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Distributed Optimization for Traffic Light Control
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Abstract—In this letter, we consider the problem of
coordinating traffic light systems and connected auto-
mated vehicles (CAVs) in mixed-traffic intersections. We
aim to develop an optimization-based control framework
that leverages both the coordination capabilities of CAVs
at higher penetration rates and intelligent traffic man-
agement using traffic lights at lower penetration rates.
Since the resulting optimization problem is a multi-
agent mixed-integer quadratic program, we propose a
penalization-enhanced maximum block improvement algo-
rithm to solve the problem in a distributed manner. The
proposed algorithm, under certain mild conditions, yields
a feasible person-by-person optimal solution of the central-
ized problem. The performance of the control framework
and the distributed algorithm is validated through simula-
tions across various penetration rates and traffic volumes.

Index Terms—Connected automated vehicles, traffic
light control, distributed mixed-integer optimization.

I. INTRODUCTION

T
HOUGH coordination of connected automated vehicles

(CAVs) has shown promise in improving various traffic

metrics [1], [2], achieving full CAV penetration is not expected

in the near future. Therefore, addressing the planning and con-

trol problem for CAVs in mixed traffic, where human-driven

vehicles (HDVs) coexist, remains a fundamental research

area. Our early work on that topic focused on the problems

in unsignalized mixed-traffic scenarios such as merging at

roadways [3] or single-lane intersections [4]. However, in

more complex scenarios such as multi-lane intersections,

coordinating CAVs alongside multiple HDVs without traffic

signals may be unrealistic. As intelligent traffic light systems
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have been commonly used to exert control over HDVs at

intersections, the idea of combining traffic signal control and

CAVs in mixed traffic has gained growing attention in recent

years [5]. The current state-of-the-art methods for coordination

of traffic light systems and CAVs in mixed-traffic intersections

can be classified into three main categories: (1) reinforcement

learning, (2) bi-level optimization, and (3) joint optimization.

Reinforcement learning [6], [7] aims to train control policies

that optimize a specific reward function. However, real-time

safety implications are not taken into account. Optimization-

based approaches, on the other hand, are well-studied for

their ability to ensure real-time safety against the uncertain

behavior of HDVs. Bi-level optimization approaches [8], [9]

separate the traffic signal optimization from the CAV tra-

jectory optimization. First, the traffic signal optimization

is solved using an approximate traffic model, followed by

solving the CAV trajectory optimization. In joint optimization

approaches [10], [11], [12], [13], [14], optimization problems

considering both traffic signal control and CAV trajectory

optimization are formulated.

However, the aforementioned research efforts considered

traffic light control with CAV trajectory optimization rather

than fully exploiting the coordination between CAVs for cross-

ing the intersections. Specifically, in prior work, the traffic

lights for lanes with lateral conflicts could not be green simul-

taneously, even if all the vehicles were CAVs. This constraint

may hinder traffic efficiency at high CAV penetration rates,

as it has been shown that coordinating CAVs can significantly

improve throughput and energy efficiency while ensuring

safety without the need for traffic signals, e.g., [1], [2].

Furthermore, in the existing optimization-based approaches,

the optimization problems are solved in a centralized manner,

which may not be scalable with an increasing number of

CAVs. Therefore, in this letter, we aim to make the follow-

ing contributions. First, we formulate a joint optimization

problem in which the traffic lights for the conflicting lanes

can be green simultaneously if there are no lateral conflicts

between an HDV and a CAV or between two HDVs. As a

result, we can better leverage CAV coordination to enhance

traffic throughput. The resulting optimization problem is a

multi-agent mixed-integer quadratic program (MIQP) that is

challenging to solve in a distributed manner. To address this,

we propose a variant of the maximum block improvement
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Fig. 1. An intersection scenario in mixed traffic with 12 lanes, including
separate lanes for right turns, straight-through traffic, and left turns.

(MBI) algorithm [15] where the local constraints of each

agent are encoded in the objective using penalty functions.

We show that the algorithm can find a person-by-person

optimal solution of the multi-agent MIQP problem (equivalent

to Nash equilibrium in a game-theoretic context), i.e., no agent

can unilaterally improve its local objective without changing

the solution of at least one neighboring agent that shares

coupling constraints. We validate the proposed framework by

simulations in a microscopic traffic simulator [16].

The remainder of this letter is organized as follows. In

Section II, we discuss our modeling framework and formulate

an MIQP for the considered problem. In Section III, we

present a distributed optimization algorithm to solve the MIQP

problem and its theoretical results. We show the simulation

results in Section IV and conclude this letter in Section V.

II. PROBLEM FORMULATION

In this section, we present our modeling framework and

formulate a joint optimization problem for traffic light control

and CAV coordination.

A. System Model

We consider an isolated intersection illustrated in Fig. 1,

which has separate lanes for right turns, straight-through

traffic, and left turns. We define a control zone in the vicinity

of the intersection, where the vehicles and the traffic light

controllers (TLCs) have communication capability and can be

managed by the proposed framework. We assume that lane

changing is not allowed in the control zone. Note that though

the scenario in Fig. 1 consists of 12 lanes, the right-turn

lanes can be considered separately since they do not have any

potential conflicts with other lanes, which reduces the problem

to 8 lanes of interest. Next, we introduce several definitions

for the entities involved in the intersection scenario.

Definition 1 (Lanes): Let lane–l be the l-th lane in the

scenario and L be the set of all lanes’ indices. Each lane–l is

equipped with a traffic light controller denoted by TLC–l. We

set each lane’s origin location at the control zone’s entry and

let ψl be the position of the stop line along lane–l.

Definition 2 (Nodes): Let node–n and the notation n = l⊗m

to denote that node–n is the conflict point between lane–l and

lane–m. Let φn
l and φn

m be the positions of node–n along lane–l

and lane–m, respectively.

Definition 3 (Vehicles): Let a tuple (i, l) be the index of the

i-th vehicle traveling in lane–l. For each lane–l, let Cl(k) and

Hl(k) be set of CAVs and HDVs in lane–l at any time step k.

We formulate a joint optimization problem for TLCs and

CAVs and implement it in a receding horizon framework to

ensure robustness against the uncertainty caused by HDVs. Let

k0 be the current time step, H be the control horizon, I =

{k0 +1, . . . , k0 +H} be the set of time steps in the next control

horizon, and �T be the sample time. In our optimization

problem, we consider at most one traffic light switch for each

lane over the control horizon. Let κl ∈ {1, . . . , H + 1} so that

the traffic light switches at k0 + κl. If κl = 1, the traffic light

switches at the next time step, while if κl = H, the traffic

light switches at the last time step of the control horizon, and

κl = H + 1 means that the traffic light does not switch over

the next control horizon. At each time step k, let sl(k) ∈ {0, 1}

be the traffic light state of lane–l, l ∈ L, where sl(k) = 0 if

the traffic light is red and sl(k) = 1 if the traffic light is green.

The traffic light states can be modeled as follows,

sl(k) =

{

1 − sl(k0), if k ≥ k0 + κl,

sl(k0), otherwise,
(1)

for all k ∈ I. In addition, we impose a constraint for

the minimum and maximum time gaps between traffic light

switches. Let k̄l be the time of the last traffic light switch

of lane–l, δmin ∈ R
+ and δmax ∈ R

+ be the minimum

and maximum time gaps, respectively. As a result, the next

switching time must be within [δmin + k̄l, δmax + k̄l]. Since κl ∈

{1, . . . , H + 1}, to guarantee feasibility for κl, the constraints

are formulated as follows,

κl ≥ min{δmin + k̄l − k0, H + 1},

κl ≤ max{δmax + k̄l − k0, 1}. (2)

Note that the constraints (2) can be ignored if all vehicles in

lane–l are CAVs.

For each CAV–(l, i), let pl,i(k) ∈ R, vl,i(k) ∈ R, and

ul,i(k) ∈ R be the position, speed, and control input (accel-

eration/deceleration) at time step k. We consider the discrete

double-integrator dynamics for CAV–(l, i) as follows,

pl,i(k) = pl,i(k − 1) + �Tvl,i(k − 1) +
1

2
�T2ul,i(k − 1),

vl,i(k) = vl,i(k − 1) + �Tul,i(k − 1), (3)

for all k ∈ I. In addition, we impose the following speed and

acceleration limit constraints,

vmin ≤ vl,i(k) ≤ vmax, umin ≤ ul,i(k − 1) ≤ umax, (4)

for all k ∈ I, where umin ∈ Rminus and umax ∈ R
+ are

the minimum and maximum control inputs, vmin ∈ R
+ and

vmax ∈ R
+ are the minimum and maximum speeds, respec-

tively.

In this letter, we consider that the trajectories of HDVs

over the control horizon are predicted using the constant

acceleration model, that is, each HDV’s predicted acceleration

rate remains constant over the control horizon while satisfying

the speed constraint in (4). The constant acceleration rate of

each HDV at each time step is approximated by averaging

past data. We assume that the predicted trajectories for each
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HDV, based on the constant acceleration model, are computed

by the TLC of the lane and then transmitted to the CAVs.

Remark 1: Although the constant acceleration model may

not precisely predict the actual behavior of HDVs, the receding

horizon implementation effectively manages this discrepancy.

Developing a more accurate prediction model for HDVs is

beyond the scope of this letter.

B. Coupling Constraints

Coordinating traffic lights and CAVs requires them to satisfy

several coupling constraints. First, the traffic lights must

guarantee no lateral conflicts between a CAV and an HDV or

between two HDVs. Let lane–l and lane–m be two lanes with

lateral conflicts, then the lights for those lanes cannot be both

green if there are HDV-CAV or HDV-HDV conflicts, i.e.,

sl(k) + sm(k) ≤ 1, ∀k ∈ I, if η(l, m, k0) > 0, (5)

where η(l, m, k0) counts the number of CAV-HDV or

HDV-HDV pairs that have lateral conflicts between lane–l and

lane–m at the current time step k0. If a pair of vehicles travel

on two intersecting lanes and neither vehicle has yet crossed

the conflict point, they have lateral conflicts. Next, we impose

a constraint ensuring that the CAVs stop at red lights,

pl,i(k) ≤ ψl, ∀k ∈ I, if sl(k) = 0. (6)

Note that we only need to impose (6) if CAV–(l, i) is the

first vehicle in the queue of lane–l, i.e., CAV–(l, i) has not

crossed the stop line, and can stop by the line under maximum

deceleration. To avoid rear-end collisions, we consider safety

constraints for each CAV–(l, i) if there is a preceding vehicle,

which can be either a CAV or an HDV, as follows

pl,i(k) + τvl,i(k) + dmin ≤ pl,i−1(k), ∀k ∈ I, (7)

where τ ∈ R
+ is the desired time headway, and dmin ∈ R

+ is

the minimum distance. Note that if vehicle–(l, i−1) is an HDV,

then (7) is considered as a local constraint of CAV–(l, i), while

vehicle–(l, i−1) is a CAV, (7) is a coupling constraint between

the two CAVs. We also consider lateral safety constraints

between two CAVs, e.g., CAV–(l, i) and CAV–(m, j), traveling

on two lanes with lateral conflict node n = l ⊗ m. The lateral

safety constraints can be formulated using OR statements [17].

The OR statement can be equivalently formulated using the

following set of linear constraints,

pl,i(k) − φn
l ≥ dmin − M

(

1 − cl,i

)

,

φn
l − pl,i(k) ≥ dmin − M

(

1 − el,i

)

,

pm,j(k) − φn
m ≥ dmin − M

(

1 − cm,j

)

,

φn
m − pm(k) ≥ dmin − M

(

1 − em,j

)

, (8)

and

cl,i + el,i + cm,j + em,j ≥ 1, (9)

for all k ∈ I, where cl,i, el,i ∈ {0, 1}, and M ∈ R
+ is a

large positive number. The constraint (9) implies that at least

a binary among cl,i, el,i, cm,j, and em,j must be 1, which, when

combined with (8), guarantees the distance of at least one

vehicle to the conflict point is greater than or equal to dmin.

Note that all the binary variables cl,i and el,i, ∀i ∈ Cl(k0) are

handled by TLC–l.

C. Objective Function

In our formulation, each agent has its separate objective.

For the TLCs, the goal is to maximize the traffic throughput

by encouraging the traffic lights for the lanes with higher

priority to be green. Let γl be the priority coefficient of lane–l,

which depends on the number of vehicles upstream of the stop

line. Moreover, to put a higher priority on the vehicles near

the intersection, we use the sigmoid function that takes the

vehicles’ current positions as inputs, leading to the following

computation at the current time step k0,

γl =
∑

i∈Cl(k0)∪Hl(k0),
pl,i(k0)<ψl

sigmoid

(

pl,i(k0) − ψl/2

ψl/2

)

. (10)

For the CAVs, we optimize the trajectories over the control

horizon by a weighted sum of two terms: (1) maximization of

the positions to improve the travel time and (2) minimization

of the acceleration rates for energy savings. Thus, our

optimization problem minimizes the following objective,

minimize
sl,ul,i

∀l∈L,i∈Cl(k0)

∑

k∈I

∑

l∈L

⎛

¿−γl sl(k + 1) +
∑

i∈Cl(k0)

−ωppl,i(k + 1) + ωuu2
l,i(k)

À

⎠,

(11)

where ωp ∈ R
+ and ωu ∈ R

+ are the positive weights, while

we let sl = [sl(k)]k∈I , ul,i = [ul,i(k)]k∈I be the vectors of

decision variables for TLC–l and CAV–(l, i) over the control

horizon, respectively.

In our problem formulation, the objective function is

quadratic, while all the constraints are linear, which results in

an MIQP problem.

III. DISTRIBUTED MIXED-INTEGER OPTIMIZATION

ALGORITHM

In this section, we present the distributed algorithm to solve

the MIQP problem at every time step inspired by the MBI

method [18]. It is worth noting that there is a limited amount

of research on distributed algorithms for MIQPs in the existing

literature, e.g., [19], [20], [21].

A. Distributed Mixed-Integer Optimization Problem

To facilitate the exposition of the algorithm, we rewrite the

optimization problem in the previous section in a compact

form. First, we describe the communication between the agents

in our multi-agent optimization problem as follows.

Definition 4: Let N be the total number of agents, V =

{1, . . . , N} be the set of agents, and E ⊂ V × V be the set of

communication links. For each agent–i, i ∈ V , let Ni = {j ∈

V | (i, j) ∈ E} be the set of its neighbors.

Note that for our problem, the agents include TLCs and

CAVs, and a pair of agents must have a communication link if

they share coupling constraints. The problem at every time step

can be formulated as a mixed-integer optimization problem

with separable objectives and pair-wise coupling constraints

as follows,

minimize
xi∈Xi,∀i∈V

∑

i∈V

fi(xi), (12a)
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subject to Aixi ≤ bi, i ∈ V, (12b)
(

C
j
i

)

xi +

(

Ci
j

)

xj ≤ dij, (i, j) ∈ E, (12c)

where Xi is the domain set for xi, fi(xi) = x

i Qixi + q


i xi is

the local objective function, Qi, qi, Ai, bi, C
j
i, Ci

j, and dij are

the matrices and vectors of coefficients. The constraint (12b)

collects all the (linear) local constraints of agent–i, while the

constraint (12c) collects all the (linear) coupling constraints

between agent–i and agent–j. Next, we impose the following

assumption for the feasibility of the optimization problem (12).

Assumption 1: The problem (12) admits at least a feasible

solution.

B. Penalization-Enhanced Maximum Block Improvement
Algorithm

In the MBI algorithm, each agent optimizes its local vari-

ables at each iteration while keeping all other agents’ variables

fixed. Only the agent that achieves the greatest cost reduction

among its neighbors can update its local variables. However,

the MBI algorithm requires an initial feasible solution, which

is not always trivial for our problem. To overcome this, we

propose to use the maximum penalty function to relax the

local inequality constraints so that finding an initial feasible

solution that satisfies the coupling constraints becomes trivial.

For example, if all the local constraints are relaxed, a trivial

solution that satisfies all the coupling constraints in our

problem can be found by setting sl(k+1) = 0 and vl,i(k+1) =

0, ∀k ∈ I, i.e., all the traffic lights are red, and all the CAVs

stop over the control horizon. We prove that if the penalty

weights are chosen appropriately, the penalized problem can

yield the same solution as the original problem. Let ρ ∈ R
+

be the penalty weight for the local constraint relaxation. The

penalized version of (12) is given by

minimize
xi∈Xi,∀i∈V

∑

i∈V

f̃i(xi), (13a)

subject to
(

C
j
i

)

xi +

(

Ci
j

)

xj ≤ dij, (i, j) ∈ E, (13b)

where

f̃i(xi) = fi(xi) + ρ.1
 max(0, Aixi − bi). (14)

The MBI algorithm for solving (13) consists of the follow-

ing steps. The algorithm starts with an initial feasible solution

{x
(0)
i }i∈V . Then, at each iteration t, each agent–i transmits

(Ci
j)


x
(t)
i to agent–j, ∀j ∈ Ni. Next, in parallel, agent–i solves

the following local sub-problem given fixing the other agents’

variables to obtain a new candidate solution x̂
(t+1)
i ,

x̂
(t+1)
i = arg min

xi∈Xi

f̃i(xi), (15a)

subject to
(

C
j
i

)

xi ≤ dij −

(

Ci
j

)

x
(t)
j , (15b)

and compute the local cost reduction �f
(t+1)
i = f̃i(x̂

(t+1)
i ) −

f̃i(x
(t)
i ) for the new candidate solution. Then agent–i transmits

�f
(t+1)
i to agent–j, ∀j ∈ Ni. Agent–i accepts or rejects the

new solution by comparing its local cost reduction with its

neighbors, i.e., x
(t+1)
i = x̂

(t+1)
i if �f

(t+1)
i > �f

(t+1)
j , ∀j ∈

Ni, otherwise x
(t+1)
i = x

(t)
i . The algorithm terminates if no

agent can further improve its local variables. As the TLCs

handle all the integer variables, the sub-problems for CAVs

are quadratic programs (QPs), while those for TLCs are linear

integer programs (LIPs). In what follows, we analyze the

theoretical properties of the proposed algorithm.

Lemma 1: If the non-penalized sub-problem (13) for each

CAV is feasible and the penalty weight ρ is chosen sufficiently

large, the solution of the penalized sub-problem is also the

solution of the non-penalized sub-problem.

Proof: For CAVs, the sub-problems are QPs, thus this

lemma is a special case of [22, Proposition 5.25].

Lemma 2: If the non-penalized sub-problem (13) for each

TLC is feasible and the penalty weight ρ is chosen sufficiently

large, the solution of the penalized sub-problem is also the

solution of the non-penalized sub-problem.

Proof: We prove this lemma based on the fact

that the domain set Xi for the integer variables is finite. Let x̃∗
i

be the minimizer of the penalized sub-problem. If x̃∗
i satisfies

all the local constraints, then obviously x̃∗
i is the feasible

minimizer of the non-penalized sub-problem. Therefore, we

only need to consider if x̃∗
i violates at least a local constraint.

Let x∗
i be the minimizer of the non-penalized sub-problem.

From the definition of x̃∗
i , we have

fi
(

x̃∗
i

)

+ ρ.1
 max
(

0, Aix̃
∗
i − bi

)

≤ fi
(

x∗
i

)

, (16)

since max(0, Aix
∗
i − bi) = 0. As x̃∗

i violates at least a local

constraint, there exists ε > 0 such that 1

 max(0, Aix̃

∗
i −bi) >

ε. Combining with (16), we obtain

ρε ≤ fi
(

x∗
i

)

− fi
(

x̃∗
i

)

. (17)

Since Xi is a finite set and fi is a linear function, fi is bounded

over Xi. In other words, there exist 0 < ξ < +∞ such that

fi(x
∗
i ) − fi(x̃

∗
i ) ≤ ξ . If we choose ρ > ξ/ε, it contradicts

with (17). Therefore, if ρ is sufficiently large, x̃∗
i must be

local-constraint feasible for the non-penalized sub-problem.

In the next definition, we extend the concept of person-by-

person optimality [23] to constrained multi-agent optimization.

Definition 5: (Person-by-person optimality) {x∗
i }i∈V is a

person-by-person optimal solution of (12) if for any i ∈ V ,

x∗
i = arg min

xi∈Xi

fi(xi),

subject to Aixi ≤ bi,
(

C
j
i

)

xi +

(

Ci
j

)

x∗

j ≤ dij, ∀j ∈ Ni. (18)

and we refer to x∗
i as the best feasible response to {x∗

j }j∈Ni
.

Note that the person-by-person optimality condition for the

penalized problem (13) follows similarly to Definition 5 and

is therefore omitted.

Lemma 3: Starting from an initial solution {x
(0)
i }i∈V that

satisfies the coupling constraints, the sequence {x
(t)
i }i∈V gen-

erated by the algorithm at any iteration satisfies the coupling

constraints. In addition, if the generated sequence has an

accumulation point, it is a person-by-person optimal solution

of the penalized problem (13).

Proof: First, we can observe that the feasibility of each local

sub-problem (15) is always maintained since x
(t)
i itself is fea-

sible. We prove that if {x
(t)
i }i∈V is coupling-constraint feasible
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for (12), so is {x
(t+1)
i }i∈V . Note that if agent–i and agent–j

have coupling constraints, then at each iteration, at most, one

of them can accept its solution. That means (x
(t+1)
i , x

(t+1)
j )

can be either (x
(t)
i , x

(t)
j ), (x̂

(t+1)
i , x

(t)
j ), or (x

(t)
i , x̂

(t+1)
j ), which

all satisfy the coupling constraints. Therefore, all the coupling

constraints are satisfied by {x
(t+1)
i }i∈V . Let {x̄i}i∈V be a

accumulation point of the sequence {x
(t)
i }i∈V in the sense that

for each i ∈ V there exists a subsequence {x
(ts)
i } that converges

to x̄i. Note that since Xi is closed, ∀i ∈ V , x̄i ∈ Xi. Moreover,

as the coupling constraints generate a closed polyhedron and

the sequence {x
(t)
i }i∈V is coupling-constraint feasible for all t,

{x̄i}i∈V is also coupling-constraint feasible.

For any i ∈ V , let x̄∗
i be the best feasible response to

{x̄j}j∈Ni
, i.e.,

x̄∗
i = arg min

xi∈Xi

f̃i(xi) + Icc

(

xi, {x̄j}j∈Ni

)

, (19)

where to simplify the proof, we utilize Icc(xi, {x̄j}j∈Ni
) as the

indicator function that take +∞ if the coupling constraint is

violated. We have

f̃i
(

x̄∗
i

)

+ Icc

(

x̄∗
i , {x

(ts)
j }j∈Ni

)

≥ f̃i

(

x
(ts+1)
i

)

, (20)

since x
(ts+1)
i is the best feasible response to {x

(ts)
j }j∈Ni

.

Moreover, as f̃i(x
t
i) is a non-increasing sequence, from (20) we

obtain

f̃i
(

x̄∗
i

)

+ Icc

(

x̄∗
i ,

{

x
(ts)
j

}

j∈Ni

)

≥ f̃i

(

x
(ts+1)

i

)

. (21)

If t → ∞ it yields

f̃i
(

x̄∗
i

)

= f̃i
(

x̄∗
i

)

+ Icc

(

x̄∗
i ,

{

x̄∗
j

}

j∈Ni

)

≥ f̃i(x̄i). (22)

Since x̄i is also a feasible response to {x̄j}j∈Ni
, (19) and (22)

implies that f̃i(x̄
∗
i ) = f̃i(x̄i), or x̄i is the best feasible response

to {x̄j}j∈Ni
.

Combining Lemmas 1, 2 and 3, we obtain the following

main theorem.

Theorem 1: The accumulation point generated from the

penalization-enhanced MBI algorithm is a person-by-person

optimal solution of (12).

IV. SIMULATION RESULTS

In this section, we demonstrate the control performance of

the proposed framework by numerical simulations.

A. Simulation Setup

We validated our framework using a mixed-traffic simula-

tion environment in SUMO interfacing with Julia programming

language via TraCI [16] and PyCall package. In the

simulation, we considered an intersection with a control zone

of length 250m for each lane, with 150m upstream and

100m downstream of the stop line position. We conducted

multiple simulations for three traffic volumes: 1200, 1400,

and 1600 vehicles per hour and six different penetration rates:

0%, 20%, 40%, 60%, 80%, and 100%. The vehicles are

randomly assigned to the lanes, with higher entry rates for left

turns and straight-through traffic, while the entry rates across

Fig. 2. Average travel time (top) and average acceleration (bottom)
under different penetration rates and traffic volumes.

four directions are balanced. In our implementation, GUROBI

optimizer [24] is used to solve the QP and LIP sub-problems.

B. Results and Discussions

Videos and data of the simulations can be found at

https://sites.google.com/cornell.edu/tlc-cav. The simulations

demonstrate that the proposed framework effectively coordi-

nates TLCs and CAVs across varying traffic volumes and

penetration rates. The framework allows CAVs to coordinate

their intersection crossings while mitigating full stops at

traffic lights, especially at high penetration rates. To assess

the framework’s performance extensively, we computed the

average travel time and average acceleration rates from the

simulation data, with a duration of 1800 seconds for each

simulation. The results are shown in Fig. 2. Overall, in all

three examined traffic volumes, starting from a penetration

rate of 60%, the framework achieves remarkable travel time

improvement compared to the scenario with pure HDVs. The

framework also performs well at lower penetration rates (20%

and 40%), and differences compared to the pure HDV case

remain relatively small. Moreover, we can observe that CAV

penetration generally leads to lower average acceleration rates,

which may result in better energy consumption and a more

comfortable travel experience.

To demonstrate the benefits of leveraging CAV coordination

for intersection crossing, we compare the average travel time

between using the proposed control approach (#1) and an

alternative approach (#2) where the lateral conflicts between

CAVs are handled by the traffic lights instead of by the lateral

constraints (8) and (9). The statistics are computed from simu-

lations conducted with the high traffic volume of 1600 vehicles

per hour and are shown in Fig. 3. As can be seen from the

figure, utilizing CAV coordination, approach #1 outperforms

in terms of travel time the approach with only intelligent traffic

light control across all penetration rates. The improvement is

especially significant at lower penetration rates, highlighting

the advantages of combining CAV coordination with traffic

light control for conflict resolution compared to relying solely

on traffic lights. Approach #1 may require higher acceleration

rates than approach #2, but it can be explained by the fact that

the vehicles experience more full stops in simulations using

approach #2.
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Fig. 3. Comparison of average travel time (top) and average acceler-
ation (bottom) between two approaches with (#1) and without (#2) CAV
coordination for lateral conflicts.

TABLE I
AVERAGE COMPUTATION TIME (IN MILLISECONDS) FOR THE

CENTRALIZED OPTIMIZATION USING GUROBI SOLVER AND THE

PROPOSED DISTRIBUTED OPTIMIZATION ALGORITHM ACROSS

DIFFERENT NUMBER OF AGENTS

Finally, we compare the average computation time between

our proposed distributed algorithm and the centralized

optimization approach employing the GUROBI solver to solve

the MIQP problem. Table I presents the average computa-

tion time across different numbers of agents for the two

approaches. Overall, our distributed algorithm required less

time than the centralized optimization approach, validating

the benefits of distributed computation. However, the results

reveal that the computation time for the distributed algorithm

still increases with the number of agents. This is because as

the number of agents grows, the algorithm may require more

iterations to achieve convergence.

V. CONCLUSION

In this letter, we addressed the optimal coordination of

traffic lights and CAVs in mixed-traffic intersections by formu-

lating an MIQP problem. The formulation improves upon the

previous ones by allowing the traffic lights of two lanes with

lateral conflicts to be green if no conflict involving an HDV,

enabling better CAV coordination at higher penetration rates.

We also propose the penalization-enhanced MBI algorithm to

find a feasible person-by-person optimal solution in a dis-

tributed manner. Future work should focus on enhancing HDV

trajectory prediction and developing distributed algorithms that

do not require an initial feasible solution.
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