2024 IEEE 6th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA) | 979-8-3503-8674-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/TPS-ISA62245.2024.00042

2024 IEEE 6th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)

SR2ACM: A Methodical Approach for Translating
Natural Language Security Requirements to Access
Control Model

Saja Alqurashi!, Indrakshi Ray', Mahmoud Abdelgawad', and Hosein Shirazi?
!Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA
2Management Information Systems, San Diego State University, San Diego, California, USA
!{saja.alqurashi, indrakshi.ray, m.abdelgawad} @colostate.edu, Zhshirazi @sdsu.edu

Abstract—Access control policies (ACPs), embedded in the se-
curity requirements of an enterprise, are typically expressed
in natural languages. Security administrators manually extract
ACPs, interpret them, and construct a formal access control
model which is later enforced by security mechanisms. The
manual process is tedious, complex, expensive, labor-intensive,
and error-prone. To address these limitations, we introduce a
Natural Language Processing (NLP) pipeline called Security
Requirements to Access Control Model (SR2ACM). This pipeline
is designed to extract ACPs from statements in natural language
automatically, convert these ACPs into the Next Generation
Access Control (NGAC) model that we represent in the form
of a graph, propose a set of properties that can be tested
on the graph to assess the quality of the NGAC model so
derived. SR2ACM performs downstream NLP tasks that include
identifying ACP sentences, identifying NGAC relations, and
identifying NGAC user and object attributes. The experimental
results are promising as we achieved, on average, F1-score of
93% when identifying ACP sentences, F1-score of 97% when
extracting NGAC relations between attributes, and F1-score
of 96% when extracting user attributes and 89% for object
attributes from natural language access control policies that
we obtained from real-world applications. We utilize six diverse
datasets representing access control policies of various domains
to ensure a comprehensive evaluation. To assess the correctness
of the NGAC policies generated, we propose a set of formal
properties, namely, completeness (checks no ACPs have been
omitted), well-formedness (checks the ACP construct), minimality
(checks for absences of redundancies), and consistency (checks
for absence of conflicts). Our formal analysis on our dataset
reveals a completeness rate of 95% on average, a perfect rate
of 100% of well-formedness, non-redundancy in 98% of NGAC
ACPs, and an absence of inconsistencies. Our research is unique
as it combines machine learning with software testing to assure
the quality of the extracted model.

Index Terms—Access Control Policies (ACPs), Next Generation
Access Control (NGAC), Bidirectional Encoder Representations
from Transformers (BERT), Graph Analysis

I. INTRODUCTION

Organizations specify their security requirements, including
Access Control Policies (ACPs), using natural language state-
ments. ACPs define who is authorized for what resources and
the conditions for such access. Formal access control models,
such as Role-Based Access Control (RBAC) and Attribute-
Based Access Control (ABAC) are then developed from these
ACPs and implemented via security mechanisms [1], [2].

The conversion of access control requirements, articulated
through natural language, into formal access control models,
represents a task that is both labor-intensive and susceptible to
inaccuracies. This challenge emerges from the requirement to
precisely interpret both explicit and implicit access directives
embedded within unstructured text descriptions. Consider, for
example, the policy statement: “Access to project-specific
documentation after standard operational hours is granted
exclusively to individuals holding the position of project man-
ager.” This necessitates the identification of ‘project managers’
as a distinct user role, ‘project-specific documentation’ as the
designated resource, and ‘after standard operational hours’
as the conditional parameter for access. Policy statements
may be more complex involving a multifaceted condition:
“Employees, possessing a minimum of five years of tenure
and affiliated with the Research and Development department,
are authorized to retrieve confidential project data via se-
cured terminals.” Herein, multiple attributes and constraints
necessitate meticulous encoding into an access control model.
These instances underscore the complexity and potential error
margin inherent in the manual extraction of policy statements.
Consequently, we need methodologies for the automated gen-
eration of access control models from security requirements
and analyze the correctness of these models.

Most earlier research efforts [3]-[5] have investigated the
development of RBAC [1] and XACML ABAC [2] from
natural language policy statements. We focus on NIST Next
Generation Access Control (NGAC) model [6] as it is more ex-
pressive than RBAC and it supports dynamic, event-triggered
policies that can model the access control needs of most ap-
plications including situation-monitoring ones. NGAC model
allows and denies access through associations and prohibitions
respectively using attributes of users, and objects; it uses
obligations to change the access control model; it has assign-
ment relations for mapping users/objects to their respective
attributes, and also mapping attribute hierarchy. Constructing
an NGAC model from an ACP statement is complex because
it involves extracting these relations and attributes, and the set
of attributes used in a given application is not pre-defined.

Abdelgawad et al. [7] focused on developing the NGAC model
by utilizing spaCy, an NLP library to extract entities and

979-8-3503-8674-5/24/$31.00 ©2024 IEEE 303
DOI 10.1109/TPS-ISA62245.2024.00042
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

relationships from ACP narratives. spaCy is good for ex-
tracting ACPs from sentences having a well-defined structure.
However, ACPs, authored by humans, can be highly complex
and often incorporate words such as "except," "unless," "pro-
hibit," and "deny," which carry special connotations in access
control contexts. Unfortunately, spaCy struggles to recognize
these words as negations that indicate prohibitions within
access control policies. Thus, more sophisticated techniques
are needed for access control model extraction, such as, for
those examples presented earlier.

Our approach offers a comprehensive method for deriving the
NGAC model directly from natural language security require-
ments. We leverage advanced Natural Language Processing
(NLP) techniques such as Bidirectional Encoder Represen-
tations from Transformers (BERT), distilling BERT (Distil-
BERT), Robustly Optimized BERT (RoBERTa), and eXtreme
Language understanding NETwork (XLNET), to understand
more complex sentence structure associated with real-world
access control statements. The access control model so derived
are then converted into a graph database Neo4;j representation
for analyzing its quality. Its quality is evaluated through
properties that we propose.

Specifically, our proposed approach, Security Requirements
to Access Control Model (SR2ACM), involves five tasks to
structure and analyze ACPs adhering to the NGAC model. We
first classify sentences that qualify as ACP using BERT and
its variations. We then identify the types of NGAC relations
within the ACP sentences by multi-label classification using
BERT and its family models. Subsequently, we identify the
NGAC entity types present in the ACP sentences using the
NGAC-Entity Recognition (NGAC-ER) technique that we de-
velop. After identifying the entities and relations, we generate
a graph visually representing access control policies. Finally,
the generated graph is evaluated against established criteria to
ensure the derived policies’ integrity and validity, concluding
the NGAC model’s formation.

To assess the effectiveness of our proposed method, we
established metrics to evaluate the quality of the derived access
control model alongside the performance of the machine
learning algorithms employed. These metrics include:

(i) Completeness. This metric verifies that every ACP state-
ment derived from security requirements is represented within
the NGAC graph. Ensuring completeness is critical to confirm
that no policy statement is omitted during translation.

(i) Well-Formedness. This criterion evaluates the logical
structure and validity of the ACP constructs generated, en-
suring that the ACPs are correctly structured and adhere to
the expected format and rules of the NGAC model.

(iii) Minimality. Minimality ensures the absence of redundan-
cies. It guarantees that each user attribute to the object attribute
path, providing the same access rights, is unique, eliminating
future inconsistencies when some policy gets updated.

(iv) Consistency. This metric examines the model for any
conflicting policies, such as instances where a user is both

granted and denied access to the same resource, ensuring the
consistent behavior of the access control model.

(v) Machine Learning Accuracy. In addition to the graph-
specific metrics that evaluate the approach, the machine learn-
ing accuracy metric (Fl-score) is utilized to measure the
machine learning algorithms’ performance in identifying and
classifying ACP statements, relation types, and entities in these
intermediate tasks. High accuracy indicates the effectiveness
of the machine learning algorithms in correctly interpreting
and processing the natural language ACPs.

To demonstrate our approach, we selected two critical domains
— education and healthcare — as areas where clear policies
are not only regulated at different levels (like organizations,
state, or federal levels) but also rigorously enforced, ne-
cessitating precise and accurate access control models. To
construct a robust dataset within these domains, we engaged
in a comprehensive data collection process, gathering relevant
access control policies and statements. Recognizing the im-
perative of high-quality annotated data for effective machine
learning applications, we embarked on a manual annotation
process, aimed to label the data and establish a gold-standard
dataset that serves as a benchmark for training and evaluating
our machine learning models. Acknowledging the challenges
posed by the limited size of manually collected datasets, we
leveraged the capabilities of the GPT-3 algorithm to augment
our dataset.

The structure of this paper is summarized as follows: Section
II provides a review of related work. Section III presents an
overview of our proposed approach. Section IV elaborates on
the structure and statistics of datasets. Section V provides
details on ACP identification, NGAC relation and attributes
identification. Sections VI, and VII elaborate the NGAC graph
generation and evaluates the accuracy of the NGAC model
derived respectively. Section VIII concludes the paper sum-
marizing the contributions and directions for future research.

II. LITERATURE REVIEW

ACP Extraction from Natural Language Statements

Xiao et al’s Text2Policy [4], Slankas et al.’s ACRE [8],
and Narouei et al.’s method [3] represent foundational efforts
in extracting ACP elements from natural language using
linguistic analysis, dependency parse graphs, and Semantic
Role Labeling (SRL), respectively. Despite achieving notable
precision, these approaches are constrained by reliance on
predefined patterns or limited in automatically learning new
ACP patterns, often resulting in incomplete policy extraction.
Alohaly et al. [5] develop a deep learning-based framework to
automate ABAC attribute extraction. Utilizing NLP, relation
extraction, and Convolution Neural Networks (CNNs), they
achieve high F1-scores in extracting attribute values. However,
the framework’s accuracy is dependent on the Named Entity
tagger’s performance, which can lead to potential inaccuracies
in attribute data type determination. Abu Jabal et al.’s Polisma
framework [9] leverages data mining to learn ABAC policies

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

from diverse sources, demonstrating the utility of machine
learning in policy extraction. Xia et al. [10] utilize SRL
integrated with BERT for identifying ABAC rule structures,
yielding promising results. Despite this, the generalized ar-
chitecture of SRL poses challenges in accurately labeling
attributes related to security policies. Our proposed approach
seeks to address these limitations by enhancing the precision
and completeness of ACP extraction and analysis.

Access Control Policies Analysis

Different researchers studied the formal analysis of access
control policies through the lens of three distinct approaches.
Ray et al. [11] introduce a formal spatio-temporal RBAC
model that integrates time and location dimensions, utilizing
the Alloy analyzer for model verification. Ferndndez et al.
[12] propose a structured method for specifying and ana-
lyzing ABAC policies using a category-based meta-model
(CBAC) expressed in first-order logic. This approach provides
a granular appraoch for policy specification and verification,
focusing on ensuring policy correctness through rigorous for-
mal analysis. Chen et al. [13] address the quality assurance
of NGAC policies through mutation analysis, assessing the
robustness of testing techniques against potential policy faults.
By generating and testing policy mutants, this method aims
to uncover faults in policy configurations and obligations.
All the above approaches encounter limitations in scalability.
These studies collectively underscore the importance of formal
analysis in the evolution of access control models while
highlighting significant obstacles in complexity, and scalability
that our proposed approach aims to overcome.

III. OVERVIEW OF OUR APPROACH

NGAC model is structured around users, processes, objects,
operations, and various attributes, all interconnected through
specific relations like assignment, association, prohibition, and
obligation. Assignment links users and objects to their respec-
tive attributes and policy classes, while association determines
permitted access rights between user and object attributes.
Prohibition negates permissions in contrast to association, and
obligation reacts to specific events with predefined actions,
playing a crucial role in establishing a dynamic security
framework [6], [14].

We developed an NLP pipeline (namely SR2ZACM) designed
to automatically extract ACPs from statements in natural
language and convert them into the NGAC model. Figure
1 illustrates the five tasks in our pipeline, described below,
and outlines the architecture of our proposed approach. The
first three tasks represented as downstream NLP tasks, include
identifying ACP statements, discerning the types of relations
within these statements, and capturing relevant entities. The
last two tasks involve generating a graphical representation of
the ACP and conducting an in-depth analysis of the generated
graph to evaluate the integrity of the derived policies. This
graph-based representation facilitates a more intuitive analysis

305

University Name | Sentences
Colorado State University 66
University of Colorado Denver 165
University of Colorado Boulder 35
University of Northern Colorado 350
Harvard University 165
Georgia State University 25
University of Arizona 36
New York University 139
Rochester Institute of Technology | 27
University of California 26
University of Massachusetts 23
Tennessee State University 34
Total | 1091

TABLE I: The Collected Security Sentences

and enables a rigorous assessment of the derived access
control.

IV. DATA COLLECTION AND PREPARATION

Our supervised NLP algorithms for the initial three tasks in
our pipeline require access to accurately labeled data. We
identified five labeled datasets, namely, iTrust-vl (DS1) [15],
iTrust-v2 (DS2) [15], IBM (DS3) [8], CyberChair (DS4) [16],
and Collected-ACPs (DS5) [8], in the domains of healthcare
and education. However, most of the datasets have been
labeled to determine whether a sentence constitutes an ACP
and to identify the requisite entities for NGAC without anno-
tating the NGAC relations. To address this gap, we extended
our data collection efforts to include content from 12 US
university websites, subsequently engaging in a meticulous
manual annotation process to generate a ground-truth dataset
tailored to our specific needs. We, thus, created a novel dataset
from the educational domain, which we then enriched through
manual annotation to secure reliable ground truth data. Table
I shows the name and number of statements we have collected
from each university.

A. Data Annotation

The annotation process encompassed consists of: (i) Labeling
sentences as either ACPs or non-ACPs for Task 1, (ii) Identi-
fying sentences with one or more NGAC relation types: asso-
ciation (AS), assignment (AA), prohibition (PR), or obligation
(OB) for Task 2, (iii) Annotating the entities in ACP sentences
as user (U), action (A), object (O), user attributes (UA), or
object attributes (OA) for Task 3. The annotation criteria were
based on three questions. Question (i) demanded binary yes/no
responses to determine if the sentence is an ACP. Question (ii)
required the annotators to select from among four potential
NGAC relation types (AS, AA, PR, OB), and Question (iii)
involved choosing from five NGAC entity types (U, A, O, UA,
OA).

Our annotation team consisted of three Computer Science
graduate students proficient in English and trained in NGAC.
An expert in access control fields oversaw the operation as
a supervisor. For each annotation task, the three annotators
independently labeled the data. Then, the supervising expert

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

SR2ACM

ACPs Identification NGAC Relation Identification

NGAC Attribute Identification

NGAC Graph Generation NGAC Graph Testing

‘ ACP Sent

Token Classification

Test Cases

NGAC Entities
— and Relations

Correctness Analysis
Completeness
Well- formedness

Security
requirements

Binary
Classification

Multi-label Classification

ACPs Relation Types:
Association

NGAC Entities:

U
(0}

UA
OA

A

Minimality
Consistency

Populate to Neodj

Assignment
Prohibition
Obligation

Yes

No

Investigate

NGAC Graph

Fig. 1. A Cross-Functional Flowchart Presents SR2ZACM Approach

reviewed their annotations, validated them, and resolved any
discrepancies between the annotators. For the previously con-
structed online datasets, the first type of annotation (identifying
ACPs) had been conducted by [3], [4], [16]. We manually
annotated the relations and entities in these datasets.

B. Data Augmentation

Data augmentation mitigates model overfitting by generating
modified versions of the existing data [17]. We employed a
suite of augmentation techniques, notably back translation,
integration of the datasets, and leveraging the capabilities of
the GPT-3 Model Generator, to enrich our annotated data.

Back-Translation. We utilized the back translation to se-
mantically retain the essence of the original ACP sentences
while introducing syntactical variations. This was achieved
through the development of a back translation script, utiliz-
ing the Google Translator API'. The back translation pro-
cess involves three critical steps: (i) First, we performed a
Temporary Translation, where ACP sentences were initially
translated from English into a series of random languages
sequentially, undergoing this translation cycle ten times to
ensure a diverse linguistic transformation. (ii) Subsequently,
a Back Translation step was implemented, wherein these
transformed sentences were translated back to English. This
process was iteratively conducted 100 times for each sentence
across all datasets to maximize the generation of syntactically
varied yet semantically consistent sentences. (iii) Finally, we
conducted a Duplicate Removal phase, aimed at eliminating
redundant back-translated sentences to maintain a unique set
of augmented data. The following is an example of a back
translation.

! pypi.org/project/googletrans/

306

Original ACP: The user provides their MID and password to
gain role-based access to the iTrust Medical Records system
or request a password change.

Back Translation: The user provides his own MID and pass-
word to gain access based on his roles in the iTrust Medical
Records system or to request a password change.

Data Integration. To accurately identify NGAC relations, a
dataset having all four types of NGAC relations (association,
assignment, prohibition, and obligation) is essential for model
training. However, an examination of the available datasets,
as detailed in Table II, reveals an uneven distribution of these
relation types, with a notable scarcity of samples for prohibi-
tion and obligation. This imbalance stems from the prevalent
inclusion of association and assignment relations in security
requirements, where prohibitions are often implied, and obli-
gations are explicitly mentioned under specific conditions. To
address the shortfall in prohibition and obligation samples,
we first integrated all datasets (D1-DS6). Subsequently, we
employed data augmentation (GPT-3 Generator) to generate
additional instances of these less common relation types. By
duplicating each type twice, we ensured a more balanced
representation of all NGAC relation types in our training
dataset for the relation identification task outlined in Section
V-B.

GPT-3 Generator. For both NGAC relations and entities
identification tasks, we utilized the GPT-3 model, following a
method akin to [18]. This method leverages GPT-3’s capacity
to produce synthetic yet hyper-realistic sentences, enhancing
the diversity of our dataset. The augmentation process involved
embedding a selection of ACP sentences from our training
dataset into the GPT-3 prompt, thereby generating a variety of

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

synthetic ACP sentences. For instance, the list below depicts
five synthetic ACP sentences generated by GPT-3.

1) Only administrators, not data owners, make changes to
the security label of a resource.

2) LHCP cannot cancel old appointments.

3) Inactive patients cannot be changed or logged into the
system and can only be reactivated by the administrator.

4) The professor can change a student’s grade at any time.

5) If a teacher is signed up to teach the course in the current
stream, the system will not delete the course.

This technique resulted in the creation of a thousand new
sentences, ranging from simple to complex structures.

C. Dataset Summary

Table II provides details of the five online datasets (DS1-DS5)
in addition to our own one (DS6).

1) DS1: Sourced from iTrust [15], this dataset includes
aspects like patients’ medical histories, caregiver iden-
tification, communications with doctors, and sharing of
results. Utilized in [4].

2) DS2: An expanded iteration of DS1 with over a thousand
sentences, employed in [3].

3) DS3: Originating from IBM’s course registration system,
this dataset from the education sector is referenced in [8].

4) DS4: Cyberchair dataset, from the conference manage-
ment domain, includes diverse conference and workshop
policies [16].

5) DS5: A compilation of 114 ACP sentences from 18
different sources, including publications and websites,
cited in [8].

6) DS6: Our collection comprises IT access control policies
from U.S. universities.

V. DOWNSTREAM NLP TASKS

The NLP tasks to construct NGAC model include identifying
ACP statements, distinguishing the types of relations embed-
ded within these statements, and capturing pertinent entities.

A. ACP ldentification

This task aims to extract the ACPs from security requirements.
To do this task, we fine-tune the BERT and BERT family
models to classify a sentence as ACPs or non-ACPs.

To leverage BERT and other BERT family models (including
RoBERTa, DistilBERT, and XLNET), for a classification task,
a new layer is appended atop the pre-trained model, specifi-
cally tailored for classification objectives. Initially, the text is
segmented into constituent sentences, then is tokenized into
a sequence of tokens. By inputting these structured tokens
into BERT, the model generates an embedding vector for
each token, typically of size 128. For the purpose of binary

text classification, distinguishing between ACP statements and
non-ACP statements, the embedding vector corresponding to
a special token, called [CLS] token, which encapsulates the
sentence’s overall contextual representation is utilized. This
vector serves as input to a newly added layer atop BERT,
which employs a softmax function to classify the input into the
relevant categories: ACP and non-ACP. In our experimental
setup, we trained various models including BERT-base-cased,
RoBERTa-base, DistilBERT-base-cased, DistilRoBERTa-base,
and XLNET-base-cased. The training was carried out under
specific hyperparameters: text sequence length set at 128,
training epochs to 10, training batch size to 128, and evaluation
batch size to 64. This method ensures precise, context-aware
classification by effectively leveraging BERT’s deep learning
capabilities enhanced with a softmax-based classification layer.

Experimental Results.

For evaluation, we use the average of the Fl-score across
the resultant of binary classification that represents ACP or
non-ACP in the testdata. Table III (ACP) shows the average
Fl-score in the resultant of the BERT text classification that
represents ACP sentences in test datasets. We found that the
model performance improved after data augmentation, proving
the importance of data size and quality in NLP models.

Furthermore, this paper examines other BERT-based models,
such as DistillBERT, RoBERTa, and XLNET. The goal is to
compare the performance of different BERT models in the
ACP identification task. The experimental results show the
performance of various models on the test set of datasets.
Overall, the XLNET shows significantly better performance in
terms F1-score because XLNET operates in an autoregressive
manner. In other words, it generates tokens sequentially while
considering the preceding tokens’ context. In contrast, BERT
is a masked language model (MLM) in which random tokens
are masked, and the model is assigned the task of predicting
those masked tokens [19], [20]. Furthermore, our proposed
ACP identification model overall outperforms the prior work
Tex2Policy [4], ACRE [8], SENNA [3], and BERT based
SRL [10] for ACP identification in terms of Fl-score as
shown in Table III. The results also indicate that the BERT-
based methods, including our approach, performed better than
Text2Policy [4], ACRE [8], SENNA [3]. In particular, the
self-attention mechanism within transformers enables BERT
models to focus on relevant parts of the input text, effectively
capturing long-range dependencies and contextual information
essential for understanding ACP sentences [20].

Our method achieves an average 93% Fl-score, compared
to BERT-based SRL [10] that achieves 85%. Xia et al. [10]
utilizes SRL as a sub-module for ACP identification to extract
the predicate-argument structure of a sentence.

B. NGAC Relations Identification

This task employs multi-label classification [21] to detect
various NGAC relation types in an ACP, acknowledging that

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

Dataset Data Size Types
Name Ref. | Stmt ACP ACPs Aug. | Association ~ Assignment Prohibition Obligation
DS1 [15] 471 419 89.0% 8572 408 269 6 0
DS2 [15] 1171 528 45.1% 15642 484 317 4 12
DS3 [8] 402 163 40.5% 4677 124 105 1 1
DS4 [16] 303 124 40.9% 4259 177 51 0 28
DS5 [8] 142 115 81.0% 2511 89 76 8 10
DS6 Our work | 937 828 88.4% 13210 \ 474 68 28 47
Total - | 3426 2077 N/A 40871 | 1756 886 47 98

TABLE II: Comprehensive analysis across datasets highlighting security statement counts with number and percentage of
statements that contain access control policies, augmentation outcomes, and NGAC policy type distribution.

Experiment | [4] [8] [3] [10] | BERT DistiBERT RoBERTa XLNET
ACP
DS1 87% 98% 80% 95% 97% 97% 98% 98%
DS2 8% 58% 82% 79% 74% 70% 87%
DS3 97% 87% 89% 82% | 98% 97% 99% 99%
DS4 64% T1% 89% | 85% 86% 86% 88%
DS5 89% 8% T7% | 96% 75% 95% 95%
DS6 90% 89% 89% 89%
Relation Type
Association 97% 95% 95% 95%
Assignment 86% 82% 83% 82%
Prohibition 93% 80% 85% 85%
Obligation 88% 81% 82% 87%
Attribute
User 70% 68% 70% 79%
User Attribute 96% 91% 90% 91%
Object 62% 58% 59% 54%
Object Attribute 89% 51% 43% 72%
Action 81% 81% 78% 57%

TABLE III: Comparative analysis of 3 tasks: ACP Identification, Relation Types Identification, and Attribute Identification
conducted on 4 different algorithms of BERT, DistilBERT, RoBERTa, and XLNET. For the first task, ACP identification, we
also report results from existing references with different algorithms on 5 manually annotated datasets in the literature (DS1

to DS5) and our manually annotated dataset (DS6).

an ACP may encapsulate multiple relation types simultane-
ously. Utilizing the BERT base model and other BERT family
models (including RoBERTa, DistilBERT, and XLNET) for
thier efficacy in generating contextual vector representations,
we extend it with a linear layer comprising four outputs to
correspond with the NGAC relation types. This approach
allows for the nuanced differentiation between association,
assignment, prohibition, and obligation, addressing the chal-
lenge of multi-label classification. To enhance the model’s
performance, particularly for the underrepresented classes of
prohibition and obligation, we augment our dataset using
the GPT-3 model generator [18], ensuring a balanced and
comprehensive training dataset. In training the models, we
maintained consistent hyperparameters: a text sequence length
of 128, 10 training epochs, a train batch size of 64, and an
evaluation batch size of 66.

Experimental Results. We use Fl-score across the resultant
of multi-label classification that represents NGAC relations
types in our test data. Overall BERT shows significantly better
performance in terms of Fl-score. Our findings are presented
in Table III (Relation Type). We achieved a 97% F1-score,
for identifying association relation types. Regarding the types
of assignment relation, our results yielded an 86% F1-score.
For prohibition relation types, we achieved a 93% F1-score.

Lastly, for obligation relation types, we obtained an 88% F1-
score. Our experimental results demonstrate the performance
with an overall average of accuracy 91% on the test set of ACP
sentences containing different types of NGAC relations. To the
best of our knowledge, no previous work has investigated how
to automatically identify all the relation types in NGAC.

C. NGAC Entities Identification

We developed the NGAC Entity Recognition (NGAC-ER)
model, designed to tackle the sequence labeling classification
challenge [22] in identifying NGAC entities in ACP sentences.
Utilizing the BERT base model and other BERT family models
(including RoBERTa, DistilBERT, and XLNET), we fine-
tune them to accurately categorize each token as User (U),
User Attributes (UA), Object (O), Object Attributes (OA),
and Action (A), enabling precise entity recognition in ACP
contexts. For this task, we used the BERT models, optimized
with a text sequence length of 75, 10 training epochs, and
batch sizes set to 32 for both training and evaluation phases.
Addressing the challenge of diverse sentence structures in
NGAC-ER, we expanded our training dataset through data
augmentation, leveraging the GPT-3 model to generate an
additional 1000 unique ACP sentences. This augmentation
significantly enhances the model’s training, enabling more
robust and nuanced entity recognition capabilities.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

Experimental Results. We use F1-score for the token classi-
fication experiments that identify NGAC entities. NGAC-ER
model shows promising results for predicting each token in
an ACP sentence. Overall BERT shows significantly better
performance for (UA) and (OA) which achieved 96% and
89% F1-score respectively, while (U) and (O) achieved 70%
and 62% F1-score respectively as demonstrated in Table III.
Our experimental results demonstrate that BERT significantly
outperforms other models in terms of Fl-score. Specifically,
it achieves an overall average accuracy of 93% on the test
set of ACP sentences containing various types of NGAC
entities. However, predicting Object (O) and User (U) is not
high enough because of the nature of security requirements
documents written in general without specifying a user such
as John or an object such as DeviceX. However, adding lists
of subjects and objects as input documents with the model
outputs will resolve the low performance, and we will have
all the attributes to generate the NGAC model.

NGAC-ER model significantly outperforms that proposed in
[5] by obtaining higher F1-score for user attributes and object
attributes identification as shown in Table IV. Moreover, the
NGAC-ER model outperforms the model in [23] that aims
to identify actor, action, and resource in user stories by
obtaining 87% accuracy while the NGAC-ER model obtains
93% accuracy. BERT transformer employs attention mech-
anisms, enabling it to focus on different segments of the
input sequence during prediction. This attention mechanism
allows the model to weigh the importance of different words
in the input sequence, providing an understanding of the
relationships between words [20]. This contributes to the
superior performance of the BERT transformer model over
deep learning approaches in the task of extracting attributes in
ACPs.

VI. NGAC MODEL GENERATION

The NGAC model generation comprises two primary steps:
(i) Constructing the NGAC graph to formulate the model, and
(ii) Graph testing to evaluate and analyze the resultant model.

We use Neodj [24], [25] to generate the NGAC graph from
the entities and relations extracted using the models outlined
in Sections V-A, V-B, and V-C. Utilizing Neo4j, we populate
the extracted NGAC entities and relations and represent them
in the form of an NGAC graph. Nodes correspond to users, ob-
jects, user attributes, and object attributes. Edges correspond to
assignment relations and actions. Assignment edges are added
between users and user attributes as well as between object
attributes and objects. Action edges are from user attributes to
object attributes. The current representation of NGAC model
does not represent assignment relations between pairs of object
attributes or pairs of user attributes. Figure 2 illustrates an
instance of a Neo4j graph constructed from a subset of policies
in dataset DS6. As shown in Table V, we have a director
of network services and an access control administrator who
approves the devices that connect to the university network.
At the same, the access control administrator maintains the

logs for access requests. Additionally, students are allowed to
use their files while they are not permitted to use monitoring
software. To demonstrate users accessing objects, we present
four policy sentences (1-4) from the dataset DS6, shown in
Table V. Sentences 5-7 assign three users (User.X, User.Y,
User.Z) as a student, access control administrator, and a
director of network services. We added four sentences (8-11)
to demonstrate objects (File.X, Log.X, SW.X, and Device.X)
that are assigned to object attributes (file, access request (AR)
log, monitoring software (M.SW), and connected network
(Conn.N) device).

VII. NGAC GRAPH TESTING

We evaluate the correctness of our approach through graph-
based testing, focusing on four main properties: completeness,
well-formedness, minimality, and consistency. We generate
paths that cover each user assigned to user attributes associated
with (or prohibited from) access rights to object attributes
assigned to objects which are used to form test cases. We use
two datasets to demonstrate our approach. One in the education
domain (DS6) and the other in the healthcare domain (DS1).

The testing procedure illustrated in Figure 3 is initiated by
loading the paths derived from the NGAC graph for the ACPs.
Subsequently, a test scripter transforms these paths into Python
code test cases. In each path, the test scripter retrieves the user
from the source node, the access right from an intermediary
node, and the object from the sink node. These elements are
then translated into Regular Expressions.

We use Neo4j Cypher path matching, using MATCH statement.

Therefore, we can generate paths from every U user node to
every O object node.

MATCH paths=(u:U)-[:Assignment| Prohibition]
Association % 1..%x]-(0:0)
RETURN distinct (paths) ORDER BY length (paths);

This MATCH statement generates a set of paths that covers
the NGAC graph. These paths are a sequence of nodes and
relations representing how a user node U reaches an object
node O through assignment, association, and prohibtion
relations. We use these paths to script test cases that will be
executed against each ACP sentence’s content. For instance,
when the test cases are executed against the ACP 1 (Student
should use only their assigned file to access the information
system), at least one test case has to pass successfully.

This test case matches the word (student) as a user attribute
node, (use) as an access right node (intermediate node), and
(file) as an object attribute node. If all test cases fail to match
these three phrases, this ACP sentence has not been extracted.
The scripter will fetch the (student), (use), and (file) words
and then form a regular expression as follows: .xstudent.*
(use) .«file .x. The dot refers to any character; the star
means zero or many. As a result, this regular expression
verifies that from the beginning of the sentence, ignore a
series of characters until reaching the (student) word, ignore
another series of characters until reaching (use), and another
string of characters until getting the word (file). Similarly,

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

Access Control Policy Attribute Alohaly [S] NGAC-ER
User Attributes 85% 96%
Object Attribute 71% 89%

TABLE IV: Attribute Identification Performance Compared with Other Work

. /,_\ | t
C‘ User.X | assigned_to use assigned_to
N ,—/

%,
K> .
‘o assigned_to
lS\s/
ik
el
e
assigned_to
%
Doy,

approve @ assigned_to

Fig. 2. The Generated NGAC Graph Model

]

| UserY assigned_to

(

0000

| UserZ assigned_to
\

ACPs function (search(pattern, ACP_Sentence)) that searches for a
1 Student should use only their assigned file to match over a string variable that represents an ACP sentence.

access the information system. The case sensitivity of letters is ignored. The result of this
2 Student is prohibited to use monitoring software in function is asserted to be not equal to Nome. The match

the university network.
3 The director of network services and access control
administrator must approve the connected network

function and the assertion are wrapped up in a test case defined
with a unique name. The test cases generated are then encased

devices. into a test-suite. The following is a Python snippet code that
4 The access control administrator will maintain all shows one of the test cases resulting from the scripter when
access request logs for creations, modifications, the path from Table VI is passed into it.

and deletions.

class TestSuite(unittest.TestCase):

User ACP_Sentence =
def testcaseOl (self): .

i pattern =’.xstudent.xuse.* file .x°’

2 322§¥ iz ant.’:luC(leer;tS control administrator. found = re.search(pattern, self.ACP_Sentence + ’I$°,
. flags=re .IGNORECASE)

7 UserZ is a director of network services. self.assertNotEqual (found, None)
Object
8 File.X is an object The test execution loads the ACP sentences. It then passes
9 LogX is an object. each ACP sentence to the test-suite, executes it, and reports
10 SW.X is an object. the test result into a file. Subsequent paragraphs illustrate
11 Device.X is an object. how we use graph testing to validate the correctness of the
TABLE V: A Set of ACPs and Users and Objects real-world dataset in the education and healthcare domains.

To ensure the robustness of our approach, we meticulously
assessed its correctness through the lenses of completeness,
well-formedness, minimality, and consistency.

Test Report

Test Scripter
I Completeness ensures that the generated NGAC graph covers
Sentences all the ACP sentences. We checked the completeness by testing
the paths generated from the NGAC graph against the ACP

Fig. 3. Testing Process sentences. Table VII shows the test result when this test-suite

is executed against the ACP sentence (Student should use only

their assigned file to access the information system.) It reports

the scripter converts all paths into regular expressions. Each that the first test case passed successfully while the others
regular expression is passed as an argument to a match failed. The test result is analyzed based on the following test

Test Paths

Test Execution

310

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

Path: Sequence of nodes and relations

[{"name":"User.X"}, {"assign":"

n.n non n.on

assigned_to"}, {"name":"student"}, {"name":"student"}, {"ars":"[use]"},
{"name":"use"}, {"name":"name":"file"}, {"assign":"assigned_to"}, {"name":"File.X"}]

TABLE VI: A Path that Generated from the NGAC Graph Model

kkkkkkkkkkx ACP *hkhkhhhkhhhhkkkk kXXX XXX KKK

Testing: Student should use only their assigned file
to access the information system.

testcase0l (ACP_TestSuite.TestSuite) ... ok
testcase02 (ACP_TestSuite.TestSuite) ... FAIL
testcase03 (ACP_TestSuite.TestSuite) ... FAIL

TABLE VII: Result of Test Suite Executed against ACP1

criterion: “for each ACP sentence, at least one testcase should
pass” Thus, this ACP sentence has been extracted as NGAC
policy.

Well-formedness ensures the inclusion of all NGAC entities in
each ACP sentence. It starts with involving the user node and
concludes with the object node, where the edge connecting
the user attribute, and object attribute signifies either an
association or prohibition relation. To verify well-formedness,
distinct paths for each ACP sentence were generated, ensuring
that the path initiated from the user U and concluded with the
object O and that the relation between U A and O A was either
association or prohibition. The generation of distinct paths was
facilitated using the DISTINCT keyword in Neo4j Cypher.
Well-formedness is verified by confirming the presence of user
(U), user attribute (U A), access rights (ars), object attribute
(OA), and object (O) in the path using the following two
regular expressions that verify whether a path is formed as a
user assigned to a user attribute that is associated with access
rights or prohibited from access rights to an object attribute
assigned to an object:
{.*user.*user—attribute.*ars.xobject-attribute.*object.x*}
{.*xuser.*user—attribute.*deny.*object-attribute.xobject.x}
Minimality or non-redundancy refers to the fact that an access
right given to a user attribute to access an object attribute
should not exist for two different paths in the NGAC graph.
We checked the minimality by generating two groups of
paths; one group has all paths of ACPs where the path starts
from user attributes (U A) to object attributes (OA) without
distinguishing them. The other group involves distinct paths.
We used the keyword DISTINCT in the Neo4j Cypher to
generate the distinct paths. The difference between these two
groups of paths results in redundant paths, which reflect ACP
sentences’ redundancy. The paths of all ACPs are retrieved
through the following MATCH statement:

MATCH allPaths=(user:U)-[:Assignment |Prohibition]|
Association x 1l..n]-(object:0)

WHERE none (node in nodes(allPaths) WHERE node:PC)
RETURN allPaths ORDER BY length(allPaths);

The distinct ACP paths are obtained by the following MATCH
statement that is written as follows:

MATCH dsPaths=(user:U)-[:Assignment |Prohibition|
Association % 1..n]-(object:0)

WHERE none (node in nodes (dsPaths) WHERE node:PC)
RETURN distinct dsPaths ORDER BY length (dsPaths);

Consistency refers if no two ACPs conflict with each other.
We checked the consistency by detecting the paths-conflict that
occurs between association relation and prohibition relation,
giving an access right to a user attribute to access an object
in one place and denying it from accessing the same object
in another. After we generate paths for ACPs, we separate the
paths into two groups; one group carries association relations
paths, and the other group consists of prohibition relations. We
then checked the consistency by exercising that for every user
attribute, matching the access rights of paths with association
relations to the denied access rights of paths with prohibition
relations to which the same user attribute and object attribute
are assigned. We used regular expression for matching values
of the access rights and denied access rights. To ensure the
verification process performs correctly, we added two ACP
sentences to each dataset that causes paths-conflict, (Student
is prohibited to use monitoring software in the university
network.) and (Student can use monitoring software in the
university network). The verification process detected this
paths-conflict successfully. Removing this paths-conflict and
rerunning the verification process over the generated NGAC
models, we found no paths-conflict that may lead to inconsis-
tency between the NGAC ACPs.

We analyzed policies from the healthcare and education do-
mains. For education domain policies, the level of complete-
ness averages at 95%, 46 out of 48 test cases were successful.
Well-formedness level averages at 100%. The analysis also
indicates that 98% of NGAC ACPs are non-redundant. The
remaining 2% of NGAC ACPs are redundant because many
policies in educational institutions have applicability across
diverse contexts. For example, when a university defines
conditions for an event, the associated policy is expected to
be enforced, which might also be relevant to other scenarios.
Moreover, based on our analysis, there is no evidence of
conflict between any two policies.

From healthcare domain policies, the completeness level av-
erages 97%, with 83 out of 86 test cases passing successfully.
Our analysis indicates a well-formedness level averaging at
100%. Additionally, our assessment highlights that 31% of
NGAC ACPs are redundant. This redundancy occurs due to
repeated role-specific policies, highlighting shortcomings in
policy specification. Furthermore, our analysis did not uncover
any evidence of conflicts between policies. No path conflicts
were identified that could potentially lead to inconsistencies
within the NGAC model.

SR2ACM demonstrates its effectiveness in extracting the for-
mal NGAC model compared to machine learning methods
like [3], [4], [8], and deep learning approaches such as [5].

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

The graph testing method is unique compared to existing
approaches [11]-[13].

VIII. CONCLUSION

Security requirements are often written in natural language.
Extracting access control models from these requirements is
non-trivial. Towards this end, we developed the SR2ACM
that automatically extracts ACPs from statements in natural
language and converts these ACPs into a formal NGAC
model expressed as a graph. The correctness of the extraction
NLP pipeline has been ensured by validating four properties:
completeness, well-formedness, minimality, and consistency.
The results indicate that the SR2ACM shows potential in
efficiently extracting the NGAC access control models from
available security requirements. Future research will explore
how we can adapt SR2ACM for efficiently handling updates
to security requirements. Finally, we will investigate how we
can develop formal privacy models from privacy documents
such as GDPR using this approach.

ACKNOWLEDGEMENTS

This work was supported in part by funding from NIST
under Award Number 60NANB23D152 and NSF under Award
Numbers DMS 2123761, CNS 1822118, CNS 2335687, ARL,
Statnett, AMI, NewPush, and Cyber Risk Research.

REFERENCES
(1]

R. S. Sandhu, “Role-based access control,” in Advances in computers.
Elsevier, 1998, vol. 46, pp. 237-286.

V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based
access control,” Computer, vol. 48, no. 2, pp. 85-88, 2015.

M. Narouei, H. Takabi, and R. Nielsen, “Automatic extraction of access
control policies from natural language documents,” IEEE Transactions
on Dependable and Secure Computing, vol. 17, no. 3, pp. 506-517,
2018.

X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated ex-
traction of security policies from natural-language software documents,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. Cary, NC, USA: ACM, 2012,
pp. 1-11.

M. Alohaly, H. Takabi, and E. Blanco, “Automated extraction of
attributes from natural language attribute-based access control (ABAC)
policies,” Cybersecurity, vol. 2, no. 1, pp. 1-25, 2019.

D. F. Ferraiolo, S. I. Gavrila, and W. Jansen, “Policy machine: features,
architecture, and specification,” NIST Interagency/Internal Report (NIS-
TIR), vol. 1, no. 2, pp. 100-120, 2015.

M. Abdelgawad, I. Ray, S. Alqurashi, V. Venkatesha, and H. Shirazi,
“Synthesizing and analyzing attribute-based access control model gen-
erated from natural language policy statements,” in Proceedings of the
28th ACM Symposium on Access Control Models and Technologies.
Trento,Italy: ACM, 2023, pp. 91-98.

J. Slankas, X. Xiao, L. Williams, and T. Xie, “Relation extraction for
inferring access control rules from natural language artifacts,” in Pro-
ceedings of the 30th annual computer security applications conference.
New Orleans, LA, USA: ACM, 2014, pp. 366-375.

A. Abu Jabal, E. Bertino, J. Lobo, M. Law, A. Russo, S. Calo, and
D. Verma, “Polisma a framework for learning attribute-based access
control policies,” in Proceedings of 25th European Symposium on
Research in Computer Security. Guildford, UK: Springer, 2020, pp.
523-544.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

312

Y. Xia, S. Zhai, Q. Wang, H. Hou, Z. Wu, and Q. Shen, “Automated
extraction of ABAC policies from natural-language documents in health-
care systems,” in Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine. Las Vegas, NV, USA: IEEE, 2022,
pp. 1289-1296.

I. Ray and M. Toahchoodee, “A spatio-temporal role-based access
control model,” in IFIP Annual Conference on Data and Applications
Security and Privacy. Berlin Heidelberg: Springer, 2007, pp. 211-226.

M. Fernandez, 1. Mackie, and B. Thuraisingham, “Specification and
analysis of ABAC policies via the category-based metamodel,” in
Proceedings of the 9th ACM conference on data and application security
and privacy. Richardson, TX, USA: Association for Computing
Machinery, 2019, pp. 173-184.

E. Chen, V. Dubrovenski, and D. Xu, “Mutation analysis of NGAC
policies,” in Proceedings of the 26th ACM Symposium on Access Control
Models and Technologies. Virtual Event, Spain: Association for
Computing Machinery, 2021, p. 71-82.

D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible
access control markup language (XACML) and next generation access
control (NGAC),” in Proceedings of the ACM International Workshop
on Attribute Based Access Control. New Orleans,: ACM, 2016, pp.
13-24.

A. Meneely, B. Smith, and L. Williams, “Appendix b: itrust electronic
health care system case study,” Software and Systems Traceability, vol. 1,
no. 3, pp. 409-425, 2012.

R. Van De Stadt, “Cyberchair: A web-based groupware application to
facilitate the paper reviewing process,” CoRR, vol. abs/1206.1833, p. 7,
2012. [Online]. Available: http://arxiv.org/abs/1206.1833

S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understand-
ing data augmentation for classification: when to warp?” in Proceedings
of the IEEE International Conference on Digital Image Computing:
Techniques and Applications. Gold Coast, Queensland: IEEE, 2016,
pp. 1-6.

K. M. Yoo, D. Park, J. Kang, S.-W. Lee, and W. Park, “GPT3Mix:
Leveraging large-scale language models for text augmentation,” in
Findings of the Association for Computational Linguistics. Punta Cana,
Dominican Republic: Association for Computational Linguistics, 2021,
pp. 2225-2239.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1-35, 2023.

J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT. Minneapolis, Minnesota: Association for Computa-
tional Linguistics, 2019, p. 4171-4186.

A. C. de Carvalho and A. A. Freitas, “A tutorial on multi-label
classification techniques,” Foundations of Computational Intelligence,
vol. 5, pp. 177-195, 2009.

M. Ehrmann, A. Hamdi, E. L. Pontes, M. Romanello, and A. Doucet,
“Named entity recognition and classification in historical documents: A
survey,” ACM Computing Surveys, vol. 56, no. 2, pp. 1-47, 2023.

J. Heaps, R. Krishnan, Y. Huang, J. Niu, and R. Sandhu, “Access
control policy generation from user stories using machine learning,” in
Proceedings of Data and Applications Security and Privacy. Calgary,
Canada: Springer, 2021, pp. 171-188.

5

J. Webber, “A programmatic introduction to neo4j,” in Proceedings of
the 3rd annual conference on Systems, programming, and applications:
software for humanity. ~Arizona, USA: ACM, 2012, pp. 217-218.

D. Fernandes, J. Bernardino et al., “Graph databases comparison:
AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB,” in
Proceedings of DATA. Portugal: ACM, 2018, pp. 373-380.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 23,2025 at 18:19:14 UTC from IEEE Xplore. Restrictions apply.

