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Abstract—To effectively respond to environmental disasters,
real-time monitoring and pollution control rely heavily on the
ability to estimate, predict, and reconstruct constantly chang-
ing environmental conditions across different locations. In this
research, we develop a multi-robot source-seeking and field
reconstruction framework that enables a multi-robot group to
detect multiple sources within a spatial-temporal varying field
and reconstruct the field in real time. The strategy consists of
two parts: source seeking and field reconstruction. The source-
seeking part features a gradient-based source-seeking controller
that directs the multi-robot group toward local sources and a
destination selection algorithm that navigates the multi-robot
formation beyond the local maximal. The field reconstruction
part reconstructs the spatial-temporal varying field in real time
using the limited measurements taken by the robots. We validate
the strategy in simulations.

Index Terms—mobile sensor networks, field reconstruction,
source seeking.

I. INTRODUCTION

Understanding complex environmental processes such as
pollution evolution, salinity distribution, and wildfire propa-
gation, is crucial for environmental monitoring tasks. These
processes are often governed by partial differential equa-
tions (PDEs) due to the spatial temporal-varying states [1].
For example, the advection-diffusion equation can model the
dynamics of smoke plumes in a given region over time,
where the advection term describes the movement of the
smoke plume driven by wind velocity, and the diffusion term
represents the spatial dispersion of the smoke from higher
to lower concentration areas. Accurate estimation, prediction,
and real-time reconstruction of spatial-temporal varying fields
are vital for effective environmental monitoring and disaster
management [2].

The field reconstruction typically consists of two primary
challenges: identifying the unknown parameters within the
governing PDEs and estimating the state of the concentration
field across a selected spatial domain. The conventional ap-
proach of deploying extensive static sensor networks is often
prohibitive due to the high costs associated with covering large
areas. An alternative approach utilizes a few mobile robots
with sensors to explore vast areas, gathering data as they move
along their path[3], [4]. Yet, the spatial-temporal variability of

field concentrations and the scarcity of sensor measurements
pose significant challenges.

In recent years, various approaches have been developed
to solve the problem of parameter identification [5], [6], [7]
and field reconstruction using mobile sensor networks. Among
these, In [8], [9], a cooperative Kalman filter combined with
a recursive least square (RLS) method has been developed
to provide real-time parameter identification of advection-
diffusion fields, enabling field reconstruction via PDEs. For
effective real-time field reconstruction, the accuracy of state
estimation is significantly influenced by the trajectories nav-
igated by mobile robots. Accordingly, it is imperative to
strategically direct these robots along paths that are rich in
information. In works [4] and [10], the authors incorporated
the dynamics of mobile robots into the dynamics of the
field. The optimization of these paths predominantly focuses
on minimizing mapping errors. Such an approach may lead
to solutions that converge on local optima, overlook areas
of high concentration, and are inadequate for reconstructing
complex fields with multiple sources of concentration. In [11],
the authors developed a path-planning method that employs
geometric reinforcement learning for navigating through areas
that exhibit multiple high-concentration zones. However, this
method needs to specify a target location within the area
for search purposes, a task that presents challenges in fields
characterized by intricate concentration distributions.

In this research, we propose a multi-robot source-seeking
and field reconstruction framework that allows a multi-robot
group to identify multiple sources in a spatial-temporal varying
field and reconstruct the field in real time. The strategy
consists of two parts: source seeking and field reconstruction.
The source-seeking part features a gradient-based controller
that directs the multi-robot group toward local maximums
corresponding to sources in a field, and a destination selection
algorithm that allows the multi-robot group to jump out of
a local maximal and keep exploring the unvisited area of
the field to maximize coverage [12]. The field reconstruction
part reconstructs the spatial-temporal varying field in real
time using the limited measurements collected by the robots.
We validate the strategy in simulations in a spatial-temporal
varying field and compare the field reconstruction errors with
baseline strategies when the multi-robot group only follows
random or lawn-mowing trajectories. This strategy promotes
exploration when the measured field concentration encounters
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a local maximum, thereby enhancing the ability to recreate
fields with multiple sources.

The remaining part of the paper is organized as follows. The
problem is formulated in Section II. Section III presents the
proposed algorithm and IV demonstrates the simulation results
and analysis. Section V concludes the paper and discusses
future work.

II. PROBLEM FORMULATION

In this section, we introduce the problem formulation of the
field reconstruction task using a formation of mobile robots.
The field is represented as a linear combination of multiple
advection-diffusion equations.

A. Advection-Diffusion Fields

Numerous processes that vary both spatially and temporally
can be represented as two-dimensional (2D) partial differential
equations within a certain area {2, as follows:

%(7‘, t) = F(z(r,t), Vz(r,t), V2z(r,t)),
where () represents the area of interest, z(r, t) is the field value
of a sptail-temporal-varying scalar field at location z at time
t, Vz(r,t) is the gradient at location r, V22(r,t)) represents
the Laplacian matrix at location 7, and F(-) is an unknown
possibily nonlinear function. In practice, many processes are
governed by advection-diffusion phenomena, which can be
represented by the advection-diffusion equation as

%(r, t) = szz(r, t) +vVz(r,t),

where 6 > 0 represents the diffusion coefficient and v is the
advection coefficient. In this work, the diffusion coefficient is
assumed to be a low value, allowing for the presumption that
the field exhibits negligible turbulence. We further assume that
the advection coefficient v is constant throughout space and
time in domain 2. This is generally true for environmental
processes that occur over a large area.

We consider an area ) with the size being significantly
larger than the size of the robots. This is a common sce-
nario in real-life environmental monitoring missions. Given
this setting, the boundary of the area can be modeled as a
flat surface. Therefore, we can assume initial and Dirichlet
boundary conditions for the field as[2]:

2(r,0) = zo(r),
z(rt) =0, € oN.

reQ, (1)

reQ, 2)

3)

In this work, we assume that the field of interest zo(r, ¢ = 0)
is a linear combination of several advection-diffusion equa-
tions (2), thus, forming a non-linear surface with with multiple
sources.

B. Mobile Sensor Robots

We employ N mobile robots equipped with sensors in the
field. For simplicity, we consider the first-order dynamics of
the robots, ie., 7;(t) = wu;(t), i = 1,2,3,..., N, where
7;(t) € R? is the location of the ith robot in the area (), and

u;(t) € R? represents the velocity control for the ith robot at
time ¢. Each robot is able to determine its location within
at discrete time intervals k£ and to communicate its position
¥ to its peers. By collating the positions of all robots, the
center of the formation r¥ at discrete time k is calculated as
kE _ 1 N k M .
ry = % 2= "i- Moreover, every robot carries sensors to
measure the field value. The measurement made by the tth

robot at time k is represented by the following equation:
p(ri’ k) = 2(rf, k) +ni, @)

in which n; is considered to be independent and identically
distributed Gaussian noise.

To assist in the development of the proposed algorithm,
a dynamic view-scope I'(t) for the robot formation is in-
troduced. The view-scope I' at any moment ¢ encompasses
the portion of the area {2 within the polygon defined by the
positions of the sensing robots, as depicted in Fig. 1. Although
the sensing robots are restricted to measuring and sharing
concentration data only from their immediate locations, the
field values z(r,t), r € T'(t) can be derived by interpolating
these measured values.

Additionally, the formation controller and the cooperative
Kalman filter developed in [13] are employed to control the
robot group to maintain a desired formation and produce
estimates of the field value z(r., t) and field gradient Vz(r,, t)
along the trajectory of the formation center r.. We further
assume that the diffusion parameter of the field (2) can be
estimated using algorithms developed in [9]. Given that the
robots are coordinated to maintain a formation, the planning
and control task is simplified to planning the path and design-
ing the controller for the formation center

With the above settings, the task of source-seeking and field
reconstruction reduces to the following two steps:

1) Source detection. The concentration function z(r,t) can
be thought of as a linear combination of concentration
values produced by said sources. Thus, identifying the
sources is critical in field reconstruction.

2) Field reconstruction. Estimate the state, i.e. field concen-
tration value in the area (2 to reconstruct the field.

III. PROPOSED ALGORITHM

In this section, we introduce the source-seeking and field
reconstruction framework. The source-seeking part contains a
gradient-based controller and a destination selection algorithm
to allow the multi-robot formation to identify multiple sources,
and the field reconstruction part uses the knowledge of the
advection-diffusion equation to propagate field concentration
values with measurements provided by mobile robots.

A. Gradient-based Source-Seeking

As mentioned in the problem formulation, we employ the
formation controller [13] to control the multi-robot group
to remain in a desired formation, thus, the source-seeking
controller can be just designed for the formation center 7.
Additionally, we use the cooperative Kalman filter developed
in [9] to estimate the field gradient along the formation center
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while the formation is moving in the field. The formation
center can be controlled as

Vz(rmt)
NINZIE

where v, is the constant speed specified for the formation
center. With the gradient information, the formation center can
be controlled to move toward a local source corresponding to
a local maximum in the field.

®)

e =

B. Destination Selection for Further Exploration

Upon reaching a local maximum within the field, it’s
crucial to motivate the mobile robot formation to venture into
unexplored segments of the domain. Given that many environ-
mental phenomena may exhibit areas of high concentration,
leading to complex concentration profiles, a comprehensive
exploration by the formation is essential for accurate field
reconstruction. To address this, we introduce an algorithm
designed to foster exploration away from previously visited
regions within the field domain €2. This algorithm determines a
destination r4 € ) towards which the formation will move to-
ward, subsequently resuming navigation along gradient paths.

The algorithm for choosing destinations adheres to specific
criteria:

1) The chosen destination should be distinct from and be-

yond the scope of areas already explored.

2) A preference should be given to regions within 2 that

remain unexplored.

3) The destination must be sufficiently remote to enable the

gradient-based controller to detect new sources if they
exist.

c4 €3

Fig. 1. Illustration demonstrating the destination selection algorithm.

We initiate the algorithm by defining a distance d that
establishes how far we aim for the selected destination to be
from the current formation center (r.). Using the distance d,
we construct a set D comprising potential destinations. From
this set, any location that falls outside of the domain ) or
has been previously visited is excluded, resulting in a refined
set D, of unexplored candidate locations. The subsequent
step involves selecting a destination from D, that aligns with
our established criteria. For each candidate ¢; within D,,, we
assign a weight w; according to the equation:

w; = similarity(r.—Cy, ¢;—Cy)||ci—74,ill2, Ve € Dy, (6)

where 7, ; represents the nearest previously visited location
to ¢; in the direction of r., C, denotes the centroid of the
unvisited areas U within €2, and similarity is defined by the
cosine similarity between two vectors. This similarity measure
calculates the cosine of the angle between two n-dimensional
vectors A and B:

A-B

similarity (A, B) = [[AJ[IB]

(7
Thus, the similarity(r.—C,, ¢;—C,,) in Equation (6) calculates
the cosine of the angle between r. — C, and ¢; — C,. The
former one represents the vector connecting the formation
center’s current location and the centroid of the regions that
have not been visited. The latter one represents the vector
connecting the ith candidate and the centroid of the regions
that have not been visited. The weight w; will be used in the
random sampling for candidate locations. Given this design,
consequently, candidates in the direction of C,, receive higher
weighting than candidates in the opposite direction from C,,.
In addition, the ||¢; — 7y ;]|2 term in Equation (6) calculates
the Euclidean distance between the ith candidate c¢; and the
closest visited location to it in the direction of r.. Therefore,
for those candidates in the direction of C,,, candidates farther
from the visited regions are prioritized. Fig. 1 demonstrates
the concept behind the proposed algorithm. In this diagram,
the mobile robots rg,r1, 72, and rs are shown in formation,
with r. indicating the center of this formation. The region
enclosed by the black dashed lines represents the view-scope
T". The yellow point C,, signifies the centroid of areas within )
that have yet to be explored. The area shaded in gray indicates
territories that the formation has already traversed. The dashed
orange circle encompasses all points at distance d from r,
creating the potential destination set D. Selected examples
from this set, marked as ¢;, where ¢ = 0,1, 2...8, are shown.
From these examples, cs and ¢4 are excluded because they fall
outside the domain €2, and c¢;7 and cg are disregarded as they are
within previously explored areas. Consequently, cg, c1, ¢2, Cs5,
and cg are included in set D,, as viable destination candidates.
The points 7,0, 7y,1, and 7, 2 represent the nearest previously
visited locations towards 7. for the candidates cg, c1, and co,
respectively. In this instance, c¢; is deemed most likely to be
chosen as it directs towards C,,.

To utilize the calculated weights for randomly drawing
destinations, they are converted into a probability distribution
through exponentiation and normalization as follows:

w;

(&

ZID ul

where the exponentiation amplifies the distinction between
more and less preferable candidates. This probability distri-
bution then facilitates the random selection of a destination,
effectively integrating both distance and orientation prefer-
ences into the decision-making process. The methodology
for implementing this algorithm is detailed in the subsequent
algorithm description in Algorithm 1.

After the destination has been chosen, the formation will
resume the source-seeking by employing the gradient-based
controller in (5).

Pr(c;) = 8)
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Algorithm 1 Destination Selection Algorithm
Require: r.,d, U
D <+ candidate destinations d distance away from 7,
Dy =]
for ¢, € D do
if ¢; € Q and ¢; € U then
D, .insert(c;)
end if
end for
Cu = 1 S, weights = ]

for ¢; € D, do

Ar,
y r

Ta To T2

Ar,

3

Fig. 2. A 3 x 3 section of the discretized advection-diffusion field.

IV. SIMULATION RESULTS

In this section, we present the simulation results of the

Ty,; ¢ trace ray from ¢; to 7. to find first visited location proposed algorithm.

w = similarity(r. —
weights.insert(w)
end for
probabilities = [] {Initialize probabilities array}
for w; € weigjlts do
probabilities.insert(p)
end for
idx < randomly drawn index with probabilities
return D, [idx] =0

Cy,ci — Cu)”Ci - Tv,i”?

C. Advection-Diffusion Field Reconstruction

To reconstruct the field, we discretize Equation (2) over
space and time. In Fig. 2, we illustrate a 3 x 3 area of the dis-
cretized field, where N = 4 robots are placed symmetrically.
Using the finite difference method, the Equation (2) can be
discretized as:

z(ro, k4 1) — 2(ro, k) 0 2(ro, k) + 2(r4, k) — 22(ro, k)
ts N Ar2

z(r1, k) + z(rs, k) — 2z(ro, k)
+ 2
Ary

+ VTVZ(T(), k) + e(ro, k),
)

where k is the discretized time step, ¢ is the sampling interval
and e(rg, k) accounts for the approximation error. Assuming
square grid cells, i.e., Ar, = Ar,, Equation (9) simplifies to
the following.

2(ro, k+1) — z(ro, k) 92?=1 z2(ri, k) — 4z(ro, k)
ts - Ar?

x

—|—VTVZ(7“07 k) + e(ro, k).

(10)

With given advection and diffusion coefficients v and 6, the
advection-diffusion field can be simulated using Equation (10)
for each grid ry € Q.

At every time step k, we derive estimates of the field
concentration values within the view-scope, denoted as 2(r, k)
where r € I'(k). Thus, at each time step k, it becomes possible
to fill in the estimated concentration values within the current
view-scope and utilize Equation (10) to propagate the field’s
state. This methodology facilitates the reconstruction of the
field utilizing merely the sparse measurements collected along
the paths of the robots.

We generate a simulated spatial-temporal varying field,
which is a linear combination of two advection-diffusion
equations, with the initial sources located at [20,30] and
[80,70]. Both fields are characterized by an advection co-
efficient (v = 0) and a diffusion coefficient (¢ = 0.1). A
group of four mobile robots is controlled in a symmetric
formation and initiates the exploration at [10, 10]. Following
the strategy described in III, the formation initially engages
in source-seeking. Upon encountering a source, it follows the
destination selection algorithm to keep exploring the field and
move toward another source in the lower right corner. The
robots’ collected measurements facilitate real-time field recon-
struction. Figure. 3 illustrates the trajectory of the formation
center in the simulated field (left) and the reconstructed field
(right). The black dots correspond to the source-seeking mode
and the red dots correspond to the field exploration mode.
The figures in the right column show the field reconstruction
results at different time steps. The multi-robot formation stops
when it reaches the second source. Figure. 4 demonstrates
the concentration value of the field measured at the formation
center along its trajectory. We can observe from the figure
that there are two peaks in the figure, representing the two
sources. With the field’s diffusing nature, a gradual decrease in
concentration values in the vicinity of this source is observed
afterward.

We use the mapping error to quantify the reconstruction’s
accuracy. We define the mapping error at time step k as:

em(k) = Z|Z(T7k) — &(r, k)],

reQd

(an

where, z(r, k) is the true field value at k and Z(r, k) represents
the estimated field value in the reconstructed field at time step
k. The goal of field reconstruction is to design a path for the
robot formation to efficiently collect data so that the mapping
error can be gradually decreased. Fig. 5 shows the mapping
errors while the multi-robot formation is moving in the field.

To demonstrate the effectiveness of the proposed strategy,
we replaced the trajectory planning strategy, i.e., gradient-
based source-seeking and destination-selection algorithms,
with two baseline approaches: random trajectory and lawn-
mowing trajectory. Fig. 5 illustrates the simulation results in
the same field with different colors corresponding to different
strategies: red for gradient, green for lawnmowing, and black
for random. It can be clearly observed that our proposed
strategy outperforms the other two.
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Fig. 3. source-seeking (black) and exploration (red) operation of the robot
formation during field reconstruction
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Fig. 4. The concentration at the formation center along the trajectory.

V. CONCLUSIONS AND FUTURE WORK

In this study, we developed and validated a multi-robot field
reconstruction strategy to reconstruct spatial-temporal vary-
ing fields that are governed by multiple advection-diffusion
equations. Central to our approach is a destination-selection
algorithm that empowers a coordinated multi-robot forma-
tion to navigate beyond local maxima, ensuring thorough
exploration of previously uncharted territories. This capability
is pivotal for the accurate and efficient reconstruction of
dynamically varying fields. In the future, we plan to integrate
the strategy with advanced parameter identification algorithms
and implement the strategy in experiments.
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