
Natural Language Querying on Domain-Specific
NoSQL Database with Large Language Models
Wenlong Zhang1, Chengyang He1, Guanqun Yang1, Dipankar Bandyopadhyay2, Tian Shi3, Ping Wang1

1Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ USA
2Department of Biostatistics, Virginia Commonwealth University, Richmond, VA USA

3BizLidar, Parsippany, NJ USA
{wzhang71, che14, gyang16, pwang44}@stevens.edu, dbandyop@vcu.edu, researchtianshi@gmail.com

Abstract—Efficiently and accurately retrieving specific infor-
mation from healthcare datasets, such as the Vaccine Adverse
Event Reporting System (VAERS)1, presents significant chal-
lenges. A promising solution to this problem is the Text-to-
ESQ approach, which is akin to Text-to-SQL tasks but leverages
NoSQL database Elasticsearch, to thoroughly explore VAERS
data. Non-relational databases are particularly adept at man-
aging complex and dynamic data formats, thereby enabling
the extraction of more valuable insights. However, generating
executable NoSQL queries is still challenging due to the limited
availability of NoSQL query datasets, which constrains model
training. One potential remedy involves the use of large language
models (LLMs), which can be applied in few-shot and even zero-
shot learning scenarios. Nonetheless, the lack of prior evaluation
for this novel task, coupled with the absence of a comprehensive,
unbiased assessment of existing LLMs and prompting strategies,
impedes the development of a robust architecture. Motivated
by these challenges, we introduce a new Instruction-Enhanced
Explainable (InstructEx) Chain-of-Thought (CoT) prompting by
integrating existing CoT prompts and conducting a comprehen-
sive investigation of LLMs and CoT prompting. The extensive
experimental analysis demonstrates the effectiveness of using
LLMs for Text-to-ESQ when combined with the InstructExCoT
prompting. It also sheds light on the strengths and weaknesses
of these methods from multiple perspectives.

Index Terms—Natural language querying, NoSQL, Text-to-
ESQ, VAERS, Elasticsearch query.

I. INTRODUCTION

Natural language querying (NLQ) is an important task that
can enhance the accessibility of specially tailored databases
for broader audiences [1], [2]. Prior research predominantly
addresses the Text-to-SQL tasks and only focuses on gener-
ation and modeling challenges within this domain [3], [4].
In fact, the functional limitation of SQL is one of the main
reasons for the suboptimal results due to its limited capabilities
in full-text searching and handling multifaceted information
types. Additionally, SQL’s design is inherently suited for static
datasets and thus, it lacks proficiency in integrating external
knowledge bases.

The NoSQL database fills this gap with its rapid response
time and versatile handling of diverse data types within
industrial applications. Recently, the task of NLQ on NoSQL
database was initially proposed and explored on the Elas-
ticsearch database (i.e. Text-to-ESQ task) by proposing a

1https://vaers.hhs.gov/

two-stage controllable framework along with the VAERSESQ
dataset for training and validation [5]. However, compared
to the industry, the academic utilization of NoSQL still
presents several challenges that warrant further exploration.
This study aims to address several primary concerns that
limit the efficacy of Text-to-ESQ tasks. First, the reliance
on Elasticsearch queries for data extraction is a significant
barrier for researchers accustomed to the more universally
applied SQL syntax. The diversity of Elasticsearch queries
may cause further problems, such as different strategies when
designing prompts for large language models (LLMs). Second,
the lack of prior assessments for this innovative task under-
scores the need for a thorough investigation to formulate a
viable solution. For executable queries, both keys and values
contribute to forming a correct executable query. Therefore,
it is critical to examine several important research questions,
such as “What causes this negative outcome when we receive
a negative query result?” and “Which part of the query is prob-
lematic?” There is a lack of detailed evaluation regarding the
performance of this specific Text-to-ESQ task. Third, domain-
specific language like Elasticsearch limits the availability of
frameworks that can effectively adapt the database for spe-
cialized academic research tasks. This limitation restricts the
potential for developing tailored solutions that can seamlessly
integrate Elasticsearch into diverse research methodologies.

Recently, LLMs like Llama [6] and ChatGPT [7] have
demonstrated significant potential in various natural language
processing (NLP) tasks. Those methods offer an alternative
approach to address existing challenges by applying specially
designed prompts to guide the LLMs in completing Elastic-
search query generation without requiring extensive training
data. Particularly, the prompt processing technique known
as Chain of Thought (CoT) prompting, as introduced by
[8], has enabled LLMs to handle more complex tasks like
Text-to-ESQ. Despite numerous advancements, there are few
fair evaluations across different tasks due to the diversity
of tasks and datasets, making it challenging to apply these
advanced methods to novel tasks. To address this, in this
work, we systematically explore several CoT-style prompting
strategies for the specific Text-to-ESQ task and examine their
impact on generating different components of an executable
query. Specifically, we propose a new instruction-enhanced
explainable CoT prompting that integrates key elements from



two widely used CoT prompting, including Instructional CoT
[9] and Explainable CoT [10], to enhance the performance of
LLMs for the Text-to-ESQ task. Our main contributions are
summarized as follows:
• Introduce the instructional-enhanced explainable (In-

structEx) CoT prompting for the Text-to-ESQ task on
NoSQL databases with LLMs. To the best of our knowl-
edge, this represents the first comprehensive exploration of
LLMs applied to the NLQ task on the NoSQL database.

• Conduct a comprehensive investigation of state-of-the-
art LLMs and CoT prompting strategies. Our study
systematically explores CoT prompt engineering for the
Text-to-ESQ task by incorporating nine LLMs and three
types of baseline prompting strategies.

• Conduct an extensive experimental analysis with both
qualitative and quantitative results. This analysis under-
scores the effectiveness of utilizing LLMs for the Text-
to-ESQ task, particularly when combined with the newly
proposed InstructEx CoT prompting, offering empirical ev-
idence of how different methods contribute to enhancing
model output.

II. RELATED WORK

A. Natural Language Querying (NLQ)

NLQ is a critical task in the field of natural language
processing (NLP), enabling users to interact with databases
using natural language instead of structured query languages.
Several types of natural language querying have emerged,
each addressing different aspects of the task. Machine Read-
ing Comprehension (MRC) focuses on extracting informa-
tion from unstructured text by understanding and answering
questions based on a given passage [11]. Knowledge Base
Question Answering (KBQA) involves querying structured
knowledge bases to provide precise answers to factual ques-
tions [12]. Text-to-SQL translates natural language queries
into SQL commands to interact with relational databases [1].
Recently, the Text-to-ESQ task has been proposed to facilitate
more accurate and efficient exploration of complex healthcare
information with a NoSQL database [5]. This creates a new re-
search direction for NLQ on NoSQL database and will signif-
icantly benefit the retrieval of complex information from non-
relational databases. Meanwhile, a new dataset, VAERSESQ,
is also proposed for querying and retrieving health information
from the VAERS data in Elasticsearch database [5]. Despite
its potential, this area remains largely underexplored. In this
work, we aim to fill this gap and explore the power of LLMs
for the NLQ task on the NoSQL databases. Our objective is
to leverage the advantage of the NoSQL dataset in complex
healthcare contents and enhance the performance and usability
of NLQ systems by addressing the unique challenges posed by
NoSQL databases. By leveraging the strengths of both LLMs
and non-relational querying approaches, we seek to provide
a more robust and versatile solution for Text-to-ESQ tasks in
healthcare fields.

B. LLMs and CoT Prompting

In recent years, LLMs have revolutionized the field of
NLP by achieving unprecedented performance on a variety
of linguistic tasks. The evolution of LLMs, from models like
OpenAI’s GPT-2 [13] to the more recent GPT-4o [7], has
demonstrated their increasing capability to understand and
generate coherent and contextually relevant text across diverse
domains. One of the significant breakthroughs of LLMs is their
ability to perform zero-shot, one-shot, and few-shot learning,
as highlighted in the work on GPT-3 [14]. This capability
allows these models to generalize from minimal task-specific
examples, making them highly versatile and reducing the
need for extensive labeled datasets. Despite their impressive
capabilities, there are still several ways to further improve
the performance of these models. One of the most significant
methods is Chain-of-Thought (CoT) prompting. It is designed
to enhance the reasoning capabilities of LLMs by breaking
down complex problems into a series of intermediate steps
[15]. Now it has become a pivotal strategy in advancing AI
reasoning. Based on CoT, there came a lot of different kinds
of CoT-style branches. Part of them we call Instructional
CoT, which means using instructions only to guide LLMs to
decompose complex problems. For example, in [16], the API
DOCs prompt is used this way for the Text-to-SQL task. The
other part of them we call Explainable CoT since they use
normal words instead of instructions to explain every step.
Least-to-Most [17] is one of the successful examples among
them. However, both methods have their limitations, which
we will discuss further in Section 3. Therefore, in an LLM
with limited input, it is crucial to balance the two prompts
and leverage each of their strengths.

C. Domain Specific Language (DSL) Generation

DSL generation is an important field in NLP that focuses on
generating text or code tailored to specific industries or fields.
This specialized approach contrasts with general language
models by incorporating domain-specific knowledge and ter-
minology, resulting in more accurate and relevant outputs. The
key challenge in DSL lies in the lack of training datasets
and how to apply them to the language models pre-trained
by domain knowledge. We explore the potential of LLMs
for DSL generation tasks, specifically the Text-to-ESQ task.
Unlike previous methods that require an extensive pre-training
process, LLMs utilize prompt engineering and in-context
learning to generate Elasticsearch queries. Additionally, the
use of specially designed prompts enables LLMs to better
adapt to the requirements of Elasticsearch queries, greatly
enhancing model performance.

III. INSTRUCTION-ENHANCED EXPLAINABLE COT
PROMPTING

A. Preliminaries

Most CoT prompts can be categorized into two categories,
including Instructional CoT [9] and Explainable CoT [10]. Our
newly designed Instruction-Enhanced CoT prompt combines
the fundamental elements of both categories.



Fig. 1: The overall structure of the InstructEx CoT prompting compared with three base prompts. Colors show the corre-
spondence between various components in the question, prompt, and generated Elasticsearch queries. Here, “track total hits”
indicates the query will retrieve all the relevant records, and “term” indicates a specific field to search, which takes variables
provided in the “must” section to query. The “query” sections are designed for specific options to improve retrieval accuracy.

1) Instructional CoT Prompt: Instructional CoT prompt
emphasizes providing only the essential instructions required
to guide the LLMs effectively [18] and has been adopted
in many NLP tasks such as question answering and sen-
timent analysis [19]–[21]. Clear instructions help minimize
misleading, particularly in areas with limited pre-training data.
Most LLMs are pre-trained on data in the general domain,
with only a small portion dedicated to specialized tasks. This
imbalance often results in suboptimal performance when these
models are applied to domain-specific tasks. In this context,
designing appropriate prompts becomes crucial, as misleading
prompts can easily result in incorrect outcomes. Another
advantage of Instructional CoT prompt is its brevity, which
minimizes the length of the prompt and creates more space
for in-context learning examples. This efficiency is particularly
beneficial in tasks with constrained answer formats, such as
named entity recognition [22] and code generation [23]. By
focusing on key points, Instructional CoT ensures a focused
and directed interaction with the LLMs, thereby enhancing
the model’s performance in tasks requiring precise outputs.
However, providing only necessary instructions is insufficient
to address complex and domain-specific problems, particularly
those involving logical reasoning.

2) Explainable CoT Prompt: Explainable CoT is the other
category of most widely used prompting approaches that
emulate human societal interactions by guiding the model
through problem-solving steps and incorporating extensive
explanations [24]. This strategy closely aligns with human
cognitive processes, enhancing the intuitiveness and user-

friendliness of interactions with language models. Moreover,
a sufficiently explanatory prompt can help the model focus on
logical connections, thereby enhancing the retrieval of similar
logical information. Empirical evidence supporting the efficacy
of this approach is presented in studies such as [25], [26],
where a range of studies consistently demonstrate improved
performance when employing the Explainable CoT method.
Compared to Instructional CoT prompts, this method excels
in handling complex logic problems, such as content with
structure, where the rules of explanation are more important
than in-context examples. However, this approach still has its
drawbacks, such as consuming a significant number of input
tokens due to too many explanation words and potentially mis-
leading the model’s results through the explanation process.

B. InstructEx CoT Prompting Design
Many complex problems, for example, Text-to-ESQ tasks in

this work, tend to involve both intricate logic judgments and
domain-specific language explanation. When handling these
tasks with LLMs, it is essential to explain the necessary
rules in the prompts and ensure that the generated results
are not misleading. Therefore, in this paper, we combine the
advantages of both Instructional and Explainable CoT prompts
to address these challenges and introduce the Instruction-
Enhanced Explainable (InstructEx) CoT prompt. Specifically,
the InstructEx CoT prompt represents a hybrid approach that
integrates elements from both Instructional CoT and Explain-
able CoT prompts. Figure 1 provides the overall prompt
structure of different prompting strategies with an illustrative
example. We focus on zero-shot learning in this paper.



1) Prompt Formats: In the development of the InstructEx
prompt architecture, we drew inspiration from two established
prompt formats, including API Documentation [16] and QDe-
comp [20]. Each of these formats exhibits distinct advantages
and is suitable for various sub-tasks. First, the QDecomp
format is adopted for the basic structure design, as shown
in Figure 1, which separates the prompts into two parts:
Prompt header and Prompt body. Further, we apply the API
DOCs format to depict all rest prompts through Python API
comments. This deliberated design minimizes the length of
prompts for each instance, thereby providing sufficient space
for additional in-context examples within a constrained input
space [20]. This method significantly differs from the Ex-
plainable CoT prompts, which typically require more verbose
descriptions. Such extensive descriptions can potentially lead
to ambiguities or misinterpretations when processed by large
language models. For example, when using the Explainable
CoT prompts in our experiments with the Falcon model, the
employment of general prompts resulted in the generation of
SQL queries as opposed to the intended Elasticsearch queries.
Therefore, the API Docs format has been one of our primary
choices for enhancing efficiency and accuracy in solving this
complex Text-to-ESQ task.

2) The Design of InstructEx CoT Prompting: Unlike tradi-
tional CoT prompts that separate tasks by the logic chain,
InstructEx CoT emphasizes breaking down the task itself.
Specifically, we adopted a modified version of the CoT prompt
style to deconstruct complex tasks into more manageable
subtasks. This strategy departs from the linear, step-by-step
logic commonly employed in solving mathematical problems.
Instead, it embraces a task-based thinking paradigm, which
focuses on the holistic understanding and resolution of the
problem rather than following a sequential logical progression.
In general, as shown in Figure 1, the InstructEx prompt
includes two essential components, the prompt header and the
prompt body.

Prompt header include the database schema at the be-
ginning of the entire prompt which encapsulates essential
information, establishing a contextual foundation for subse-
quent prompts. Compared to the task of generating codes
directly from a guide model, the task-specific header enhances
the generation of the crucial condition fields. Additionally, it
reduces the prompt length for each example compared to other
similar methods. This component will also be adopted in the
design of all baseline prompts for a fair comparison in our
experiments.

Prompt body is designed to offer more comprehensive
guidance, clarifying specific tasks and expectations. The ad-
ditional information will guide the model behavior and help
improve the accuracy of the generated query. The prompt body
consists of three key sub-components.
• Natural Language Question (S1): The input questions

will be provided at the beginning of the prompt body.
Square brackets are used to highlight questions. This basic
sub-component is also adopted in other different baseline
prompts. Excessive decomposition can mislead the model’s

output direction. To avoid this, like most CoT methods, it’s
beneficial to separate the input questions from the decompo-
sition processes, ensuring the intended goal remains clear.

• Instructions with Stepwise Explanations (S2): This step
is a critical sub-component of the InstructEx CoT prompt.
We employ a task-specific strategy to break down the
complex task of generating an Elasticsearch query into two
manageable steps, including (1) identifying the condition
words related to field names listed in the prompt header,
and (2) identifying the corresponding values with conditions.
Each step is initially articulated through an instructional-
style prompt to avoid any ambiguity, then followed by an
explanatory expression to guide the accurate extraction. By
combining these two strategies, we leverage their respective
advantages and achieve significantly improved results.

• Query Generation Instruction (S3): This sub-component
aims to combine all information extracted from the previous
stages and guide the model to complete the query generation.
We provide this sub-component at the end of the prompt to
clarify the task’s purpose and ensure the generation of the
expected results.
The deliberately designed process culminates with an in-

structional prompt, designed to synthesize the various compo-
nents into a cohesive Elasticsearch query. Our new structured
approach blends directive and conversational elements, giving
new direction in prompt design for complex query generation
tasks, especially in DSL-generating fields like Text-to-ESQ.
All the prompting strategies in experiments utilize the same
structure for fair comparisons.

C. Investigated LLMs

We evaluate the performance of the proposed InstructEx
prompt by comparing it with three baseline prompts with
multiple state-of-the-art LLMs, Including GPT series (gpt-3.5-
turbo, gpt-4-1106, and gpt-4o) [27], Llama series (Llama2,
Llama3, LlamaChat, and CodeLlama) [6], Falcon2, and Star-
Coder [28].

IV. EXPERIMENTS

In this section, we address the following research ques-
tions (RQs) through experimental analysis. (1) RQ1: How do
various LLMs perform on the domain-specific Text-to-ESQ
task? (2) RQ2: Does the proposed InstructExCoT prompting
improve the performance of the Text-to-ESQ task? (3) RQ3:
What is the performance of different LLMs on various data
types in the Elasticsearch queries? (4) RQ4: How do we
interpret the generated queries obtained from the LLMs with
different prompting strategies?

A. Experimental Settings

1) Datasets Used: We utilize the VAERSESQ dataset re-
leased in [5] for our experimental analysis on the Text-to-ESQ
task. Specifically, the Elasticsearch database is created based
on the publically available Vaccine Adverse Event Reporting

2https://falconllm.tii.ae/falcon-models.html



TABLE I: Basic statistics of VAERSESQ dataset.

Data Value
Number of tables 3
Number of fields/columns in tables 35/8/11
Number of questions 13,040
Average question length (in words) 12.13
Average query length 167.65

System (VAERS) dataset3. VAERS covers patients’ demograph-
ics, diagnoses, a standardized list of symptoms, and additional
context related to vaccine adverse events. It also provides
details on vaccine categorization and manufacturing. VAERS
is designed to detect potential safety issues with vaccines and
ensure that the benefits outweigh the risks.

To test and evaluate different approaches for Text-to-ESQ,
we utilize the question-query pairs from the VAERSESQ
Dataset, which is specifically created based on three different
tables in the VAERS data. Table I provides the basic statistics
of the VAERSESQ data. The dataset covers 13,040 questions,
with an average question length of 12.13 words. The average
query length is 167.65, and each Elasticsearch query is associ-
ated with a natural language question obtained by rephrasing
a template question. For our experimentation, we randomly
selected a sample of 1,000 instances for analysis.

2) Evaluation Metrics: We mainly utilize three metrics to
evaluate the generated Elasticsearch queries. (1) BLEU Score
[29] is originally designed for assessing machine-translated
text against human benchmarks and has expanded its utility to
various NLP tasks, including code generation. In the context of
this DSL, popular metrics like CodeBLEU are less applicable
due to a lack of a trained matrix specifically tailored for
DSLs. (2) Query Frame Similarity measured by Jaccard
Distance is used to evaluate the fuzzy similarity between
the ground truth and generated Elasticsearch queries. This
is particularly relevant in scenarios where multiple correct
Elasticsearch queries might exist for a single question. Unlike
exact matching, fuzzy similarity prevents the omission of
the generated queries that can accurately extract information
despite some minor differences from the ground truth. (3)
Query keyword accuracy measured by condition match
and value match between the ground truth and generated
queries. Here, “condition” means where to extract information,
specifically indicating the column or field name the question
is related to. While “value” represents the specific data cell
retrieved from the database. This allows us to further verify the
accuracy of the generated query by focusing on the two critical
components in Elasticsearch queries, including the searching
field and the searching value.

3) Implementation Details: All experiments except for the
GPT series were implemented using NVIDIA Quadro RTX
5000 GPUs. The implementation of all LLMs was performed
with CUDA 12.0 and Ubuntu 22.04.3, ensuring efficient par-
allel processing and optimization on the GPU hardware. Other
dependencies include PyTorch version 2.0.1 and Transformers

3https://vaers.hhs.gov/

version 4.34.0. For the GPT series, we use the OpenAI API
in our experiments. To balance the generation quality and
diversity, the temperature parameter was set to 0.7. Addition-
ally, a repetition penalty of 1.1 was applied to discourage
models from generating repetitive sequences, thus enhancing
the variety and informativeness of the outputs. By maintaining
these consistent experimental settings, we ensured a fair com-
parison across different models and prompting strategies. The
implementation of the InstructExis made publically available
at this GitHub repository4.

B. Experimental Results

1) Query Generation Performance of Different LLMs
(RQ1): Table II and Table III provide the performance com-
parison of different LLMs with different prompting strategies
for Text-to-ESQ. Table III demonstrate that our proposed
method surpasses baseline approaches, achieving higher over-
all BLEU scores, which indicate improved code structure and
accuracy relative to the ground truth. The significant enhance-
ment observed in GPT-4o underscores its heightened sensitiv-
ity to prompts and its ability to adapt effectively to complex
tasks, with our method further augmenting the model’s perfor-
mance. In Table II, it can be observed that, for each specific
prompting strategy, gpt-4o demonstrates a superior and notable
performance on this zero-shot DSL learning task compared
with other LLMs, which is evident in two key aspects. First,
its excellence in generating accurate condition values in Elas-
ticsearch queries is particularly noteworthy, leading to high
scores in terms of value match. Second, gpt-4o’s superior code
frame generation capabilities are further highlighted by its
leading performance in Frame Similarity, surpassing all other
examined LLMs. Besides LLMs in the GPT series, Llama
series also demonstrates effective performance across different
evaluation metrics. Specifically, Llama3 shows improvements
over Llama2 in all three evaluation metrics, despite utilizing
a smaller model size of 8 billion parameters compared to
Llama2’s 13 billion. While Llama2 exceeds LlamaChat in code
framework proficiency, its performance diverges significantly
concerning the evaluation metrics of Condition match and
Value match. Additionally, StarCoder demonstrates strong
performance in generating the Value field, but its performance
in other areas is lacking.

Our analysis indicated that not all LLMs can adapt well
to Text-to-ESQ task. Models such as Llamachat and Falcon
exhibit limited proficiency in generating Elasticsearch queries,
showing only marginal improvements observed after prompt
tuning. In Table II, it is important to highlight that although
CodeLlama operates with significantly fewer parameters (13
billion), it still exhibits competitive performance, especially
after applying InstructExprompt method. Notably, it surpasses
GPT series in Condition Match, achieving an accuracy of
0.520, which highlights CodeLlama’s proficiency in extracting
complexly formulated information.

4https://github.com/SteveZwl/LLM-for-Text-to-ESQ



TABLE II: The Text-to-ESQ task performance of different LLMs with four prompting strategies. The underline indicates the
best result in the same method separately and we bold the best results on different evaluation matrices.

Prompt Evaluation gpt-4o gpt-4 gpt-3.5 Llama2 Llama3 LlamaChat CodeLlama Falcon StarCoder

Base
Frame similarity 0.453 0.328 0.367 0.289 0.257 0.141 0.312 0.234 0.140
Condition match 0.427 0.345 0.412 0.105 0.213 0.192 0.472 0.235 0.392

Value match 0.745 0.519 0.898 0.375 0.529 0.670 0.578 0.379 0.592

Instructional
Frame similarity 0.421 0.335 0.351 0.242 0.213 0.172 0.362 0.218 0.180
Condition match 0.435 0.401 0.420 0.112 0.186 0.202 0.506 0.397 0.400

Value match 0.867 0.611 0.961 0.407 0.629 0.667 0.788 0.166 0.615

Explainable
Frame similarity 0.454 0.421 0.383 0.313 0.273 0.148 0.356 0.328 0.320
Condition match 0.381 0.368 0.376 0.093 0.316 0.202 0.376 0.110 0.190

Value match 0.768 0.509 0.932 0.453 0.590 0.653 0.455 0.344 0.543

InstructEx
Frame similarity 0.472 0.382 0.461 0.281 0.287 0.226 0.352 0.341 0.328
Condition match 0.477 0.422 0.432 0.150 0.396 0.196 0.520 0.236 0.303

Value match 0.985 0.704 0.973 0.482 0.623 0.676 0.720 0.406 0.720

(a) Date Format (b) Float Format

(c) Serial Format (d) Text Format

Fig. 2: Performance on generating different types of condition values in Elasticsearch queries. The x-axis labels represent LLMs,
including gpt4o (gpt-4o), gpt4 (gpt-4-1106-preview), gpt3.5 (gpt-3.5-turbo), Fal (Falcon), Star (StarCoder), Lla (Llama2), Llch
(LlamaChat), and Llco (CodeLlama).

TABLE III: Performance measured by BLEU Score for the
Text-to-ESQ task.

LLMs Base Instructional Explainable InstructEx
gpt-4o 32.0 33.4 35.0 45.4

gpt-3.5-turbo 35.0 35.5 35.3 42.4
gpt-4 24.0 30.7 34.3 38.9

CodeLlama 26.5 34.0 37.8 39.4
Llama2 10.5 38.0 37.0 38.5
Llama3 30.5 30.0 28.4 33.0

LlamaChat 10.3 24.0 28.4 32.5
StarCoder 7.0 32.0 38.6 39.8

Falcon 17.0 6.0 26.0 17.6

2) Performance of Different Prompting Strategies (RQ2):
Table II also provides a comprehensive comparative study
across four prompting strategies for Text-to-ESQ tasks with
different LLMs. In general, compared with the base prompt,
we observe that all specifically designed prompting strategies
demonstrated an enhanced performance for all LLMs, partic-

ularly notable in the context of code framework, as evidenced
by the scores of Code Frame Similarity. Among different
prompting strategies, the use of Instructional CoT prompts
specifically improved model performance in terms of special
keywords, notably in the Condition and Value segments.
However, when employing Explainable CoT prompts, there
was a noticeable improvement in the code framework, albeit
with diminished effectiveness in handling special keywords.

Our analysis reveals that both Explainable and Instruc-
tExCoT prompting significantly enhance the Code Frame
Similarity Score, indicating their effectiveness in aiding LLMs
to generate more accurate code frames. Notably, InstructEx-
CoT prompts often outperform Explainable CoT prompts in
this regard. However, the scenario alters when examining
the keyword accuracy, and only Instructional and Instruc-
tExCoT prompts show a positive contribution to keyword
accuracy. This suggests that these methods are more adept



Fig. 3: An illustrative example of generated queries from different prompts. Red color indicates the generation errors.

at addressing specific format information within generated
content than Explainable methods. Conversely, Explainable
prompts appear to have a detrimental effect in this context.
The overall performance metrics corroborate the efficacy of
our approach InstructExCoT prompts in amalgamating these
distinct prompt styles, thereby augmenting model performance
across various dimensions. Based on our findings, we can
summarize the advantages of Instructional and Explainable
CoT prompting. (1) Instructional CoT guides the model to
ignore the relationships between different parts of a sentence
and instead focus on the accuracy of key values that positively
impact the keywords, including conditions and values part in
generating code, but it decreases the performance of Code
Frame Similarity. Specifically, Instructional CoT prompting
significantly enhances the performance of Value match ac-
curacy, gpt-4o observes a 22% increment compared to the
Base prompt. (2) Explainable CoT enhances the code frame
but reduces the accuracy of the keyword match. Compared
to concise SQL queries, Elasticsearch queries are more like
a scripting language, and have complex terms for expres-
siveness, which means they contain more relatively detailed
content. Additionally, Explainable CoT prompts perform better
in generating this relatively detailed content, which is why
Explainable CoT contributes more significantly to the Code
Frame. Therefore, it is a trade-off strategy when given the
limited input tokens for LLMs, and we have balanced both
Instructional and Explainable CoT prompts in the proposed
InstructExprompting, which has significantly enhanced model
efficacy and demonstrated substantial positive effects across
various aspects for Text-to-ESQ. The findings also highlight
the critical importance of designing task-specific prompting for
LLMs, tailored to the unique characteristics and capabilities
of each model.

3) Performance on Generating Different Types of Condition
Values in Elasticsearch Queries (RQ3): Figure 2 shows the
performance of different LLMs with four prompting strategies
for generating different data types, including Date, Floating-
point numbers, Serial Numbers for vaccine product codes, and
Texts in the generated queries. GPT series generally demon-
strate the best performance across almost all data types. For
the Llama series, CodeLlama and Llama3 show significantly
more accurate judgments for date types compared with Llama2
and LlamaChat. LlamaChat excels in predicting floating-point

numbers but is considerably less accurate in the remaining
categories. Falcon and Llama2 exhibit mediocre performance
across all domains. StarCoder outperforms CodeLlama in Se-
rial Format and plain text but falls short in the other categories.
In conclusion, the GPT series consistently achieves the highest
overall evaluation. However, the Llama series demonstrates a
strong cost-performance ratio, particularly in this experiment,
where we utilized the smaller parameter versions due to
computational resource limitations. Although other models
may not match the power of the GPT series, they still offer
valuable potential applications. For instance, StarCoder excels
in information extraction, making it a viable solution in this
domain. Similarly, CodeLlama can serve as an alternative to
GPT series for some simple tasks and is also more cost-
effective, demonstrating its utility in specific scenarios.

In Figure 2, we also observed that InstructExCoT prompting
yielded the most positive impact across all data formats.
Notably, significant improvements were seen in the Serial
and Text Format, which are considered the most distinct
aspects of the generation task. Generally, models with a higher
number of parameters experienced greater enhancement fol-
lowing the application of the InstructExprompts. Conversely,
the implementation of Explainable CoT prompts exhibited a
negative influence on the Value match field, particularly in
the Date and Float formats. This suggests that the inclusion
of explainable words may hinder the extraction of purely
numerical information in this context.

4) Case Study with Different Prompting Strategies (RQ4):
Figure 3 provides the generated queries with different prompt-
ing strategies for a specific question example. It can be ob-
served that all baseline prompts, except for the InstructExCoT
prompt, exhibited errors in the generation. Specifically, the
base prompt demonstrated a code frame error, characterized
by the absence of crucial content and the presence of mul-
tiple brackets. The Instructional CoT prompts, on the other
hand, contained two code frame errors, both attributable to
missing brackets. In the scenario involving the Explainable
CoT prompt, two value match errors and one condition match
error were identified. Contrarily, the InstructExCoT prompts
accurately yielded the correct results, effectively addressing
the example question regarding patients who exhibited ab-
normal white blood cell counts post-COVID vaccination and
remained alive. In the segment of code frames, a predominant



source of errors is attributed to the omission of brackets.
Furthermore, within the keyword section, it is observed that
the condition aspect is more prone to errors compared to the
value segment. The reason is that condition fields include
some specific symbols and unordered letters. Therefore, the
key issues include the selection of an unsuitable condition field
and the failure to fully encapsulate the condition name.

V. CONCLUSIONS

In this paper, we employ large language models (LLMs)
for natural language querying (NLQ) on NoSQL databases
to address the challenges of retrieving complex health infor-
mation. We systematically examine Chain-of-Thought (CoT)
style prompting to enhance LLMs’ capabilities in the Text-
to-ESQ task. Specifically, we integrate reasoning steps from
two existing methods (Instructional CoT and Explainable
CoT), and further introduce a novel approach for generating
Elasticsearch queries in the Text-to-ESQ task. Our extensive
experiments demonstrate that: (1) different models vary in
performance when generating distinct parts of the queries,
and (2) different prompt styles impact multiple data types
differently. The introduction of the InstructExCoT prompting
marks an initial exploration of merging diverse prompt styles
for solving the Text-to-ESQ task on NoSQL databases with
LLMs.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation grant IIS-2245907 and the startup funding from the
Stevens Institute of Technology.

REFERENCES

[1] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured
queries from natural language using reinforcement learning,” arXiv
preprint arXiv:1709.00103, 2017.

[2] H. Kim, B.-H. So, W.-S. Han, and H. Lee, “Natural language to sql:
where are we today?” Proceedings of the VLDB Endowment, vol. 13,
no. 10, pp. 1737–1750, 2020.

[3] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman et al., “Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018, pp. 3911–3921.

[4] T. Scholak, N. Schucher, and D. Bahdanau, “Picard: Parsing incremen-
tally for constrained auto-regressive decoding from language models,” in
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 2021, pp. 9895–9901.

[5] W. Zhang, K. Zeng, X. Yang, T. Shi, and P. Wang, “Text-to-esq:
A two-stage controllable approach for efficient retrieval of vaccine
adverse events from nosql database,” in Proceedings of the 14th ACM
International Conference on Bioinformatics, Computational Biology,
and Health Informatics, 2023, pp. 1–10.

[6] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[7] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[8] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” 2023.

[9] J. Zhang, B. Wang, L. Li, Y. Nakashima, and H. Nagahara, “Instruct me
more! random prompting for visual in-context learning,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), January 2024, pp. 2597–2606.

[10] Y.-F. Yeh, M.-C. Chen, P.-H. Hung, and G.-J. Hwang, “Optimal self-
explanation prompt design in dynamic multi-representational learning
environments,” Computers & Education, vol. 54, no. 4, pp. 1089–1100,
2010.

[11] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Process-
ing, 2016, pp. 2383–2392.

[12] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on
freebase from question-answer pairs,” in Proceedings of the 2013
conference on empirical methods in natural language processing, 2013,
pp. 1533–1544.

[13] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[15] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[16] N. Rajkumar, R. Li, and D. Bahdanau, “Evaluating the text-to-sql
capabilities of large language models,” arXiv preprint arXiv:2204.00498,
2022.

[17] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schu-
urmans, C. Cui, O. Bousquet, Q. Le et al., “Least-to-most prompting
enables complex reasoning in large language models,” arXiv preprint
arXiv:2205.10625, 2022.

[18] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[19] B. Paranjape, S. Lundberg, S. Singh, H. Hajishirzi, L. Zettlemoyer, and
M. T. Ribeiro, “Art: Automatic multi-step reasoning and tool-use for
large language models,” 2023.

[20] C.-Y. Tai, Z. Chen, T. Zhang, X. Deng, and H. Sun, “Exploring chain-
of-thought style prompting for text-to-sql,” 2023.

[21] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face,” 2023.

[22] X. Ren, Y. Song, C. Yan, Y. Xiong, F. Kong, and X. Fu, “Cmed-
baichuan: Task explanation-enhanced prompt method on promptcblue
benchmark,” in Health Information Processing. Evaluation Track Pa-
pers, H. Xu, Q. Chen, H. Lin, F. Wu, L. Liu, B. Tang, T. Hao, Z. Huang,
J. Lei, Z. Li, and H. Zong, Eds. Singapore: Springer Nature Singapore,
2024, pp. 31–48.

[23] Z. Liu, Y. Tang, X. Luo, Y. Zhou, and L. F. Zhang, “No need to lift a
finger anymore? assessing the quality of code generation by chatgpt,”
IEEE Transactions on Software Engineering, vol. 50, no. 6, pp. 1548–
1584, 2024.

[24] K. Berthold, H. Röder, D. Knörzer, W. Kessler, and A. Renkl, “The
double-edged effects of explanation prompts,” Computers in Human
Behavior, vol. 27, no. 1, pp. 69–75, 2011.

[25] O. Press, M. Zhang, S. Min, L. Schmidt, N. A. Smith, and M. Lewis,
“Measuring and narrowing the compositionality gap in language mod-
els,” 2023.

[26] Z. Zhang, A. Zhang, M. Li, and A. Smola, “Automatic chain of thought
prompting in large language models,” 2022.

[27] L. Gao, T. D. la Tour, H. Tillman, G. Goh, R. Troll, A. Radford,
I. Sutskever, J. Leike, and J. Wu, “Scaling and evaluating sparse
autoencoders,” arXiv preprint arXiv:2406.04093, 2024.

[28] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[29] M. Post, “A call for clarity in reporting bleu scores,” arXiv preprint
arXiv:1804.08771, 2018.


