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ABSTRACT

Although many collisional orogens form after subduction of oceanic lithosphere between
two continents, some orogens result from strain localization within a continent via inver-
sion of structures inherited from continental rifting. Intracontinental rift-inversion orogens
exhibit a range of structural styles, but the underlying causes of such variability have not
been extensively explored. We use numerical models of intracontinental rift inversion to in-
vestigate the impact of parameters including rift structure, rift duration, post-rift cooling,
and convergence velocity on orogen structure. Our models reproduce the natural variability
of rift-inversion orogens and can be categorized using three endmember styles: asymmetric
underthrusting (AU), distributed thickening (DT), and localized polarity flip (PF). Inversion
of narrow rifts tends to produce orogens with more localized deformation (styles AU and
PF) than those resulting from wide rifts. However, multiple combinations of the parameters
we investigated can produce the same structural style. Thus, our models indicate no unique
relationship between orogenic structure and the conditions prior to and during inversion.
Because the style of rift-inversion orogenesis is highly contingent upon the rift history prior
to inversion, knowing the geologic history that preceded rift inversion is essential for trans-

lating orogenic structure into the processes that produced that structure.

INTRODUCTION

Plate-boundary collisional orogens form
along boundaries between tectonic plates when
two continental blocks collide following sub-
duction of intervening oceanic lithosphere (e.g.,
Dewey and Bird, 1970). In contrast, intraplate
orogens form within a continental plate by local-
ization of strain along preexisting weaknesses
(e.g., Vilotte et al., 1982; Ziegler et al., 1995;
Raimondo et al., 2014). Some intraplate orogens
reactivate weaknesses inherited from past colli-
sions (e.g., the Tien Shan [Central Asia]; Jour-
don et al., 2018), whereas others exploit weak-
nesses developed during continental rifting and
thus are considered the result of rift inversion
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(Fig. 1; e.g., Cooper et al., 1989; Beauchamp
et al., 1996; Marshak et al., 2000). A common
presumption seems to be that the structural
style of intracontinental rift-inversion orogens
should be distinct from that of plate-boundary
orogens, because during rift inversion, conver-
gence is expected to occur by reactivation of
extensional structures, resulting in distributed
lithospheric thickening (e.g., Buiter et al., 2009;
Vincent et al., 2016, 2018). However, many rift-
inversion orogens feature asymmetric under-
thrusting along lithosphere-scale shear zones
and development of major fold-thrust systems
(Fig. 1; e.g., Jammes et al., 2009), comparable
to plate-boundary orogens (e.g., Willett et al.,
1993; Beaumont et al., 1996).

Geodynamic numerical modeling of rift-
inversion orogenesis typically focuses on the
High Atlas (Morocco) and the Pyrenees (Spain

and France) (e.g., Buiter et al., 2009; Jammes
et al., 2014; Dielforder et al., 2019; Jourdon
et al., 2019; Wolf et al., 2021), though the
structural styles of these orogens are distinct
(Fig. 1). The High Atlas is broadly symmet-
ric, flanked on both sides by fold-thrust belts
of opposing vergence, and exhibits no under-
thrusting of one block of lithosphere beneath
another (e.g., Beauchamp et al., 1999; Gomez
et al., 2000). In contrast, the Pyrenees show
asymmetric lithospheric underthrusting and
fold-thrust belt development concentrated on
one side of the orogen (e.g., Muifioz, 1992;
Dielforder et al., 2019). The structure of these
orogens varies considerably along-strike, and
other rift-inversion orogens exhibit a range of
symmetry and thrust-belt vergence (Fig. 1; e.g.,
the Greater Caucasus, Alice Springs [Austra-
lia], Araguai-West Congo [Brazil and Africa],
Rocas Verdes [South America]; Philip et al.,
1989; Fosdick et al., 2011; Raimondo et al.,
2014; Fossen et al., 2020), but the controls on
this variability are poorly understood.

We present two-dimensional (2-D) geody-
namic numerical models designed to explore
connections between the initial conditions of
a rift prior to inversion and the structure of the
resulting rift-inversion orogen. We find that
changes in rift structure, rift duration, post-rift
cooling, and convergence velocity dramatically
change the large-scale structure of the result-
ing orogen, producing models that exhibit the
distributed lithospheric thickening of the High
Atlas, the asymmetric lithospheric underthrust-
ing of the Pyrenees, and additional variabil-
ity reminiscent of other natural rift-inversion
orogens.
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Figure 1. Schematic cross sections of Cenozoic and pre-Cenozoic rift-inversion orogens
ordered by degree of symmetry (adapted from Philip et al., 1989; Beauchamp et al., 1999; Fos-
dick et al., 2011; Raimondo et al., 2014; Dielforder et al., 2019; Fossen et al., 2020). All orogens
are shown in present-day configuration, except for Araguai-West Congo, which is shown at

ca. 600-570 Ma.

GEODYNAMIC MODELING OF RIFT-
INVERSION OROGENESIS

We modeled 2-D intracontinental rift inver-
sion using the open-source, finite-element
code ASPECT (Kronbichler et al., 2012; Heis-
ter et al., 2017; Naliboff et al., 2020; Bangerth
et al., 2021; see the Supplemental Material'
for detailed methods). To systematically com-
pare the competing effects of rift structure, rift
duration, post-rift cooling, and convergence
rate, we performed 16 model simulations in
a 1000 x 600 km model domain (Fig. 2A;
Table 1). Each model began by using differ-
ent combinations of lithospheric thickness and
extension velocity to develop either a narrow
or wide rift structure from an initial block of
continental lithosphere (Fig. 2B, Table 1; e.g.,
Tetreault and Buiter, 2018). We stopped exten-
sion either at lithospheric breakup or at half
the model time required to reach breakup. We
inverted each of these four rifts with either no
post-rift cooling phase or after a cooling period
of 20 m.y. to get an initial sense of the effects
of a post-rift cooling phase on orogenic style.
For each of these eight models, we imposed two
different convergence velocities during inver-
sion (1 cm/yr, 5 cm/yr), with duration scaled

ISupplemental Material. Methods, additional
tables and figures, and videos of model runs. Please
visit https://doi.org/10.1130/GEOL.S.25263154 to
access the supplemental material; contact editing@
geosociety.org with any questions.
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(20 m.y., 4 m.y.) so that each orogen underwent
the same amount of total convergence (200 km).

RESULTING STYLES OF RIFT-
INVERSION OROGENESIS
Style AU: Asymmetric Underthrusting
Several of our model rift-inversion orogens
are characterized by asymmetric underthrust-
ing of one block of lithosphere beneath another
along a lithosphere-scale shear zone (style AU,
Fig. 2C). This behavior is exemplified by model
1, formed from immediate inversion at 1 cm/yr
of a narrow rift halfway to lithospheric breakup
(Fig. 2A; Table 1). In this model, initial sym-
metric uplift of both sides of the rift gives way
to localization of most strain along a left-dipping
shear zone to the right of the former rift axis
(Fig. 2C). Near the end of the model run, defor-
mation propagates both along a synthetic shear
zone to the right of the main structure and along
an antithetic backthrust to the left.

Style DT: Distributed Thickening

By contrast, a second group of models does
not localize deformation along lithosphere-
scale thrust shear zones but instead undergoes
distributed thickening of the lithosphere due to
inversion along former normal faults (style DT).
Model 5 (Fig. 2C) demonstrates this deforma-
tional style and tracks the immediate inversion
at 1 cm/yr of a wide rift that has extended half-
way to lithospheric breakup (Fig. 2A; Table 1).
Distributed deformation during rifting leaves an

~400-km-wide zone of primarily upper-crustal
normal faults with no distinct rift axis. Com-
pression during inversion leads to reactivation
of these structures as reverse faults as the lower
crust and mantle lithosphere buckle and fold.

Style PF: Localized Polarity Flip

In a third set of models, deformation is local-
ized asymmetrically along lithosphere-scale
shear zones, but the individual shear zones
are short-lived and are crosscut as new shear
zones of opposite polarity take over (style PF).
An endmember case of this orogenic style is
model 3 (Fig. 2C), which results from immedi-
ate inversion at 1 cm/yr of a narrow rift at full
lithospheric breakup (Fig. 2A; Table 1). In this
case, initial symmetric asthenospheric upwelling
at the rift axis gives way to localized deforma-
tion along two right-dipping, lithosphere-scale
shear zones that are then subsequently crosscut
by left-dipping shear zones. The resulting oro-
gen is largely symmetric with only a hint of
right-directed vergence (Fig. 2C).

Intermediate Modes of Orogenic Style

Half of the model results can be classified
as distinctly style AU, DT, or PF rift-inversion
orogens, while the other half exhibit orogen-
esis that is intermediate in character (Fig. 3).
Intermediate behavior generally results from
increasing localization of deformation as inver-
sion proceeds, with style DT leading to style
PF (model 15) or style AU (models 6, 7, 8, and
14), and style PF leading to style AU (models 2
and 10). The exception to this trend is model 4,
in which initial localization along a pair of left-
and right-dipping shear zones (style PF) gives
way to more distributed deformation (style DT).

CORRELATIONS BETWEEN INITIAL
CONDITIONS AND STRUCTURAL
STYLE

To visualize the relationship between the
model parameters explored here and the result-
ing structural styles, we assign each model
a place on a schematic ternary diagram with
vertices representing styles AU, DT, and PF
(Fig. 3). We additionally place each of the nat-
ural orogens presented in Figure 1 on this dia-
gram based on the overall vergence of major
structures in the final orogen. The configuration
of each individual orogen is contingent on the
specific ensemble of parameters that produced
it. However, there are general patterns between
individual parameters and our three endmember
orogenic styles.

The greatest influence on orogenic style is
exerted by the structure of the rift (Fig. 3). Rift-
inversion orogens that start with a narrow rift
tend to have more localized deformation along
lithosphere-scale shear zones, resulting in pro-
nounced asymmetric underthrusting (style AU)
or flipping polarity (style PF). By contrast, inver-
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Figure 2. (A) Graphical overview of parameter space explored by the 16 models in this study. An initial narrow or wide rift is taken either half-
way or all the way to lithospheric breakup. The resulting four rift structures (color-coded, see panel B) are inverted immediately (saturated
colors) or after 20 m.y. of post-rift cooling (faded colors) at either a slower (1 cm/yr; no underline) or faster (5 cm/yr; underlined) convergence
rate. (B) Initial conditions for the model orogens prior to inversion. (C) Rift inversion results exemplifying structural styles AU (asymmetric
underthrusting), DT (distributed thickening), and PF (localized polarity flip), shown prior to inversion, after 100 km of convergence, and after
200 km of convergence.
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TABLE 1. SUMMARY OF RIFT INVERSION MODEL PARAMETERS

Model Model ID Extension Lithosphere Rift duration Post-rift Inversion Inversion Total model

number velocity thickness cooling velocity duration duration
(cm/yr) (km) (m.y.) (cm/yr) (m.y.) (m.y.)

1 063022_rip_c 0.5 120 Halfway (16 m.y.) 0 1 20 36

2 071822_rip_b 0.5 120 Halfway (16 m.y.) 20 1 20 56

3 070422 _rip_e 0.5 120 Full breakup (32 m.y.) 0 1 20 52

4 072022_rip_a 0.5 120 Full breakup (32 m.y.) 20 1 20 72

5 070422_rip_c 2 80 Halfway (7.3 m.y.) 0 1 20 27.3

6 071322_rip 2 80 Halfway (7.3 m.y.) 20 1 20 47.3

7 070622_rip_a 2 80 Full breakup (14.5 m.y.) 0 1 20 34.5

8 072022_rip_b 2 80 Full breakup (14.5 m.y.) 20 1 20 54.5

9 080122_rip_a 0.5 120 Halfway (16 m.y.) 0 5 3.4* 19.4

10 080122_rip_e 0.5 120 Halfway (16 m.y.) 20 5 3.5* 39.5

11 080122_rip_b 0.5 120 Full breakup (32 m.y.) 0 5 4 36

12 080122_rip_f 0.5 120 Full breakup (32 m.y.) 20 5 4 56

13 080122_rip_c 2 80 Halfway (7.3 m.y.) 0 5 4 1.3

14 080122_rip_g 2 80 Halfway (7.3 m.y.) 20 5 4 31.3

15 080122_rip_d 2 80 Full breakup (14.5 m.y.) 0 5 4 18.5

16 080122_rip_h 2 80 Full breakup (14.5 m.y.) 20 5 4 38.5

*Models 9 and 10 failed to numerically converge prior to completion of the inversion stage and did not experience the full 200 km of inversion.

sion of a wide rift tends to result in orogens
with more distributed thickening (style DT).
However, this pattern does not hold across the
full range of parameter space, with one orogen
formed from a narrow rift (model 4) exhibit-
ing elements of style DT and several orogens
formed from wide rifts (models 6, 7, 8, 14, 15,
and 16) displaying at least some element of
styles AU or PF.

The influence of post-rift cooling and rift
duration is less systematic. Rifting to full litho-
spheric breakup rather than halfway to breakup
promotes localized deformation (styles AU and
PF), though this is highly contingent on the rift
structure (Fig. 3). Full breakup in a narrow rift
tends to promote style PF over style AU (e.g.,
models 3 and 12), whereas inversion of a wide
rift after full breakup promotes style AU over
style DT (e.g., models 7, 8, and 16). Post-rift
cooling promotes increasing localization of
deformation (styles AU and PF). For inversion of
narrow rifts (e.g., models 2, 10, and 12), the post-
rift cooling phase tends to result in shear zones of
alternating polarity (style PF) rather than asym-
metric underthrusting (style AU), whereas for
inversion of wide rifts (e.g., models 6, 14, and
16), post-rift cooling tends to result in more dis-
tinctly asymmetric (style AU) behavior (Fig. 3).

The convergence velocity has less of an
impact on the structure of the resulting orogen,
but, in general, faster convergence velocities
appear to promote asymmetric underthrusting
(style AU). The most striking influence is seen
by comparing models 3 (1 cm/yr) and 11 (5 cm/
yr), which are equivalent in setup apart from
convergence velocity. Model 3 is our exemplar
orogen for style PF (Fig. 2C), whereas model 11
exhibits asymmetric underthrusting representa-
tive of style AU (Fig. 3).

COMPARISONS WITH PRIOR
MODELING AND NATURAL
EXAMPLES

Our study differs from prior work by
exploring the range of structural variability in
rift-inversion orogenesis as a general process
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(see the Supplemental Material for additional
details). Studies focused on the Pyrenees tend
to feature narrow rift structures taken close to
lithospheric breakup with no post-rift cooling,
resulting in orogens that resemble style AU
(Jammes et al., 2014; Dielforder et al., 2019;
Jourdon et al., 2019). Some modeling studies of
continental collision include one or more rift-
inversion orogens for comparison with models
with no pre-collisional extension, using param-
eters similar to the Pyrenees models that also
yield style AU orogens (Jammes and Huismans,
2012; Wolf et al., 2021). One study that empha-
sizes the High Atlas includes wide rifts extended
part way to lithospheric breakup with significant
post-rift cooling, with resulting orogens exhibit-
ing style DT (Buiter et al., 2009). By exploring
a wider range of first-order variations in initial
rift conditions, we capture both the AU orogenic
style seen in models of the Pyrenees and the DT
style seen in the Atlas-inspired model within a
single suite of model results, in addition to other
modes of deformation (style PF and intermedi-
ate modes) that do not resemble the High Atlas
or Pyrenees (Fig. 3).

This initial exploration suggests that the
path to developing a particular structural style
is non-unique; different combinations of rift
structure, rift duration, post-rift cooling, and/
or convergence velocity can result in the same
first-order style (Fig. 3). Thus, in natural intra-
continental rift-inversion orogens, the observed
structural style may provide some indication of
initial conditions but cannot uniquely pinpoint a
single set of conditions. For example, the asym-
metric underthrusting (style AU) observed in the
Pyrenees or western Greater Caucasus (Fig. 1)
could potentially be produced either by slower
closure of a narrow rift immediately after partial
lithospheric breakup (model 1) or by faster clo-
sure of a narrow rift extended to full lithospheric
breakup (model 11).

Because the present-day structure of these
orogens alone is insufficient to uniquely identify
these parameters, using additional observations
to constrain their geologic histories is critical.

Our study highlights the need to collect data that
can differentiate between incremental tectonic
histories in natural orogens. In particular, we
note the importance of low-temperature ther-
mochronology, which can provide constraints on
both the timing and magnitude of deformation
across major structures within collisional oro-
gens (e.g., McQuarrie and Ehlers, 2017), as well
as sedimentary records, which track changes in
deposition and erosion as rifting and collision
proceed (e.g., Tye et al., 2020). Future model-
ing studies that connect these first-order struc-
tural styles and their rift histories with patterns
in thermochronology and/or sedimentary basin
evolution will be essential for unraveling the
complete history of intracontinental rift-inver-
sion orogens.

CONCLUSIONS

Two-dimensional geodynamic numerical
modeling of intracontinental rift inversion indi-
cates that the structural style of rift-inversion
orogens is highly dependent on initial condi-
tions, including rift structure, rift duration, post-
rift cooling, and convergence velocity. Model
orogens resulting from variations in these
parameters can be classified using three struc-
tural styles: asymmetric underthrusting (AU),
distributed thickening (DT), and localized polar-
ity flip (PF). No systematic relationship exists
between structural style and individual parame-
ters, though narrow rifts, rifts that do not achieve
lithospheric breakup, and rifts that cool prior to
inversion tend to promote localized deformation
(AU and PF) over distributed deformation (DT).
These model results reconcile the range of struc-
tural styles seen in natural rift-inversion orogens
but also indicate that a single structural style can
be produced from multiple rift histories.
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