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Abstract— Task-oriented semantic communications (TSC)
enhance radio resource efficiency by transmitting task-relevant
semantic information. However, current research often overlooks
the inherent semantic distinctions among encoded features. Due
to unavoidable channel variations from time and frequency-
selective fading, semantically sensitive feature units could be more
susceptible to erroneous inference if corrupted by dynamic chan-
nels. Therefore, this letter introduces a unified channel-resilient
TSC framework via information bottleneck. This framework
complements existing TSC approaches by controlling information
flow to capture fine-grained feature-level semantic robustness.
Experiments on a case study for real-time subchannel allocation
validate the framework’s effectiveness.

Index Terms— Channel resilience, information bottleneck,
task-oriented semantic communications, radio resource
allocation.

I. INTRODUCTION

FUTURE wireless networks are expected to support dra-
matically increased data traffic, driven primarily by

the prevalence of sensing capabilities, distributed computing
resources, and ongoing convergence with vertical applications,
including transportation, online gaming and smart utilities.
To support the unprecedented traffic growth with limited radio
resources, task-oriented semantic communications (TSC) have
garnered considerable interest [1], [2]. Unlike conventional
bit-level communications, TSC leverages both distributed
computing resources as well as the most recent artificial intel-
ligence (AI) techniques to extract and transmit task-relevant
semantic information, thereby reducing unnecessary traffic and
enhancing radio resource utilization efficiency.

In TSC, the transceiver typically integrates semantic and
channel coding functions to extract task-relevant semantic
features and enable efficient transmissions [2]. Yang et al.
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introduced a novel compression method for AI tasks to
improve transmission efficiency, demonstrated with a proto-
type for surface defect detection [3]. Instead of focusing solely
on semantic coding, Shao et al. [4] and Sun et al. [5] pro-
posed to jointly optimize semantic and channel coding based
on information bottleneck to balance semantic distortion and
transmission efficiency. Moreover, TSC problems have been
investigated in multi-user and multi-modality scenarios [6],
[7], [8].

Despite considerable efforts, existing TSC research primar-
ily focuses on statistical channel conditions, assuming a certain
channel condition when transmitting an input sample [2],
[3], [4], [5], [6], [7]. However, the encoded features may be
subject to various physical impairments during transmission.
In orthogonal frequency division multiplexing (OFDM) sys-
tems, for example, signal transmission occurs across multiple
subcarriers, each experiencing different frequency-selective
fading over a wide bandwidth [9]. While recent work in [10]
introduces adaptive subcarrier allocation for TSC, it pri-
marily focuses on ensuring the delivery of semantic-critical
feature units. As a result, if semantically sensitive feature
units are assigned to subcarriers with poor performance,
the resulting corruption of these features is more suscepti-
ble to erroneous task inference. While channel estimation
techniques can evaluate instantaneous channel conditions in
practice [9], the evaluation results cannot effectively guide
resilient feature-level transmissions due to the neglected
semantic distinctions among encoded feature units.

To bridge the gap between feature-level semantic dis-
tinctions and channel variations, this letter introduces an
innovative TSC framework to improve channel resilience by
evaluating and prioritizing encoded feature units of input data
based on their robustness against channel variations. This
framework is designed to be complementarily leveraged by
existing TSC approaches to capture fine-grained feature-level
semantic robustness, thereby adjusting transmission strategies
for channel-resilient TSC. The primary contributions of this
letter are summarized below.

• Unified channel-resilience framework: We develop a uni-
fied approach to analyze a well-trained TSC transceiver
for channel resilience, providing a soft robustness mask
for the encoded feature space without modifying the
established TSC encoding and decoding functions. This
mask will be utilized to prioritize robust feature units and
adapt the transmission strategies against instantaneous
channel variations in practice.

• Robustness mask based on information bottleneck (IB):
We construct the robustness mask for encoded feature
units by leveraging IB to regulate information flow with
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explicitly added artificial noise. Based on the task infer-
ence sensitivity, this mask softly disentangles the encoded
features into robust and non-robust from the semantic
level.

• Numerical evaluation. We conduct experiments for
real-time subchannel allocation problems as a case study.
Evaluation results demonstrate the framework’s effective-
ness, especially under highly dynamic adverse channel
conditions.

II. SYSTEM MODEL

This letter considers a typical task-oriented semantic com-
munications (TSC) system. As illustrated in Fig. 1, the
transmitter comprises semantic and channel encoders. Given
an input sample x ∈ XT of task T with the inherent
task-specific semantic information y ∈ YT , e.g., the target
label, the transmitter first extracts the semantic information of
x with the semantic encoder and then processes it via the chan-
nel encoder. The encoded features are given by z = Eφ(x),
which is also represented as z = {z1, . . . , zm}, consisting m
vectors. Note that we denote Eφ as the joint semantic and
channel encoding function for ease of representation, which
is consistent with many existing TSC works [4], [8], [11].
Encoded features z are then transmitted through the physical
channel to the receiver, and the received signal can be given
by ẑ = Hz + n, ẑ = {ẑ1, . . . , ẑm}, where H denotes the
channel matrix and n ∼ N (0, γ2I) denotes the additive white
Gaussian noise (AWGN). The received signal is subsequently
processed via a channel decoder and a semantic decoder.
Similar to the transmitter, we denote Dθ as the joint channel
and semantic decoding function and derive the reconstructed
semantic information ŷ = Dθ(ẑ).

The workflow of the above TSC system can be formulated
as a probabilistic graphical model: Y ↔ X ↔ Z ↔ Ẑ ↔ Ŷ .
In the following, we use upper-case letters, e.g., X , and
lower-case letters, e.g., x, to represent random matrices and
their realizations, respectively. Existing TSC research primar-
ily focused on reducing the size of encoded features z =
{z1, . . . , zm} while ensuring reconstruction performance of
semantic information [2], [3], [4], [5], [6], [7]. To achieve this,
encoding and decoding functions, i.e., Eφ at the transmitter
and Dθ at the receiver, are strategically optimized. We refer
readers to recent TSC works [1], [2], [3], [4], [5], [6], [7] for
more details.

III. CHANNEL-RESILIENT TSC FRAMEWORK

A. Design Intuition

While TSC systems have been extensively studied [1],
[2], [3], [4], [5], [6], [7], existing research mainly considers
statistical channel conditions to optimize semantic and channel
coding functions, assuming that all encoded features of an
input sample are transmitted under the same channel condition.
However, this assumption may not hold true in practice. For
instance, in OFDM systems, multiple subcarriers are used to
simultaneously transmit data across a wide band [9]. Hence,
encoded features may suffer distinct channel impairments due
to different frequency-selective fading between subcarriers.
Although instantaneous channel state information (CSI) can be

Fig. 1. Overview of channel-resilient TSC framework. Blue arrows indicate
IB-based channel-resilient analysis; black arrows indicate transmission proce-
dures in the TSC system.

monitored using estimation techniques, such as pilot symbols
embedded in OFDM symbols, the adaptation of transmission
strategies is designed to maximize the successful delivery of
OFDM symbols. The focus remains on optimizing bit-level
transmission performance, i.e., duplicating all encoded fea-
tures, rather than semantic inference. In other words, feature
units across the encoded signal are assumed equally robust
against channel variations. However, feature units may affect
semantic inference differently, e.g., the semantically sensitive
or non-robust units are more susceptible to erroneous task
inference if corrupted by poor channel conditions. To address
these limitations, this letter introduces an innovative frame-
work for channel-resilient TSC by evaluating and prioritizing
encoded feature units based on their robustness against channel
variations. The framework offers a unified solution to comple-
ment existing TSC approaches from two perspectives:

• The framework seamlessly integrates with existing TSC
approaches by analyzing a well-trained TSC transceiver.
Specifically, a soft robustness mask is created for the
encoded feature space without modifying the established
TSC encoding and decoding functions, i.e., Eφ and Dθ.

• The robustness mask aims to align semantic-level feature
units with instantaneous channel variations. The mask
with feature-level semantic distinctions guides transceiver
to efficiently adjust transmission strategies based on
instantaneous CSI, aiming for task-specific semantic
inference.

To achieve this goal, we leverage information bottle-
neck (IB) [12] to analyze the encoded feature space by
explicitly adding artificial noise to synthesize channel vari-
ations. Based on the semantic inference sensitivity of artificial
noise intervention, a soft feature robustness mask is generated
to indicate how encoded feature units corrupted by channel
variations affect semantic inference with assigned information.
In the following, we first present the IB reformulation to
control information flow for channel resilience purposes and
then provide a tractable solution to obtain the robustness mask.
Finally, a case study of leveraging the mask for subchannel
allocation is introduced.

B. Information Bottleneck Reformulation

IB is an information theoretical design principle that aims to
find the best tradeoff between accuracy and complexity [12].
Several recent works leveraged the IB principle in TSC to
seek the tradeoff between transmission rate and semantic
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information distortion [4], [13]. Following the aforementioned
probabilistic graphical model in Section II, Y ↔ X ↔
Z ↔ Ẑ ↔ Ŷ , the objective of optimizing the encoding and
decoding functions, i.e., φ and θ, based on the IB principle
can be given by

min L(φ, θ) = −I(Ẑ, Y ) + βI(Ẑ,X), (1)

where I is the mutual information; β is the Lagrange multiplier
that regulates the amount of information in feature space Ẑ.
In (1), the first term minimizes semantic distortion by allowing
the received encoded features Ẑ to be predictive on semantic
information Y , and the second term maximizes transmission
rate by enforcing the compression from the input X to received
encoded features Ẑ.

Instead, this letter intends to improve the channel resilience
of a well-trained TSC transceiver, whose encoding and decod-
ing functions (φ, θ) are frozen.1 To estimate how encoded
features corrupted by channel variations affect TSC, we reuse
the objective in (1) by introducing the artificial noise σ to
simulate channel impairments, which control the information
flow and estimate the robustness of the encoded feature
space. Hence, the estimation for channel-resilient TSC can be
formulated as

min L(σ) = −I(Z̃, Y |φ, θ) + βI(Z̃,X|φ, θ),

s.t. Z̃ = Z + σ · ϵ, (2)

where Z̃ stands for the encoded features corrupted by channel
impairments, such as fading and noise. To model the effect
of channel impairments, we inject artificial noise σ · ϵ to the
encoded features Z = Eφ(X), where the operator · denotes
the Hadamard product and ϵ represents the Gaussian noise
sampled from N (0, I). Thus, we obtain Z̃ ∼ N (Eφ(X), σ2).
Here, the noise variation measures the correlation between
the encoded features and the inferred semantic information
based on the fact that robustness refers to a high correlation
on semantic inference under impairments and non-robustness
is the opposite [14]. As (φ, θ) are frozen throughout the
optimization for channel resilience analysis, we exclude φ and
θ in the following notation for simplicity.

C. Upper Bound of the IB-Based Robustness Estimation

To calculate the achievable artificial noise, we resolve the
difficulty of mutual information computation in (2) by deriving
the upper bound of the objective function. We start with the
first term I(Z̃, Y ). Writing it out in full, this becomes

I(Z̃, Y ) =
∫

p(y, z̃) log
p(y, z̃)

p(y)p(z̃)
dydz̃

=
∫

p(y, z̃) log p(y|z̃)dydz̃ + H(Y ), (3)

where p(y) and p(z̃) are the probability of the semantic
information and encoded features with artificial noise, respec-
tively. H(Y ) is the entropy of the semantic information that
is independent of the optimization and thus ignored. Recalling
the probabilistic graphical model Y ↔ X ↔ Z, we rewrite

1Note unlike adversarial training [14] that updates parameters for model
robustness, we analyze the fixed model and estimate the feature-level
robustness.

p(y, z̃) based on the underlying characteristics of the Markov
chain,

p(y, z̃) =
∫

p(x)p(z|x)p(z̃|z)p(y|z̃)dxdz. (4)

Then, we derive the upper bound of −I(Z̃, Y ) as

−I(Z̃, Y ) ≤ −
∫

p(y, z̃) log p(y|z̃)dydz̃

= E
X∼p(X),Z∼pφ(Z|X),Z̃∼p(Z̃|Z)

[L(Y,Dθ(Z̃))],

(5)
where L is the cross-entropy loss. Since we evaluate the
robustness of encoded features from a well-trained TSC
transceiver, we have pφ(Z|X) and Dθ(Z̃). Besides, the
corrupted features with artificial noise are given by Z̃ ∼
N (Eφ(X), σ2).

Next, we focus on the second mutual information, I(Z̃,X),
in (2) and have

I(Z̃,X) =
∫

p(z̃, x) log
p(z̃, x)

p(z̃)p(x)
dz̃dx

=
∫

p(z̃, x) log
p(z̃|x)
p(z)

dzdz̃dx

+
∫

p(z̃, x) log
p(z)
p(z̃)

dzdz̃dx

= KL[p(Z̃|X)||p(Z)] − KL[p(Z̃)||p(Z)], (6)

where KL represents Kullback–Leibler divergence that mea-
sures the difference between two probability distributions.
Since KL[p(Z̃)||p(Z)] ≥ 0, we have

I(Z̃,X) ≤ KL[p(Z̃|X)||p(Z)]

=
1
2

m∑
k=1

[
σ2

k

δ2
k

+ log
δ2
k

σ2
k

− 1], (7)

where k denotes the index of the artificial noise variation
added to the kth encoded feature unit, i.e., σ = [σ1, · · · , σm],
and δ = [δ1, · · · , δm] represents the inherent variation of the
encoded feature over the task, reflecting its natural fluctuations
without channel impairments. Built on the above derivation,
we obtain the non-negative upper bound of the objective
function in (2)

L(σ) ≤ L′(σ)

= E
X∼p(X),Z∼pφ(Z|X),Z̃∼N (Eφ(X),σ2)

[L(Y, Dθ(Z̃))]

+ β

(
1
2

m∑
k=1

[
σ2

k

δ2
k

+ log
δ2
k

σ2
k

− 1]

)
. (8)

Therefore, by propagating Z̃ through the decoding function,
the artificial noise can be optimized by σ = σ − ∂L′(σ)

∂σ .

D. Robustness Mask and Case Study

After optimizing artificial noise σ, we analyze the artificially
corrupted encoded features Z̃ and assess the robustness of
each feature unit based on its sensitivity to semantic infer-
ence. Define the encoded feature variation of task T by
R = max(δ2), which represents the maximal input variations
mapping to the encoded feature space Z. Intuitively, the
injected artificial noise should be restricted below R to ensure
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inference reliability. However, recent research indicates that
the correlation between different units in the feature space and
inference performance are different [15]. Thus, feature unit
zk ∈ z = {z1, . . . , zm} with a high correlation to inference
results should have σ2

k > R, i.e., robust against channel impair-
ment, and zk with σ2

k < R is non-robust since small channel
impairment behaves as a strict restriction to retain semantic
inference performance. Therefore, we explicitly disentangle
encoded features into robust and non-robust against channel
variations for TSC.

Remark: By optimizing σk ∈ σ for each unit of the encoded
features, the IB-based problem formulation in (2) controls
the information flow to the decoding function and evaluates
feature unit robustness. We approximate the distribution of
task T with empirical risk minimization over the entire dataset
XT . Hence, the soft robustness mask of feature unit zk ∈ z =
{z1, . . . , zm} is given by

rk =

∑
xi∈XT

σi
k∑

xj∈XT

∑m
l=1 σj

l

,
m∑

k=1

rk = 1. (9)

This mask can be leveraged by a well-trained TSC
transceiver (i.e., given Eφ and Dθ) for task T to accommodate
instantaneous channel variations. Based on the robustness
score, priority is provided for transmitting the encoded feature
units to achieve reliable semantic inference.

We conduct a case study to leverage the robustness mask
r for subchannel allocation. Feature units with a small
robustness score are considered non-robust against chan-
nel impairments, which should be assigned to high-quality
subchannels that are measured by channel estimation tech-
niques [9]. Given a set of available subchannels with distinct
channel conditions, we apply a greedy-based method to
assign subchannels to the m encoded feature units following
their pre-sorted robustness mask r = [r1, . . . , rm]. Note
that the pre-known r will be reused for future subchannel
allocations, and the computational complexity of each sub-
channel allocation can be given as O(m). The pseudocode of
the robustness mask-based subchannel allocation is given in
Algorithm 1.

IV. NUMERICAL EVALUATION

A. Evaluation Setup

We consider a TSC task using the CIFAR-10 [16] dataset
for image classification. We adopt the VGG16 [17] architec-
ture as the encoding function Eφ and three fully connected
layers as the decoding function Dθ. We consider AWGN
and fading channel conditions to train two types of TSC
transceivers, respectively. The transceivers are frozen for chan-
nel resilience analysis. For testing, we evaluate performance
under frequency-selective channel conditions, specifically
considering a typical OFDM symbol structure with 272 sub-
carriers, including 16 pilots evenly distributed across 256 data
subcarriers [10]. The number of encoded feature units is 512.
The hyperparameter β of IB is empirically set as 0.3.

B. Evaluation Results
We first evaluate the effectiveness of the robustness mask

for encoded feature units using the AWGN-trained transceiver

Algorithm 1 Channel-Resilient TSC: Subchannel Allocation
Input: (1) a well-trained TSC transceiver with encoding

function Eφ and decoding function Dθ; (2) input data and
its corresponding semantic information (x, y) ∈ (XT ,YT );
(3) instantaneous CSI = {CSI1, . . . , CSIs} for s sub-
channels;

Output: (1) robustness mask (2) subchannel assignment
// Robustness mask generation

1) Encode: z = Eφ(x) = {z1, . . . , zm}, x ∈ XT .
2) Initialize artificial noise: σ = 0 with a neutral noise.
3) For each iteration:

a) Adjust noise: σ = log(1+exp(σ)), ensure positive
through SoftPlus.

b) Inject noise: z̃ = z + σ · ϵ based on (2).
c) Decode: ŷ = Dθ(z̃).
d) Update: σ = σ − ∂L(σ)

∂σ based on (8).
4) End For
5) Robustness mask: r = {r1, . . . , rm} based on (9).

// Robustness mask implementation: assign subchannels
1) For l ∈ {1, . . . ,m} do:

a) Assign z with the smallest ri to subchannel with
the best CSIj

b) Remove jth subchannel
2) End for

Fig. 2. Comparison of feature-level channel resilience between the ideal
(noise = 0) and noisy (SNR = 0) channel conditions.

as an example. According to the robustness scores, we rerank
encoded feature units. The units in the first half, which
have higher scores, are expected to be more resilient against
channel variations than those in the second half, which have
lower scores. Fig. 2 visualizes the feature-level inference
performance between ideal and noisy channel conditions using
2D t-SNE. In ideal channel environments, i.e., no noise, both
robust (first-half) feature units and non-robust (second-half)
feature units achieve comparable inference performance. How-
ever, under noisy conditions, i.e., SNR = 0, the performance
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Fig. 3. Comparison of inference performance between dynamic (high
variation, 15) and stable (low variation, 2) subchannel environments with
transceivers trained under AWGN and fading conditions on CIFAR-10 dataset.

disparity between the robust and non-robust feature units
becomes apparent. Despite channel impairments, the first half
of the units with higher robustness scores maintain perfor-
mance levels similar to those in ideal conditions ((a) vs.
(c)), whereas the performance of the second half deteriorates
significantly ((b) vs. (d)). This contrast demonstrates the
effectiveness of the robustness mask in evaluating feature-level
channel resilience.

We then evaluate the effectiveness of using the robust-
ness mask for subchannel allocation with AWGN-trained
transceiver and fading-trained transceiver by low and high
variations. The low variation represents stable subchannel
environments, while the high variation denotes highly dynamic
discrepancies between subcarriers, regardless of their average
performance. Fig. 3 illustrates the inference accuracy with
on-average subchannel performance (SNR) between differ-
ent channel variances with different transceivers. Specifically,
Fig. 3(a) and Fig. 3(c) present inference performance under
highly dynamic subchannel conditions. We compare our
method against two baselines: random and worst-case alloca-
tions, the latter assigning the lowest-quality subchannels (low
SNR) to the least robust feature units (low robustness score).
We observe that our method consistently outperforms the
baselines across all SNR levels and with different transceivers,
which demonstrates its effectiveness. As the SNR increases,
the performance gap between our method and the baselines
narrows on both datasets. This suggests that satisfactory aver-
age subchannel performance can compensate for subchannel
variations. The strength of our method is particularly apparent
in highly dynamic and challenging channel conditions. Fur-
thermore, by comparing Fig. 3(b) and Fig. 3(d), we observe
a marginal difference between the three methods in stable
channel environments. This consistently validates our finding
above.

V. CONCLUSION

This letter introduced an innovative framework for channel-
resilient task-oriented semantic communications (TSC), which
analyzes the encoded feature space of a well-trained TSC
transceiver. A robustness mask for encoded feature units
is created based on the information bottleneck, which was
implemented for subchannel allocation as a case study. The
effectiveness of this framework was validated, especially under
highly dynamic adverse channel conditions. To the best of
our knowledge, this letter represents the first effort to enhance
channel resilience for TSC using the IB principle. We aim to
pave the way for exploring other channel resilience techniques
for TSC from information-theoretic and signal-processing
perspectives.
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