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Opinion-based Task Allocation Strategy for Mobile Sensor Networks
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Abstract—In this paper, we propose an opinion-based task
allocation strategy for mobile sensor networks to conduct
simultaneous multi-source tracking while doing measurement
collection and information estimation. Mobile sensors form
opinions of the field based on the information obtained by sen-
sors, and opinion dynamics describe how sensors communicate
with each other and generate decisions on task assignments for
multi-source tracking. Triggering conditions of running opinion
dynamics for task allocation are also provided, determining
when it is necessary to divide sensors into groups. Simulation
results with a 12-sensor network tracking two different sources
validate the proposed opinion-based task allocation strategy.

I. INTRODUCTION

Mobile sensor networks have been widely applied to
collect information for severe natural processes such as
hurricanes, ocean eddies, and forest fires for their high
efficiency and reliability [1]-[4]. In real-world applications,
communication among sensors is often limited due to low
bandwidth, power limitations, high deployment expenses,
and communication losses [5], [6]. This explains why dis-
tributed communication and forming different groups are
more welcome in practice with robustness and scalability.

During the process of information collection, mobile sen-
sors need to complete tasks such as source tracking or
field mapping, collaboratively. Most of the time, the field
of interest is relatively large compared to the size of the
sensor network and sensors need to be divided into groups
to move towards different areas to conduct different tasks
simultaneously [7]. This requires task allocation among these
sensors so that all tasks can be completed. The mobile
sensors considered in this paper can collect field measure-
ments, exchange information with neighbors, and estimate
field information. We consider the scenario when a large
number of sensors can be deployed in the field at a low
cost, and aim to solve the task allocation problem for mobile
sensor networks without considering an explicit utility cost.

Task allocation problem has been studied to assign a
finite number of agents to complete a finite number of tasks
efficiently. Task allocation algorithms can be classified into
several categories: market-based, optimization-based, game
theory-based, learning-based, and hybrid approaches, where
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the first two are the most commonly used [8], [9]. In existing
literature [10]-[12], the problem of task allocation or swarm
grouping is usually addressed by solving an optimization
problem of the utility cost. Opinion dynamics has also been
applied for task allocation between two options through
decentralized switching transformations where the grouping
portion is determined by the designed switching [13]. Our
goal is to solve the task allocation problem using another
type of opinion dynamics, where opinions are modeled as
unit-length vectors.

Individual opinions are usually composed of different per-
spectives and can be modeled by vectors. During the process
of opinion exchange, it is more convenient and efficient to
share normalized opinions such that each individual follows
the same standard [14]. Our previous works in opinion
dynamics [15]-[17] focus on studying the opinion evolution
process on the unit sphere for any dimensional spaces.
As opinion states evolve on the sphere while exchanging
information with neighbors, rich convergence results of
consensus and various dissensus with stability guarantees
can be obtained by applying different types of interaction
control. Such convergence behaviors can divide individuals
into different groups or clusters in a natural way, which
maximizes the differences among different groups as well
as the similarities within the same group. This also avoids
solving an optimization problem on utility, and makes task
allocation among individuals simple to conduct.

In this paper, we propose using opinion dynamics to assign
tasks in mobile sensor networks for source tracking. The
major novelty in this proposed work is that no explicit utility
information is needed and no corresponding optimization
problem needs to be solved for task assignments. Here we
only need to run the dynamics on a faster time scale to
obtain the convergence results for sensor grouping. Different
from the consensus-based auction algorithm where maximum
consensus has been implemented for convergence of a list of
winning bids [11], the consensus or dissensus algorithms will
be applied for grouping directly in this work. The grouping
results are determined by the initial conditions and the type
of opinion dynamics rather than predetermined groups.

Our major contribution is the application of opinion dy-
namics in task allocation problems for simultaneous multi-
source tracking using mobile sensor networks, especially the
initialization of opinion states using sensor information and
the triggering conditions for running opinion dynamics. The
initialization builds the relationships between the concrete
sensor information and the abstract opinions on the field of
interest. The triggering conditions allow abstract opinions to
develop. The proposed strategy enables the mobile sensors
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to detect multiple sources and form different groups after in-
formation exchange with each other, offering more flexibility
to mobile sensors in complicated scenarios.

The problem of opinion-based task allocation is formu-
lated in Section II. Information-based opinion-developing
design is provided in Section III. Section IV introduces the
triggering conditions for running the opinion dynamics. Sec-
tion V presents the proposed opinion-based task allocation
strategy for simultaneous multi-source tracking. Simulation
results are illustrated in Section VI. Conclusions and future
work follow in Section VII.

II. PROBLEM FORMULATION

In this section, we formulate the task allocation problem
of mobile sensor networks in a spatial-varying field in d-
dimensional space, where d € Z, and d > 2.

We assume that the field can be described by z(r,t) €
R in a spatial domain Q C RY, where r € Q represents
location, t € R, represents time, z is the field value with
spatial-varying property.

Suppose a group of [N mobile sensors are deployed in the
field described by z(r,t), taking discrete field measurements
z with time interval At. There are multiple unknown sources
in this field for the robots to explore, and the total number
of sources is known as N,. Denote the location of sensor
i at the kth time step ¢ as ¥ and the noisy measurement
taken by this sensor at 5, as p(r¥ k), written as

p(r k) = 2(ri’, k) + ni, ()
where n; € R is an independent and identically dis-
tributed Gaussian noise. Utilizing the cooperative filtering
strategy in [18]-[20], the mobile sensors can estimate the
information of field value and corresponding gradient, de-
noted as 2(rF, k) and VZ(r¥ k), respectively. We denote
p(rF k), 2(rF k), V2(rE k) as pk, 2k, V2F for simplicity.
Denote the information obtained by sensor i at ¢ as IF
where
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k
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While mobile sensors are moving in the field of interest and
collecting discrete measurements, multiple tasks are detected
which requires the sensors to be split into different groups
by solving the task allocation problem. We focus on one
specific task allocation problem in which sensors need to be
assigned to an unknown source for source-seeking.

Based on the estimated and collected field information,
each sensor forms its own opinion o; and communicates
with its neighbors. After sufficient communication, they form
several groups or clusters based on opinion convergence. In
this paper, we model the opinions as unit-length vectors and
apply opinion dynamics on the unit sphere. The relationship
between estimated information and opinion state of sensor
at time t;, can be written as

oi(mo) = f(I}) 3)
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where o; € SP~1 is the opinion state, fz-k is the preprocessed
information state based on I¥ and f(-) : R24+2 s §P—1 jg
the relationship function to be designed.

Since it is difficult to say whether two opinion vectors are
similar or different directly, we consider utilizing opinion
dynamics to obtain a convergence result from which an
assignment result can be easily obtained. We run the opinion
dynamics in a faster time scale 7 to avoid waiting for opinion
convergence results and expedite task assignment. Under the
control input u;, the opinion dynamics on the sphere can be
written as

d

dr
where T € RP*P s the identity matrix. The projection
matrix (I-o0;(7)o] (7)) projects u;(7) onto the tangent space
of 0;(7), which guarantees the unit-length property of o;.

Driven by opinion dynamics, the opinion states will
converge to various stable equilibria and form different
clusters based on the initial opinions and interactions with
neighbors. Suppose there are N, different opinion states
O1,---,0Op, at equilibria. Then the opinion states form N
groups Gq,- - ,Gn, such that

lim o,(1) = Oy, Vi € Gy,

T—00

0,(1) = (I—04(1)0]

i “4)

(1)ui(r), 7 = 70,

(&)

where ¢ = 1,---, Ng. The Ny sets Gq, - ,Gn, provide
the task assignment for each sensor and N, is the number
of sources being detected.

Unlike the measurement collection and information es-
timation process, mobile sensors are not expected to run
opinion dynamics all the time. Instead, they only need to
run these when task allocation is required. In this way, the
initiation of opinion dynamics is event-triggered.

Problem Statement

In this paper, we propose an opinion-based task allocation
strategy for mobile sensor networks. The first goal is to
design the opinion-developing function f(-) in (3) that
models how sensors forge field opinions based on collected
and estimated information. The second goal is to determine
the triggering conditions to run opinion dynamics for task
allocation. The last goal is to define proper opinion dynamics
to achieve desired task assignments among mobile sensors.

III. INFORMATION-BASED OPINION-DEVELOPING
DESIGN

In this section, we will present the design of the opinion-
developing function based on the information collected and
estimated by mobile sensors.

Each mobile sensor collects discrete measurements and
generates estimated information while moving in the field
of interest. After mobile sensors have been deployed in the
field for a period of time, the estimated information becomes
accurate and sensors start to form opinions about the field
of interest using the obtained information. Compared with
conventional mobile sensors, the ones modeled in this paper
are equipped with opinion-developing capabilities.
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Before defining the opinion-developing function, we need
to preprocess the information states. Instead of using infor-
mation states directly, we extract the average information
from each information state and define the preprocessed
information state as follows

jllcéI1k7fk7 VZZI,,N, (6)
where I = % vazl IF. The preprocessed information
states satisfy the zero-summation property

N
}:ﬁ:u (7)
i=1

The opinion-developing function f(-) for sensor i in (3) can
be further written as

_ cor
ICIE|2"

fIF) ®)

where C € RP*(24+2) g the constant transition matrix
modeling how information is transformed into opinions.

Transition Matrix Design

The design of matrix C' in (8) decides how mobile sensors
form opinions based on the information If defined in (2),
which includes position, measurement, and estimation. The
transition matrix C' has the following structure

Cl 02><d 02><d
C = 0d><2 C2 0d><d , (9)
0d><2 0d><d C3

where C; € R?*2 models how scalar information of p, 2
is utilized, Cy € R*? represents the inclusion of position
information, and C3 € R?*¢ describes the fusion of gradient
information. When the elements of C5 are relatively large
compared with C7, C', this setup models the scenario when
opinions are position-oriented. When the elements of C'3 are
relatively large, the opinions are developed mostly based on
the spatial variation of the field. In this case, the dimension
of opinion states is D = 24 2d and d is the field dimension.

IV. TRIGGERING CONDITIONS FOR OPINION DYNAMICS

In this section, we will provide the derivation of triggering
conditions for running opinion dynamics among mobile
sensors for task allocation.

Task allocation is needed when multiple tasks are detected
and are required to be conducted by different sensors simulta-
neously. Our goal is to characterize the detection of multiple
tasks based on the information collected and estimated by
mobile sensors.

Before providing the triggering conditions for running
opinion dynamics, we introduce some essential assumptions.

Assumption IV.1 The field of interest is relatively large
compared with the area covered by the whole mobile sensor
network, and the distance between any two sources is larger
than the range of area covered by the sensor network.

This assumption models the scenario when mobile sensors
are moving in a large field for exploration and exploitation,
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and this also avoids the case when two sources are in the
area covered by mobile sensors at the same time.

Assumption IV.2 The total number of mobile sensors is
large enough that there will be plenty of sensors tracking
different sources.

Assumption IV.3 Each mobile sensor is capable of conduct-
ing at most one task at one time, and is allowed to have no
task assignment.

The above two assumptions are reasonable according to
the low cost of deploying mobile sensors from both group
and individual perspectives. These assumptions enable us to
remove the constraints on the total number of sensors and
the number of tasks conducted by sensors, which are usually
considered in the task allocation problem setup.

Next, we will provide detailed derivations of the triggering
conditions, which are determined by the detection of multiple
sources. The detection of multiple sources is based on the
information differences between neighboring sensors, e.g.
distance between sensors, gradient estimation, field value,
etc. Among all the information, gradient estimation reflects
the field variation and plays a key role in the detection.

Fig.1 presents two mobile sensors 4, j in the field at time
tr as well as the estimated gradients V25, VEJ’»“. When we
plot the corresponding vector extensions, we can obtain the
intersection point of the extended vectors, denoted as s;;.
Define the following three angles

(V2E Véf)

0;; = arccos(—- ) € (0,7,
J IVEEll2 - IV
(VzF vk — k)
07, = arccos(——————2 - ) € (0, 7],
Y IVEEL2 - Iy — vl
k_ ok ok
5 (ri =77, VZj)
0;; = arccos( ) € (0,7),

I = 7Fll2 - [VEF]l2

as shown in Fig. 1.

We provide two cases regarding the relative position of
the two estimated gradients:

o Case 1 The extended vectors and vector 7} — 7% form
a closed area, and gradient estimations Véf ,Vé}“ are
part of the edges, as shown in Fig.1(a). The vectors
0.;,0%;,0;; satisfy the following equation

which is based on the angle sum property of a triangle.
Case 2 The extended vectors and vector ¥ — ¥ form a
closed area, but gradient estimations Véf, Véj’ are not
part of the edges, as shown in Fig.1(b)(c), The vectors
0};,0;;,0%; satisfy
-
1) T

=7+ 2min{6

1 2 3
Oy 2 0}, + 0% + 03,

1
95

2
17

0 an

where two of three angles are exterior angles of a close
triangle while the last one is an interior angle of the
triangle.

7:,3]} > T,
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According to Assumption IV.1, Case 1 indicates that the
directions of estimated gradients of sensors ¢, j are pointing
towards the same source, while Case 2 indicates that the
directions of estimated gradients of sensors %, j are pointing
towards different sources.

Sij
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S
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/ H'ﬂl \\
\
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N
VZFI \V%:
2 3 )
\HU' 917’/
rk A ! g
()
k k
P =5

— VE},VEF

_____ vector extensions of V2F, V2F

Fig. 1. Illustration of tracking the same source (a) and different sources
(b)(c) among two sensors %, j, where the blue solid circles represent the
sensor locations and the dashed ones represent the intersections between
extended vectors.

When Case 2 happens, different sources are detected by
mobile sensors, which implies the necessity of group division
among sensors.

Define an indicator function 1,(z) as

1, ifx>m,

1. (z) =
@) =90, ifz <.

12)

The triggering condition for running opinion dynamics in
mobile sensor networks can be characterized as

N
Z 1:(0;5) >0,

ij=1

13)

which means that at least one ©,; = 1 and at least two
sensors are tracking different sources.

Then to obtain the number of sources N, we need to find
a loop that visits the boundary agents of the sensor network
that form the largest convex area covering the whole sensor
network. Denote the edge set induced by the loop as £, and
the number of sources can be calculated as

No= )" 1.(0;).

(i,5)€E

(14)

V. OPINION-BASED TASK ALLOCATION STRATEGY FOR
MOBILE SENSOR NETWORKS

In this section, we will provide the opinion-based task
allocation strategy for mobile sensor networks in a spatial-
varying field, after the triggering conditions are satisfied.

With different control inputs w;, the opinion states will
perform various convergence behaviors driven by the dynam-
ics in (4). The choice of control input is based on the number
of detected sources, obtained by Algorithm 1. The number
of detected sources N, determines the number of different
opinion states at equilibrium. In [17], we have developed a

generalized Kuramoto model for opinion dynamics on the
sphere, where the control input can be written as

1

Ns _
u; = Z EQ?VS(OiTOj)Oﬁ (15)
JEN;
where gfy (z) £ ‘mﬁi‘;(”’), and gy, (z) is the first kind

Chebyshev polynomial [21] with degree N, defined by

gn. (z) = cos(Ns arccos x) (16)

1% ]
=Y (-1 (J;f;>(1 — 2?2 e [1,1].

=0

Under the Kuramoto-type control input ufv ¢, the opinion
states will converge to N, different groups with stability
guarantee. Such convergence result naturally divides sensors
into different groups and provides a solution to minimize
the opinion difference within each group. Sensors within the
same group will be assigned to the same source-seeking task.
The choice of source follows the nearest-source strategy and
avoids repetition as well as contradiction.

Algorithm 1 Multi-Source Detection
Initialize the number of sources N, = 1;
while i, =1,--- | N do
Calculate ©
end while
. N
if Zi,j:l lﬂ(@ij) > 0 then

Find a loop £ that forms the largest convex area
covering the whole sensor network;
: N, = Z(i,j)es 1:(04);
7: else Ny =1,
8: end if

ij»

A

Remark V.1 Algorithm 1 also provides one scenario of
Ny = 1, which can merge different groups back into one
larger group when grouping assignments are no longer
valid. This makes the proposed algorithm work efficiently
not only for dividing sensors into smaller groups but also
for reforming a large sensor network. This adds flexibility
properties to the task allocation of mobile sensor networks.
Regrouping of larger groups will be in the future work of
this paper.

According to Algorithm 2, once the triggering conditions
are satisfied, the opinion states will be initialized and opinion
dynamics will be run in a faster time scale 7 to assign mobile
sensors into groups to track different sources based on the
convergence results.

Assumption V.2 Mobile sensors with the same task assign-
ment, share all-to-all communication within the group.

We utilize a gradient-based strategy for the velocity control
of the mobile sensor network for multi-source seeking
Tf = Tf + 'Uf )

of = aVé’f + bfik7

K

A7)
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Algorithm 2 Opinion-based Task Allocation Strategy
For each mobile sensor 7,7 =1,--- , N:

Initialize the estimated information, {£?, V29},—1 . n;
Initialize the field measurements, {p}}i—1,... n;
Initialize the locations of mobile sensors, {r}};—1,.. n;
Initialize time step k = 1;

1: while true do
2: Receive measurements {péC }jen, from neighboring mo-
bile sensors and generate estimated field value and
gradient information 2¥, V2F;
3: Communicate the information state I* to the neighbor-
ing sensors j € N;, and check the triggering conditions
for opinion dynamics;
if Triggering condition (13) is satisfied then
run opinion dynamics in (4) with control input in
(15), and form new sensor groups and task assignments;
6 else
7: keep previous groups and task assignments;
8
9

SANE-

end if

: Move to the next mobile sensor locations, r
100 k=k+1,
11: end while

k+1.

1 ’

where a,b are tuning parameters. The formation terms fF
are defined as
||'rk — rkHQ —dk.
fik:Z - A - % “/(rf’_rf)’
by I3 = rill2

(18)

where d¥, is a desired separation distance between sensors
i and 7',

VI. SIMULATION RESULTS

In this section, we provide simulation results using the
proposed dynamic group strategy for mobile sensor networks
in multi-source seeking.

We consider a 2-dimensional scenario where the field is
modeled by the following equation in R?

z(r,t) = asin(wyry) sin(wars), (19)

where r = [r1,73]T € R?, and a,w;,ws € R are tuning
parameters. In this simulation setup, the parameters are
chosen as a = 100,w; = %,wg = %, and the mobile
sensors are deployed with region 1 € [—100,100],7, €
[—100, 100] for 1500 time steps with time interval At = 1s.

The size of the mobile sensors is relatively small compared
with the field of interest, and these sensors are modeled as
points moving in the field. A group of 12 mobile sensors are
initially released within the region Qo = {r = [r1,r2|T €
R2|ry € [-2,13],75 € [-11,1]} of the field collecting mea-
surements of the field and generating estimation information
(field value and gradient), as shown in Fig. 2. Meanwhile,
mobile sensors are driven by the gradient-based velocity
control law (17) using the estimated gradient information.

The initialization process takes 50 time steps, and the
estimated information converges to the true one even with a
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Fig. 2. The initialization process of a 12-sensor network in a spatial-
varying field described by (19) within first 50-time steps, where the blue
lines and blue circles represent the trajectories and the current locations of
mobile sensors, respectively.

bad initial guess of the information, as shown in Fig. 3 where
the estimated information is represented by small circles and
the true value is denoted by smooth lines.

Field Estimati Gradient
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Fig. 3. Estimated information generated by mobile sensor network during
the initialization process of first 50 time steps. The left figure represents the
field estimation and the right one represents the gradient estimation, where
the estimated information is represented by small circles and the true value
is denoted by smooth lines.

After the initialization process, two sources are detected,
indicating that the mobile sensors need to be divided into two
separate groups, [Ny = 2. In the opinion-developing function
(3), we choose matrices C; = Isxo,Co = 0.11542,C3 =
100I542 to form the big transition matrix C with the
structure in (9), where Iy, € R?*? is the identity matrix.
The developed opinion states are unit-length vectors in RS.

Once the opinions are developed, mobile sensors are
required to run opinion dynamics to be divided into N; =
2 groups. Fig. 4 shows the evolution of the inner prod-
ucts {(01,0;)}12, towards {£1}, which shows the tran-
sition of opinion states from non-equilibrium to bipartite
dissensus equilibrium while evolving on the unit circle.
The convergence result separates the mobile sensors into
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Fig. 4. The evolution of the inner products {({01,0;)}12; towards {£1}.

Fig. 5. Mobile sensors move in two different groups towards two different
sources, represented by blue and red colors respectively.

2 different groups of Gy = {1,5,6,9,10,12} and G2 =
{2,3,4,7,8,11}. It takes less than 0.15s for the mobile
sensors to achieve convergence results, which is less than
the time interval At 1s. This demonstrates the fast
convergence speed and high efficiency of applying opinion
dynamics for grouping in mobile sensor networks.

After forming different groups, mobile sensors take an-
other 1450 time steps to track 2 different sources. Sensors
in each group move in similar directions and move towards
the same source. Additionally, sensors from different groups
move in different directions (close to opposite directions in
Fig.5), and are able to conduct different source-tracking tasks
separately at the same time. Both groups gradually move to
the source locations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an opinion-based task allocation
strategy for mobile sensor networks in a spatial-varying
field. This method enables the application of a large number
of mobile sensors for simultaneous multi-source tracking
with dynamic grouping, and also avoids solving optimization
problems on utility costs. In our future work, we will gen-
eralize this strategy for distributed mobile sensor networks
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which are more welcome in real-world scenarios.
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