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Distributed Optimization for Traffic Light Control
and Connected Automated Vehicle Coordination
in Mixed-Traffic Intersections

Viet-Anh Le

Abstract—In this letter, we consider the problem of
coordinating traffic light systems and connected auto-
mated vehicles (CAVs) in mixed-traffic intersections. We
aim to develop an optimization-based control framework
that leverages both the coordination capabilities of CAVs
at higher penetration rates and intelligent traffic man-
agement using traffic lights at lower penetration rates.
Since the resulting optimization problem is a multi-
agent mixed-integer quadratic program, we propose a
penalization-enhanced maximum block improvement algo-
rithm to solve the problem in a distributed manner. The
proposed algorithm, under certain mild conditions, yields
a feasible person-by-person optimal solution of the central-
ized problem. The performance of the control framework
and the distributed algorithm is validated through simula-
tions across various penetration rates and traffic volumes.

Index Terms—Connected automated vehicles, traffic
light control, distributed mixed-integer optimization.

[. INTRODUCTION

HOUGH coordination of connected automated vehicles

(CAVs) has shown promise in improving various traffic
metrics [1], [2], achieving full CAV penetration is not expected
in the near future. Therefore, addressing the planning and con-
trol problem for CAVs in mixed traffic, where human-driven
vehicles (HDVs) coexist, remains a fundamental research
area. Our early work on that topic focused on the problems
in unsignalized mixed-traffic scenarios such as merging at
roadways [3] or single-lane intersections [4]. However, in
more complex scenarios such as multi-lane intersections,
coordinating CAVs alongside multiple HDVs without traffic
signals may be unrealistic. As intelligent traffic light systems
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have been commonly used to exert control over HDVs at
intersections, the idea of combining traffic signal control and
CAVs in mixed traffic has gained growing attention in recent
years [5]. The current state-of-the-art methods for coordination
of traffic light systems and CAVs in mixed-traffic intersections
can be classified into three main categories: (1) reinforcement
learning, (2) bi-level optimization, and (3) joint optimization.
Reinforcement learning [6], [7] aims to train control policies
that optimize a specific reward function. However, real-time
safety implications are not taken into account. Optimization-
based approaches, on the other hand, are well-studied for
their ability to ensure real-time safety against the uncertain
behavior of HDVs. Bi-level optimization approaches [8], [9]
separate the traffic signal optimization from the CAV tra-
jectory optimization. First, the traffic signal optimization
is solved using an approximate traffic model, followed by
solving the CAV trajectory optimization. In joint optimization
approaches [10], [11], [12], [13], [14], optimization problems
considering both traffic signal control and CAV trajectory
optimization are formulated.

However, the aforementioned research efforts considered
traffic light control with CAV trajectory optimization rather
than fully exploiting the coordination between CAVs for cross-
ing the intersections. Specifically, in prior work, the traffic
lights for lanes with lateral conflicts could not be green simul-
taneously, even if all the vehicles were CAVs. This constraint
may hinder traffic efficiency at high CAV penetration rates,
as it has been shown that coordinating CAVs can significantly
improve throughput and energy efficiency while ensuring
safety without the need for traffic signals, e.g., [1], [2].
Furthermore, in the existing optimization-based approaches,
the optimization problems are solved in a centralized manner,
which may not be scalable with an increasing number of
CAVSs. Therefore, in this letter, we aim to make the follow-
ing contributions. First, we formulate a joint optimization
problem in which the traffic lights for the conflicting lanes
can be green simultaneously if there are no lateral conflicts
between an HDV and a CAV or between two HDVs. As a
result, we can better leverage CAV coordination to enhance
traffic throughput. The resulting optimization problem is a
multi-agent mixed-integer quadratic program (MIQP) that is
challenging to solve in a distributed manner. To address this,
we propose a variant of the maximum block improvement
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Control zone,

Fig. 1. An intersection scenario in mixed traffic with 12 lanes, including
separate lanes for right turns, straight-through traffic, and left turns.

(MBI) algorithm [15] where the local constraints of each
agent are encoded in the objective using penalty functions.
We show that the algorithm can find a person-by-person
optimal solution of the multi-agent MIQP problem (equivalent
to Nash equilibrium in a game-theoretic context), i.e., no agent
can unilaterally improve its local objective without changing
the solution of at least one neighboring agent that shares
coupling constraints. We validate the proposed framework by
simulations in a microscopic traffic simulator [16].

The remainder of this letter is organized as follows. In
Section II, we discuss our modeling framework and formulate
an MIQP for the considered problem. In Section III, we
present a distributed optimization algorithm to solve the MIQP
problem and its theoretical results. We show the simulation
results in Section IV and conclude this letter in Section V.

[I. PROBLEM FORMULATION

In this section, we present our modeling framework and
formulate a joint optimization problem for traffic light control
and CAV coordination.

A. System Model

We consider an isolated intersection illustrated in Fig. 1,
which has separate lanes for right turns, straight-through
traffic, and left turns. We define a control zone in the vicinity
of the intersection, where the vehicles and the traffic light
controllers (TLCs) have communication capability and can be
managed by the proposed framework. We assume that lane
changing is not allowed in the control zone. Note that though
the scenario in Fig. 1 consists of 12 lanes, the right-turn
lanes can be considered separately since they do not have any
potential conflicts with other lanes, which reduces the problem
to 8 lanes of interest. Next, we introduce several definitions
for the entities involved in the intersection scenario.

Definition 1 (Lanes): Let lane-! be the [-th lane in the
scenario and £ be the set of all lanes’ indices. Each lane—/ is
equipped with a traffic light controller denoted by TLC-I. We
set each lane’s origin location at the control zone’s entry and
let y; be the position of the stop line along lane—/.

Definition 2 (Nodes): Let node—n and the notation n = [®@m
to denote that node—n is the conflict point between lane—/ and
lane—m. Let ¢;' and ¢, be the positions of node-n along lane—/
and lane-m, respectively.

Definition 3 (Vehicles): Let a tuple (i, [) be the index of the
i-th vehicle traveling in lane—I. For each lane—/, let C;(k) and
Hi(k) be set of CAVs and HDVs in lane—/ at any time step k.

We formulate a joint optimization problem for TLCs and
CAVs and implement it in a receding horizon framework to
ensure robustness against the uncertainty caused by HDVs. Let
ko be the current time step, H be the control horizon, Z =
{ko+1, ..., ko+H]} be the set of time steps in the next control
horizon, and AT be the sample time. In our optimization
problem, we consider at most one traffic light switch for each
lane over the control horizon. Let «; € {1, ..., H 4+ 1} so that
the traffic light switches at ko + «;. If k; = 1, the traffic light
switches at the next time step, while if x; = H, the traffic
light switches at the last time step of the control horizon, and
k; = H + 1 means that the traffic light does not switch over
the next control horizon. At each time step k, let s;(k) € {0, 1}
be the traffic light state of lane—/, [ € L, where s;(k) = 0 if
the traffic light is red and s;(k) = 1 if the traffic light is green.
The traffic light states can be modeled as follows,

1 — sy(ko), if k > ko + «,
s1(ko), otherwise,

for all k € Z. In addition, we impose a constraint for
the minimum and maximum time gaps between traffic light
switches. Let k; be the time of the last traffic light switch
of lane—!, §min € R' and Spax € RT be the minimum
and maximum time gaps, respectively. As a result, the next
switching time must be within [8pyin +k;, 8max +k;]. Since k; €
{1,...,H+ 1}, to guarantee feasibility for «;, the constraints
are formulated as follows,

51(k) = { (1)

Ky > min{8min + k; — ko, H + 1},
Ky < max{dmax + I_Cl — ko, 1}. (2)

Note that the constraints (2) can be ignored if all vehicles in
lane—/ are CAVs.

For each CAV—(L,i), let p;i(k) € R, v;i(k) € R, and
ur (k) € R be the position, speed, and control input (accel-
eration/deceleration) at time step k. We consider the discrete
double-integrator dynamics for CAV—(/, i) as follows,

1
pritk) = pritk — 1) + ATv;i(k — 1) + EATzuz,i(k -1,
viitk) = vy itk — 1) + ATuyi(k — 1), 3)

for all k£ € Z. In addition, we impose the following speed and
acceleration limit constraints,

Vmin = Vl,i(k) < Vmax, Umin = ul,i(k — 1) < umax, “4)

for all k € Z, where umin € Rminus and upma € RT are
the minimum and maximum control inputs, vmi, € RT and
Vmax € RT are the minimum and maximum speeds, respec-
tively.

In this letter, we consider that the trajectories of HDVs
over the control horizon are predicted using the constant
acceleration model, that is, each HDV’s predicted acceleration
rate remains constant over the control horizon while satisfying
the speed constraint in (4). The constant acceleration rate of
each HDV at each time step is approximated by averaging
past data. We assume that the predicted trajectories for each
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HDV, based on the constant acceleration model, are computed
by the TLC of the lane and then transmitted to the CAVs.

Remark 1: Although the constant acceleration model may
not precisely predict the actual behavior of HDVs, the receding
horizon implementation effectively manages this discrepancy.
Developing a more accurate prediction model for HDVs is
beyond the scope of this letter.

B. Coupling Constraints

Coordinating traffic lights and CAVs requires them to satisfy
several coupling constraints. First, the traffic lights must
guarantee no lateral conflicts between a CAV and an HDV or
between two HDVs. Let lane—/ and lane—m be two lanes with
lateral conflicts, then the lights for those lanes cannot be both
green if there are HDV-CAV or HDV-HDV conflicts, i.e.,

s1(k) + sm(k) < 1, Yk € Z, if n(l, m, ko) > 0, (5)

where 7(l, m, kg) counts the number of CAV-HDV or
HDV-HDV pairs that have lateral conflicts between lane—/ and
lane—m at the current time step ko. If a pair of vehicles travel
on two intersecting lanes and neither vehicle has yet crossed
the conflict point, they have lateral conflicts. Next, we impose
a constraint ensuring that the CAVs stop at red lights,

pitk) < ¥, Vk € L, if 5;(k) = 0. (6)

Note that we only need to impose (6) if CAV—(/,i) is the
first vehicle in the queue of lane-/, i.e., CAV—(/, i) has not
crossed the stop line, and can stop by the line under maximum
deceleration. To avoid rear-end collisions, we consider safety
constraints for each CAV—(/, i) if there is a preceding vehicle,
which can be either a CAV or an HDV, as follows

pritk) + vy i(k) + dmin < pri-1(k), Yk e Z, @)

where T € R7 is the desired time headway, and dpmi, € Rt is
the minimum distance. Note that if vehicle—(/, i—1) is an HDV,
then (7) is considered as a local constraint of CAV—(/, i), while
vehicle—(/, i—1) is a CAYV, (7) is a coupling constraint between
the two CAVs. We also consider lateral safety constraints
between two CAVs, e.g., CAV—(/, i) and CAV—(m, j), traveling
on two lanes with lateral conflict node n = [ ® m. The lateral
safety constraints can be formulated using OR statements [17].
The OR statement can be equivalently formulated using the
following set of linear constraints,

pri(k) — @] = dmin —M(1 — c1),
¢f — pritk) = dmin —M(1 — e17),
Pmj(k) = @ = dmin — M(1 = cpj),
G — Pm(k) > dmin — M(1 — e ), 3)
and
cLitenitcmjt+en>1, 9

for all k € Z, where c;;,e;; € {0,1}, and M € R" is a
large positive number. The constraint (9) implies that at least
a binary among cy;, e1,i, Cimj, and e, j must be 1, which, when
combined with (8), guarantees the distance of at least one
vehicle to the conflict point is greater than or equal to dpin.
Note that all the binary variables ¢;; and e;;, Vi € Ci(ko) are
handled by TLC-I.

C. Objective Function

In our formulation, each agent has its separate objective.
For the TLCs, the goal is to maximize the traffic throughput
by encouraging the traffic lights for the lanes with higher
priority to be green. Let y; be the priority coefficient of lane—/,
which depends on the number of vehicles upstream of the stop
line. Moreover, to put a higher priority on the vehicles near
the intersection, we use the sigmoid function that takes the
vehicles’ current positions as inputs, leading to the following
computation at the current time step ko,

Z pLitko) — 101/2)' (10)

2
i€Cy(ko)UH, (ko) i/
pritko) <y

V= sigmoid<

For the CAVs, we optimize the trajectories over the control
horizon by a weighted sum of two terms: (1) maximization of
the positions to improve the travel time and (2) minimization
of the acceleration rates for energy savings. Thus, our
optimization problem minimizes the following objective,

misr}_il{?’ize ZZ(—ylsl(k+1)+ Z —wppl.,'(k+1)+wuulz_i(k)),
VieL.icCi(kg) keI leLl ieCy(ko)
(11)
where w, € R" and w, € R are the positive weights, while
we let s; = [s;(k)]kez, u1i = [u1;(k)lxez be the vectors of

decision variables for TLC-/ and CAV—(l, i) over the control
horizon, respectively.

In our problem formulation, the objective function is
quadratic, while all the constraints are linear, which results in
an MIQP problem.

Il1. DISTRIBUTED MIXED-INTEGER OPTIMIZATION
ALGORITHM

In this section, we present the distributed algorithm to solve
the MIQP problem at every time step inspired by the MBI
method [18]. It is worth noting that there is a limited amount
of research on distributed algorithms for MIQPs in the existing
literature, e.g., [19], [20], [21].

A. Distributed Mixed-Integer Optimization Problem

To facilitate the exposition of the algorithm, we rewrite the
optimization problem in the previous section in a compact
form. First, we describe the communication between the agents
in our multi-agent optimization problem as follows.

Definition 4: Let N be the total number of agents, V =
{1,..., N} be the set of agents, and £ C V x V be the set of
communication links. For each agent—i, i € V, let N; = {j €
V| (i,)) € £} be the set of its neighbors.

Note that for our problem, the agents include TLCs and
CAVs, and a pair of agents must have a communication link if
they share coupling constraints. The problem at every time step
can be formulated as a mixed-integer optimization problem
with separable objectives and pair-wise coupling constraints

as follows,
Zfi (xi),
eV

minimize
x;eX;,VieV

(12a)

Authorized licensed use limited to: Cornell University Library. Downloaded on December 15,2024 at 04:57:50 UTC from IEEE Xplore. Restrictions apply.



2724

IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

Aix; <b;j, i€V, (12b)
N T NT
(C]z) X + (C,l> xj <dj, (i,j) € €, (12¢)

subject to

where A; is the domain set for x;, fi(x;) = x_iTQix,- + q;rxi is
the local objective function, Q;, ¢;, A;, b;, C]i, Ci, and d;; are
the matrices and vectors of coefficients. The constraint (12b)
collects all the (linear) local constraints of agent—i, while the
constraint (12c) collects all the (linear) coupling constraints
between agent—i and agent—j. Next, we impose the following
assumption for the feasibility of the optimization problem (12).

Assumption 1: The problem (12) admits at least a feasible
solution.

B. Penalization-Enhanced Maximum Block Improvement
Algorithm

In the MBI algorithm, each agent optimizes its local vari-
ables at each iteration while keeping all other agents’ variables
fixed. Only the agent that achieves the greatest cost reduction
among its neighbors can update its local variables. However,
the MBI algorithm requires an initial feasible solution, which
is not always trivial for our problem. To overcome this, we
propose to use the maximum penalty function to relax the
local inequality constraints so that finding an initial feasible
solution that satisfies the coupling constraints becomes trivial.
For example, if all the local constraints are relaxed, a trivial
solution that satisfies all the coupling constraints in our
problem can be found by setting s;(k+1) = 0 and v; ;(k+1) =
0, Vk € Z, i.e., all the traffic lights are red, and all the CAVs
stop over the control horizon. We prove that if the penalty
weights are chosen appropriately, the penalized problem can
yield the same solution as the original problem. Let p € R
be the penalty weight for the local constraint relaxation. The
penalized version of (12) is given by

“ e . "’_ ), 13
nisinizg 2 he0 1
ieV
NT \NT
subject to (C”l> xi+ <CJ’) xj <dj, (i,)) € €, (13b)
where

fix) = fi(x;) + p.1" max(0, Ax; — by). (14)

The MBI algorithm for solving (13) consists of the follow-
ing steps. The algorithm starts with an initial feasible solution
{xl(o)},-ey. Then, at each iteration ¢, each agent—i transmits
(C]’:)Txl@ to agent—j, Vj € NV;. Next, in parallel, agent—i solves
the following local sub-problem given fixing the other agents’

variables to obtain a new candidate solution .ﬁgtﬂ),

chHI) —argmin  fi(x;), (15a)
x,'E.)C','
T \T
subject to (d) x; <dj — (C/l) x}’), (15b)

and compute the local cost reduction Afi(”rl) = f‘,-(fcl(”rl) ) —
f,‘(xl@) for the new candidate solution. Then agent—i transmits
Afi(lH) to agent—j, Vj € N;. Agent—i accepts or rejects the
new solution by comparing its local cost reduction with its
: : (+1) _ s0+1) (t+1) (t+1) :
neighbors, ie., x; = X if Af; > A]; , Vj e

N, otherwise x?H) = x,@. The algorithm terminates if no

agent can further improve its local variables. As the TLCs
handle all the integer variables, the sub-problems for CAVs
are quadratic programs (QPs), while those for TLCs are linear
integer programs (LIPs). In what follows, we analyze the
theoretical properties of the proposed algorithm.

Lemma 1: 1f the non-penalized sub-problem (13) for each
CAV is feasible and the penalty weight p is chosen sufficiently
large, the solution of the penalized sub-problem is also the
solution of the non-penalized sub-problem.

Proof: For CAVs, the sub-problems are QPs, thus this
lemma is a special case of [22, Proposition 5.25]. [ |

Lemma 2: If the non-penalized sub-problem (13) for each
TLC is feasible and the penalty weight p is chosen sufficiently
large, the solution of the penalized sub-problem is also the
solution of the non-penalized sub-problem.

Proof: We prove this lemma based on the fact
that the domain set ; for the integer variables is finite. Let ¥
be the minimizer of the penalized sub-problem. If X} satisfies
all the local constraints, then obviously J?l* is the feasible
minimizer of the non-penalized sub-problem. Therefore, we
only need to consider if ¥} violates at least a local constraint.
Let x7 be the minimizer of the non-penalized sub-problem.
From the definition of ¥}, we have

fl(i:k) +p17 max(O,AI-JYt;-k — b,-) Sf,-(x}k),

since max(0, A;x7 — b;) = 0. As X; violates at least a local
constraint, there exists € > 0 such that 1" max(0, AX]—b;) >
€. Combining with (16), we obtain
pe < filx}) = fil%))-
Since A] is a finite set and f; is a linear function, f; is bounded
over X;. In other words, there exist 0 < § < +o00 such that
filx?) — fi®) < &. If we choose p > &/e, it contradicts
with (17). Therefore, if p is sufficiently large, ¥; must be
local-constraint feasible for the non-penalized sub-problem. ®
In the next definition, we extend the concept of person-by-
person optimality [23] to constrained multi-agent optimization.
Definition 5: (Person-by-person optimality) {x}};cy is a
person-by-person optimal solution of (12) if for any i € V,

(16)

a7

x{ = argmin f;(x;),
x[E.X'i
subject to  A;x; < b;,

(C{)Tx,- + (C;)Tx; <dy, Yj € Ni. (18)

and we refer to x as the best feasible response to {x7};e ;.

Note that the person-by-person optimality condition for the
penalized problem (13) follows similarly to Definition 5 and
is therefore omitted.

Lemma 3: Starting from an initial solution {xEO)}iev that
satisfies the coupling constraints, the sequence {x;')}iev gen-
erated by the algorithm at any iteration satisfies the coupling
constraints. In addition, if the generated sequence has an
accumulation point, it is a person-by-person optimal solution
of the penalized problem (13).

Proof: First, we can observe that the feasibility of each local
sub-problem (15) is always maintained since xl-t) itself is fea-
sible. We prove that if {xl@ }iey is coupling-constraint feasible
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for (12), so is {x?lﬂ)}iey. Note that if agent—i and agent—j
have coupling constraints, then at each iteration, at most, one
of them can accept its solution. That means (xl(tH),x(Hl))
can be either (xl@,xy)), ()QZQH),x}l)), or (xl(t),fc(”l)), which
all satisfy the coupling constraints. Therefore, all the coupling
constraints are satisfied by {x§t+l)}iey. Let {x;};cy be a
accumulation point of the sequence {xl(’)},'ev in the sense that
for each i € V there exists a subsequence {xl(t“)} that converges
to x;. Note that since Aj is closed, Vi € V, X; € X;. Moreover,
as the coupling constraints generate a closed polyhedron and
the sequence {xl@}iey is coupling-constraint feasible for all ¢,
{xi};cy is also coupling-constraint feasible.

For any i € V, let J?l’-‘ be the best feasible response to

{Xj}jen: ie.,

X =argmin fi(x) + Lec (i, {%}jenr), (19)

x,-eX,-
where to simplify the proof, we utilize L..(x;, {X;}jen;) as the
indicator function that take +oo if the coupling constraint is
violated. We have

J;l(-i';k) + Hcc(-i';k, {x](‘t’r)}je./\f,‘) EJ;i(x,(tﬁ])),

(1)

i

(20)

since x is the best feasible response to {x;[S)}jENI..

Moreover, as fi(x;f) is a non-increasing sequence, from (20) we

obtain
Fil®F) + Tec <5c}", Hx}’s) }jeM) > ﬁ.(xl(rxm).

If t - oo it yields

2n

Fi®) = fi(®) + L (xjf, {x}k }jEN) >F@). (22)

Since x; is also a feasible response to {X;};cn;, (19) and (22)
implies that f,-()'c;-“) :fi(ii), or x; is the best feasible response
to {X;}jen;- ]

Combining Lemmas 1, 2 and 3, we obtain the following
main theorem.

Theorem 1: The accumulation point generated from the
penalization-enhanced MBI algorithm is a person-by-person
optimal solution of (12).

IV. SIMULATION RESULTS

In this section, we demonstrate the control performance of
the proposed framework by numerical simulations.

A. Simulation Setup

We validated our framework using a mixed-traffic simula-
tion environment in SUMO interfacing with Julia programming
language via TraCI [16] and PyCall package. In the
simulation, we considered an intersection with a control zone
of length 250m for each lane, with 150m upstream and
100m downstream of the stop line position. We conducted
multiple simulations for three traffic volumes: 1200, 1400,
and 1600 vehicles per hour and six different penetration rates:
0%, 20%, 40%, 60%, 80%, and 100%. The vehicles are
randomly assigned to the lanes, with higher entry rates for left
turns and straight-through traffic, while the entry rates across

&
&

«

N
o

. Average travel time (s)

=

-~ 1200 veh/h
1400 veh/h
—&— 1600 veh/h

0 20 40 60 80 100
Penetration rate (%)

Fig. 2. Average travel time (top) and average acceleration (bottom)
under different penetration rates and traffic volumes.

four directions are balanced. In our implementation, GUROBI
optimizer [24] is used to solve the QP and LIP sub-problems.

B. Results and Discussions

Videos and data of the simulations can be found at
https://sites.google.com/cornell.edu/tlc-cav. The simulations
demonstrate that the proposed framework effectively coordi-
nates TLCs and CAVs across varying traffic volumes and
penetration rates. The framework allows CAVs to coordinate
their intersection crossings while mitigating full stops at
traffic lights, especially at high penetration rates. To assess
the framework’s performance extensively, we computed the
average travel time and average acceleration rates from the
simulation data, with a duration of 1800 seconds for each
simulation. The results are shown in Fig. 2. Overall, in all
three examined traffic volumes, starting from a penetration
rate of 60%, the framework achieves remarkable travel time
improvement compared to the scenario with pure HDVs. The
framework also performs well at lower penetration rates (20%
and 40%), and differences compared to the pure HDV case
remain relatively small. Moreover, we can observe that CAV
penetration generally leads to lower average acceleration rates,
which may result in better energy consumption and a more
comfortable travel experience.

To demonstrate the benefits of leveraging CAV coordination
for intersection crossing, we compare the average travel time
between using the proposed control approach (#1) and an
alternative approach (#2) where the lateral conflicts between
CAVs are handled by the traffic lights instead of by the lateral
constraints (8) and (9). The statistics are computed from simu-
lations conducted with the high traffic volume of 1600 vehicles
per hour and are shown in Fig. 3. As can be seen from the
figure, utilizing CAV coordination, approach #1 outperforms
in terms of travel time the approach with only intelligent traffic
light control across all penetration rates. The improvement is
especially significant at lower penetration rates, highlighting
the advantages of combining CAV coordination with traffic
light control for conflict resolution compared to relying solely
on traffic lights. Approach #1 may require higher acceleration
rates than approach #2, but it can be explained by the fact that
the vehicles experience more full stops in simulations using
approach #2.
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Fig. 3. Comparison of average travel time (top) and average acceler-
ation (bottom) between two approaches with (#1) and without (#2) CAV
coordination for lateral conflicts.

TABLE |
AVERAGE COMPUTATION TIME (IN MILLISECONDS) FOR THE
CENTRALIZED OPTIMIZATION USING GUROBI SOLVER AND THE
PROPOSED DISTRIBUTED OPTIMIZATION ALGORITHM ACROSS
DIFFERENT NUMBER OF AGENTS

| N=10 | N=15 | N=20 | N=25 | N=30

12.3 16.6 23.3 33.6
13.3 36.5 76.8 126.7

53.2

Distributed
167.1

Centralized

Finally, we compare the average computation time between
our proposed distributed algorithm and the centralized
optimization approach employing the GUROBT solver to solve
the MIQP problem. Table I presents the average computa-
tion time across different numbers of agents for the two
approaches. Overall, our distributed algorithm required less
time than the centralized optimization approach, validating
the benefits of distributed computation. However, the results
reveal that the computation time for the distributed algorithm
still increases with the number of agents. This is because as
the number of agents grows, the algorithm may require more
iterations to achieve convergence.

V. CONCLUSION

In this letter, we addressed the optimal coordination of
traffic lights and CAVs in mixed-traffic intersections by formu-
lating an MIQP problem. The formulation improves upon the
previous ones by allowing the traffic lights of two lanes with
lateral conflicts to be green if no conflict involving an HDYV,
enabling better CAV coordination at higher penetration rates.
We also propose the penalization-enhanced MBI algorithm to
find a feasible person-by-person optimal solution in a dis-
tributed manner. Future work should focus on enhancing HDV
trajectory prediction and developing distributed algorithms that
do not require an initial feasible solution.
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