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A B S T R A C T

In this paper, we investigate the control of a cyber–physical system (CPS) while accounting for its vulnerability
to external attacks. We formulate a constrained stochastic problem with a robust constraint to ensure robust
operation against potential attacks. We seek to minimize the expected cost subject to a constraint limiting
the worst-case expected damage an attacker can impose on the CPS. We present a dynamic programming
decomposition to compute the optimal control strategy in this robust-constrained formulation and prove its
recursive feasibility. We also illustrate the utility of our results by applying them to a numerical simulation.
1. Introduction

Cyber–physical systems (CPSs) have enabled highly efficient con-
trol of physical processes by tightly coupling sensing, communication,
and computational processing to generate real-time decisions with
classical (Kim & Kumar, 2012) and nonclassical information struc-
ures (Malikopoulos, 2023a). They span various important applica-
ions including, but not limited to, connected and automated vehi-
les (Malikopoulos, Beaver, & Chremos, 2021; Venkatesh, Le, Dave,
& Malikopoulos, 2023), Internet of Things (Ansere, Han, Liu, Peng,
Kamal, 2020), and social media platforms (Dave, Chremos, & Ma-

ikopoulos, 2022). However, in each of these applications, the interplay
etween the cyber components and the physical world can make the
ystem vulnerable to various security threats, e.g., control system mal-
are (Baezner & Robin, 2017) and staged attacks (Serror, Hack, Henze,
chuba, & Wehrle, 2020). This has led to many studies on controlling
PSs while ensuring robustness and resilience to attacks (Ghiasi et al.,
023; Zhang et al., 2023).
The common modeling framework for CPSs utilizes a stochastic

ormulation to account for uncertainties in the dynamics that arise
ithin the evolution of the physical process. In this formulation, an
gent is assumed to have access to a prior distribution for all un-
ertainties and must compute a control strategy to generate real-time
ontrol actions that minimize the total expected cost (Dave, Venkatesh,
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& Malikopoulos, 2022b; Sutton & Barto, 2018). In stochastic formula-
tions, constraints on the state and actions are modeled as probabilis-
tic constraints, which can be imposed either in expectation or with
some probabilities (Varagapriya & Singh, 2023). Similarly, approaches
like those reported in Altman (2021), Ermon, Gomes, Selman, and
Vladimirsky (2012) consider probabilistic constraints on the cumulative
reward. However, the actual performance and constraint satisfaction
of an optimal control strategy are very sensitive to changes in a
mismatch between the assumed prior probability model and the actual
model (Malikopoulos, 2023b; Mannor, Simester, Sun, & Tsitsiklis, 2007;
Wiesemann, Kuhn, & Rustem, 2013). Such a mismatch is bound to
occur when a CPS is under attack from an adversary. Thus, it may
not be appropriate to model safety–critical requirements on system
behavior using probabilistic constraints in a stochastic formulation.

To accommodate the needs of safety–critical systems, several re-
search efforts (Bertsekas & Rhodes, 1973; Gagrani & Nayyar, 2017;
Iyengar, 2005; Shoukry, Araujo, Tabuada, Srivastava, & Johansson,
2013) have explored minimax formulations. Similar approaches (Dave,
Venkatesh, & Malikopoulos, 2022c, 2023) consider non-stochastic for-
mulations in which the agent does not have knowledge about the
distributions of uncertainties and uses only the set of feasible values to
compute optimal strategies that minimize the maximum costs. Though
such approaches are suitable for applications under attack, such as
cyber-security (Rasouli, Miehling, & Teneketzis, 2018), and power sys-
tems (Zhu & Başar, 2011), during regular operation of systems without
vailable online 12 June 2024
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attacks, they lead to outcomes that are overly conservative (Coraluppi
& Marcus, 2000). Consequently, there remains a need for alterna-
ive approaches towards the control of vulnerable systems that avoid
verly conservative decision-making during regular system operation
nd maintain a level of reliability when the system is occasionally
ttacked.
In this paper, we combine the superior performance of stochastic

ormulations in achieving an objective and the safety guarantees of
orst-case formulations (Dave, Venkatesh, & Malikopoulos, 2022a) in

minimizing vulnerabilities. To this end, we impose a distributionally
robust constraint on a secondary objective that accounts for the vul-
nerabilities of a CPS to an attack. Concurrently, we aim to minimize
the expected value of a primary cost for the best performance over a
finite horizon. Our formulation generalizes the previous work of Chen
and Blankenship (2004), which addressed the problem of minimizing
an expected discounted cost subject to either an expected or a minimax
constraint. We consider an uncertainty set which is the set of possible
probability distributions (Clement & Kroer, 2021) from which an attack
could happen. By considering a distributionally robust constraint, our
formulation allows for greater control over the trade-off between con-
servativeness and optimality by appropriately adjusting the size of the
uncertainty set for probability distributions. In the extreme case that
the set of feasible distributions is a singleton, we recover an expected
value constraint. In contrast, if we expand the set to allow every
possible distribution on the state space, we recover the non-stochastic
worst-case constraint as a special case. Thus, by changing the set of
feasible distributions, we can better select the level of conservativeness
of our formulation.

Our main contributions in this paper are (1) the problem formu-
lation of controlling a vulnerable CPS using a stochastic cost and
distributionally robust constraint (Problem 1), (2) a dynamic program-
ming (DP) decomposition for this problem, which computes the optimal
strategy that ensures recursive feasibility of the constraint (Theorem 1),
and (3) the illustration of the utility of our results by comparing them
to both stochastic and worst-case approaches in numerical simulation
(Section 4).

The remainder of the paper proceeds as follows. In Section 2, we
ormulate the problem. In Section 3, we present the DP decomposition.
n Section 4, we demonstrate our results in a numerical example, and
in Section 5, we draw concluding remarks.

2. Model

We consider a CPS whose evolution is described by a finite Markov
decision process (MDP), denoted by a tuple ( , , 𝑛, 𝑃 , 𝑐, 𝑐𝑛), where 
is a finite state space and  is a finite set of feasible actions available to
n agent seeking to control the MDP. The system evolves over discrete
ime steps denoted by 𝑡 = 0,… , 𝑛, where 𝑛 ∈ N is the finite time horizon.
The state of the system and the control action of the agent at each
𝑡 are denoted by the random variables 𝑋𝑡 and 𝑈𝑡, respectively. The
transition function at each 𝑡 is denoted by 𝑃𝑡 ∶  ×  ×  → 𝛥(),
where 𝛥() is the set of all probability distributions on the state space
 . Nominally, the transition function is given by 𝑃𝑡 = 𝑃 for all 𝑡, where
𝑃 ∈ 𝛥(). For the realizations 𝑥𝑡 ∈  and 𝑢𝑡 ∈  of the state 𝑋𝑡
and the control action 𝑈𝑡, the probability of transitioning to a state
𝑥𝑡+1 ∈  is P(𝑋𝑡+1 = 𝑥𝑡+1 ∣ 𝑥𝑡, 𝑢𝑡) = 𝑃𝑡(𝑥𝑡+1 ∣ 𝑥𝑡, 𝑢𝑡). The agent selects
the action using a control law 𝑔𝑡 ∶  →  as 𝑈𝑡 = 𝑔𝑡(𝑋𝑡), where 𝑔𝑡
is chosen from the feasible set of control laws at time 𝑡, denoted as
𝑡. The tuple of control laws denotes the control strategy of the agent
𝒈 ∶= (𝑔0,… , 𝑔𝑛−1), where 𝒈 ∈  and  =

∏𝑛−1
𝑡=0 𝑡. After selecting the

ction at each 𝑡 = 0,… , 𝑛−1, the agent incurs a cost 𝑐(𝑋𝑡, 𝑈𝑡) generated
sing the function 𝑐 ∶  × → R. Then, the performance of a strategy
is measured by the total expected cost beginning at an initial state

0 ∈  :

0(𝒈; 𝑥0) = E𝒈

[𝑛−1
∑

𝑐(𝑋𝑡, 𝑈𝑡) + 𝑐𝑛(𝑋𝑛)
|

|

|

𝑥0

]

, (1)
2

𝑡=0 t
here 𝑐𝑛 ∶  → R is the terminal cost, and E𝒈 denotes the expectation
on all the random variables with respect to the probability distributions
generated by the choice of control strategy 𝒈.

In the context of a CPS, the conventional approach of selecting a
control strategy 𝒈 to minimize the total expected cost (1) may not
be adequate to ensure smooth operation, particularly when the CPS is
vulnerable to attacks by an adversary. We consider that the presence
or absence of an adversary during the system’s operation is determined
at the onset; however, this information is unknown to the agent. The
adversary’s influence on the system’s dynamics results in a change in
the transition probability at each 𝑡 = 0,… , 𝑛 − 1 from a known set
 ⊆ 𝛥(). Thus, an attack may be reflected by the choice of the worst
transition function from  . We allow the adversary to attack the system
with access to the realization of the state 𝑥𝑡 ∈  and action 𝑢𝑡 ∈  .
Note that the nominal transition function 𝑃 belongs to the set  to
allow for the case of no attack.

An agent that observes the presence or absence of an adversary can
select either a purely robust or risk-neutral formulation, depending on
the current situation. However, a risk-neutral formulation may involve
an arbitrarily large risk for the agent and leave the CPS vulnerable dur-
ing an attack. In contrast, a robust formulation may be too conservative
for the majority of situations where no attack occurs. Thus, we impose
a robust constraint to limit the worst-case damage possible during an
attack while minimizing the expected total cost. To this end, the agent
incurs a constraint penalty 𝑑(𝑋𝑡, 𝑈𝑡) ∈ R at each 𝑡 = 0,… , 𝑛 − 1. The
total expected worst-case penalty is given by

0(𝒈; 𝑥0) =

max
𝑃0∶𝑛−1∈𝑛

E𝒈
𝑃0∶𝑛−1

[𝑛−1
∑

𝑡=0
𝑑(𝑋𝑡, 𝑈𝑡) + 𝑑𝑛(𝑋𝑛)

|

|

|

𝑥0

]

, (2)

where 𝑑𝑛 ∶  → R is the terminal penalty, 𝑃0∶𝑛−1 is the collection
of transition functions for 𝑡 = 0,… , 𝑛 − 1, each taking values in the
set  . Note that this penalty has a distributionally robust form where
the attacker may select the worst transition function 𝑃𝑡 ∈  at each 𝑡.
Furthermore, the choice of a particular function at any time 𝑡 does not
limit the functions available to the adversary at time 𝑡 + 1 in (2). The
distributionally robust constraint is formulated by defining an upper
bound 𝑙0 ∈ R, on the worst-case total expected penalty.

Remark 1. During an attack, the agent may prioritize a different
property, e.g., safety, of the system rather than the total expected cost
used in (1). Hence, the constraint penalty at each instance of time is
considered to be distinct from the cost. However, if we seek to limit
the influence of the adversary on the performance itself, the penalty in
the constraint can be set equal to the cost at each 𝑡.

Next, we define the agent’s constrained control problem.

Problem 1. The optimization problem is to compute the optimal
control strategy 𝒈∗ ∈ , if one exists, subject to a constraint on (2),
i.e.,

min
𝒈∈

0(𝒈; 𝑥0), (3)

s.t. 0(𝒈; 𝑥0) ≤ 𝑙0, (4)

for a given MDP ( , , 𝑛, 𝑃 , 𝑐, 𝑐𝑛), penalty functions (𝑑, 𝑑𝑛), set of tran-
ition functions  , upper bound 𝑙0 ∈ R, and initial state 𝑥0 ∈  .

We impose the following assumptions on our formulation:

ssumption 1. The costs and penalties at each instance of time are
pper bounded by the finite maximum values 𝑐𝑀 ∈ R and 𝑑𝑀 ∈ R,
espectively. They are also lower bounded by the finite minimum values
𝑚 ∈ R and 𝑑𝑚 ∈ R, respectively.

Assumption 1 ensures that the expected total cost (1) and robust

otal penalty (2) are finite for any value of 𝑛 ∈ N.
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Assumption 2. The bound 𝑙0 ∈ R is such that the set 𝑙0 ∶= {𝒈 ∈  ∣
0(𝒈; 𝑥0) ≤ ‴0} is not empty.

Assumption 2 ensures that Problem 1 has a feasible solution and,
hus, it is well-posed. Our goal is to efficiently compute an optimal
olution to Problem 1 without violating the constraint. Next, we present
a DP decomposition for the problem.

3. Dynamic programming decomposition

In this section, we present the value functions that constitute a DP
decomposition to compute the optimal control strategy 𝒈∗ for Prob-
em 1. To show that the computed strategy satisfies the distributionally
obust constraint (4), we need to prove its recursive feasibility for all
= 1,… , 𝑛 − 1. To achieve this, in Section 3.1, we define the penalty-

to-go function to express the application of the constraint only from
any time 𝑡 to the terminal time 𝑛. We then construct a set of upper
bounds on the penalty-to-go function at any 𝑡 = 0,… , 𝑛 − 1, such that
these bounds admit a feasible solution, and present a methodology to
compute these sets. We also introduce the notion of bound functions,
which will be utilized it to ensure recursive feasibility. In Section 3.2,
e use bound functions within the proposed DP decomposition and
rove its optimality.

.1. Feasible bound for robust constraint

We begin by constructing the penalty-to-go function that maps each
ealization of the state 𝑥𝑡 ∈  at any 𝑡 = 0,… , 𝑛 − 1 to an expected
orst-case penalty to reach 𝑛 using a sequence of control laws 𝑔𝑡∶𝑛−1 ∈
𝑛−1
𝓁=𝑡 𝓁 . Specifically, this penalty-to-go at each 𝑡 is

𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡) =

max
𝑃𝑡∶𝑛−1∈𝑛−𝑡

E𝑔𝑡∶𝑛−1
𝑃𝑡∶𝑛−1

[𝑛−1
∑

𝓁=𝑡
𝑑(𝑋𝓁 , 𝑈𝓁) + 𝑑𝑛(𝑋𝑛)

|

|

|

𝑥𝑡

]

, (5)

here the expectation on all the random variables is with respect to the
istributions generated by the choice of control laws 𝑔𝑡∶𝑛−1 ∈

∏𝑛−1
𝓁=𝑡 𝓁 .

mportantly, the control laws utilized prior to time 𝑡 do not influence
he penalty-to-go from time 𝑡. Additionally, note that the penalty-to-go
rom 𝑡 = 0 is the total expected penalty in (2). Next, we construct a set
f feasible upper bounds on the penalty-to-go function.

efinition 1. For all 𝑡 = 1,… , 𝑛−1, the set of feasible upper bounds for
state 𝑥𝑡 ∈  is

𝑡(𝑥𝑡)∶=
{

𝑙𝑡 ∈ R ∣ ∃ 𝑔𝑡∶𝑛−1∈
𝑛−1
∏

𝓁=𝑡
𝓁 , s.t. 𝑡(𝑔𝑡∶𝑛−1, 𝑥𝑡)≤ 𝑙𝑡

}

, (6)

ith 𝛬𝑛(𝑥𝑛) ∶= [𝑑𝑛(𝑥𝑛), 𝑑𝑀 ] at 𝑡 = 𝑛 for each 𝑥𝑛 ∈  and 𝛬0(𝑥0) ∶= {𝑙0}
identically for all 𝑥0 ∈  .

In Definition 1, the bound 𝑙𝑡 acts only upon the penalty-to-go
𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡). Thus, each bound 𝑙𝑡 ∈ 𝛬𝑡(𝑥𝑡) ensures feasibility of only

the control laws 𝑔𝑡∶𝑛−1 ∈
∏𝑛−1

𝓁=𝑡 𝓁 for each 𝑥𝑡 ∈  and 𝑡 = 0,… , 𝑛 − 1.
Next, to ensure recursive feasibility in our solution approach, our

goal is to select a feasible bound on the penalty-to-go for all 𝑡 = 0,… , 𝑛−
1. These bounds should ensure that, starting with 𝑙0 at 𝑡 = 0, there exists
at least one feasible sequence of control laws 𝑔𝑡∶𝑛−1 ∈

∏𝑛−1
𝓁=𝑡 𝓁 . We note

that based on Assumption 2, such a sequence exists at 𝑡 = 0.
To this end, we establish the notion of bound functions 𝜆𝑡 ∶  → R

at each 𝑡 = 0,… , 𝑛. The output of the bound function 𝜆𝑡(𝑥𝑡) is a feasible
bound from Definition 1 for all 𝑥𝑡 ∈  and all 𝑡. Then, for any bound
𝑙𝑡 ∈ 𝛬𝑡(𝑥𝑡) and a control action 𝑢𝑡 ∈  , the set of recursively consistent
bound functions at time 𝑡 + 1 is

𝐹𝑡(𝑥𝑡, 𝑢𝑡, 𝑙𝑡) =
{

𝜆𝑡+1
|

|

|

𝜆𝑡+1(𝑥𝑡+1) ∈ 𝛬𝑡+1(𝑥𝑡+1),
3

∀𝑥𝑡+1 ∈  and
max
𝑃𝑡∈

E𝑃𝑡 [𝜆𝑡+1(𝑋𝑡+1) ∣ 𝑥𝑡, 𝑢𝑡] ≤ 𝑙𝑡 − 𝑑(𝑥𝑡, 𝑢𝑡)
}

. (7)

The inequality in the conditioning of the set in (7) yields the
allowable bound at time 𝑡 + 1 after considering the ‘‘consumption’’ of
the bound 𝑙𝑡 by the penalty 𝑑(𝑥𝑡, 𝑢𝑡) incurred at time 𝑡. This inequality
s imposed upon the maximum expected value of 𝜆𝑡+1(𝑋𝑡+1) given the
tate 𝑥𝑡 and action 𝑢𝑡 to ensure recursive constraint satisfaction. Note
hat this maximization captures the distributionally robust form of
ransition functions in (5) and, thus, accounts for the possible influence
f the attacker. Thus, given 𝑙𝑡 ∈ 𝛬𝑡(𝑥𝑡) at time 𝑡, restricting attention
o 𝜆𝑡+1 ∈ 𝐹𝑡(𝑥𝑡, 𝑢𝑡, 𝑙𝑡) ensures that any selected bound at time 𝑡 + 1 is
easible. Beginning with 𝑙0 at 𝑡 = 0 and applying this property for the
et 𝐹𝑡(𝑥0, 𝑢0, 𝑙0) for all 𝑥0 ∈  and 𝑢0 ∈  ensures recursive feasibility
nd constraint satisfaction for all 𝑡 = 0,… , 𝑛. Due to the importance of
he sets 𝛬𝑡(𝑥𝑡) in (7), it is essential to efficiently compute them before
eriving an optimal strategy.
To begin, we observe that for any feasible 𝑙𝑡 ∈ 𝛬𝑡(𝑥𝑡), there

xists a sequence of control laws 𝑔𝑡∶𝑛−1 that satisfies the constraint
𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡) ≤ 𝑙𝑡 for all 𝑙𝑡 ≤ 𝑙𝑡 ∈ R and all 𝑥𝑡 ∈  . Hence, it
s sufficient to compute the smallest feasible bound 𝜆𝑚𝑡 (𝑥𝑡) for each
𝑡 ∈  and note that the set 𝛬𝑡(𝑥𝑡) ⊆ [𝜆𝑚𝑡 (𝑥𝑡),∞). At the other extreme,
ithout loss of generality, we can restrict the maxima of 𝛬𝑡(𝑥𝑡) to

𝑀
𝑡 = min

{

𝑙0,
∑𝑛

𝑖=𝑡 𝑑
𝑀
𝑖
}

. This is because including bounds larger than
𝑀
𝑡 does not increase the set of feasible sequences of control laws
0∶𝑡−1. Thus, the structural form of the set of feasible upper bounds is
𝑡(𝑥𝑡) = [𝜆𝑚𝑡 (𝑥𝑡), 𝑙

𝑀
𝑡 ] for all 𝑡 = 0,… , 𝑛 − 1.

Next, we present a recursive approach to compute 𝜆𝑚𝑡 (𝑥𝑡) for all 𝑡
nd complete the construction of 𝛬𝑡(𝑥𝑡).

emma 1. The lower bound 𝜆𝑚𝑡 (𝑥𝑡) of the set 𝛬𝑡(𝑥𝑡) for all 𝑥𝑡 ∈  and
= 1,… , 𝑛 − 1 is obtained by the following minimization problem
𝑚
𝑡 (𝑥𝑡) = min

𝑢𝑡∈

{

𝑑(𝑥𝑡, 𝑢𝑡)

+ max
𝑃𝑡∈

E𝑃𝑡

[

𝜆𝑚𝑡+1(𝑋𝑡+1)
|

|

|

𝑥𝑡, 𝑢𝑡
]

}

. (8)

roof. The smallest feasible bound 𝜆𝑚𝑡 (𝑥𝑡) belongs to the set 𝛬𝑡(𝑥𝑡).
rom Definition 1, we can see that there exists a sequence 𝑔𝑡∶𝑛−1
or which the penalty-to-go is exactly equal to 𝜆𝑚𝑡 (𝑥𝑡) and any bound
maller than 𝜆𝑚𝑡 (𝑥𝑡) is infeasible. Thus we can compute 𝜆𝑚𝑡 (𝑥𝑡) as

𝑚
𝑡 (𝑥𝑡) = min

𝑔𝑡∶𝑛−1∈
∏𝑛−1

𝓁=𝑡 𝓁
𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡), (9)

hich becomes an instance of the standard distributionally robust DP
roblem. The objective is to minimize the penalty-to-go while being
istributionally robust against the uncertainty in the transition func-
ion. Using the arguments presented in Iyengar (2005, Theorem 2.1)
or deriving the optimal objective in such a problem, we can see how
emma 1 computes the minimum value of 𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡) at each 𝑡. This
hows that, Lemma 1 can be used to recursively compute the smallest
feasible bound 𝜆𝑚𝑡 (𝑥𝑡) for each 𝑥𝑡 ∈  and all 𝑡. □

3.2. Dynamic program for Problem 1

In this subsection, before presenting the DP decomposition, we
begin by defining the cost-to-go in a manner similar to the penalty-to-go
in Section 3.1. For all 𝑡 = 0,… , 𝑛−1, the cost-to-go from any 𝑥𝑡 ∈  is

𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡) = E𝑔𝑡∶𝑛−1

[𝑛−1
∑

𝓁=𝑡
𝑐(𝑋𝓁 , 𝑈𝓁) + 𝑐𝑛(𝑋𝑛)

|

|

|

𝑥𝑡

]

, (10)

where E𝑔𝑡∶𝑛−1 denotes the expectation on all the random variables
with respect to the distributions generated by the nominal transition
function 𝑃 and the choice of control laws 𝑔𝑡∶𝑛−1 ∈

∏𝑛−1
𝓁=𝑡 𝓁 . Note that

the cost-to-go at time 𝑡 is affected only by the sequence of control laws
𝑔𝑡∶𝑛−1 and the cost-to-go at 𝑡 = 0 is equivalent to the performance
measure (1) for any strategy 𝒈.



European Journal of Control 80 (2024) 101044N. Venkatesh et al.
Before we can construct a DP decomposition, we recall that Prob-
lem 1 also restricts the set of feasible strategies by constraining the
penalty-to-go 0(𝒈; 𝑥0) with an upper bound 𝑙0. Thus, as derived in
Section 3.1, we need to impose a constraint using the bound function
𝜆𝑡 ∈ 𝐹𝑡−1(𝑥𝑡−1, 𝑢𝑡−1, 𝑙𝑡−1) for all 𝑡 = 1,… , 𝑛 to ensure recursive feasibility
in our solution approach. To this end, at each 𝑡 = 0,… , 𝑛 − 1, we
expand our state-space  by appending with it a set of possible bounds,
R. Thus, the value functions of our DP decomposition are functions
of (𝑋𝑡, 𝐿𝑡) ∈  × R, where the random variable 𝐿𝑡 = 𝜆𝑡(𝑋𝑡). The
realizations of the random variable 𝐿𝑡 are denoted by 𝑙𝑡. Furthermore,
at each 𝑥𝑡 ∈  , the control law 𝑔𝑡 ∈ 𝑡 at each 𝑡 = 0,… , 𝑛 − 1 selects a
control action 𝑈𝑡 ∈  using the expanded state space as 𝑈𝑡 = 𝑔𝑡(𝑋𝑡, 𝐿𝑡).

Remark 2. We note that expanding the state space from 𝑋𝑡 to (𝑋𝑡, 𝐿𝑡)
expands the domain of control laws as compared to the standard Marko-
vian control law for regular MDPs. However, the result in Section 3.1 is
still valid for control laws with this larger domain because the functions
introduced in 3.1 depend only on the realization 𝑥𝑡 ∈  of 𝑋𝑡 and are
independent of the realization 𝑙𝑡 = 𝜆𝑡(𝑥𝑡) of 𝐿𝑡.

For all 𝑡 = 0,… , 𝑛−1, the value function for all 𝑥𝑡 ∈  and 𝑙𝑡 ∈ 𝛬(𝑥𝑡)
corresponding to the sequence of control laws 𝑔𝑡∶𝑛−1 is given by

𝑉 𝑔𝑡∶𝑛−1
𝑡 (𝑥𝑡, 𝑙𝑡) =

{

𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡) if 𝑡(𝑔𝑡∶𝑛−1; 𝑥𝑡) ≤ 𝑙𝑡,
𝜅 otherwise,

(11)

where 𝜅 ∈ R is a large constant that satisfies 𝜅 > 𝑛 ⋅ 𝑐𝑀 and indicates
constraint violation by 𝑔𝑡∶𝑛−1. Eventually, when we minimize over the
set of strategies, the presence 𝜅 will help us exclude infeasible solutions.
At the terminal time 𝑛, where no actions are allowed, the value function
is simply 𝑉𝑛(𝑥𝑛, 𝑙𝑛) = 𝑐(𝑥𝑛). Then, the optimal value functions for all
𝑥𝑡 ∈  , 𝑙𝑡 = 𝜆𝑡(𝑥𝑡) and all 𝑡 = 0,… , 𝑛 − 1 are

𝑉𝑡(𝑥𝑡, 𝑙𝑡) = min
𝑔𝑡∶𝑛−1∈

∏𝑛−1
𝓁=𝑡 𝓁

𝑉 𝑔𝑡∶𝑛−1
𝑡 (𝑥𝑡, 𝑙𝑡). (12)

Theorem 1. At each 𝑡 = 0,… , 𝑛 − 1, for all 𝑥𝑡 ∈  and 𝑙𝑡 = 𝜆𝑡(𝑥𝑡), the
optimal value function can be recursively computed using the following DP
decomposition:

𝑉𝑡(𝑥𝑡, 𝑙𝑡) = min
𝑢𝑡∈ ,

𝜆𝑡+1∈𝐹𝑡 (𝑥𝑡,𝑢𝑡 ,𝑙𝑡 )

{

𝑐(𝑥𝑡, 𝑢𝑡)+

E
[

𝑉𝑡+1(𝑋𝑡+1, 𝜆𝑡+1(𝑋𝑡+1)) ∣ 𝑥𝑡, 𝑢𝑡
]

}

, (13)

where, at the terminal time 𝑡 = 𝑛, the optimal value function is simply given
by 𝑉𝑛(𝑥𝑛, 𝑙𝑛) = 𝑐(𝑥𝑛).

Proof. We prove that the DP decomposition presented in Theorem 1
computes the optimal value function recursively using mathematical in-
duction. At the terminal time, the value function is given by 𝑉𝑛(𝑥𝑛, 𝑙𝑛) =
𝑐(𝑥𝑛). Suppose that the optimal value function 𝑉𝑡+1 at time 𝑡+ 1 can be
computed according to (13). It is enough to show that (13) can be used
to compute 𝑉𝑡(𝑥𝑡, 𝑙𝑡) at time 𝑡. We need first to show that the left-hand
side in (13) is lower bounded by the right-hand side and vice-versa. As a
result, the left-hand side of (13) will be both upper and lower bounded
by the expression on the right-hand side. Hence, we conclude that in
(13), the left-hand side is equal to the right-hand side. Details of the
mathematical arguments are provided in Appendix. □

Remark 3. We showed that the DP decomposition presented in (13)
computes the optimal value function at each 𝑡 = 0,… , 𝑛 − 1. Using
Theorem 1, we can compute the sequence of optimal control laws
𝑔∗0∶𝑛−1 ∈

∏𝑛−1
𝓁=0 𝓁 which yields the optimal value function 𝑉0(𝑥0, 𝑙0) at

time 𝑡 = 0.
4

Remark 4. At any 𝑡 = 0,… , 𝑛−1, and for all 𝑥𝑡 ∈  and a feasible bound
𝑙𝑡, Theorem 1 states that the optimal control action is 𝑢∗𝑡 = 𝑔∗𝑡 (𝑥𝑡, 𝑙𝑡),
i.e., the minimizing argument in (13). Subsequently, the optimal bound
function 𝜆∗𝑡+1(⋅) is computed as a function of the state 𝑥𝑡, bound 𝑙𝑡, and
optimal action 𝑢∗𝑡 . Since the optimal bound function is computed at
the preceding time step, during implementation, 𝜆∗𝑡 is available at the
onset of time 𝑡 and the agent ensures that 𝑙𝑡 = 𝜆∗𝑡 (𝑥𝑡). Hence, to solve
Problem 1, the control action at all 𝑡 is selected as 𝑢∗𝑡 = 𝑔∗𝑡 (𝑥𝑡, 𝜆

∗
𝑡 (𝑥𝑡)).

This shows that the optimal control strategy can be selected using
𝑥𝑡 ∈  during implementation.

4. Numerical example

In this Section, we illustrate the efficiency of the effectiveness of
our approach using a numerical example. We consider a reach-avoid
problem where an agent seeks to navigate to a designated cell in a
4 × 4 grid world while avoiding a different cell in the grid. At each
𝑡 = 0,… , 𝑛, the agent’s position 𝑋𝑡 takes values in the set of grid cells:

 =
{

(0, 0), (0, 1),… , (3, 2), (3, 3)
}

. (14)

The action 𝑈𝑡 denotes the agent’s direction of movement and takes
values in the set:

 = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}. (15)

Under normal system operation, the agent has a small chance of move-
ment failure by ‘‘slipping’’. This nominal transition function is modeled
by considering that at each 𝑡, the agent moves in the direction selected
by the action 𝑈𝑡 with probability 0.8 and may slip by moving in either
the clockwise or anticlockwise direction to 𝑈𝑡 with probabilities of 0.1
each. The agent does not slip when selecting the action (0, 0), i.e., when
deciding not to move. Thus, starting at a randomly selected initial state
𝑥0 ∈  , the agent’s dynamics for all 𝑡 = 0,… , 𝑛 − 1 are

𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, 𝑢𝑡) =

⎧

⎪

⎨

⎪

⎩

0.8 if 𝑥𝑡+1 = 𝑥𝑡 + 𝑢𝑡,
0.1 if 𝑥𝑡+1 = 𝑥𝑡 + 𝑢cl𝑡 ,
0.1 if 𝑥𝑡+1 = 𝑥𝑡 − 𝑢cl𝑡 ,

(16)

where if 𝑢𝑡 = (𝑢1𝑡 , 𝑢
2
𝑡 ), then 𝑢cl𝑡 = (−𝑢2𝑡 , 𝑢

1
𝑡 ) is the clockwise rotation

of 𝑢𝑡. If the agent’s position 𝑋𝑡 is at one of the four corners of the
grid or along the edge of the grid, then the agent may only slip in
the available directions and not move off the grid. Thus, if only one
direction is available, they move in the direction of the selected action
with a probability of 0.8 and move in the available direction with a
probability of 0.2.

The goal of the agent is to reach the destination cell (3, 2) marked by
D, while avoiding a ‘‘trap’’ cell (2, 1), marked by X in Fig. 1 and Fig. 2.
The agent incurs no interim costs, i.e., for all 𝑡 = 0,… , 𝑛 − 1:

𝑐(𝑋𝑡, 𝑈𝑡) = 0. (17)

However, at time 𝑛 = 10 which is the end of horizon, the agent incurs
a terminal cost given by the distance of the agent to the destination:

𝑐𝑛(𝑋𝑛) = 𝜂
(

𝑋𝑛, (3, 2)
)

, (18)

where, (3, 2) is the destination and 𝜂(⋅, ⋅) denotes the Manhattan dis-
tance. For all 𝑡 = 0,… , 𝑛 the agent incurs a penalty of 1 unit if their
position coincides with the trap (2, 1):

𝑑(𝑋𝑡, 𝑈𝑡) = I
[

𝑋𝑡 = (2, 1)
]

. (19)

An adversary, if present, attacks the reliability of the agent’s actuator.
Thus, under an attack, the probability of slipping may increase. We
incorporate vulnerability to attacks by defining, on the tuple of actual
movements (𝑢𝑡, 𝑢cl𝑡 ,−𝑢

cl
𝑡 ) for a given action 𝑢𝑡 ∈  , the set of possible

probability distributions:

𝑠𝑖𝑚 ∶=
{

(0.7, 0.3, 0), (0.7, 0.2, 0.1),… , (0.7, 0, 0.3),

(0.8, 0.2, 0), (0.8, 0.1, 0.1), (0.8, 0, 0.2)
}

. (20)
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Fig. 1. For the initial state (1, 0), the strategy implemented in : (a) distributionally robust (b) conservative (c) stochastic.
Table 1
The number of ‘‘trap’’ cell visits in each case.
Control strategy Number of visits to ‘‘trap’’ cell

𝑋0 = (1, 0) 𝑋0 = (0, 1)

Distributionally Robust:  = 𝑠𝑖𝑚 497 250

Conservative:  = 𝛥() 35 10

Stochastic:  = {𝑃 } 764 363

We consider two initial positions, (1, 0) and (0, 1) marked by ‘‘O’’ as
shown in Fig. 1 and Fig. 2 respectively. An upper bound of 𝐥𝟎 = 2.5 is
set on the worst-case total expected penalty. We compare three cases
to show how our approach provides more control over the trade-off
between conservativeness and optimality for each initial condition.
In each of the three cases considered, we specify the set of possible
probability distributions  in (8) to emulate various levels of conser-
vativeness. To demonstrate this, we implement the computed optimal
control strategy in a receding horizon manner for 200 time steps. We
run 5000 simulations and plot the heat map of the path selected by the
agent in Fig. 1 and Fig. 2. In the first case, while we compute the control
strategy, we consider  = 𝑠𝑖𝑚, which yields the distributionally robust
control strategy. In this case, the agent visits the ‘‘trap’’ cell 497 and 250
times, as shown in Fig. 1(a) and Fig. 2(a), respectively. For the second
case, during the computation of the control strategy, we expand the set
 to include every possible distribution in 𝛥() to yield a conservative
strategy. As a result, in Fig. 1(b) and Fig. 2(b), the number of times the
agent moves into the ‘‘trap’’ cell are 35 and 10, respectively. Lastly, we
compute a stochastic strategy by considering that the set of probability
distributions  is a singleton, with only the nominal transition function.
Accordingly, in Fig. 1(c) and Fig. 2(c), the agent moves 764 and 363
times into the ‘‘trap’’ cell, respectively. We present a summary of these
results in table 1.

We observe that when the agent utilizes the distributionally robust
control strategy, it visits the trap cell more often than the conservative
strategy. However, it reaches the target cell in fewer moves than the
conservative strategy. On the other hand, it reaches the destination
as quickly as the stochastic strategy, with fewer visits to the "trap’’,
essentially being more robust.

5. Conclusion

In this paper, we proposed the problem of controlling a CPS, which
is vulnerable to attack as a distributionally robust stochastic cost mini-
mization problem. For this problem, we presented DP decomposition to
compute the optimal control strategy, which ensures the recursive fea-
sibility of the distributionally robust constraint. Finally, we illustrated
the utility of our solution approach using a numerical example. Future
work should consider using these results in tandem with fast computa-
tion techniques for applications with large state space like human–robot
collaboration tasks, power grids, and connected and automated vehi-
cles. In such applications, it is essential to avoid over-conservatism
while maintaining resilience against any vulnerabilities.
5
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Appendix. Proof of Theorem 1

We present a detailed proof of Theorem 1 by elaborating on how
we show that left-hand side of (13) is both upper and lower bounded
by the expression on the right-hand side.

To begin, we recall the induction assumption that the optimal value
function 𝑉𝑡+1 at time 𝑡 + 1 can be computed according to (13).

At time 𝑡, for each 𝑥𝑡 ∈  and a feasible bound 𝑙𝑡 = 𝜆𝑡(𝑥𝑡), let
𝑔∗𝑡∶𝑛−1 ∈

∏𝑛−1
𝓁=𝑡 𝓁 be the sequence of control laws such that

𝑔∗𝑡∶𝑛−1 = argmin
𝑔𝑡∶𝑛−1∈

∏𝑛−1
𝓁=𝑡 𝓁

𝑉 𝑔𝑡∶𝑛−1
𝑡 (𝑥𝑡, 𝑙𝑡). (21)

The value function corresponding to this sequence of control laws is
the optimal value function at time 𝑡 as given by

𝑉𝑡(𝑥𝑡, 𝑙𝑡) = 𝑉
𝑔∗𝑡∶𝑛−1
𝑡 (𝑥𝑡, 𝑙𝑡). (22)

We expand the expression for the value function of this sequence of
control laws as

𝑉𝑡(𝑥𝑡, 𝑙𝑡) = E𝑔∗𝑡∶𝑛−1

[𝑛−1
∑

𝓁=𝑡
𝑐(𝑋𝓁 , 𝑈𝓁) + 𝑐𝑛(𝑋𝑛)

|

|

|

𝑥𝑡

]

,

= 𝑐(𝑥𝑡, 𝑔∗𝑡 (𝑥𝑡, 𝑙𝑡)) + E𝑔∗𝑡∶𝑛−1

[ 𝑛−1
∑

𝓁=𝑡+1
𝑐(𝑋𝓁 , 𝑈𝓁) + 𝑐𝑛(𝑋𝑛)

|

|

|

𝑥𝑡

]

, (23)

where, we note that the penalty-to-go of the sequence 𝑔∗𝑡∶𝑛−1 upper
bounded by 𝑙𝑡. Hence, we only analyze the cost-to-go component of
the value function for this sequence of control laws. We use the law of
iterated expectations to introduce 𝑋𝑡+1 into the inner expectation as

𝑉𝑡(𝑥𝑡, 𝑙𝑡) = 𝑐(𝑥𝑡, 𝑔∗𝑡 (𝑥𝑡, 𝑙𝑡)) +

E

[

E𝑔∗𝑡+1∶𝑛−1

[ 𝑛−1
∑

𝓁=𝑡+1
𝑐(𝑋𝓁 , 𝑈𝓁) + 𝑐𝑛(𝑋𝑛)

|

|

|

𝑋𝑡+1,

]

|

|

|

𝑥𝑡, 𝑔
∗
𝑡 (𝑥𝑡, 𝑙𝑡)

]

. (24)
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Fig. 2. For the initial state (0, 1), the strategy implemented in : (a) distributionally robust (b) conservative (c) stochastic.
Next, using (10), we write the inner expectation as the cost-to-go from
time 𝑡 + 1 for the sequence 𝑔∗𝑡+1∶𝑛−1:

𝑉𝑡(𝑥𝑡, 𝑙𝑡) = 𝑐(𝑥𝑡, 𝑔∗𝑡 (𝑥𝑡, 𝑙𝑡)) +

E

[

𝑡+1(𝑔∗𝑡+1∶𝑛−1;𝑋𝑡+1)
|

|

|

𝑥𝑡, 𝑔
∗
𝑡 (𝑥𝑡, 𝑙𝑡)

]

. (25)

From (11) and (12), we can see that the cost-to-go for 𝑔∗𝑡+1∶𝑛−1 is always
s big as the optimal value function at 𝑡+1. Considering this, in addition
o the induction hypothesis, we can write:

𝑡(𝑥𝑡, 𝑙𝑡) ≥ 𝑐(𝑥𝑡, 𝑔∗𝑡 (𝑥𝑡, 𝑙𝑡)) +

E

[

𝑉𝑡+1(𝑋𝑡+1,𝑡+1(𝑔∗𝑡+1∶𝑛−1;𝑋𝑡+1))
|

|

|

𝑥𝑡, 𝑔
∗
𝑡 (𝑥𝑡, 𝑙𝑡)

]

, (26)

where, we note that 𝑡+1(𝑔∗𝑡+1∶𝑛−1, 𝑋𝑡+1) is exactly the penalty-to-go for
he sequence of control laws 𝑔∗𝑡+1∶𝑛−1, hence it is a feasible bound at
ime 𝑡 + 1. By minimizing the right-hand side of (26) over feasible
ombination of the action 𝑢𝑡 and future bound function 𝜆𝑡+1 we have:

𝑉𝑡(𝑥𝑡, 𝑙𝑡) ≥ min
𝑢𝑡∈ ,

𝜆𝑡+1∈𝐹𝑡 (𝑥𝑡,𝑢𝑡 ,𝑙𝑡 )

{

𝑐(𝑥𝑡, 𝑢𝑡) +

E
[

𝑉𝑡+1(𝑋𝑡+1, 𝜆𝑡+1(𝑋𝑡+1)) ∣ 𝑥𝑡, 𝑢𝑡
]

}

. (27)

This shows that the left-hand side of (13), is greater than the right-hand
side.

For each time 𝑡 and 𝑥𝑡 ∈  with the bound imposed being 𝑙𝑡 = 𝜆𝑡(𝑥𝑡),
we consider

(𝑢∗𝑡 , 𝜆
∗
𝑡+1) = argmin

𝑢𝑡∈ ,
𝜆𝑡+1∈𝐹𝑡 (𝑥𝑡,𝑢𝑡 ,𝑙𝑡 )

{

𝑐(𝑥𝑡, 𝑢𝑡) +

E
[

𝑉𝑡+1(𝑋𝑡+1, 𝜆𝑡+1(𝑋𝑡+1)) ∣ 𝑥𝑡, 𝑢𝑡
]

}

, (28)

where, 𝑢∗𝑡 is the optimal action at time 𝑡 and 𝜆∗𝑡+1 is the corresponding
optimal bound function at time 𝑡+ 1. Now, we construct a sequence of
control laws 𝑔̂𝑡∶𝑛−1 such that:

̂𝑡(𝑥𝑡, 𝑙𝑡) = 𝑢∗𝑡 (29)

𝑔̂𝑡+𝓁 = 𝑔∗𝑡+𝓁 , for 𝓁 = 1,… , (𝑛 − 1 − 𝑡). (30)

This implies that at time 𝑡+1, the newly constructed sequence of control
laws 𝑔̂𝑡+1∶𝑛−1 satisfies the following constraint

𝑡(𝑔̂𝑡+1∶𝑛−1; 𝑥𝑡+1) ≤ 𝜆∗𝑡+1(𝑥𝑡+1) ∀ 𝑥𝑡+1 ∈  . (31)

Next, by using (10), we establish the cost-to-go of the sequence of
control laws 𝑔̂𝑡∶𝑛−1 as an upper bound to the optimal value function
at 𝑡. This is given by
6

𝑉𝑡(𝑥𝑡, 𝑙𝑡) ≤ 𝑡(𝑔̂𝑡∶𝑛−1; 𝑥𝑡)
= E𝑔̂𝑡∶𝑛−1

[𝑛−1
∑

𝓁=𝑡
𝑐(𝑋𝓁 , 𝑈𝓁) + 𝑐𝑛(𝑋𝑛)

|

|

|

𝑥𝑡

]

. (32)

Then, we use the law of iterated expectations on the right-hand side of
(32) to introduce the random variable 𝑋𝑡+1, which yields

𝑉𝑡(𝑥𝑡, 𝑙𝑡) ≤ 𝑐(𝑥𝑡, 𝑔̂𝑡(𝑥𝑡, 𝑙𝑡)) +

E

[

E𝑔̂𝑡+1∶𝑛−1

[ 𝑛−1
∑

𝓁=𝑡+1
𝑐(𝑋𝓁 , 𝑈𝓁) + 𝑐𝑛(𝑋𝑛)

|

|

|

𝑋𝑡+1,

]

|

|

|

𝑥𝑡, 𝑔̂𝑡(𝑥𝑡, 𝑙𝑡)

]

, (33)

where we note that the inner expectation only depends on the choice
of the sequence 𝑔̂𝑡+1∶𝑛−1. We use (11) and (31) to write the inner
expectation as the value function of this sequence of control laws, given
by

𝑉𝑡(𝑥𝑡, 𝑙𝑡) ≤ 𝑐(𝑥𝑡, 𝑔̂𝑡(𝑥𝑡, 𝑙𝑡)) +

E

[

𝑉 𝑔̂𝑡+1∶𝑛−1
𝑡+1 (𝑋𝑡+1, 𝜆

∗
𝑡+1(𝑋𝑡+1))

|

|

|

𝑥𝑡, 𝑔̂𝑡(𝑥𝑡, 𝑙𝑡)

]

. (34)

By the construction given in (30), we re-write the value function for
the sequence of control laws 𝑔̂𝑡+1∶𝑛−1 as

𝑉𝑡(𝑥𝑡, 𝑙𝑡) ≤ 𝑐(𝑥𝑡, 𝑔̂𝑡(𝑥𝑡, 𝑙𝑡)) +

E

[

𝑉𝑡+1(𝑋𝑡+1, 𝜆
∗
𝑡+1)

|

|

|

𝑥𝑡, 𝑔̂𝑡(𝑥𝑡, 𝑙𝑡)

]

, (35)

where, using (29), we recall that at time 𝑡 the control law 𝑔̂𝑡 picks the
optimal action 𝑢∗𝑡 . Hence,

𝑉𝑡(𝑥𝑡, 𝑙𝑡) ≤ 𝑐(𝑥𝑡, 𝑢∗𝑡 ) +

E

[

𝑉𝑡+1(𝑋𝑡+1, 𝜆
∗
𝑡+1)

|

|

|

𝑥𝑡, 𝑔̂𝑡(𝑥𝑡, 𝑙𝑡)

]

. (36)

Now, we can clearly see that the optimal value function at time 𝑡
satisfies:

𝑉𝑡(𝑥𝑡, 𝑙𝑡) ≤ min
𝑢𝑡∈ ,

𝜆𝑡+1∈𝐹𝑡 (𝑥𝑡,𝑢𝑡 ,𝑙𝑡 )

{

𝑐(𝑥𝑡, 𝑢𝑡) +

E
[

𝑉𝑡+1(𝑋𝑡+1, 𝜆𝑡+1(𝑋𝑡+1)) ∣ 𝑥𝑡, 𝑢𝑡
]

}

. (37)

The inequalities in (27) and (37) prove that the optimal value
function at time 𝑡 is both upper and lower bounded by the right-hand
side of (13).
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