2024 International Conference on Smart Applications, Communications and Networking (SmartNets) | 979-8-3503-8532-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/SMARTNETS61466.2024.10577722

Data-Driven End-to-End Lighting Automation
Based on Human Residential Trajectory Analysis

Jack Zhu, Jingwen Tan, and Wencen Wu*
Computer Engineering Department
San José State University
San José, CA, USA
Email: {jiali.zhu, jingwen.tan, wencen.wu}@sjsu.edu

Abstract—Smart home automation, particularly in lighting,
holds the potential to significantly improve comfort, energy
efficiency, and security by centralizing control over internet-
of-things (IoT) devices. This paper introduces a smart lighting
automation system that analyzes human movement trajectories
using machine learning, deep learning, and reinforcement learn-
ing techniques integrated into the Home Assistant platform.
In particular, we introduce a transformer-based deep neural
network architecture with reward-based tuning as our backbone
model. The system predicts the user’s next location and adjusts
the lighting accordingly based on the anticipated movement
trajectories derived from data collected by IoT devices distributed
throughout a residential area. This enhances both convenience
and energy efficiency. We deployed the system in a residential
setting and conducted experiments to validate its accuracy.

Index Terms—Smart Home, Automation, Machine Learning,
Transformer

I. INTRODUCTION

The world of smart home automation has witnessed signif-
icant innovation facilitated by the increasing computational
power, the exponential growth of data generated by smart
devices, and breakthroughs in machine learning (ML), deep
learning (DL), and reinforcement learning (RL) methodologies
[1]. These techniques are the driving force behind the evolu-
tion of home automation systems from simple programmable
devices to complex, intelligent ecosystems capable of au-
tonomous decision-making to streamline user’s daily tasks.

Numerous studies have investigated the use of various
sensors such as accelerometers, infrared motion, contact, light,
temperature, and humidity sensors for capturing user activities
in smart homes [2][3][4]. Those sensors provide comprehen-
sive data regarding user location, activity levels, sequential
movement, etc., enabling the development and training of
learning models. Using the data collected by IoT devices,
diverse methods have been employes to automate smart home
applications. For example, an input structure called HAM,
introduced in [5], filters conditions across three levels - day,
time, and Markov-chain-based sensor level - to define triggers
for smart events. In [6], sequence mining in time-related
activity was performed by applying a generalized sequential
pattern algorithm [6], which categorized users’ different ac-
tivities into subgroups and defined rules that ensure the order

The research work is supported by NSF grant RINGS-2148353.
979-8-3503-8532-8/24/$31.00 ©2024 IEEE

of activities. Additionally, researchers have been developing
DL models for smart lighting systems. Authors in [7] utilized
generative adversarial networks (GANSs) to generate additional
data and compared the performance of models on various
dataset sizes, finding that a gated recurrent unit (GRU) model
excels in multi-resident activity recognition. Furthermore, in
[8], experiments using a recurrent extreme learning machine
(RELM) model demonstrated its effectiveness in predicting
users’ activities over time, outperforming other models in
terms of learning and training error.

Recognizing human trajectories is another critical aspect of
smart homes. Authors in [9] introduced a method for recog-
nizing human gesture trajectories in smart homes using DL,
specifically employing the squeeze and excitation technique
for classifying these trajectories, leading to high accuracy and
reliability. This approach ensures that lighting automation is a
classification problem, determining which areas of the lights
should be activated. Another study [10] focused on predict-
ing future human actions from current actions within non-
residential environments. They proposed a recognition-then-
prediction framework that divides the problem into two parts:
forecasting the future trajectory and estimating its duration
using the sigma-lognormal function.

Despite these advancements, current smart home applica-
tions such as Amazon Alexa [11] and Google Home [12]
still fall short in several aspects. They often lack in-depth
intelligence and require manual creation and maintenance of
scenes and scripts through if-else brackets. Based on these
limitations and inspired by recent research, we propose an en-
hanced system that predicts the user’s next location and adjusts
the lighting accordingly based on the anticipated movement
trajectories through information collected by internet-of-things
(IoT) devices distributed across the residential area.

In summary, the contributions of this work include (1)
designing and configuring a data-driven smart lighting system
that integrates Zigbee IoT devices with the Home Assistant
platform for enhanced data collection and control; (2) develop-
ing a transformer-based deep neural network architecture with
reward-based tuning, which serves as the backbone model for
the smart lighting automation system; (3) deploying the model
via a docker container within the local network for inference
purposes and a custom Home Assistant platform add-on to
integrate the model’s prediction with the IoT devices, thereby
creating a complete feedback loop; and (4) testing the system

Authorized licensed use limited to: San Jose State University. Downloaded on May 23,2025 at 17:23:43 UTC from IEEE Xplore. Restrictions apply.

in a residential area to validate the accuracy and effectiveness
of the smart lighting system.

The rest of the paper is organized as follows. We initiate our
discussion by starting with system design in Section II. Next,
we introduce the data collection and preprocessing in Section
III, followed by our proposed backbone approaches in Section
IV. Evaluation methodology and results are presented in V
and deployment and application of the system are discussed
in Section VII. The paper is concluded by Section VIII.

II. SYSTEM DESIGN

In this section, we present the hardware design of the smart
lighting system and discuss the close-loop communication
among the devices.

We chose to install a smart lighting system in a two-
bedroom apartment. The system consists of a closed-loop con-
nection among three major hardware groups, a computer that
runs the inference model, an edge hub with Home Assistant
OS, and IoT devices that collect and execute environment
signals. The Home Assistant platform is employed on an edge
device, serving as the central hub for IoT management. These
devices include one temperature sensor, four human presence
sensors, five motion sensors, four light switches, and two
brightness sensors from various brands, all utilizing Zigbee
wireless technology. These sensors are located at the intersec-
tion between the living room and kitchen to optimize zoning
construction. Equipped with millimeter-wave radar technology,
the sensors can detect signals even from stationary individuals.
The light switches have been strategically replaced with smart
switches throughout the residential area. In each major area,
human presence sensors are installed at strategic corners to
maximize coverage. Brightness sensors are placed near the
window, and motion sensors are distributed in the stairs and
hallway. The floor plan of the apartment and the layout of
device distribution are shown in Fig. 1. The configuration
process involves linking the IoT devices with compatible
drivers. However, in cases where certain IoT devices were not
compatible with the Home Assistant platform, we undertook
reverse engineering efforts and created convertible JavaScript
files to ensure successful integration.

Fig. 2 illustrates the closed-loop communication cycle of the
smart lighting system. As shown in the figure, the Zigbee IoT
devices are integrated with Home Assistant through the Zig-
bee2mqtt add-on, enabling Home Assistant to read and con-
trol these devices. We developed a Docker container, named
“model-inference add-on“, for Home Assistant. This add-on
sends HTTP GET requests to a separate Docker container
running the deep learning model for prediction responses.
Upon receiving these responses, the model-inference add-on
adjusts the IoT devices’ states within the Home Assistant
interface. Subsequently, Home Assistant communicates these
state changes to the IoT devices using Zigbee communication
and closes the system cycle. The optimal system design would
involve integrating the DL model directly within the edge hub,
thereby eliminating the need for additional communication
with a computer. However, as detailed in the discussion
section VII, hardware limitations compel us to seek alternative
solutions.

7PN
Temperature and / \ (&)
Humidity Sensor |) 5
N . .
Light Intensity /-\I
Sensor v

Door Open/Close /D‘[‘]\\ o /|) ‘
Sensor _ /f‘ o] G
. ! T 5
Smart Light @ Jf e 15 H W
Switch P ~
witcl / D & 3

Smart Curtain .@) ! . @

@ .
WJHQ

o) ——— ¥

Human Presence
Sensor

Infrared Motion (D \\
Sensor \Z e

Fig. 1. IoT Device Floor Plan: A detailed layout of the experimental house
and related IoT devices.

Zighee Read Send IoT Prediction
Communication 8 Devices States Request
Zi; h /\1 /—\]\,[uﬂel-lufeﬂﬂce Deel_)
E2S Zighee2mat Home Addon lrirs
DI“.T Addon Assistant (Docker Model
Rl Container) (Docker
\/ u _/ Container)
Zigbee Control IoT

Control Response

Communication Devices States

Fig. 2. Lightening System Diagram: A close cycle among model-integrated
computer, Home Assistant edge hub, and home IoT devices.

ITII. DATA COLLECTION AND PREPARATION

In this section, we outline the methods used to collect and
preprocess data, which will be used by our proposed learning
strategy to enable end-to-end lighting automation.

A. Data Collection

The IoT devices installed in the apartment continuously
collect a variety of data points related to human presence, the
states of smart light switches, brightness sensor readings, and
environmental conditions such as time, date, and temperature.
This comprehensive dataset includes two distinct types of
data. The first type comprises data generated by automation
scripts that regulate the behavior of the smart lights based
on detection from the human presence sensor, while also
considering factors like time of day and ambient brightness
levels. The second type of data stems from manual light
control actions performed by individual residents, wherein
they manually turn lights on and off, thus providing valuable

Authorized licensed use limited to: San Jose State University. Downloaded on May 23,2025 at 17:23:43 UTC from IEEE Xplore. Restrictions apply.

insights into the unique habits and preferences of the occupant.
It’s noteworthy that the data collection extends over one
month within the apartment occupied by two residents. This
timeframe is crucial as it allows for an accurate representation
of the details embedded in the residents’ daily routines and
their engagement with the smart home features. Given that
the dataset captures the living habits of two individuals, our
learning model is designed to find a balanced response that
accommodates the needs and preferences of both residents.

B. Data Preprocessing

In this phase, data from IoT devices was stored in the
Home Assistant database. The data was then extracted and
organized into a structured data frame format to facilitate
efficient filtering of relevant features. To empower the model’s
understanding of time, we segmented the datetime information
into month, day, hour, minute, and second. We extracted
categorical features from the datetime information. The day
of the week is denoted as d,,, where d,, € {0,1,2,3,4,5,6},
with each number corresponding to a day within a week,
starting from O for Sunday, 1 for Monday, and so on. We
categorized the time of day into three classes: morning as 0,
afternoon as 1, and evening as 2. For binary states, of f/on
and noperson/personpresent labels are converted to nu-
merical representations: “off” and “no person” are encoded
as 0, while “on” and “person present” is represented as 1.
Likewise, classes denoted as “low”, “middle”, and “high” are
transformed into numerical equivalents: “low” as 0, “middle”
as 1, and “high” as 2. This transformation streamlined the
categorical data into numerical representations suitable for
computational analysis.

We selected 35 features to make informed lighting de-
cisions. These features encompass data from IoT devices,
including human presence sensors, brightness sensors, the state
of smart light switches, and various environmental variables.
The selection of these features is thoughtfully made to capture
crucial factors influencing lighting control. To enhance under-
standing of our training features, we have selectively included
key representative features from each category in Table 1. As
for the output data that shown in Table II', it primarily consists
of lighting states for different areas, specifically the bedroom,
dining room, living room, and kitchen.

To prepare the data for model training, we batched the time
series data into segments of 10 over 139066 rows, with the
corresponding next event serving as the true label, thus for-
matting the training features and labels. The final training set
input and label shapes are (100000, 10, 35) and (100000, 4),
validation set input and label shapes are (19990, 10,35) and
(19990, 4), and testing set input and label shapes are respec-
tively (19066, 10, 35) and (19066, 4). The model fine-tuning
data set shapes are (584, 35).

IV. BACKBONE METHOD AND DESIGN

In this section, we introduce a transformer-based deep
neural network architecture with reward-based tuning as our
backbone model as shown in Fig.3.

IThe table only reflects a portion of the entire input feature set. Each
category has one specific input feature being selected as a representative.

TABLE I
TABLE FOR THE SELECTIVE INPUT FOR THE MODEL TRAINING: THE INPUT
FEATURES HAVE 7 MAJOR CATEGORIES.

Features Name Value
sensor.dinning_room_
illumination_intensity_

brightness_state

Input Feature Category Description

Indicate the brightness
State of the dinning room | [0,2]
and kitchen areas

Describe the day of

Brightness sensor

Time day the observation 0.31]
Human Presence Sensor binary_sensor.dinning_ Delecl 1? People remain 0 = False
room_sensor_presence in the dining room 1 = True
binary_sensor.hallway_ L - Rale
Infrared Motion Sensor motion_and_intensity_ Detect if people pass by 0 B False
the hallway 1 = True
sensor_occupancy
Door Sensor switch.open_close Dele({led if the garage 0 = Close
door is open or close 1 = Open

0 = off
1 =on
0 = min
1 = max

switch.front_door_
light_switch
sensor.living_room
_dimmer_brightness

Light Switch Front door light

Indicate the living room
dimmer brightness .

Dimmer Brightness

TABLE Il
TABLE FOR THE OUTPUT FROM THE MODEL: LIGHT OUTPUTS ARE BASED
ON THE DIFFERENT LIVING AREAS IN THE HOUSEHOLD

Light Feature Name Description Value
Category
. Dining room | 0 = off,
Light Dimmer light.dining light 1 =on
. Living room | 0 = off,
Light Dimmer light.living light 1 = on
Light Switch Bedroom_sensor Bedroqm 0 = off,
room light 1 =on
Light Switch switch.kitchen Kitchen light (1) :O?Iff’

A. Deep Neural Network Architecture

The deep learning neural network architecture serves as
the cornerstone for processing raw input data and generating
lighting decisions for the event of 5 seconds after. Our chosen
architecture is based on a transformer structure, specifically
the encoder portion. Given that our input data is a batch of
time series data, we employed an LSTM layer to embed input
tensor X where batch_size = 256, window_size = 10,
and feature_size = 35, is meticulously chosen to capture
temporal dependencies inherent in human movement and
lighting patterns. The batch size ensures efficient processing of
data, the window size aligns with the granularity of movement
within a home environment, and the feature size corresponds
to the diverse data points collected, providing a comprehensive
representation of the environment.

The LSTM’s capacity to maintain a sequence of hidden
states H = (hq, ha, ..., hwindow_size) 18 crucial for capturing
the sequential nature of human activities and their impact on
lighting decisions. The specific equations governing the LSTM
layer:

Ct = tanh(WC * [ht — 1, Z‘t] + bC), (1)
Ci = fe* Ci1 +1ip x Ci, (2)
ht = 0t * tanh(C’t), (3)

are tailored to encapsulate the temporal dynamics and depen-
dencies, where C} is the cell state. f;, i;, o; are forget, input
and output gate at time ¢. W, and b¢ are weight matrices and
bias vector.

Authorized licensed use limited to: San Jose State University. Downloaded on May 23,2025 at 17:23:43 UTC from IEEE Xplore. Restrictions apply.

Output Qutput Qutput Qutput
t t t]
(Sigmod l { Sigmod W { Sigmod W (Sigmod
Activation Activation Activation Activation
| Linear Layer | | Linear Layer | Linear Layer = Linear Layer |

/ Add & Norm & Dropout \

Feed Forward

!

Add & Norm & Dropout

T

Multi-head
Attention

i

LSTM Embedding }

f

Input Time-Series
Data Input

Fig. 3. The proposed deep learning model diagram: The model architecture
consists of an LSTM-based embedding layer, followed by a series of trans-
former encoder layers, each comprising a multi-head attention mechanism,
linear layers, layer normalization, and dropout. The model also includes
multiple linear output heads and a final sigmoid activation function, allowing
for complex data transformations and classification tasks.

Subsequently, The LSTM’s output is further processed by
a multi-head action module with h = 4. The attention
mechanism, as calculated in Equation (4), was introduced by

Vaswani et al. [13]:
. QKT
Attention(Q, K, V') = softmax < > V, 4
vy
where @), K, V represent the query, key, and value vectors fun-
damental to the attention mechanism, facilitating the model’s
focus on relevant input data for context interpretation. Then, a
module list that uses a linear layer and sigmoid activation was
employed to analyze each output of the four classes from the
multi-head module’s pooled information to yield intermediate
outputs I;:

Ii = U(Wff’i -A + bff,i>7 (5)

where Wi ;, A, and by ; are the weight matrix, activation out-
puts, and bias terms, which processes the attention-weighted
inputs to produce subsequent layers’ activations. Lastly, a
transformer encoder-based classifier is used to produce an ar-
ray of four variable outputs. Each of these variables undergoes
normalization via a sigmoid function to predict the lighting
state:

P,=1/(1+e 0Oy, 6)

where P; is normalized output probability for each class <,
ready for the lighting decision.

Selecting appropriate hyperparameters is vital for optimiz-
ing the model’s performance. Therefore, we calibrated the
following hyperparameters to train our model:

e Epochs: 100

o Batch size: 256

e LSTM layers: 2

e Number of heads (nhead): 4

e Learning rate: 0.0005

o Number of transformer layers: 1

+ Embedding dimension (embedd_d): 8

o Dimension of feedforward network: 16

e Dropout rate: 0.3

These hyperparameters were chosen to balance the model’s
learning capacity with computational efficiency. We have
experimented with different parameters, and this combination
is giving the optimal training performance.

B. Human Feedback Reward-Based Mechanism Fine-Tuning

The initial phase of model fine-tuning involves utilizing
human feedback to assign labeled rewards based on the
comparison between the model’s predicted actions A, and
the actual actions Ay, given the state S. The reward function
R(Ap, A, S) is defined on the set {0,0.25,0.75}, where a
reward of O is assigned if A, does not match A, under any
state S. A reward of 0.25 is given if A, equals A; during the
day, and a reward of 0.75 is allocated for matches during the
night. This weighting aims to focus on nighttime light control,
intentionally biasing the model to learn more effective lighting
policies.

To enhance the model’s performance, we employed the
Proximal Policy Optimization (PPO) algorithm, which in-
corporates actor and critic mechanisms as presented in Fig.
4 [14]. These mechanisms are instrumental in optimizing
lighting decisions using human-labeled feedback and offline
data buffers. Observations for this process are drawn from
the offline dataset. The actor model, originating from the
initialized deep learning model, defines an action space that
includes actions like turning lights on and off. It is then
utilized to compute action probabilities based on the processed
observation. These probabilities are transformed into Bernoulli
distributions, with each distribution representing the likelihood
of a specific action in the environment. The ensemble critic
network is a stack of 4 critic networks with the shared
network module across the critic to evaluate the expected value
associated with the observation and the policy. Ultimately, the
model learns to select the best actions to minimize the total
loss.

V. EVALUATION METHODOLOGY & RESULTS

In the evaluation, we tested the model’s performance based
on established classification metrics. For each of the four
binary classes corresponding to different lighting areas, we
calculate accuracy, precision, recall, and F1 score.

For the evaluation of the deep learning neural network
architecture, we raised questions regarding the necessity of

Authorized licensed use limited to: San Jose State University. Downloaded on May 23,2025 at 17:23:43 UTC from IEEE Xplore. Restrictions apply.

Human Labeled

Offline Data Buffer Reward Role

(als), Vs, Ap, A1, S, R(Ap, A1, S)

}__.{

Ensemble Critic

R(Ap, A1, 5)
NEDGY)
L
Actor cuP
L Pre-train Model J
PPO Actor & Critic Lo
}L

)

Fig. 4. Reward-based fine-tuning mechanism: The reinforcement model
utilizes offline data, actor-critic structure, and human feedback reward.

With and Without LSTM Embedding Loss Graph

— Loss without LSTM Embedding

With and Without Light Features Loss Graph

— Loss without light features.

—— Loss with LSTM Embedding —— Loss with light features

Fig. 5. Evaluation results on transformer-based model: The provided plots
depict the training process of a model using the transformer algorithm,
focusing on experimenting with LSTM and lighting features that should be
integrated into the model.

including LSTM and lighting features, which are indicative
of the current state of switches as model input. As illustrated
in Fig. 5, applying LSTM embedding significantly reduces
loss, demonstrating its efficacy in handling time-series data
for predicting lighting conditions over a 5-second horizon.
Additionally, incorporating light features further enhances the
model’s predictive accuracy. These improvements are crucial
for a system tasked with real-time responsiveness to resident
behavior and environmental changes. The overall descending
trend in loss across the training and evaluation phases signals
a reasonable learning process.

The final metrics for the DL models, as delineated in Table
III, reveal a stark contrast in performance across different
lighting areas within the home automation system. Notably,
the model exhibits outstanding accuracy and precision in
managing the dining room’s lighting conditions, as evidenced
by high scores across all evaluated metrics: an Accuracy of
0.979, Precision of 0.977, Recall of 0.938, and an F1 Score
of 0.958. These results underscore the model’s proficiency in
predicting and adjusting the dining room lighting in alignment
with occupants’ needs and behaviors. Conversely, the model

TABLE III
PERFORMANCE METRIC FOR DEEP LEARNING MODEL

DL Pre-train | Dining Room Light | Living Room Light | Bedroom light | Kitchen Light
Accuracy 0.979 0.789 0.840 0.809
Precision 0.977 0.853 0.82 0.75

Recall 0.938 0.024 0.005 0.002

FI1 Scores 0.047 0.009 0.003

0.958

encounters pronounced difficulties in accurately predicting

total_losses

policy losses
0.6 4
0.4
0.24
0.0 4
] 50 100 150 200 250 300 350 400
value_losses
3
2
1
0 50 100 150 200 250 300 350 400

Fig. 6. Evaluation results on PPO fine-tuning: The provided plots depict the
training process of a model using the PPO algorithm, focusing on total losses,
policy losses, and value losses over a series of training episodes.

the lighting requirements for the living room, bedroom, and
kitchen. This challenge is particularly evident in the drasti-
cally low Recall and F1 Scores in these areas, indicating a
significant shortfall in identifying when the lights need to be
activated. For instance, the Recall scores for the living room,
bedroom, and kitchen plummet to 0.024, 0.005, and 0.002,
respectively, suggesting a pronounced data bias issue. Such
bias, characterized by the uneven distribution of “on” and
“off” states within the training dataset, often reflects real-
world scenarios where lighting remains predominantly off.
Consequently, this imbalance skews the model’s learning pro-
cess towards the “off” state, significantly impairing its ability
to accurately predict true positive instances when lighting is
required.

As for the training progression plots for the PPO-based
tuning, it reveal an overarching decline in total losses, in-
dicating successful model learning and optimization in line
with enhancing user convenience in lighting conditions. The
consistent descent in policy losses, as depicted in Fig. 6,
suggests that the actor component is increasingly adept at
choosing actions that correlate with higher cumulative rewards,
reflecting a growing proficiency in predicting user preferences.
However, the value losses exhibit greater fluctuation, suggest-
ing that the critic component faces challenges in grappling
with complex data patterns or variability while improving its
value estimations. This observation can also be proved by
comparing metrics from the two tables. As shown in Table
IV, show improvements in accuracy and precision across
the dining room, living room, and bedroom experiencing
notable enhancements. Despite these advancements, the recall
metric remains significantly low for the bedroom and kitchen,
continuing to highlight the model’s limitations in these spaces.

Authorized licensed use limited to: San Jose State University. Downloaded on May 23,2025 at 17:23:43 UTC from IEEE Xplore. Restrictions apply.

These findings underscore the persistent challenge of data bias,
even after fine-tuning, affecting the model’s performance in
predicting accurate lighting needs across different home areas.

TABLE IV
PERFORMANCE METRIC FOR FINE-TUNED DEEP LEARNING MODEL

RL Fine-tune | Dining Room Light
Accuracy 0.981
Precision 0.977
Recall 0.948
F1 Scores 0.962

Living Room Light | Person Room light | Kitchen Light
0.819 0.840 0.808

0.950 1.0 0.08

0.169 0.0007 0.0002

0.287 0.001 0.0005

Overall, fine-tuning through reinforcement learning has
enhanced the model’s performance in multi-room scenarios.
Nevertheless, the bias performance caused by the imbalanced
dataset is still an essential problem to be solved.

VI. DEPLOYMENT & APPLICATION

The deployment centers on the Home Assistant Supervisor,
which serves as the primary hub for our IoT ecosystem.
This home assistant tool not only acts as a dashboard but
also facilitates data storage. To ensure seamless integration
and accessibility, we opted for a Docker container to host
the model within the local network. This approach enhances
security and reduces network latency. The containerization
provided an industry-grade model deployment and package
library scalability and management. To establish connectivity
between our IoT devices and the model, we developed a
custom add-on, which is a specialized type of Docker container
that is specifically used specifically in the Home Assistant OS.
This add-on serves as the bridge, utilizing the states of the IoT
devices as input parameters while sending HTTP GET requests
to the model’s endpoint. This streamlined approach ensures a
cohesive interaction between our model and the diverse array
of IoT devices within the ecosystem.

VII. DISCUSSIONS

Our ultimate objective for the home automation system is
to ensure precise predictions, efficient responses, and straight-
forward integration. While our proposed model meets the
expected accuracy standards, the integrated system still faces
challenges in simplification and real-time responsiveness.

After constructing the system between the learning models
and edge devices, a noticeable delay of 3-4 seconds persists in
the control process. This delay predominantly arises from the
interactions among IoT devices, the Home Assistant hub, and
the computer. Reflecting on the architecture illustrated in Fig.
2, the computer processes the inference model using real-time
sensor data collected from the hub and sends the predicted
outcomes back to the hub for control signals dispatching.
This lag in the communication process adversely affects the
system’s responsiveness, causing a noticeable delay in the final
inference. In our initial design, we utilized the edge device
as both the host and the model executor. However, we faced
challenges in establishing a TensorFlow environment on this
Home Assistant edge device. Additionally, using the device
solely as a host in repeated inference tests led to overheat-
ing issues with the hardware. This discrepancy between the
dashboard’s representation and the actual execution on the IoT

devices highlighted a significant operational challenge within
the system.

VIII. CONCLUSIONS AND FUTURE WORK

In conclusion, our project aimed to transform lighting au-
tomation by leveraging IoT, deep learning, and reinforcement
learning to create energy-efficient and comfortable systems
aligned with user needs. While successful in integrating vari-
ous devices and training our model, real-world challenges like
edge device delays and overheating emerged. This underscores
the opportunity for enhancing edge device communication,
crucial for a smoother and more responsive smart lighting
solution in homes. Our project encompassed both hardware
and software elements, providing invaluable experience in
developing a complete Al-driven edge product cycle, offering
hands-on insights from inception to deployment in a real-world
scenario. Future work includes refining the learning algorithms
to enhance the system’s responsiveness and accuracy, and
expanding the system to include more diverse environments
and lighting conditions.

REFERENCES

[1] A. G. Putrada, M. Abdurohman, D. Perdana, and H. H. Nuha, “Machine
learning methods in smart lighting toward achieving user comfort: A
survey,” IEEE Access, vol. 10, pp. 45 137-45178, 2022.

[2] D. Cook, “Learning setting-generalized activity models for smart
spaces,” IEEE Intelligent Systems, vol. 27, no. 1, pp. 32-38, 2012.

[3] L. Wang, T. Gu, X. Tao, H. Chen, and J. Lu, “Recognizing multi-user
activities using wearable sensors in a smart home,” Pervasive and Mobile
Computing, vol. 7, pp. 287-298, 06 2011.

[4] R. Fritz and G. Dermody, “A nurse-driven method for developing
artificial intelligence in “smart” homes for aging-in-place,” Nursing
Outlook, vol. 67, 11 2018.

[5] P. Rashidi and D. J. Cook, “Keeping the resident in the loop: Adapting
the smart home to the user,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 39, no. 5, pp. 949-959,
2009.

[6] J. Rosales-Salas, S. Maldonado, and A. Seret, “Mining sequences in
activities for time use analysis,” Intelligent Data Analysis, vol. 24, pp.
339-362, 03 2020.

[7]1 A. Natani, A. Sharma, T. Peruma, and S. Sukhavasi, “Deep learning for
multi-resident activity recognition in ambient sensing smart homes,” in
2019 IEEE 8th Global Conference on Consumer Electronics (GCCE),
2019, pp. 340-341.

[8] Z. Liouane, T. Lemlouma, P. Roose, F. Weis, and H. Messaoud,
“An improved extreme learning machine model for the prediction of
human scenarios in smart homes,” Applied Intelligence, vol. 48, no. 8,
p. 2017-2030, aug 2018. [Online]. Available: https://doi.org/10.1007/
$10489-017-1062-5

[91 A.Li, E. Bodanese, S. Poslad, T. Hou, K. Wu, and F. Luo, “A trajectory-

based gesture recognition in smart homes based on the ultrawideband

communication system,” [EEE Internet of Things Journal, vol. 9, no. 22,

pp- 2286122873, 2022.

Y. Cheng and M. Tomizuka, “Long-term trajectory prediction of the

human hand and duration estimation of the human action,” IEEE

Robotics and Automation Letters, vol. 7, no. 1, pp. 247-254, 2022.

C. Jimenez, E. Saavedra, G. del Campo, and A. Santamaria, “Alexa-

based voice assistant for smart home applications,” IEEE Potentials,

vol. 40, no. 4, pp. 31-38, 2021.

S. A. Kumer, P. Kanakaraja, A. P. Teja, T. H. Sree, and T. Tejaswni,

“Smart home automation using ifttt and google assistant,” Materials

Today: Proceedings, vol. 46, pp. 4070-4076, 2021, international

Conference on Materials, Manufacturing and Mechanical Engineering

for Sustainable Developments-2020 (ICMSD 2020). [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2214785321017570

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” 2017.

(10]

(11]

[12]

[13]

Authorized licensed use limited to: San Jose State University. Downloaded on May 23,2025 at 17:23:43 UTC from IEEE Xplore. Restrictions apply.

