higher order polynomial may facilitate the iden-
tification of an unconstrained trajectory. Using concepts from
numerical mathematics, we show that any CAV entering the
intersection can extend its range of feasible solutions by
interpolating a polynomial that describes its position trajectory.
Nonetheless, given the potential for multiple trajectory solu-
tions, our approach prioritizes the trajectory that minimizes
jerk, thus optimizing not only energy efficiency but also
passenger comfort. Moreover, we demonstrate the feasibility
of solving this optimization problem online, enabling real-time
trajectory planning for vehicles. This letter contributes in the
field by:

(1) Providing an intersection coordination scheme that
handles CAVs trajectories using polynomial interpolation.

(2) Proposing a control framework for managing CAVs
at signal-free intersections, increasing the feasibility domain
when unconstrained optimal solutions are unattainable.

(3) Establishing an optimization problem that facilitates the
real-time determination of optimal CAV trajectories.

The remainder of this letter proceeds as follows.
Section II, we introduce the problem formulation.

In
In
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____________________ :
| Conflict point 1 for Path #3 |

| Conflict point 3 for Path #2 |

Fig. 1. Schematic of the intersection showing the control zone, conflict
points, and paths.

Section III, we provide our approach, and in Section IV, we
provide numerical simulations. Finally, in Section V, we draw
some concluding remarks.

[I. PROBLEM FORMULATION

We consider a signal-free intersection illustrated in Fig. 1.
Although this letter’s theoretical framework is applicable to
various traffic scenarios, we focus on intersections, excluding
right turns, to highlight the unique technical challenges asso-
ciated with a larger number of conflicting paths. A coordinator
handles communication with the CAVs within a given range.
We call this communication region control zone. In our
formulation, we consider that CAVs do not perform any lane-
change maneuver. Thus, there exists a finite number of paths
within the control zone. These paths constitute the set £ =
{1,2,...,z}, z € N. The points where the roads intersect
and lateral collisions may occur are called conflict points
and belong to the set O, € N for each z € L. The set
N(@) ={1,2,...,N(} denotes the queue of vehicles inside
the control zone at time ¢, where N(¢) denotes the total number
of vehicles at time .

We consider that the dynamics of each CAV i € N (¢) are
described by a double integrator model, i.e.,

pi®) = vi(1),
Vi) = ui(1), (D

where p; € P, v; € V, and u; € U denote the longitudinal posi-
tion of the rear bumper, speed, and control input (acceleration)
of the vehicle, respectively. The sets P, )V, and U are compact
subsets of R. The control input is bounded by

Vie N(@), 2)

where u; min < 0 and #; max > 0 are the minimum and maxi-
mum control inputs, respectively, as designated by the physical
acceleration and braking limits of the vehicles, or the limits
of passenger comfort, whichever is more restrictive. Next, we
consider the speed limits,

Ui min = ui(t) < Uj max»

Vie N@), 3)

where Vinax > Vmin > 0 are the maximum and minimum allow-
able speeds. This implies that a CAV is not allowed to stop
within the intersection.

Vmin < Vi(f) < Vmax,

A. Safety Constraints

Let p? be the entry point in the intersection of each CAV i,
P} be the position at the conflict point n € O, = {1, 2, 3} (note
that each path z in Fig. 1 passes through 3 conflict points),
and p’: be the exit point of the intersection. Let t? € Rxq be
the time at which CAV i enters the control zone and 7! € Rx¢
be the time at which it reaches the conflict point n € {1, 2, 3};
and let tlf € R be the time when it exits the control zone.

Since the speed v;(¢) is bounded below by a positive number
Vmin > 0, the position p;(#) monotonically increases leading to
an injective (one-to-one) position trajectory function. Thus, the
inverse function exists and corresponds to the time trajectory
defined as t(p) = pi_l(t), which allows us to determine ',
the time at which CAV i arrives at conflict point n. Note that
the constraint vy, > 0 can be relaxed to allow v;(f) > 0 by
considering the pre-image of p(7) instead of the inverse in the
following analysis.

To avoid conflicts between vehicles in the control zone,
we need to impose the following safety constraints: (1) the
rear-end constraints between vehicles on the same path and
(2) the lateral safety constraints between vehicles traveling
on different intersecting paths. To ensure rear-end collision
avoidance between a CAV i € N(¢) and its leading CAV k €
N (@) \ {i}, we impose that

ti(p) —u(p) = 7, “

where 7, denotes a safe time headway between two consec-
utive vehicles. For lateral collision avoidance, we consider a
scenario where CAV k € N(?) \ {i} has a planned trajectory
potentially leading to a conflict with CAV i. In such a scenario,
we need to investigate the two following cases:

Case 1. CAV i reaches the conflict point n* after CAV k.
Then, we require

& —n(p)>tu Vpe [pg,pz*], )

where rf* denotes the time CAV i arrives at conflict point n*
and 7, denotes the lateral safe time headway. This constraint
ensures CAV i must reach conflict point n*, #, seconds after
CAV k crosses the point. Note that in order to avoid ambiguity,
we denote the conflict point as n* to showcase that we refer
to the common conflict point for each path.

Case 2. CAV i arrives at conflict point n before CAV k.
Then, we require

f =) =7 Vpe [plpl]. O

Next, we review the optimal trajectory of a CAV i by using
the two-level optimization framework presented in [19]. The
upper-level framework focuses on determining, for every CAV
i € N (1), the shortest possible time tlf to exit the control zone,
given its desired destination. The low-level framework involves
an optimization problem, the solution of which derives the
optimal control input for CAV i € N(¢), given r,f , while
adhering to constraints related to the vehicle’s constraints.

B. Low-Level Optimization

We start our exposition by reviewing the framework
presented in [19] that aims at deriving the energy-optimal
trajectory for each CAV i. We consider that for every CAV
i € N(t), the time tlf (exiting time of the control zone) is
known. Then, the energy-optimal control problem finds the
optimal input by solving the following optimization problem.
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Problem 1 (Energy-Optimal Control Problem):

L
i _f (1) dt
wel 2 0 i '
subject to: (1), (2), 3), 4), (5), (6),

gven: () =50 () =0 m(d) = @)

where ) is the speed of CAV i at #). The boundary conditions
in (7) are set at the entry and exit of the control zone.

The closed-form solution of this problem for each CAV i
can be derived using the Hamiltonian analysis as presented
in [19]. The optimal unconstrained trajectory is as follows:

u;(t) = 6¢; 3t + 2¢; 2,
Vi(t) = 3¢ 38 + 2050t + i1,
pi()) = ¢ist + iat® + diit + dios (8)

where ¢; 3, ¢i2, ¢i1, ¢io are constants of integration. Given
the boundary conditions in Problem 1, the optimal boundary

condition u,-(t{ ) = 0 and considering rlf is known, the constants
of integration can be found by:

s [ @7
¢i:2 = S(I?)s ZI?Z ! b 9)
din || (/ / , s
ARG

6 2 0 0
Having defined Problem 1, we are ready to present the upper-

level optimization problem, where we compute #;, which is
then passed as an input to Problem 1.

0
l

S =
<
[}

¢ =

C. Upper-Level Optimization Problem
Problem 2 (Time-Optimal Control Problem): At the time t?
of entering the control zone, let ]-',-(t?) = [tf T‘lf] be the feasible

range of travel time under the state and input constraints of
CAV i computed at tio. The values g’: and #; can be found by
letting the CAV accelerate or decelerate at the maximum rate,
respectively. Then CAV i solves the following time-optimal
control problem to find the minimum exit time t{ € ]-"i(t?) that
satisfies all the constraints:

“min t{

e Fi(i))

subject to: (1), (2), (3), 4), (5), (6

given: pl-(t?) =p?, vi(t?> = v?,pi(z{) =17’:-, ui<l{> =0

The computation steps for numerically solving Problem 2
are summarized as follows. First, we initialize t{ = é, and
compute the parameters ¢; using (9). We evaluate all the state,
control, and safety constraints. If none of the constraints is
violated, we return the solution; otherwise, rlf is increased by a
step size. The procedure is repeated until the solution satisfies
all the constraints.

Finally, by solving Problems 1 and 2, the optimal exit time
rf along with the optimal trajectory and control law (13) are

obtained for CAV i for ¢ € [1?, r,f 1.

Remark 1: In case a solution to Problem 2 does not exist
due to congestion, we derive the optimal trajectory for the
CAVs by piecing together the constrained and unconstrained
arcs until the solution does not violate any constraints.

However, piecing together arcs is rather computationally
expensive. So, in Section III, we circumvent this issue using
the concept of polynomial interpolation.

[1l. ENHANCING THE DOMAIN OF FEASIBLE SOLUTIONS

In this section, we present an approach that enhances
the CAV trajectories’ feasible domain resulting from the
solution of Problem 1. The position trajectories provided by
Problem 1 are energy-optimal but constrained to be third order
polynomials. Following, we relax this constraint and allow the
position trajectories to be higher-order polynomials.

A. Theoretical Results

In this subsection, we provide some theoretical results
needed for our analysis. We begin with Lemma 1, which
demonstrates that using a higher-order polynomial can have
valuable impacts on the position trajectory.

Lemma 1: A n™ order polynomial for n > 3 can have 2
changes in the curvature of the position trajectory.

Proof: Consider p(t) = ant" + an_10""' + - - -+ a1t' + apt®.
Then p/(t) = nant™ '+ (n— Dap_1£""2+---+ay and p’ (1) =
nn — Va2 4+ (n — D(n — 2ay—17*3 + .-+ + 2ay. For
n > 3, p’(t) is at least a second-order polynomial that can
obtain 2 roots. However, the roots of p” () define the changes
in curvature of p(#). This completes the proof. |

Lemma 1 not only underlines that the position trajectory is
capable of undergoing two changes in curvature but also shows
that a higher order polynomial allows for non-linear accelera-
tion since p”(f) can be a second order polynomial. Moreover
the speed trajectories can change slope sign two times. Such
a property significantly impacts feasibility performance, as we
will highlight in the simulation results.

Next, we introduce some results that enable the use of
polynomial interpolation to define vehicle trajectories.

Theorem 1: Given n + 1 distinct nodes, {xo,...,x,} and
n + 1 corresponding values {yo, ..., y,}, there exists a unique
polynomial f(x) of degree n, such that f(x;) = y; for all i =
I,...,n+ 1.

Proof: See [20, p. 334, Th. 8.1]. |

Theorem 2: The coefficients of a n™ order polynomial
given n points are given by the following equation where the
square matrix is a Vandermonde matrix:

B e T

1 x x% X o1 Y1
. . = . (10)

1 x,—1 xﬁ_l xﬂn:} Dn—1 n—1
Proof: See [21, Ch. 2, eq. (5)]. [ |

To exploit the results provided by Theorems 1 and 2, we
need to ensure that the Vandermonde matrix is invertible,
which is not guaranteed in general since it depends on
the values xp,...,x,—1. The following result shows that a
Vandermonde matrix has a specific determinant form. This
specific form will assist us in proving that the Vandermonde
matrix, as defined in (10), is invertible.

Lemma 2: The determinant of a nxn Vanderomonde matrix
is equal to det(V) = ]_[0§i<j§n—l(xj —X;).

Proof: We use mathematical induction to prove this result.
For n = 2, we have det(V) = (x; —xp). For an n x n matrix (as
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in (10)), we subtract from each column, the preceding column
multiplied by xp, starting from the last one. So, we get V =

1 0 0 0

-1
1 xi—xo xjGr—xp) ¥ (o —x0)
| ) P (11)
X2 —x0 X2 —x0) X, (X2 —x0)
2
I xp—1 — X0 xﬁ_l(xn—l — X0) X]rl,_l(xn—l — X0)

Then, the determinant of our matrix is equal to the determinant
of the sub-matrix below the zeros, which can be simplified by
factoring out the terms (x; — xp), . .., (x,—1 — x0). Therefore,
det(V) =[], ijfﬂ*l(xj — x0)V’, where V' is the remaining
matrix, which 1s still a Vandermonde matrix. Following the
same process iteratively for V’, we will end up with a 2 x 2
Vandermonde matrix, which completes the induction. [ |

Next, we prove that the determinant provided in Lemma 2
is not equal to zero. Given the nature of our application, we
consider that the values xo, ..., x,—1 represent times along a
CAV’s trajectory, and yo, . . ., y,—1 represent the corresponding
positions. Then, having known that the time trajectory is
strictly increasing, it is sufficient to show that the matrix is
invertible if 0 < xp < x; < ... < x,—1. Let us prove that in
the following theorem.

Theorem 3: The Vandermonde matrix presented in (10) is
an invertible matrix if 0 < xp <x1 < ... < x;_1.

Proof: From Lemma 1, the determinant of a Vandermonde
matrix V is det(V) = H0§i<j§n—1(xj — x;). Since xp < x1 <

. < Xp—1, it follows that for all i,j with 0 <i<j<n-—1,
we have x; — x; # 0. Therefore, []j-;_j<,_(x —x;) # 0. A
non-zero determinant implies that the matrix V is invertible
and the proof is complete. |

B. Implementation in CAVs

Next, we apply the results above to improve the operational
feasibility of the controller. Consider a CAV i that cannot find
a feasible trajectory after solving Problems 1 and 2. Then we
aim to construct a n™ order polynomial using Theorems 1,
2, and 3, which corresponds to a feasible position trajectory
p(t) of CAV i, as defined in (1). In other words, our objective
is to identify n points (#;, p;) along the trajectory of CAV i
to interpolate. These nodes enable the use of (10) and must
ensure that the resulting solution adheres to all constraints.

We choose to construct a fourth order polynomial, inspired
by the fact that we already know the location of the position

nodes p?, p} s pl-z, pf’, and p; . Given that we know these position

nodes, we are searching for the corresponding times til, tiz, ti3

and tlf such that we can compute the coefficients ¢; of the
fourth order polynomial using (10). Recall that t? is considered
known, as it represents the time of entry into the control zone.

Remark 2: Note that our approach generalizes the third
order polynomial solution and can yield solutions in a broader
case of traffic scenarios. Furthermore, for systems with n'h
order integrator dynamics, the control-minimizing trajectory is
a 2(n—1) order polynomial [22]. Thus, we impose a smoother
trajectory, minimizing energy consumption, and effectively
handling the trade-off between passenger comfort and energy
efficiency.

Next, we discuss how our approach can address lateral and
rear-end constraints.

C. Lateral Constraints

In Section II.A, we pointed out that the lateral con-
straints for every CAV i are only associated with the points

Algorithm 1 Selection of 7;”* Vnel,2, 3 for CAV i

Ensure: Selection of an efficient 7,"* for all n € {1, 2, 3}
for each n € {1, 2, 3} do
for each disjoint set ’T’} eT",jeD"do

1 ave = w # average time point of 7,
end for
end for
1. Based on t” Vn € {1, 2, 3}, evaluate all p;(1)V j € D"

J,avg
up to Conﬂlct pomt n=3.

2. From step 1, for each n € {1, 2, 3} identify the disjoint
set 'T" which results in p;(f) that minimizes jerk.

Output ’Tl* 7'2 T3 based on the identified j V n €
{1, 2,3} from the previous step 2.

(tll,pll) (t2,pl) (t?,pl) However, to interpolate from appro-
prlate times tll, t7, and t3 for a CAV i on path z € L,

is essential to ensure that there is always a non-empty set
in which tll, tlz, and ti3 can belong to. Namely, we want to
show that for any path z € £, there is a sufficiently large gap
between two vehicles at each conflict point such that a CAV
from a conflicting path can safely pass between them. Next,
we provide a condition for the existence of such a gap.

Proposition 1: Consider a CAV i € N(f) and a preceding
CAV k € N \ {i} on the same path z € L. If we enforce
T, >= 214, where 7, and 1, are defined in (4), (5) and (6),
then for every conflict point n € {1, 2, 3} along path z, there
exists a non-empty feasible time set M, = [z, T] # @, within
which a CAV j from a path conflicting with path z can safely
pass between the two CAVs i and k.

Proof: For conflict point n* and an arbitrary moment
consider without loss of generality " symmetrically between
tr and t;. From proposition statement t, > 27, is met. Then
T, > 21 = |te—1i] > e —1" |+ 17 — 1), Consequently, there
exists t”* where a CAV j from a conflicting path can cross
point n* between CAVs k and i. This completes the proof. |
Remark 3: We have ensured the existence of t , l, and
for the lateral safety constraint. Given that the lateral
constraints can only occur at points (t}, p}), (tl.z, piz), (tl.3 , p?),
and given that the function p;(?) is strictly increasing, the final
trajectory cannot make any of the lateral constraints active.

Remark 4: Proposition 1 enhances the feasibility of a CAV
to navigate between two other CAVs from a conflicting path.
While the inequality 7, > 27, mandates that vehicles on the
same path maintain a greater distance, this requirement, not
included in [19], can broaden the practical applicability of
our approach. This is because it ensures we can identify time
points # that adhere to the lateral constraints.

3
%

D. Rear-End Constraints
2

Although we have proven that t}, t7, and tl.3 can always
be feasible to guarantee lateral constraints, we must also
define conditions for the rear-end constraints. An analytical
approach offering such a guarantee is non-trivial, given the
polynomial’s design through (10), and has not been explicitly
addressed in the literature to date. In instances where rear-end
constraints may become active, an approach similar to [23]
(see Section IV-B) can be employed. Finally, our solution must
also adhere to vehicle speed and acceleration constraints. Next,
we discuss how these constraints can influence our solution
approach.
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(a) Speed trajectories on path 5.

Fig. 3. Speed, acceleration, and jerk trajectories on path 5.

E. Solution

In this subsection, we analyze the solution approach. Recall
that we aim to minimize the jerk of the position trajectory.
Therefore, let us define a function g : R> — R which

takes as parameters the vector {tlQ, tl-l, tiz, tl-3, tlf }, computes the
fourth order polynomial trajectory p;(¢) using (10) and returns
the jerk of that polynomial, which is the third derivative of
pi(t). So, we aim to find the optimal values of t}, tiz, t,-3 ,t{ to
minimize the jerk of CAV i. Recall that # is known.

Before introducing the optimization framework that
addresses this problem, we denote the feasible domain for each
parameter ¢ as 7", n € {1, 2,3, f}. Note that each 7", n €
{1, 2, 3} consists of a union of disjoint compact time sets due
to the existence of lateral constraints associated with the set of
conflict points O, = {1, 2, 3}. For each conflict point n € O,
we define the set 7" = { ﬁ, ’7;”2, el ’7;”1),,} where D" defines
the number of disjoint sets for conflict point n. For example,
in Fig. 2, the first solid curve refers to the position trajectory
of CAV i that passes through the disjoint sets 7;’10, 7?0 and
7:31 So, we can think of these disjoint sets as the blank spaces
between the black dashes that represent lateral constraints.

Conversely, the exit time t{ is subject to rear-end constraints
or the lower bound glf whichever is more restrictive, and the
upper bound 7. This ensures that the set of feasible exit times,

denoted as 77, forms already a compact set.

Considering all the disjoint sets in 7, for each conflict point
n € {1,2, 3} as the feasibility domain of #' does not facilitate
the optimization process. Consequently, our goal is to limit the
feasibility set for each £ to a single convex set. To achieve
this, we need to select only one set among the multiple disjoint
sets included in 7;". For each CAV i and for each conflict point
n € O, we introduce Algorithm 1 to select a single convex
set 7"* € T, focusing on jerk minimization. The asterisk (*)
is used to denote the selected disjoint set 7;"*.

0_ 30
Time [s]

20 30
Time [s]

(b) Acceleration trajectories on path 5.

(c) Jerk trajectories on path 5.

Now that we have defined a convex feasible set for each tlf’,
we are in a position to present our minimization problem.

Problem 3

i 2
/. (st it ) an

0
tl

min
127
LRI ”{

12)

3%
T

1

tfe ﬁf*,pi(t?) =p?, vi(l?) =W, (), @, 3).(13)

. . * *
subject to: t? given, tl-l = '7;] , ti2 IS 7;2 , t? €

Give that the domain of each tf forms a convex set, it stream-
lines the search process and facilitates the rapid acquisition of
a numerical solution.

IV. NUMERICAL SIMULATIONS

We conduct numerical simulations at an intersection as
depicted in Fig. 1. Each path was set to a length of 100 m, with
a speed limit of 17 m/s and acceleration limits of —5 m/s?
and 5 m/s”. The initial speeds of the vehicles were uniformly
sampled from the interval [6 m/s, 15 m/s].

Fig. 2 displays the position trajectories for vehicles on path
5 under a traffic flow of 7000 veh/h from all entries. Observing
the blue trajectories, it is evident that our system required
five times the utilization of Problem 3 within a time interval
of 53 seconds due to infeasibilities raised from Problems 1
and 2. The impact of this new approach is readily confirmed
by comparing the speed and acceleration profiles from the
prior and proposed approach in Figs. 3(a) and 3(b). Thanks
to the utilization of a higher-order polynomial, the speed
trajectories can change slope sign even two times while the
acceleration profiles can attain non-linear shapes. For instance,
by observing the CAV that entered the intersection at t = 25
s, we can verify in Fig. 3(a) that it follows a speed trajectory
where the slope starts positive, then becomes negative, and
finally turns positive again. This also confirms the discussion
in Lemma 1. Simultaneously, in Fig. 3(b) the acceleration is
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TABLE |
PERCENTAGE OF SUCCESSFUL TRIALS AMONG 50 SIMULATIONS
BETWEEN THE TWO APPROACHES

Traffic Volume
(veh/h)

Percentage of successful trials

Prior Approach Proposed Approach
3000 100% 100%
4000 92% 100%
5000 76% 100%
6000 34% 52%
7000 0% 28%

non-linear while remains within the boundary limits, ensuring
a natural driving experience.

The solutions from Problem 3 result in linear jerk trajecto-
ries, as shown in Fig. 3(c). Note that only vehicles utilizing
Problem 3 display non-zero jerk, whereas vehicles that use
Problem 2 follow a third order polynomial path with zero jerk.
Consequently, their jerk trajectories are omitted.

Regarding Proposition 1, we verify its applicability by
observing Fig. 2. Specifically, in the upper left corner, we
zoomed on a frame confirming the result. Recall this proposi-
tion mandates sufficient distance between vehicles on the same
path to ensure safe passage from vehicles on conflicting paths.

Our study also included a quantitative analysis aimed at
evaluating the efficacy of the two approaches for five different
traffic volumes. For each of the five distinct traffic volumes
considered, we conducted 50 individual simulations, each
lasting 300 seconds. These simulations were initialized with
varying seed values to capture a range of initial conditions. We
recorded the number of simulations that finished successfully,
indicating that all CAVs identified feasible trajectories.

Our results, illustrated in Table I, demonstrate a significant
performance improvement with our proposed approach over
the prior method. Notably, using our approach, even with a
traffic volume of 5000 veh/h, all CAVs successfully navigated
through the intersection in each of the 50 simulations. In con-
trast, employing the previous approach resulted in only 76 %
of simulations achieving the same level of success, underscor-
ing a performance increase of 31.5%, under the same traffic
conditions. Above this threshold, at 6000 veh/h, our approach
continued to outperform the prior one. Finally, at 7000 veh/h,
the prior approach failed to find feasible solutions in every
simulation, whereas our approach maintained a success rate
of 28%. Supplementary material is available on this letter’s
website at: https://sites.google.com/cornell.edu/feasibility.

V. CONCLUDING REMARKS

In this letter, we addressed the problem of expanding
the feasible solution domain within a decentralized control
framework for CAVs at signal-free intersections. The proposed
approach employs numerical interpolation techniques to estab-
lish a feasible trajectory for CAVs crossing a signal-free
intersection. Our findings demonstrate that our approach can
significantly extend the feasibility domain and provide a real-
time solution. This result is worth considering for dense urban
networks, circumventing the feasibility limitations in [19].

Despite a polynomial solution’s ability to satisfy rear-end
and lateral constraints, it was expected that higher traffic
volumes might result in no combination of interpolated nodes
that satisfy speed and acceleration constraints. So, a valuable
direction for future research is finding conditions on the arrival
times that guarantee constraint satisfaction. For example, this

may be achieved using Lipschitz continuity (see [24]). Another
potential direction for future research is generalizing this
method within mixed-traffic environments. Finally, given the
efficiency of our approach, it would be worthwhile to explore
the applicability of numerical interpolation in other optimal
control applications, such as robots / micro-robots navigation.
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