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Abstract— Addressing safe and efficient interaction between
connected and autonomous vehicles (CAVs) and human-driven
vehicles (HDVs) in a mixed-traffic environment has attracted
considerable attention. In this article, we develop a framework
for stochastic time-optimal trajectory planning for coordinating
multiple CAVs in mixed-traffic merging scenarios. We present
a data-driven model, combining Newell’s car-following model
with Bayesian linear regression (BLR), for efficiently learning the
driving behavior of human drivers online. Using the prediction
model and uncertainty quantification, a stochastic time-optimal
control problem is formulated to find robust trajectories for
CAVs. We also integrate a replanning mechanism that determines
when deriving new trajectories for CAVs is needed based on
the accuracy of the BLR predictions. Finally, we demonstrate
the performance of our proposed framework using a realistic
simulation environment.

Index Terms— Bayesian linear regression (BLR), connected
and autonomous vehicles (CAVs), mixed traffic, stochastic con-
trol, trajectory planning.

I. INTRODUCTION
A. Motivation

HE advancements in connectivity and automation for

vehicles present an intriguing opportunity to reduce
energy consumption, greenhouse gas emissions, and travel
delays while still ensuring safety requirements. Numerous
studies have demonstrated the advantages of coordinating
connected and autonomous vehicles (CAVs) using control and
optimization approaches across various traffic scenarios [1],
[2], [3]. In recent years, numerous control approaches have
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been presented for the coordination of CAVs, assuming a
100% penetration rate. These approaches include time and
energy-optimal control strategies [4], [5], [6], [7], [8], [9],
model predictive control (MPC) [10], [11], [12], and rein-
forcement learning (RL) [13], [14], [15] (see [16], [17], [18],
[19] for surveys). However, a transportation network with a
100% CAV penetration rate is not expected to be realized
by 2060 [20]. As CAVs will gradually and slowly penetrate
the market and co-exist with human-driven vehicles (HDVs)
in the following decades, addressing planning, control, and
navigation for CAVs in mixed traffic, given various human
driving styles, is imperative.

Several studies have shown that controlling individual
automated vehicles (AVs) may not be sufficient to enhance
the overall traffic condition. For example, Wang et al. [21]
showed that ego-efficient lane-changing control strategies for
AVs (without coordination between vehicles) are beneficial
to the entire traffic flow only if the penetration rate of AVs
is less than 50%. Thus, AVs should be connected to share
information and be coordinated to benefit the entire mixed
traffic. However, this problem imposes significant challenges
for several reasons. First, control methods for CAVs need to
integrate human driving behavior and human—AV interaction
to some extent. Approaches not accounting for these factors
may result in conservative CAV behavior to prioritize safety,
potentially leading to efficiency degradation. Moreover, opti-
mizing the behavior for CAVs requires not only some standard
metrics such as safety, fuel economy, or average travel time
but also social metrics such as motion naturalness and human
comfort [22], which can, at times, be challenging to quantify.
Finally, both learning and control methods must be compu-
tationally efficient and scalable for real-time implementation.
Therefore, in this article, we aim to address the coordination
problem for CAVs at merging in mixed-traffic environment.

B. Literature Review

In this section, we summarize the state of the art related to
planning, control, and navigation for CAVs in mixed traffic.
A significant number of articles have considered connected
cruise control or platoon formation for CAVs in mixed traffic
[23], [24], [25], [26], [27], [28], where the main objective is to
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guarantee string stability between CAVs and HDVs. However,
in this section, we focus more on research efforts that address
the problem in traffic scenarios such as merging at roadways
and roundabouts, crossing intersections, and lane-merging or
passing maneuvers. In these scenarios, vehicles must complete
the tasks not only safely but also efficiently, e.g., improv-
ing travel time, avoiding gridlocks, and minimizing traffic
disruption and human discomfort. These problems present a
more intricate challenge due to their multiobjective nature.
The current state-of-the-art methods of planning, control, and
navigation for CAVs in “interaction-driven” mixed-traffic sce-
narios can be roughly classified into two main and emerging
categories: RL and optimization-based methods.

1) RL: In approaches using RL, the aim is to learn control
policies for CAVs, usually trained using deep neural networks
and trajectories obtained from traffic simulation [29], [30],
[31]. To enhance the social coordination of RL policies
with human drivers, the concept of social value orientation
(SVO) was incorporated into the reward functions [32], [33].
RL algorithms generally do not guarantee real-time safety
constraints, so such approaches might need to be combined
with other techniques for safety-critical control, such as with
control barrier function [34], or lower level MPC [35]. Inverse
RL [36] or imitation learning [37] have been used to learn the
reward functions of human drivers and demonstrate how CAVs
can perform human-like behaviors.

2) Optimization-Based Methods: Such methods include
optimal control and MPC to find the control actions for
the CAVs. A large number of control methods have been
built upon MPC since it can handle multiple objectives and
constraints. It exploits the benefits of long-term planning and
replanning at every time step to be robust against uncertainty
caused by drivers. Some examples of MPC approaches include
game-theoretic MPC [38], [39], [40], [41], [42], socially
compatible MPC [43], [44], stochastic MPC [45], [46], [47],
learning-based MPC [48], [49], [50], and MPC with weight
adaptation [51], [52]. In addition, some recent studies used
an optimal control framework based on Hamiltonian analysis
for improving both time and energy efficiency simultane-
ously [53], [54], [55].

The aforementioned research efforts have addressed the
planning, control, and navigation problems for CAVs at a
single-vehicle level. At the same time, only a limited number
of research articles have attempted to address the coordination
problem in mixed traffic for multiple CAVs using RL [56],
[57] and optimization-based methods [58], [59], [60], [61],
[62], [63]. Yan and Wu [56] presented a multiagent RL
framework for CAVs in a network level while a car-following
model simulates the human drivers. Peng et al. [57] consid-
ered two CAVs that navigate multiple HDVs to form platoons
and cross through a signal-free intersection using deep RL.
Addresing the similar problem to [57], Faris et al. [58] utilized
mixed-integer optimization for deriving the optimal order of
the platoons crossing the intersections. Buckman et al. [59]
presented a centralized algorithm for socially compliant nav-
igation at an intersection, given the social preferences of the
vehicles. Ghosh and Parisini [60] and Suriyarachchi et al. [61]
formulated the mixed-integer optimization problems to coor-
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dinate CAVs and traffic lights in mixed traffic. Liu et al. [62]
presented a recursive optimal control method utilizing a con-
trol barrier function and a control Lyapunov function for
coordinating a group of three vehicles where two of them are
CAVs at a mixed-traffic on-ramp merging. In [63], we pre-
sented a control framework that aims to derive time-optimal
trajectories for CAVs in a mixed-traffic merging scenario
given the HDVs’ future trajectories predicted from Newell’s
car-following model [64]. The time-optimal trajectories are
then combined with a safety filter based on control barrier
functions.

C. Our Contributions

In this article, we propose a framework for trajectory
planning based on stochastic control that can guarantee opti-
mal, interaction-aware, robust, and safe maneuvers for CAVs
in mixed-traffic merging scenarios. First, we consider the
time-optimal control problem for trajectory planning of the
CAVs, which utilizes the closed-form solution of a low-level
energy-optimal control problem and satisfies state, input, and
safety constraints [4]. Since the trajectory planning problem
requires a specific prediction model for HDV’s future tra-
jectories, we use a data-driven Newell’s car-following model
in which the time shift, a parameter that characterizes the
personal driving behavior, is learned online using Bayesian
linear regression (BLR). The use of data-driven Newell’s car-
following model with BLR allows us to not only predict the
future trajectory and merging time of each HDV but also
quantify the level of uncertainty in the predictions. Using the
predictions, we formulate a stochastic time-optimal control
problem in which the safety constraints are formulated as prob-
abilistic constraints for robustness without over-conservatism.
To address the potential discrepancy between the prediction
model and the actual behavior of HDVs, we develop a replan-
ning mechanism based on checking the accuracy of the last
stored BLR prediction for each HDV with the actual observa-
tion. The overall structure of our proposed framework can also
be illustrated in Fig. 1. We validate the proposed framework’s
effectiveness in ensuring safe maneuvers and improving travel
time through numerical simulations conducted in commercial
software.
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In summary, the main contributions of this article are
threefold.

1) We use a data-driven Newell’s car-following model
where BLR is utilized to calibrate the time shift for each
human driver.

2) We formulate a stochastic time-optimal control problem
with probabilistic constraints to derive robust trajectories
for CAVs.

3) We develop a replanning mechanism based on assessing
the accuracy of the BLR predictions.

D. Comparison With Related Work

This work differs from the existing work in the literature
that considered the problem of multiple CAVs in mixed
traffic [56], [57], [58], [59], [60], [61], [62] in the following
aspects. First, while the framework in [57] and [58] considered
the problem where two CAVs navigate multiple HDVs to
form platoons and cross intersections, our framework does
not impose such platooning assumptions. Buckman et al.
[59], Ghosh and Parisini [60], and Suriyarachchi et al. [61]
addressed mixed-traffic scenarios with traffic lights, whereas
this work focuses on controlling CAVs in unsignalized merg-
ing scenarios. Yan and Wu [56] addressed the mixed-traffic
problem at a network level without considering the personal
driving behavior of human drivers, while we focus on an
isolated traffic scenario where human driving behavior is taken
into account. The problem setup in [62] is the most similar
to ours, but the presented method focuses on coordinating
three vehicles, two of which are CAVs, necessitating high
penetration rates of CAVs. In contrast, our framework does
not rely on that specific setup of vehicle groups, making it
flexible to varying levels of penetration rates.

This article also advances the methods presented in our
preliminary work [63], [65] as follows. First, in [65],
we employed the stochastic time-optimal control problem
to address the coordination problem of 100% CAVs, taking
into account uncertainty resulting from low-level tracking or
noisy measurements. Meanwhile, this article considered mixed
traffic, where uncertainty arises from various human driv-
ing behaviors. In [63], we considered mixed-traffic merging
scenarios in a deterministic setting in which the trajectories
of HDVs are predicted using Newell’s car-following model,
with parameters approximated by constants averaged from past
data. In contrast, this article utilizes BLR to learn the param-
eters of Newell’s car-following model, leading to stochastic
trajectory predictions for the HDVs. Finally, we propose a
replanning mechanism to account for the inaccuracy of the
model, which was not considered in both [63] and [65].

E. Organization

The remainder of this article is organized as follows.
In Section II, we formulate the problem of coordinating CAV's
in a mixed-traffic merging scenario and provide the prelimi-
nary on time-optimal trajectory planning in a deterministic
setting. In Section III, we present the data-driven Newell’s
car-following model with BLR for predicting the future

trajectories of HDVs. In Section IV, we develop a stochas-
tic trajectory planning mechanism. Finally, in Section V,
we numerically validate the effectiveness of the proposed
framework in a simulation environment, and we draw con-
cluding remarks in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first introduce the problem of effectively
coordinating multiple CAVs in a merging scenario, consid-
ering the presence of HDVs. Subsequently, we provide the
preliminary materials on deterministic time-optimal trajectory
planning for CAVs based on an earlier optimal control frame-
work [4].

A. Problem Formulation

We consider the problem of coordinating multiple CAVs,
co-existing with HDVs, in a merging scenario (Fig. 2), where
two merging roadways intersect at a position called a merging
point. We define a control zone and a buffer zone, located
upstream of the control zone, which is represented by blue and
yellow areas, respectively, in Fig. 2. Within the control zone,
the CAVs are controlled by the proposed framework, while
in the buffer zone, CAVs are controlled using adaptive cruise
control methods. We consider that a coordinator is available
who has access to the positions of all vehicles (including
HDVs and CAVs). The coordinator starts collecting trajectory
data of any HDVs once they enter the buffer zone so that
at the control zone entry, the data are sufficient for learning
the first BLR model (see Section III). We consider that the
CAVs and the coordinator can exchange information inside the
control zone and buffer zone. Next, we provide some necessary
definitions for our exposition.

Definition 1: Let L(t) = {1, ..., L(t)}, t € Ry, be the set
of vehicles traveling inside the control zone, where L(¢) € N is
the total number of vehicles. Let A(¢) C £(¢) and H(¢) C L(¢)
be the sets of CAVs and HDVs, respectively. Note that the
indices of the vehicles are determined by the order in which
they enter the control zone.

Definition 2: For a vehicle i € L(t), let R;s(t) C L(t) and
Rin(t) C L(2), t € R, be the sets of vehicles inside the
control zone traveling on the same road as vehicle i and on
the neighboring road, respectively.

Let p° p™, and p' € R be the positions of the control
zone entry, the merging point, and the control zone exit,
respectively. Without loss of generality, we can set p™ = 0.
We consider that the dynamics of each vehicle i € L(¢) are
described by a double integrator model as follows:

pit) =v; ()
v; (1) = u; (1) (D

where p; € P, v; € V, and u; € U denote the longitudinal
position of the rear bumper, speed, and control input (acceler-
ation/deceleration) of the vehicle, respectively. The sets P, V,
and U/ are compact subsets of R. The control input is bounded
by

Vi e L(1) )

Umin < Ui (1) < Umax,
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Fig. 2. Merging scenario with two roadways intersecting at a merging point. The control zone and buffer zone are represented by the blue and yellow areas,
respectively. In the virtual projection zone (green area), virtual projection is utilized (see Section III).

where i, < 0 and upx > 0 are the minimum and maximum
control inputs, respectively, as designated by the physical
acceleration and braking limits of the vehicles, or limits that
can be imposed for driver/passenger comfort. Next, we con-
sider the speed limits of the CAVs

Vi e L(t) 3)

where vy, > 0 and vy > 0 are the minimum and maximum
allowable speeds. Note that HDVs can violate the imposed
speed limits. However, we make the following assumption.

Assumption 1: The speed of HDVs is always positive, i.e.,
v;(t) >0, Vj e H@).

In practice, if HDVs come to a temporary full stop, Assump-
tion 1 can still be satisfied by assuming a sufficiently small
lower bound on the speed.

Next, let #, ™, and | € R be the times at which each
vehicle i enters the control zone, reaches the merging point,
and exits the control zone, respectively. To avoid conflicts
between vehicles in the control zone, we impose two con-
straints: 1) lateral constraints between vehicles traveling on
different roads and 2) rear-end constraints between vehicles
traveling on the same road. Specifically, to prevent a potential
conflict between CAV—i and a vehicle k € R; n(¢) traveling
on the neighboring road, we require a minimum time gap
81 € Ry between the time instants ¢ and #;" when the CAV—i
and vehicle k cross the merging point, i.e.,

Vmin < Vi (£) < Vmax,

£ — '] > §1.

“4)

To prevent rear-end collision between CAV—i and its imme-
diate preceding vehicle k traveling on the same road,
ie., k =max{j € R;s(t) | j < i}, we impose the following
rear-end safety constraint:

Pkt —8) — pi(t) = dumin, 1 € [1), 1] (5)

where dpi, € R5o and §; € R5( are the minimum distance at
a standstill and safe time gap. Note that p;(¢r — ;) denotes
the position of vehicle k at time instant r — §;. In addition,
we need to guarantee the rear-end safety constraint (5) after the
merging point between each CAV—i and a vehicle k € R; n(?)

entering the control zone on the neighboring road and crosses
the merging point immediately before CAV—i as follows:

Pkt —8) — pi(t) = dumin, 1 € [t 1]
for k = max{j € R;n(?) | t;“ < "}

(6)

B. Time-Optimal Trajectory Planning

Next, we explain the deterministic time-optimal trajectory
planning framework developed initially for coordinating CAVs
with a 100% penetration [4]. We start the exposition with the
unconstrained solution of an energy-optimal control problem
for each CAV—i [5]. Given a fixed tif that CAV—i exits the
control zone, the energy-optimal control problem aims at
finding the optimal control input (acceleration/deceleration)
for each CAV by solving the following problem.

Problem 1 (Energy-Optimal Control Problem): Let tio and tl-f
be the times that CAV—i enters and exits the control zone,
respectively. The energy-optimal control problem for CAV—i

at { is given by
1
3 [} ul(t) dr,
I
subject to:

(D). (2). 3),
(5), k=max{j € Ris(t)) | j <i},

L

(6), k =max{j € Rin(¢)) | 1" < 1},

L

minimize
u; () el

given:
pi()) =p° wi()) = v, pi() = p' (7)
where v? is the speed of CAV-i at the entry point. The
boundary conditions in (7) are set at the entry and exit of
the control zone.

The closed-form solution of Problem 1 for each CAV—i can
be derived using the Hamiltonian analysis [66]. If none of
the state and control constraints are active, the closed-form
optimal control law and trajectory are given by [4]

u;(t) = 6¢; 3t +2¢;>
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vi(t) = 3 3t* + 20 0t + iy

pi(t) = ¢ist® + diot” + i1t + ¢io ¥

where ¢; 3, ¢i2, i1, ¢i0 € R are the constants of integration.
Since the speed of CAV—i is not specified at the exit time 7/,
we consider the boundary condition

€))

For the full derivation of the closed-form solution in (8) using
Hamiltonian analysis, the readers are referred to [4].

Given the boundary conditions in (7) and (9), and consid-
ering tl.f is known, the constants of integration can be found
by

Uu; (lif) =0.

i3 () (@) 1] [
i 3(:9 219 10 v
o = ¢A'2 = N3 12 't (10)
oo | Ty @] |0
Bi.0 6rf 2 00 0

l

Note that using the Cardano et al.’s [67] method, the time
trajectory #;(p;) as a function of the position is given by

i (pi)

1
= Ea)zo

i 1 1
\/_E(wi’l + wi2 Pi) + \/Z(wm + win pi)2 +

s 1 1 1
+\/_§(a)i,l + wia pi) — \/Z(wi,l + win Pi)2 +

szo

+ w3, pi€P 1D
i (i)
wip = 21 _ _(E) (12)
diz 3 \¢i3
1 i ) i,2 Qi i
Wil = — 2(&) _ iz i1 (Z*l $io (13)
27 ®i3 (¢i3) ®i3
1 ;
Wiy = ——, w3 = — ik (14)
bi3 3¢i3
where w3, w2, w;1, and ;g € R such that

(1/4)(wi1 + wip p)* + (1/21)w} > 0, and they are all
defined in terms of ¢; 3, ¢;2, i1, ¢io € R, with ¢;3 # 0.
The algebraic derivation of (11) is standard [4] and thus
omitted. We use (11) to compute the merging time #".

Next, we formulate the time-optimal control problem to
minimize the travel time and guarantee all the constraints for
CAVs given the energy-optimal trajectory (8) at tl.o. We enforce
this unconstrained trajectory as a motion primitive to avoid the
complexity of solving a constrained optimal control problem
by piecing constrained and unconstrained arcs together [5].
We refer to this problem as deterministic planning problem
to differentiate it from the stochastic problems discussed in
Section IV.

Problem 2 (Deterministic Planning at the Control Zone Entry):
At the time #” of entering the control zone, let 7;(z”) = [t!, ?f]
be the feasible range of travel time under the state and input
constraints of CAV—i computed at . The formulation for
computing Lf and ff can be found in [68]. Then, CAV—i
solves the following time-optimal control problem to find the

minimum exit time t{ € 7;(#) that satisfies all state, input,
and safety constraints:
minimize tif
HeT (1)
subject to:
2,3,
@), Yk € Rin(),
(5), k=max{j € Ris(t)) | j < i},

(6), k = max {j € R[,N(tio) | t;“ < tim},
3),
given:
pi(t)) = p° vi() = v},
) = o, () =

The computation steps for numerically solving Problem 2
are summarized as follows or can also be found in [68].
First, we initialize ¢/ = ¢/ and compute the parameters ¢;
using (10). We evaluate all the state, control, and safety
constraints. If none of the constraints is violated, we return
the solution; otherwise, tif is increased by a step size. The
procedure is repeated until the solution satisfies all the con-
straints. By solving Problem 2, the optimal exit time tl.f along
with the optimal trajectory and control law (8) are obtained
for CAV—i for t € [, tf].

Remark 1: If a feasible solution to Problem 2 exists, then
the solution is a cubic polynomial that guarantees none of the
constraints become active. In case the solution of Problem 2
does not exist, we can derive the optimal trajectory for the
CAVs by piecing together the constrained and unconstrained
arcs until the solution does not violate any constraints (see [5]).

15)

III. HUMAN DRIVERS’ TRAJECTORY PREDICTION

To solve the trajectory planning problem for CAV—i, the
trajectories and merging times of all vehicles having potential
conflicts with CAV—i must be available. When CAV—i enters
the control zone, the time trajectories of all CAVs traveling
inside the control zone can be obtained from the coordinator.
However, the time trajectories of the HDVs are not known.
Next, we propose an approach to predict the trajectories of the
HDVs traveling inside the control zone by combining Newell’s
car-following model [64] and BLR [69, Chapter 3].

A. Bayesian Linear Regression

Consider N € R noisy observations y; of a linear model
with Gaussian noise: y; = 0Tx,- + e, fori =1,...,N,
where 8 € RM, M e N is the vector of weights, x; € RM
is the vectors of inputs, and ¢; ~ N (0, ,3’1) is the Gaussian
noise where B € R is the precision (the inverse of variance).
Let O = (X,Y) be the tuple of observation data for inputs
and outputs, where X = [x/,...,x}]"T € RM*N and Y =
[y1,...,yn]" € RV, The goal of BLR is to find the maximum
likelihood estimate for @ given the observation data.

The maximum a posteriori (MAP) estimate of # can be
found by maximizing the log of the posterior distribution
[69, Chapter 3]. If we assume a Gaussian prior over the
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Fig. 3. Time-shift prediction from BLR used to calibrate Newell’s car-fol-

lowing model for a HDV in Lyft level-5 open dataset [70]. (a) First model is
trained using the initial 20 data points and (b) second model is trained with
more recent data if the first model yields high predicted variances.

weights 8 ~ N'(0,a~'I,,) where @ € Ry is the precision
and I, is the M x M identity matrix, and the Gaussian
likelihood P(Y | X, 0, 8) = N'(0" X, B~'I), then the log of
the posterior distribution is computed as follows:
1
log PO |Y, X, a, B) = —BEW®) — anTo +c (16)
where ¢ is a constant and £(@) is the sum-of-squares error

function coming from the exponent of the likelihood function,
which is computed by

1< 1
E@) =35> (v —07x) = JIY - X8|},

i=1

a7)

Thus, the MAP estimate of @ has the following analytical
solution:

to = BTpX 'Y
2, =BX X +al,

(18)
19)

while estimates for priors, i.e., « and 8, can be obtained by the
empirical Bayes method (also known as maximum marginal
likelihood [69]).

Once the BLR model is trained, the posterior predictive
distribution for @ is a Gaussian distribution N (pg, Xg) with
the mean and covariance matrix given in (18). At a new input
x,, the predicted mean and variance are given by

(20)
2y

T
Msx = Hg X4

2 T -1
o, =x,Xpx,.+ .

BLR is highly suitable for online learning implementation
due to its light computation, where the complexity generally
is O(M? N), i.e., it scales linearly with the training data size
and quadratically with the input dimension. Moreover, we can
check for retraining by comparing the new observation to the
confidence interval or by considering prediction uncertainty.
This approach can avoid overly frequent model retraining.

B. Data-Driven Newell’s Car-Following Model With BLR

Newell’s car-following model [64] considers that the posi-
tion of each vehicle is shifted in time and space from its
preceding vehicle’s trajectory due to the effect of traffic
wave propagation. Specifically, the position of each HDV—k,
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k € H(t), is predicted from the position of its preceding
vehicle j as follows:

pi(t) = p;(t =) —w T (22)

where 7, € Ry is the time shift of HDV—-k, and w € Rx¢
is the speed of the backward propagating congestion waves,
which is considered to be a constant [71], [72]. The time
shift 7; is considered a stochastic variable and can be
learned by BLR. Since v;(t) > 0 (Assumption 1) and w > 0,
pj(t — 7r)—wty is a strictly decreasing function of 7. Thus,
there exists a unique value of 7; such that (22) is satisfied for
any 7. In this article, rather than only using the data at a specific
time instant, we use the observations over a finite estimation
horizon of length H € Z* to estimate the distribution of 7
for each HDV—k by a BLR model as follows:

T ~ By (xg; 0y) (23)

where By denotes the BLR model, x; = [1, pi, p;]1T € R¥ is
the vector of inputs, and 6; € R3 is the vector of weights.
Henceforth, for ease of notation, we use By (px, p;j) to denote
the BLR model for 7; given a preceding vehicle j.

To demonstrate the model’s capability to accurately learn
realistic human driving behavior, we utilized the trajectory data
for a specific human driver in Lyft level-5 open dataset [70]
whose actual time shift varies between 1.4 and 1.8 s. The
predicted time shift with 95% confidence interval using BLR
is shown in Fig. 3. We utilized N = 20 initial data points to
train a BLR model [Fig. 3(a)] and retrain the model [Fig. 3(b)]
with more recent data if either the BLR prediction uncertainty
is too high or the actual observations are outside the 95%
confidence interval.

Note that in the merging scenario, we consider the virtual
projection of vehicles traveling on that road to capture the
lateral interaction of each HDV with vehicles on the neighbor-
ing road. The virtual projection is implemented in a proximity
area before the merging point, defined as the virtual projection
zone in Fig. 2. The virtual projection is illustrated by an
example in Fig. 4. We consider that from the perspective
of HDV-3, the projected CAV-2 is the preceding vehicle
instead of CAV-1. Similar generalized car-following models
for capturing the merging behavior of human drivers have been
presented in [73], [74], and [75].

C. Exception Handling

Next, we present a method to handle the case when an
HDV, e.g., HDV—k, is not preceded by any vehicles in the
control zone, including those determined by virtual projection.
Generally, it is reasonable to assume that HDV—-k remains
its current speed in this case. However, to further quantify
the uncertainty in human driving behavior by exploiting the
data-driven Newell’s car-following model, we consider that
HDV—k follows a virtual preceding vehicle with a constant
speed trajectory. Let k’ denote the virtual preceding vehicle to
HDV—%. The constant speed trajectory of the virtual preceding
vehicle is given by

pe(t) =¢p1t~+dro (24)

Authorized licensed use limited to: Cornell University Library. Downloaded on August 04,2024 at 21:39:55 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LE et al.: STOCHASTIC TIME-OPTIMAL TRAJECTORY PLANNING FOR CONNECTED AND AUTOMATED VEHICLES 7

=
0

P2

T
#2iprojection

I

'

E

Virtual projection o
zone

Fig. 4. Example of virtual projection in the virtual projection zone, where
the CAV-2 is projected from the perspective of HDV-3.

v (1) = dr 1

where ¢ 1 € R>o and ¢p o € R are the constants, in which
¢w.1 is computed based on the average speed of HDV—k over
the estimation horizon, while ¢y ¢ is chosen such that p;/ (t,? —
7) = p® with T € Ry is an arbitrarily predefined constant.
We consider that the actual position trajectory of HDV—k is
computed by Newell’s car-following model given the virtual
preceding vehicle k" as follows:

(25)

pe(@) =pr(t —T)—wt = Pp,1 (F — ) + Pro—WT
(26)

where we quantify 7, with a BLR model . ~ B(p, pr),
which is similar to (23).

IV. STOCHASTIC PLANNING WITH PROBABILISTIC
CONSTRAINTS

In this section, we develop a stochastic trajectory planning
framework using the data-driven Newell’s car following model
for learning human driving behavior presented in Section III.
The use of stochastic control can reduce the conservatism of
classical robust control for uncertain systems by formulating
robust constraints as probabilistic constraints [76]. As a result,
probabilistic constraints have been used recently in robust
trajectory optimization algorithms [77], [78], [79].

A. Uncertainty Quantification

Remark 2: In our framework, we consider that the trajec-
tories of CAVs are deterministic, or equivalently, stochastic
variables with zero variances.

Note that given the data-driven Newell’s car-following
model using BLR, the time shift 7; of HDV—k at any future
time ¢ must satisfy the following equation:

(1) ~ B(p;(t — w(t)—wrn (1), p;(1))

where j is the index of the preceding vehicle. Solving (27) to
obtain a closed-form solution for 7;(¢) and p;(¢) at any future
time ¢ is computationally intractable. As a result, in what
follows, we propose a method to simplify the predictions
of trajectory and merging time for each HDV-k along with
quantifying the uncertainty of the predictions.

27

When HDV-k enters the control zone at t,?, we train the
first BLR model By for t; using a dataset of H € N data
points collected in the buffer zone. Let 7 (t,?) ~ N (s, af,)
be the prediction of 7; with the mean u,, and the variance aék .
We utilize 74(#) to construct a nominal predicted trajectory
and merging time for HDV—k. In our analysis, we consider
the zero-variance method for approximating uncertainty prop-
agation while making BLR prediction, which implies that
if the inputs of a BLR model include a stochastic variable,
we only use its mean to compute the mean and variance of
the model output without taking its variance into account. The
zero-variance method has been considered in multiple studies
on using stochastic processes in control [80], [81].

Assumption 2: The effect of uncertainty propagation is

approximated by the zero-variance method.
Assumption 2 implies that the trajectory prediction of any
HDV only depends on the uncertainty resulting from the
time-shift prediction of Newell’s car-following model and
does not depend on the uncertainty in trajectory prediction
of its preceding vehicles. The reason for ignoring full uncer-
tainty propagation is that it may lead to overly conservative
constraints if the CAV penetration rate is low. Moreover,
Assumption 2 aims to simplify the computation since the
distribution of vehicles’ trajectories, which are inputs of the
BLR model, is generally not Gaussian as we show later (see
Lemma 1).

Next, we show that the predicted position mean for any
HDVs using the data-driven Newell’s car-following model is
either a cubic polynomial or an affine polynomial.

Lemma 1: Given Assumption 2, at any time ¢, if the dis-
tribution N '(ptr, (1), 07 (1)) for () is known, and HDV—k
is preceded by a vehicle j whose predicted position
mean is a cubic polynomial of time parameterized by
¢j =[¢j3, ¢j2, D1, ¢j,0]T, then the predicted position mean
and variance of HDV—k at time ¢ can be computed as given
by (28) and (29), shown at the bottom of the next page, where
M =1— M-

Moreover, the coefficients of the polynomial are computed
as follows:

b3 =¢j3

P2 =¢j2— 303Uy

G =Pj1 —2¢j 2y +30;3 (M%k + Utzk)

bro=dj0— (1 +w)pg + ¢>j,2(lt3k + Ufzk)
— @3ty (12, +307).

Proof: The proof is given in the Appendix. Note that the
distribution of p;(¢) in this case is not Gaussian. U
Lemma 2: Given Assumption 2, if the distribution
N (s, afk ) for 7;(¢) at time ¢ is known, and HDV-k is
preceded by a vehicle j whose predicted position mean is an
affine polynomial of time parameterized by ¢; = [¢;.1. ¢;.0]",
i.e., it cruises with constant speed, then the predicted position
mean and variance of HDV-k at time ¢ can be computed as
follows:

(30)

€1y
(32)

I (0) = (¢ +w) M + ()0 —wr)

U[%k 1= (qu,l + w)zafzk
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where A\, =t — 1, and the coefficients of the polynomial are
computed as follows:

dr,1 =1

bro = dj0— ()1 + w)is,. (33)

Proof: ~ This is a trivial case of Lemma 1 with
¢j3=¢j2=0. O
Theorem 1: The mean prediction for the position of any
HDV-k is either a cubic polynomial or an affine polynomial
of time.

Proof: Given Lemmas 1 and 2, if HDV—k is preceded by
an HDV, e.g., HDV—}, and the mean prediction for the position
of HDV—j is either a cubic polynomial or an affine polynomial
of time, then that of HDV—k is also either a cubic polynomial
or an affine polynomial of time. Therefore, we only need to
consider the cases where: 1) HDV—k is preceded by a CAV,
e.g., CAV—i or 2) HDV—£ is not preceded by any vehicle inside
the control zone.

1) Case 1: If HDV-k is preceded by CAV—i, since the
position trajectory of CAV—i is a cubic polynomial, from
Lemma 1, we can verify that the predicted position mean
of HDV—k is a cubic polynomial of time.

2) Case 2: If HDV—k is not preceded by any vehicle inside
the control zone and has not crossed the merging point,
from (26), the predicted mean of p;(t) is

W) =@jit+ (o — Pj1 ho—w e, (34)

which is a linear function of time. (]
Lemma 3: Suppose HDV—k has not crossed the merging
point. Then, the merging time of HDV—k is computed by

l;:1 =t;(wt) + T 35

where #;(w7;) denotes the time that the preceding vehicle j
reaches the position wt;, where 7, = Tk(l‘,?) ~ N (e, crfk ).
Proof: Evaluating Newell’s car-following model (22) at
', we have
pk(l‘lzn) = pj (tlzn — Tk) — WTk. (36)
At the merging time, we have pi (") = p™ = 0 which results
in

Dj (t,:” — ‘L'k) = WT. (37)

As the speed of vehicle k is always positive given (3) and

Assumption 1, we can compute the inverse as
=1 =t;(wry) (38)

and the proof is complete. |
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If vehicle j is an HDV, we approximate #; (wt;) by solving
Hp;, = wri. If wp (¢) is an affine polynomial of time parame-
terized by ¢j =[¢j1, ¢ j,o]T, the time trajectory as a function
of position is given by
—9j.0 )

¢j1 7
while if p, (#) is a cubic polynomial, the time trajec-
tory follows Cardano formulation (11). Given Lemma 3,
f' is a stochastic variable with Gaussian distribution,
" N./\/'(,u,;n,at%n) with pm = pq + t;(wt) and o‘tf 2
To guarantee that the computation of ¢;(wti) using the poly-
nomial trajectories is valid, the position wt; must be inside
the control zone. Thus, we impose the following assumption.

Assumption 3: The speed of the backward propagating con-
gestion waves w is chosen such that w 7 < p'.

Assumption 3 can be satisfied in practice since the term w 7
describes the standstill spacing between vehicles and should
be relatively small compared to the length from the merging
point to the control zone exit.

tj(pj) = (39)

m = Ufk'

B. Stochastic Time-Optimal Control Problem With
Probabilistic Constraints

Since the predicted trajectory and merging time for any
HDV-k are stochastic variables, next, we formulate proba-
bilistic constraints for rear-end and lateral safety that guarantee
constraint satisfaction at a certain probability. Let & € (0, 1) be
the probability of constraint satisfaction. The lateral probabilis-
tic constraint for CAV—i and HDV—k entering from different
roads is given by

Pl —1;=5]=¢
OR P[1f—1 <—§]=¢. (40)

The deterministic rear-end constraints for CAV—i and its
immediate preceding HDV-k in (5) and (6) are considered
as the following probabilistic constraints:

P[pi(t) = pi(t = 8,) < —dmin] = &, Ve € [, 5] (4D
for k =max{j € R;s(t) | j < i}, and
P[pi(t) — pc(t —8,) < —dmin] = &, Yt € [t 1]  (42)
for k = max {j € L(t) | <)
Therefore, we formulate the following stochastic

time-optimal control problem for planning at the control zone
entry.
Problem 3 (Stochastic Planning at the Control Zone Entry):

At the time tl.o of entering the control zone, CAV—i solves the
following time-optimal control problem:

minimize tl-t
HeT (1)

[ (1) = G308 +3M02) + dja(N; +02) + (B0 + w)he + (1.0 — w)

(28)

02 (1) = 02 (@1 + W) + 451 + W12 N+ 6651 + Wi AN+ 611+ w)gj02 + 467N + 207,02

+ 1202037, + 246,26, 3 M0, + 3647 N0

24156207 +9¢2 X)),

(29)
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subject to:
(2), (3), (8),
(40), Vk € Rin(),
A1), k=max{j e Ris(t)) | j <i}.
(42), k=max{j € Rin(t)) | 1" < 1},
given:
Pi(fio) =p’, Ui(t,-o) =y,
Di (tlf) = pf, ui(tif) = 0.
Given the uncertainty quantification of stochastic variables
we derived in Section IV-A and the constraint tightening

technique [79], the lateral probabilistic constraint (40) is
equivalent to the following deterministic form:

(43)

i :
l; — Wyt = 8 + 2oy

OR #f — iy < —8—z0y (44)

where z = (2)/2 erf~! (2 — 1) with erf ! (-) is the inverse error
function. Likewise, the rear-end probabilistic constraints (41)
and (42) can be, respectively, transformed to deterministic
constraints as follows:

pi(t) = p,(t = 8) < —dmin—20,, (t —8,), V1 € [1]. 1]
45)

and

pi(t) = [hp,(t = 8,) < —dmin—20,,(t — 5,), Vt € [t 1]
(46)

Thus, for solving Problem 3, the probabilistic constraints
in (43) are replaced by (44)—(46), which result in an equivalent
deterministic optimization problem.

C. Replanning

Since the future trajectory and merging time for any HDV
derived in Section IV-A are computed based on the prediction
of 7 at t), the predictions are not reliable if £, (r) at ¢t > ¢,
where 7, denotes the actual observation of 7, obtained by
solving (22), is highly different to 7 (t,?). Under this discrep-
ancy, the planned trajectories for the CAVs may not always
ensure safe maneuvers. Next, to address this issue, we present
a mechanism for replanning based on checking the accuracy
of the BLR predictions. First, we define replanning instances
and how to determine replanning instances as follows.

Definition 3: A time instance t© € R is a replanning
instance if at ¢ we need to replan for the CAVs in the
control zone. At any time t°, we check whether ¢ is a
replanning instance if there exits HDV-k € H(t°) such
that 7,(t°) ¢ CI, (1% (1)), where CI; () denotes the ¢.100%
confidence interval of BLR prediction with ¢ € (0, 1), and #;
is the time that the last prediction for t; is stored.

Definition 3 implies that replanning is activated at time #¢
if there is an HDV, e.g., HDV-k, whose actual time shift at
t¢ is outside the ¢.100% confidence interval of the last stored
prediction. The time that the last prediction for t is stored can
be either the entry time of HDV—k or the previous replanning
instance. Once replanning is activated, we retrain the BLR

model, update the trajectory and merging time predictions for
the HDVs, and resolve Problem 3 given new initial conditions
for some specific CAVs. The set of CAVs that need replanning
is given in the following definition.

Definition 4: At a replanning instant ¢, let

H() := {k € H(1%) 1 2(1°) ¢ CL (w (D))}

be set of all HDVs that violate the condition
Tp(1°) € Cle(t(7)). Let HDV-—j be the HDV with
the minimum predicted merging time in H'(¢¢), i.e.,

M < g, Vk € H'(t°). The set of CAVs that need replanning
is determined as follows:

A () = {i € A(t) N Rys(t) |11} > 19}
Oli € A) R un() 1 > i — ] @)

where #" is the planned merging time for CAV—i.
Definition 4 means that we replan for CAV—i either if:
1) CAV—i travels on the same road to HDV—j and enters
the control zone after HDV—j or 2) CAV—i travels on the
neighboring road to HDV—j and the planned merging time
is greater than pm — pr. The stochastic time-optimal control
problem at any time #° when a replanning event is activated
can be given as follows.
Problem 4 (Stochastic Replanning in the Control Zone): At
the time ¢ with an replanning event, CAV—i € A'(¢°) solves
the following time-optimal control problem:
minimize
feTi ()
subject to:
(2,3, ®),
(40), Yk € Ri,N(tC),
(41), k=max {j € R;s(:°) | j < i},
(42), k=max {j € Rin(t) | 1] < 1},
given:
Pi (IC)’ V; (tc)3
pi(t}) = Pl wi(t) = 0.
Thus, the
Algorithm 1.

(48)

replanning mechanism is summarized in

V. SIMULATION RESULTS

In this section, we demonstrate the control performance of
the proposed framework by numerical simulations.

A. Simulation Setup

For our simulation, we used PTV Vissim [82], which
is a commercial software for simulating microscopic mul-
timodal traffic flow. PTV Vissim provides a human-driven
psycho-physical perception model created by Wiedemann [83].
To emulate the behavior of human drivers in a signal-free
merging scenario, we leveraged the network object called
“conflict areas” of the software where we assigned undeter-
mined priority for the vehicles moving on two roadways. In the
simulation, we considered a merging scenario with a buffer
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Algorithm 1 Replanning Mechanism at Time #¢

Require: t°, ¢, iy, Yk € H(t%)
1: Replan < False
2: for k € H(t°) do
3 Compute 7y (t°)
4 if t° =t then
5: t~k — t¢
6
7
8

Train By,
Compute and store jir, (tx), 0%, (tx)
: Predict ¢}, and ¢, using (35) and (30)/(33)
9: else if 7, (t°) ¢ Cl¢(7x(fx)) or Replan = True then
10: fk — t°

11: Retrain By,

12: Compute and store jir, (1), 02, (tr)

13: Predict ¢};' and ¢, using (35) and (30)/(33)
14: Replan < True

15: Construct A’(t°) using Definition 4
16: for i € A(t°) do
17: if t© =t; then
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Fig. 5.

Simulation environment in PTV Vissim.

TABLE 11
AVERAGE TRAVEL TIME (IN S) UNDER DIFFERENT PENETRATION RATES

18: Solve Problem 3 given p;(t?) and v;(£)) AND TRAFFIC VOLUMES
19:  else if Replan and i € A’(¢°) then ;
20: Solve Problem 4 given p;(t°) and v; (%) Penetrdt:;z
Traffic 0% 40% 60% 80% 100%
TABLE 1 volume
PARAMETERS OF THE TRAJECTORY PLANNING FRAMEWORK 800 (veh/h) 23.9 22.4 22.3 21.2 20.4
1000 (veh/h) 25.6 23.4 22.7 21.6 21.0
Parameters Values Parameters Values 1200 (veh/h) 29.1 250 243 231 217
Vmax 30.0m/s Vmin 3.0m/s
Amax 3.0m/s? Amin —4.0m/s? TABLE TIT
p1 2.5s Pr 1.5s
dmin 10m H 20 AVERAGE ACCELERATION (IN M/s?) UNDER DIFFERENT PENETRATION
0.95 ¢ 0.8 RATES AND TRAFFIC VOLUMES

zone of length 70 m, a control zone of length 430 m (350-m
upstream and 80-m downstream of the merging point), and
a virtual projection zone of length 100 m. The simulation
environment in PTV Vissim is shown in Fig 5. In addition,
the speed of congestion wave w in Newell’s car-following
model was chosen based on the traffic volume such that
3600 w/n = 10, where n denotes the traffic volume in vehicles
per hour, which implies that the average standstill spacing
is 10 m. The proposed trajectory planning framework was
implemented using Python programming with the parameters
in Table I. Videos and data of the simulations can be found at
https://sites.google.com/cornell.edu/tcst-cav-mt.

Remark 3: The length of the control zone remarkably
affects the overall performance of the proposed framework.
If the control zone is too short, there may not be sufficient
space for the CAVs to adjust their speed profiles without sharp
braking, which could result in the backward propagation of
traffic disruption. Through our simulation studies, the current
control zone with a distance of 350 m from the entry to the
merging point is approximately the minimum distance neces-
sary to prevent traffic congestion in all examined simulations.

B. Results and Discussion

We conducted multiple simulations for three traffic volumes:
800, 1000, and 1200 vehicles per hour along with five different
penetration rates: 0%, 40%, 60%, 80%, and 100%. In each
simulation, we collected data for 500 s to compute the average
travel time of the vehicles and reported the results in Table II.

Penetration
rate

T 0% 40% 60% 80%  100%

raffic

volume
800 (veh/h) 0.92 0.86 0.76 0.65 0.49
1000 (veh/h) 0.90 0.89 0.80 0.71 0.56
1200 (veh/h) 0.91 0.87 0.75 0.70 0.56

As can be seen from Table II, at higher penetration rates,
average travel times significantly improve compared to base-
line traffic consisting solely of HDVs across all tested traffic
volumes. For example, in the simulation with a high traffic
volume of 1200 vehicles per hour, 40%, 60%, 80%, and 100%
penetration rates can reduce average travel time by 14.1%,
16.5%, 20.6%, and 25.4%, respectively. The results also sug-
gest that high penetration rates may be necessary for enhancing
mixed traffic under high-volume conditions. Additionally,
to quantify the motion smoothness of the vehicles, we compare
the acceleration rates averaging among all the vehicles. For
each vehicle i, the acceleration rate while traveling in the
control zone is computed by the average acceleration from
the entry time #{ to the exit time ¢/ as follows:

(49)

We show the average acceleration rates in Table III. Overall,
it can be observed that higher penetration rates of the CAVs
result in smoother motion, which suggests better fuel con-
sumption savings [84].
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Fig. 6. Position trajectories and speed profiles of the first 25 vehicles in four simulations with different penetration rates. The trajectories for CAVs and HDVs
are represented by red and black curves, respectively. Solid and dashed curves distinguish the vehicles moving on different roads. (a) and (e) 0% penetration
rate. (b) and (f) 40% penetration rate. (c) and (g) 60% penetration rate. (d) and (h) 80% penetration rate.
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Fig. 7. Position trajectories for CAVs (red) and HDVs (black) in simulations
(a) without and (b) with replanning. In the simulations without replanning,
the safety constraints are activated for CAVs and HDVs entering from the
same road (a-left) and from the neighboring road (a-right). Solid and dashed
curves distinguish the vehicles moving on different roads. At the bottom, the
green dotted curve represents the trajectory without replanning and a green
cross marks the first replanning instance.

80

Time (s)

Next, we show the position trajectories and speed profiles
of the first 25 vehicles in four simulations under 0%, 40%,
60%, and 80% penetration rates and the traffic volume of
1200 vehicles per hour in Fig. 6. The trajectories and speed
profiles for 100% CAV coordination are similar to previous
studies [85] and are thus omitted. Overall, the results show
that under partial penetration rates, i.e., 40%, 60%, and 80%,
the proposed framework guarantees safe coexistence between
CAVs and HDVs [see Fig. 9(b)—(d)], and the corresponding
simulation videos). Moreover, Fig. 6(e)—(h) suggest the poten-
tial benefits of coordination under increased CAV penetration
rates in reducing traffic disruption. It is observed that HDVs

100
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CAV's deterministic
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_ CAV's robust _
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Fig. 8. Comparison between deterministic and robust trajectories for CAVs.
Solid and dashed curves distinguish the vehicles moving on different roads.
(a) Lateral constraint. (b) Rear-end constraint.

generally exhibit more abrupt deceleration and acceleration
compared to CAVs.

To better illustrate the advantages of the replanning mech-
anism, we show in Fig. 7 the position trajectories of some
vehicles in the simulation with 60% penetration rate where
without replanning the safety constraints are violated. The top
panels of Fig. 7 reveal that the optimal trajectory of the CAVs,
derived at the entry of the control zone, may cause a collision
with either the preceding HDV or the HDV entering from the
neighboring road due to the discrepancy between the HDV’s
predicted trajectory and the actual trajectory. On the other
hand, the bottom panels demonstrate that with the proposed
replanning mechanism, the CAVs can detect the changes in
human driving behavior and replan a new trajectory to avoid
collisions with the HDVs.

Safe maneuvers for CAVs can be further enhanced by using
probabilistic constraints. In Fig. 8, we show the deterministic
and robust trajectories derived at the control zone entry for
particular CAVs in two simulations. For comparison purposes,
we do not consider replanning in those simulations. In the first
simulation [Fig. 8(a)], we define the unsafe region for merging
time that is determined by values at which the tightened lateral
constraint (44) is violated. Likewise, in the second simulation
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[Fig. 8(b)], from the distribution of the time-shift prediction,
we compute the unsafe region where the tightened rear-end
constraint (45) is violated. In both cases, the robust trajectory
can ensure that the CAV’s trajectory and merging time do
not invade the unsafe regions. Conversely, the deterministic
trajectory violates the unsafe regions and may result in slightly
more aggressive behavior. Note that the cautiousness of the
stochastic planning framework can be adjusted by changing
the probability of constraint satisfaction.

To evaluate the real-time practicality of the proposed frame-
work, we collect the computation time at each planning and
replanning instant for all the simulations performed on an
Alienware computer with a 13th Gen Intel Core i9 CPU and
64-GB RAM, and show the statistical boxplots in Fig. 9. The
computation time is the total time needed to learn the human
driving model and solve the stochastic time-optimal control
problem. The results show that the proposed framework gen-
erally takes a longer time to compute as the traffic volumes
increase. Under a high traffic volume of 1200 vehicles per
hour and partial penetration, the proposed framework takes
no longer than 0.2 s per time step, with the third quantile
being less than 0.1 s, which is reasonably good for real-time
applications. Compared to the computation time under the full
penetration rate, that under partial penetration is significantly
higher. This is expected due to the computation required for
BLR and the more frequent activation of replanning.

VI. CONCLUSION

In this article, we presented a trajectory planning frame-
work that is safe, efficient, robust, and real-time practical
for CAVs in mixed-traffic merging scenarios. We proposed
a data-driven Newell’s car-following model in which the time
shift is calibrated online using BLR to model human driving
behavior, and the virtual projection technique is used to capture
the lateral interaction. We applied the data-driven Newell’s
car-following model to predict the trajectories and merging
times of HDVs and quantified the prediction uncertainties
used for probabilistic constraints in the stochastic time-optimal
control problem. We developed a replanning mechanism to
activate resolving the stochastic time-optimal control problem
for CAVs if the last stored predictions are not sufficiently
accurate compared to the actual observations. The results
from simulations validate that our proposed framework can
ensure safe maneuvers for CAVs among HDV's under different
penetration rates and multiple traffic volumes. Moreover, the

simulation results show that under higher penetration rates,
two metrics, including average travel time and average accel-
eration rates of the vehicles, can be improved to some extent.

Several research directions can be considered in our future
work. First, we will focus on extending the framework to
consider more challenging scenarios such as multilane merges
and intersections. Additionally, since the interaction between
CAVs and HDVs becomes more complex and the coordination
framework’s efficiency diminishes given high traffic volumes,
the ideas from optimal routing [86], [87] can be combined
to control the traffic flow. Finally, we plan to validate the
proposed framework in an experimental robotic testbed where
human participants can drive robotic vehicles to constitute
realistic mixed traffic [88].

APPENDIX
PROOF OF LEMMA 1

Proof: Note that A ~ N (A, 02) where A\e =1 — i,
From Newell’s car-following model, we have
pr(t) = p;j(t — (1)) —wty
=¢;3N + $ia A+ (d1 + W)\ + (¢j.0—wt). (50)

The predicted mean of p;(f) can be found by taking the
expectation of (50), i.e.,

E[pk(t)] = E[(ﬁjj)\,% + ¢J§2>‘i + (¢j,1 + w)Ak + ((bj,o—wt)].

(51)
From the linearity of expectation, we have
E[pc()] = ¢, 3E[N] + ¢72E[\e] + (7.1 + w)E[ ]
+ (¢j.0—wt) (52)

where E[)}] denotes the nth moment of random variable
M ~ N ()\k,arzk ). The nth moment of random variable
Ax can be obtained by evaluating the nth derivative of
moment-generating function M), with respect to the slack
V;ﬁiable 7 and setting T equal to zero, namely, E[\}] =

n
variable )\; which is taken from a normal distribution is given

2
T

M) (7) |;:=0. The moment-generating function of random

1
by M.(t) = exp(t A + —ofkrz), where )A; and o’ denote
the mean and variance 012 the random variable, respectively.
Following the above process, the first, second, and third

moments of \; are derived as follows:

E[X] =X +3Mo? (53)
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IE[A%] = )\% + crrzk
El ] = M.

(54)
(55)

Substituting (53)—(55) in (52), we get the the predicted
mean of py(¢) as derived in (28). To find variance of p; (),
we employ o) (1) = E[p«(1)’] — E[pe(1)]>. The compu-
tation of the second term, E[pi(¢)]*, can be obtained by
squaring (28). However, to derive the first term, E[py 32,
it is necessary first to compute py(t)?, and afterward take its
expectation. Utilizing (50), we have

/ / 2
Pe(0)? = (93N, + dj2X; + &) A + @)

where ¢ | = ¢;1 +w and ¢, = ¢;0—wt. Expanding (56),
we have

(56)

pe(®)?
=N H 2N di s+ 2N G dis + ALl
F2N 0015 2N B o+ 2N B g b+ NP
+ 20081 + B0 (57)

To compute the expectation of (57), we first need to derive
fourth, fifth, and sixth moments of random variable \; as

E[A{] = Af + 15X} 02 + 45X (o) + 150 (58)
E[X] =N +10X o2 + 15N 0, (59)
E[X] = X; + 6Xio;. + 30 (60)

Next, we can derive the second moment of random vari-
able p(1), i.e., E[pk(t)z], by taking the expectation of (57)
using the linearity of expectation and (53)—(55) and (58)-
(60). Substituting the results in o (1) = E[p(1)’] —
E[pi(¢)]%, and performing some simple algebraic manipula-
tions, we obtain (29). The derivation of ¢, in (30) results from
equating the coefficients of two polynomials in the left-hand
and right-hand sides of (28), and the proof is complete. [
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