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Abstract— Addressing safe and efficient interaction between
connected and autonomous vehicles (CAVs) and human-driven
vehicles (HDVs) in a mixed-traffic environment has attracted
considerable attention. In this article, we develop a framework
for stochastic time-optimal trajectory planning for coordinating
multiple CAVs in mixed-traffic merging scenarios. We present
a data-driven model, combining Newell’s car-following model
with Bayesian linear regression (BLR), for efficiently learning the
driving behavior of human drivers online. Using the prediction
model and uncertainty quantification, a stochastic time-optimal
control problem is formulated to find robust trajectories for
CAVs. We also integrate a replanning mechanism that determines
when deriving new trajectories for CAVs is needed based on
the accuracy of the BLR predictions. Finally, we demonstrate
the performance of our proposed framework using a realistic
simulation environment.

Index Terms— Bayesian linear regression (BLR), connected
and autonomous vehicles (CAVs), mixed traffic, stochastic con-
trol, trajectory planning.

I. INTRODUCTION

A. Motivation

T
HE advancements in connectivity and automation for

vehicles present an intriguing opportunity to reduce

energy consumption, greenhouse gas emissions, and travel

delays while still ensuring safety requirements. Numerous

studies have demonstrated the advantages of coordinating

connected and autonomous vehicles (CAVs) using control and

optimization approaches across various traffic scenarios [1],

[2], [3]. In recent years, numerous control approaches have
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been presented for the coordination of CAVs, assuming a

100% penetration rate. These approaches include time and

energy-optimal control strategies [4], [5], [6], [7], [8], [9],

model predictive control (MPC) [10], [11], [12], and rein-

forcement learning (RL) [13], [14], [15] (see [16], [17], [18],

[19] for surveys). However, a transportation network with a

100% CAV penetration rate is not expected to be realized

by 2060 [20]. As CAVs will gradually and slowly penetrate

the market and co-exist with human-driven vehicles (HDVs)

in the following decades, addressing planning, control, and

navigation for CAVs in mixed traffic, given various human

driving styles, is imperative.

Several studies have shown that controlling individual

automated vehicles (AVs) may not be sufficient to enhance

the overall traffic condition. For example, Wang et al. [21]

showed that ego-efficient lane-changing control strategies for

AVs (without coordination between vehicles) are beneficial

to the entire traffic flow only if the penetration rate of AVs

is less than 50%. Thus, AVs should be connected to share

information and be coordinated to benefit the entire mixed

traffic. However, this problem imposes significant challenges

for several reasons. First, control methods for CAVs need to

integrate human driving behavior and human–AV interaction

to some extent. Approaches not accounting for these factors

may result in conservative CAV behavior to prioritize safety,

potentially leading to efficiency degradation. Moreover, opti-

mizing the behavior for CAVs requires not only some standard

metrics such as safety, fuel economy, or average travel time

but also social metrics such as motion naturalness and human

comfort [22], which can, at times, be challenging to quantify.

Finally, both learning and control methods must be compu-

tationally efficient and scalable for real-time implementation.

Therefore, in this article, we aim to address the coordination

problem for CAVs at merging in mixed-traffic environment.

B. Literature Review

In this section, we summarize the state of the art related to

planning, control, and navigation for CAVs in mixed traffic.

A significant number of articles have considered connected

cruise control or platoon formation for CAVs in mixed traffic

[23], [24], [25], [26], [27], [28], where the main objective is to
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guarantee string stability between CAVs and HDVs. However,

in this section, we focus more on research efforts that address

the problem in traffic scenarios such as merging at roadways

and roundabouts, crossing intersections, and lane-merging or

passing maneuvers. In these scenarios, vehicles must complete

the tasks not only safely but also efficiently, e.g., improv-

ing travel time, avoiding gridlocks, and minimizing traffic

disruption and human discomfort. These problems present a

more intricate challenge due to their multiobjective nature.

The current state-of-the-art methods of planning, control, and

navigation for CAVs in “interaction-driven” mixed-traffic sce-

narios can be roughly classified into two main and emerging

categories: RL and optimization-based methods.

1) RL: In approaches using RL, the aim is to learn control

policies for CAVs, usually trained using deep neural networks

and trajectories obtained from traffic simulation [29], [30],

[31]. To enhance the social coordination of RL policies

with human drivers, the concept of social value orientation

(SVO) was incorporated into the reward functions [32], [33].

RL algorithms generally do not guarantee real-time safety

constraints, so such approaches might need to be combined

with other techniques for safety-critical control, such as with

control barrier function [34], or lower level MPC [35]. Inverse

RL [36] or imitation learning [37] have been used to learn the

reward functions of human drivers and demonstrate how CAVs

can perform human-like behaviors.

2) Optimization-Based Methods: Such methods include

optimal control and MPC to find the control actions for

the CAVs. A large number of control methods have been

built upon MPC since it can handle multiple objectives and

constraints. It exploits the benefits of long-term planning and

replanning at every time step to be robust against uncertainty

caused by drivers. Some examples of MPC approaches include

game-theoretic MPC [38], [39], [40], [41], [42], socially

compatible MPC [43], [44], stochastic MPC [45], [46], [47],

learning-based MPC [48], [49], [50], and MPC with weight

adaptation [51], [52]. In addition, some recent studies used

an optimal control framework based on Hamiltonian analysis

for improving both time and energy efficiency simultane-

ously [53], [54], [55].

The aforementioned research efforts have addressed the

planning, control, and navigation problems for CAVs at a

single-vehicle level. At the same time, only a limited number

of research articles have attempted to address the coordination

problem in mixed traffic for multiple CAVs using RL [56],

[57] and optimization-based methods [58], [59], [60], [61],

[62], [63]. Yan and Wu [56] presented a multiagent RL

framework for CAVs in a network level while a car-following

model simulates the human drivers. Peng et al. [57] consid-

ered two CAVs that navigate multiple HDVs to form platoons

and cross through a signal-free intersection using deep RL.

Addresing the similar problem to [57], Faris et al. [58] utilized

mixed-integer optimization for deriving the optimal order of

the platoons crossing the intersections. Buckman et al. [59]

presented a centralized algorithm for socially compliant nav-

igation at an intersection, given the social preferences of the

vehicles. Ghosh and Parisini [60] and Suriyarachchi et al. [61]

formulated the mixed-integer optimization problems to coor-

Fig. 1. Diagram illustrating the proposed framework.

dinate CAVs and traffic lights in mixed traffic. Liu et al. [62]

presented a recursive optimal control method utilizing a con-

trol barrier function and a control Lyapunov function for

coordinating a group of three vehicles where two of them are

CAVs at a mixed-traffic on-ramp merging. In [63], we pre-

sented a control framework that aims to derive time-optimal

trajectories for CAVs in a mixed-traffic merging scenario

given the HDVs’ future trajectories predicted from Newell’s

car-following model [64]. The time-optimal trajectories are

then combined with a safety filter based on control barrier

functions.

C. Our Contributions

In this article, we propose a framework for trajectory

planning based on stochastic control that can guarantee opti-

mal, interaction-aware, robust, and safe maneuvers for CAVs

in mixed-traffic merging scenarios. First, we consider the

time-optimal control problem for trajectory planning of the

CAVs, which utilizes the closed-form solution of a low-level

energy-optimal control problem and satisfies state, input, and

safety constraints [4]. Since the trajectory planning problem

requires a specific prediction model for HDV’s future tra-

jectories, we use a data-driven Newell’s car-following model

in which the time shift, a parameter that characterizes the

personal driving behavior, is learned online using Bayesian

linear regression (BLR). The use of data-driven Newell’s car-

following model with BLR allows us to not only predict the

future trajectory and merging time of each HDV but also

quantify the level of uncertainty in the predictions. Using the

predictions, we formulate a stochastic time-optimal control

problem in which the safety constraints are formulated as prob-

abilistic constraints for robustness without over-conservatism.

To address the potential discrepancy between the prediction

model and the actual behavior of HDVs, we develop a replan-

ning mechanism based on checking the accuracy of the last

stored BLR prediction for each HDV with the actual observa-

tion. The overall structure of our proposed framework can also

be illustrated in Fig. 1. We validate the proposed framework’s

effectiveness in ensuring safe maneuvers and improving travel

time through numerical simulations conducted in commercial

software.
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In summary, the main contributions of this article are

threefold.

1) We use a data-driven Newell’s car-following model

where BLR is utilized to calibrate the time shift for each

human driver.

2) We formulate a stochastic time-optimal control problem

with probabilistic constraints to derive robust trajectories

for CAVs.

3) We develop a replanning mechanism based on assessing

the accuracy of the BLR predictions.

D. Comparison With Related Work

This work differs from the existing work in the literature

that considered the problem of multiple CAVs in mixed

traffic [56], [57], [58], [59], [60], [61], [62] in the following

aspects. First, while the framework in [57] and [58] considered

the problem where two CAVs navigate multiple HDVs to

form platoons and cross intersections, our framework does

not impose such platooning assumptions. Buckman et al.

[59], Ghosh and Parisini [60], and Suriyarachchi et al. [61]

addressed mixed-traffic scenarios with traffic lights, whereas

this work focuses on controlling CAVs in unsignalized merg-

ing scenarios. Yan and Wu [56] addressed the mixed-traffic

problem at a network level without considering the personal

driving behavior of human drivers, while we focus on an

isolated traffic scenario where human driving behavior is taken

into account. The problem setup in [62] is the most similar

to ours, but the presented method focuses on coordinating

three vehicles, two of which are CAVs, necessitating high

penetration rates of CAVs. In contrast, our framework does

not rely on that specific setup of vehicle groups, making it

flexible to varying levels of penetration rates.

This article also advances the methods presented in our

preliminary work [63], [65] as follows. First, in [65],

we employed the stochastic time-optimal control problem

to address the coordination problem of 100% CAVs, taking

into account uncertainty resulting from low-level tracking or

noisy measurements. Meanwhile, this article considered mixed

traffic, where uncertainty arises from various human driv-

ing behaviors. In [63], we considered mixed-traffic merging

scenarios in a deterministic setting in which the trajectories

of HDVs are predicted using Newell’s car-following model,

with parameters approximated by constants averaged from past

data. In contrast, this article utilizes BLR to learn the param-

eters of Newell’s car-following model, leading to stochastic

trajectory predictions for the HDVs. Finally, we propose a

replanning mechanism to account for the inaccuracy of the

model, which was not considered in both [63] and [65].

E. Organization

The remainder of this article is organized as follows.

In Section II, we formulate the problem of coordinating CAVs

in a mixed-traffic merging scenario and provide the prelimi-

nary on time-optimal trajectory planning in a deterministic

setting. In Section III, we present the data-driven Newell’s

car-following model with BLR for predicting the future

trajectories of HDVs. In Section IV, we develop a stochas-

tic trajectory planning mechanism. Finally, in Section V,

we numerically validate the effectiveness of the proposed

framework in a simulation environment, and we draw con-

cluding remarks in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first introduce the problem of effectively

coordinating multiple CAVs in a merging scenario, consid-

ering the presence of HDVs. Subsequently, we provide the

preliminary materials on deterministic time-optimal trajectory

planning for CAVs based on an earlier optimal control frame-

work [4].

A. Problem Formulation

We consider the problem of coordinating multiple CAVs,

co-existing with HDVs, in a merging scenario (Fig. 2), where

two merging roadways intersect at a position called a merging

point. We define a control zone and a buffer zone, located

upstream of the control zone, which is represented by blue and

yellow areas, respectively, in Fig. 2. Within the control zone,

the CAVs are controlled by the proposed framework, while

in the buffer zone, CAVs are controlled using adaptive cruise

control methods. We consider that a coordinator is available

who has access to the positions of all vehicles (including

HDVs and CAVs). The coordinator starts collecting trajectory

data of any HDVs once they enter the buffer zone so that

at the control zone entry, the data are sufficient for learning

the first BLR model (see Section III). We consider that the

CAVs and the coordinator can exchange information inside the

control zone and buffer zone. Next, we provide some necessary

definitions for our exposition.

Definition 1: Let L(t) = {1, . . . , L(t)}, t ∈ Rg0, be the set

of vehicles traveling inside the control zone, where L(t) ∈ N is

the total number of vehicles. Let A(t) ¢ L(t) and H(t) ¢ L(t)

be the sets of CAVs and HDVs, respectively. Note that the

indices of the vehicles are determined by the order in which

they enter the control zone.

Definition 2: For a vehicle i ∈ L(t), let Ri,S(t) ¢ L(t) and

Ri,N(t) ¢ L(t), t ∈ Rg0, be the sets of vehicles inside the

control zone traveling on the same road as vehicle i and on

the neighboring road, respectively.

Let p0, pm, and pf ∈ R be the positions of the control

zone entry, the merging point, and the control zone exit,

respectively. Without loss of generality, we can set pm = 0.

We consider that the dynamics of each vehicle i ∈ L(t) are

described by a double integrator model as follows:

ṗi (t) = vi (t)

v̇i (t) = ui (t) (1)

where pi ∈ P , vi ∈ V , and ui ∈ U denote the longitudinal

position of the rear bumper, speed, and control input (acceler-

ation/deceleration) of the vehicle, respectively. The sets P,V,

and U are compact subsets of R. The control input is bounded

by

umin f ui (t) f umax, ∀i ∈ L(t) (2)
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Fig. 2. Merging scenario with two roadways intersecting at a merging point. The control zone and buffer zone are represented by the blue and yellow areas,
respectively. In the virtual projection zone (green area), virtual projection is utilized (see Section III).

where umin < 0 and umax > 0 are the minimum and maximum

control inputs, respectively, as designated by the physical

acceleration and braking limits of the vehicles, or limits that

can be imposed for driver/passenger comfort. Next, we con-

sider the speed limits of the CAVs

vmin f vi (t) f vmax, ∀i ∈ L(t) (3)

where vmin > 0 and vmax > 0 are the minimum and maximum

allowable speeds. Note that HDVs can violate the imposed

speed limits. However, we make the following assumption.

Assumption 1: The speed of HDVs is always positive, i.e.,

v j (t) > 0, ∀ j ∈ H(t).

In practice, if HDVs come to a temporary full stop, Assump-

tion 1 can still be satisfied by assuming a sufficiently small

lower bound on the speed.

Next, let t0
i , tm

i , and t f
i ∈ Rg0 be the times at which each

vehicle i enters the control zone, reaches the merging point,

and exits the control zone, respectively. To avoid conflicts

between vehicles in the control zone, we impose two con-

straints: 1) lateral constraints between vehicles traveling on

different roads and 2) rear-end constraints between vehicles

traveling on the same road. Specifically, to prevent a potential

conflict between CAV–i and a vehicle k ∈ Ri,N(t) traveling

on the neighboring road, we require a minimum time gap

δl ∈ Rg0 between the time instants tm
i and tm

k when the CAV–i

and vehicle k cross the merging point, i.e.,

|tm
i − tm

k | g δl. (4)

To prevent rear-end collision between CAV–i and its imme-

diate preceding vehicle k traveling on the same road,

i.e., k = max { j ∈ Ri,S(t) | j < i}, we impose the following

rear-end safety constraint:

pk(t − δr) − pi (t) g dmin, t ∈
[

t0
i , t f

k

]

(5)

where dmin ∈ Rg0 and δr ∈ Rg0 are the minimum distance at

a standstill and safe time gap. Note that pk(t − δr) denotes

the position of vehicle k at time instant t − δr. In addition,

we need to guarantee the rear-end safety constraint (5) after the

merging point between each CAV–i and a vehicle k ∈ Ri,N(t)

entering the control zone on the neighboring road and crosses

the merging point immediately before CAV–i as follows:

pk(t − δr) − pi (t) g dmin, t ∈
[

tm
i , t f

k

]

(6)

for k = max{ j ∈ Ri,N(t) | tm
j < tm

i }.

B. Time-Optimal Trajectory Planning

Next, we explain the deterministic time-optimal trajectory

planning framework developed initially for coordinating CAVs

with a 100% penetration [4]. We start the exposition with the

unconstrained solution of an energy-optimal control problem

for each CAV–i [5]. Given a fixed t f
i that CAV–i exits the

control zone, the energy-optimal control problem aims at

finding the optimal control input (acceleration/deceleration)

for each CAV by solving the following problem.

Problem 1 (Energy-Optimal Control Problem): Let t0
i and t f

i

be the times that CAV–i enters and exits the control zone,

respectively. The energy-optimal control problem for CAV–i

at t0
i is given by

minimize
ui (t)∈U

1

2

∫ t f
i

t0
i

u2
i (t) dt,

subject to:

(1), (2), (3),

(5), k = max
{

j ∈ Ri,S

(

t0
i

)

| j < i
}

,

(6), k = max
{

j ∈ Ri,N

(

t0
i

)

| tm
j < tm

i

}

,

given:

pi

(

t0
i

)

= p0, vi

(

t0
i

)

= v0
i , pi

(

t f
i

)

= pf (7)

where v0
i is the speed of CAV–i at the entry point. The

boundary conditions in (7) are set at the entry and exit of

the control zone.

The closed-form solution of Problem 1 for each CAV–i can

be derived using the Hamiltonian analysis [66]. If none of

the state and control constraints are active, the closed-form

optimal control law and trajectory are given by [4]

ui (t) = 6φi,3t + 2φi,2
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vi (t) = 3φi,3t2 + 2φi,2t + φi,1

pi (t) = φi,3t3 + φi,2t2 + φi,1t + φi,0 (8)

where φi,3, φi,2, φi,1, φi,0 ∈ R are the constants of integration.

Since the speed of CAV–i is not specified at the exit time t f
i ,

we consider the boundary condition

ui

(

t f
i

)

= 0. (9)

For the full derivation of the closed-form solution in (8) using

Hamiltonian analysis, the readers are referred to [4].

Given the boundary conditions in (7) and (9), and consid-

ering t f
i is known, the constants of integration can be found

by

Æi =









φi,3

φi,2

φi,1

φi,0









=











(

t0
i

)3 (

t0
i

)2
t0
i 1

3
(

t0
i

)2
2t0

i 1 0
(

t f
i

)3 (

t f
i

)2
t f
i 1

6t f
i 2 0 0











−1








p0

v0
i

pf

0









. (10)

Note that using the Cardano et al.’s [67] method, the time

trajectory ti (pi ) as a function of the position is given by

ti (pi )

=
3

√

−
1

2

(

ωi,1 + ωi,2 pi

)

+

√

1

4

(

ωi,1 + ωi,2 pi

)2
+

1

27
ω3

i,0

+
3

√

−
1

2

(

ωi,1 + ωi,2 pi

)

−

√

1

4

(

ωi,1 + ωi,2 pi

)2
+

1

27
ω3

i,0

+ ωi,3, pi ∈ P (11)

ωi,0 =
φi,1

φi,3

−
1

3

(

φi,2

φi,3

)2

(12)

ωi,1 =
1

27

[

2

(

φi,2

φi,3

)3

−
9φi,2 · φi,1

(φi,3)2

]

+
φi,0

φi,3

(13)

ωi,2 = −
1

φi,3

, ωi,3 = −
φi,2

3φi,3

(14)

where ωi,3, ωi,2, ωi,1, and ωi,0 ∈ R such that

(1/4)(ωi,1 + ωi,2 pi )
2 + (1/27)ω3

i,0 > 0, and they are all

defined in terms of φi,3, φi,2, φi,1, φi,0 ∈ R, with φi,3 ̸= 0.

The algebraic derivation of (11) is standard [4] and thus

omitted. We use (11) to compute the merging time tm
i .

Next, we formulate the time-optimal control problem to

minimize the travel time and guarantee all the constraints for

CAVs given the energy-optimal trajectory (8) at t0
i . We enforce

this unconstrained trajectory as a motion primitive to avoid the

complexity of solving a constrained optimal control problem

by piecing constrained and unconstrained arcs together [5].

We refer to this problem as deterministic planning problem

to differentiate it from the stochastic problems discussed in

Section IV.

Problem 2 (Deterministic Planning at the Control Zone Entry):

At the time t0
i of entering the control zone, let Ti (t

0
i ) = [t f

i , t
f
i ]

be the feasible range of travel time under the state and input

constraints of CAV–i computed at t0
i . The formulation for

computing t f
i and t

f
i can be found in [68]. Then, CAV–i

solves the following time-optimal control problem to find the

minimum exit time t f
i ∈ Ti (t

0
i ) that satisfies all state, input,

and safety constraints:

minimize
t f
i ∈Ti(t0

i )
t f
i

subject to:

(2), (3),

(4), ∀ k ∈ Ri,N

(

t0
i

)

,

(5), k = max
{

j ∈ Ri,S

(

t0
i

)

| j < i
}

,

(6), k = max
{

j ∈ Ri,N

(

t0
i

)

| tm
j < tm

i

}

,

(8),

given:

pi

(

t0
i

)

= p0, vi

(

t0
i

)

= v0
i ,

pi

(

t f
i

)

= pf, ui

(

t f
i

)

= 0. (15)

The computation steps for numerically solving Problem 2

are summarized as follows or can also be found in [68].

First, we initialize t f
i = t f

i and compute the parameters Æi

using (10). We evaluate all the state, control, and safety

constraints. If none of the constraints is violated, we return

the solution; otherwise, t f
i is increased by a step size. The

procedure is repeated until the solution satisfies all the con-

straints. By solving Problem 2, the optimal exit time t f
i along

with the optimal trajectory and control law (8) are obtained

for CAV–i for t ∈ [t0
i , t f

i ].

Remark 1: If a feasible solution to Problem 2 exists, then

the solution is a cubic polynomial that guarantees none of the

constraints become active. In case the solution of Problem 2

does not exist, we can derive the optimal trajectory for the

CAVs by piecing together the constrained and unconstrained

arcs until the solution does not violate any constraints (see [5]).

III. HUMAN DRIVERS’ TRAJECTORY PREDICTION

To solve the trajectory planning problem for CAV–i , the

trajectories and merging times of all vehicles having potential

conflicts with CAV–i must be available. When CAV–i enters

the control zone, the time trajectories of all CAVs traveling

inside the control zone can be obtained from the coordinator.

However, the time trajectories of the HDVs are not known.

Next, we propose an approach to predict the trajectories of the

HDVs traveling inside the control zone by combining Newell’s

car-following model [64] and BLR [69, Chapter 3].

A. Bayesian Linear Regression

Consider N ∈ R noisy observations yi of a linear model

with Gaussian noise: yi = ¹¦
xi + ei , for i = 1, . . . , N ,

where ¹ ∈ R
M , M ∈ N is the vector of weights, xi ∈ R

M

is the vectors of inputs, and ei ∼ N (0, β−1) is the Gaussian

noise where β ∈ Rg0 is the precision (the inverse of variance).

Let O = (X, Y) be the tuple of observation data for inputs

and outputs, where X = [x¦
1 , . . . , x

¦
N ]¦ ∈ R

M×N and Y =

[y1, . . . , yN ]¦ ∈ R
N . The goal of BLR is to find the maximum

likelihood estimate for ¹ given the observation data.

The maximum a posteriori (MAP) estimate of ¹ can be

found by maximizing the log of the posterior distribution

[69, Chapter 3]. If we assume a Gaussian prior over the
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Fig. 3. Time-shift prediction from BLR used to calibrate Newell’s car-fol-

lowing model for a HDV in Lyft level-5 open dataset [70]. (a) First model is
trained using the initial 20 data points and (b) second model is trained with
more recent data if the first model yields high predicted variances.

weights ¹ ∼ N (0, α−1
I M) where α ∈ Rg0 is the precision

and I M is the M × M identity matrix, and the Gaussian

likelihood IP(Y | X, ¹ , β) = N (¹¦
X, β−1

I N ), then the log of

the posterior distribution is computed as follows:

log IP(¹ | Y , X, α, β) = −βE(¹) −
1

2
α¹¦¹ + c (16)

where c is a constant and E(¹) is the sum-of-squares error

function coming from the exponent of the likelihood function,

which is computed by

E(¹) =
1

2

N
∑

i=1

(

yi − ¹¦
xi

)2
=

1

2
∥Y − X¹∥2

2. (17)

Thus, the MAP estimate of ¹ has the following analytical

solution:

µ¹ = β6¹ X
¦

Y (18)

6−1
¹ = βX

¦
X + α Im (19)

while estimates for priors, i.e., α and β, can be obtained by the

empirical Bayes method (also known as maximum marginal

likelihood [69]).

Once the BLR model is trained, the posterior predictive

distribution for ¹ is a Gaussian distribution N (µ¹ , 6¹ ) with

the mean and covariance matrix given in (18). At a new input

x∗, the predicted mean and variance are given by

µ∗ = µ¦
¹ x∗ (20)

σ 2
∗ = x

¦
∗ 6¹ x∗ + β−1. (21)

BLR is highly suitable for online learning implementation

due to its light computation, where the complexity generally

is O(M2 N ), i.e., it scales linearly with the training data size

and quadratically with the input dimension. Moreover, we can

check for retraining by comparing the new observation to the

confidence interval or by considering prediction uncertainty.

This approach can avoid overly frequent model retraining.

B. Data-Driven Newell’s Car-Following Model With BLR

Newell’s car-following model [64] considers that the posi-

tion of each vehicle is shifted in time and space from its

preceding vehicle’s trajectory due to the effect of traffic

wave propagation. Specifically, the position of each HDV–k,

k ∈ H(t), is predicted from the position of its preceding

vehicle j as follows:

pk(t) = p j (t − τk) − w τk (22)

where τk ∈ Rg0 is the time shift of HDV–k, and w ∈ Rg0

is the speed of the backward propagating congestion waves,

which is considered to be a constant [71], [72]. The time

shift τk is considered a stochastic variable and can be

learned by BLR. Since v j (t) > 0 (Assumption 1) and w > 0,

p j (t − τk)−wτk is a strictly decreasing function of τk . Thus,

there exists a unique value of τk such that (22) is satisfied for

any t . In this article, rather than only using the data at a specific

time instant, we use the observations over a finite estimation

horizon of length H ∈ Z
+ to estimate the distribution of τk

for each HDV–k by a BLR model as follows:

τk ∼ Bk(xk; ¹ k) (23)

where Bk denotes the BLR model, xk = [1, pk, p j ]
¦ ∈ R

3 is

the vector of inputs, and ¹ k ∈ R
3 is the vector of weights.

Henceforth, for ease of notation, we use Bk(pk, p j ) to denote

the BLR model for τk given a preceding vehicle j .

To demonstrate the model’s capability to accurately learn

realistic human driving behavior, we utilized the trajectory data

for a specific human driver in Lyft level-5 open dataset [70]

whose actual time shift varies between 1.4 and 1.8 s. The

predicted time shift with 95% confidence interval using BLR

is shown in Fig. 3. We utilized N = 20 initial data points to

train a BLR model [Fig. 3(a)] and retrain the model [Fig. 3(b)]

with more recent data if either the BLR prediction uncertainty

is too high or the actual observations are outside the 95%

confidence interval.

Note that in the merging scenario, we consider the virtual

projection of vehicles traveling on that road to capture the

lateral interaction of each HDV with vehicles on the neighbor-

ing road. The virtual projection is implemented in a proximity

area before the merging point, defined as the virtual projection

zone in Fig. 2. The virtual projection is illustrated by an

example in Fig. 4. We consider that from the perspective

of HDV–3, the projected CAV–2 is the preceding vehicle

instead of CAV–1. Similar generalized car-following models

for capturing the merging behavior of human drivers have been

presented in [73], [74], and [75].

C. Exception Handling

Next, we present a method to handle the case when an

HDV, e.g., HDV–k, is not preceded by any vehicles in the

control zone, including those determined by virtual projection.

Generally, it is reasonable to assume that HDV–k remains

its current speed in this case. However, to further quantify

the uncertainty in human driving behavior by exploiting the

data-driven Newell’s car-following model, we consider that

HDV–k follows a virtual preceding vehicle with a constant

speed trajectory. Let k ′ denote the virtual preceding vehicle to

HDV–k. The constant speed trajectory of the virtual preceding

vehicle is given by

pk ′(t) = φk ′,1 t + φk ′,0 (24)
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Fig. 4. Example of virtual projection in the virtual projection zone, where
the CAV–2 is projected from the perspective of HDV–3.

vk ′(t) = φk ′,1 (25)

where φk ′,1 ∈ Rg0 and φk ′,0 ∈ R are the constants, in which

φ̄k ′,1 is computed based on the average speed of HDV–k over

the estimation horizon, while φk ′,0 is chosen such that pk ′(t0
k −

τ̄ ) = p0 with τ̄ ∈ Rg0 is an arbitrarily predefined constant.

We consider that the actual position trajectory of HDV–k is

computed by Newell’s car-following model given the virtual

preceding vehicle k ′ as follows:

pk(t) = pk ′(t − τk)−wτk = φk ′,1 (t − τk) + φk ′,0−wτk

(26)

where we quantify τk with a BLR model τk ∼ B(pk, pk ′),

which is similar to (23).

IV. STOCHASTIC PLANNING WITH PROBABILISTIC

CONSTRAINTS

In this section, we develop a stochastic trajectory planning

framework using the data-driven Newell’s car following model

for learning human driving behavior presented in Section III.

The use of stochastic control can reduce the conservatism of

classical robust control for uncertain systems by formulating

robust constraints as probabilistic constraints [76]. As a result,

probabilistic constraints have been used recently in robust

trajectory optimization algorithms [77], [78], [79].

A. Uncertainty Quantification

Remark 2: In our framework, we consider that the trajec-

tories of CAVs are deterministic, or equivalently, stochastic

variables with zero variances.

Note that given the data-driven Newell’s car-following

model using BLR, the time shift τk of HDV–k at any future

time t must satisfy the following equation:

τk(t) ∼ B
(

p j (t − τk(t))−wτk(t), p j (t)
)

(27)

where j is the index of the preceding vehicle. Solving (27) to

obtain a closed-form solution for τk(t) and pk(t) at any future

time t is computationally intractable. As a result, in what

follows, we propose a method to simplify the predictions

of trajectory and merging time for each HDV–k along with

quantifying the uncertainty of the predictions.

When HDV–k enters the control zone at t0
k , we train the

first BLR model Bk for τk using a dataset of H ∈ N data

points collected in the buffer zone. Let τk(t
0
k ) ∼ N (µτk

, σ 2
τk
)

be the prediction of τk with the mean µτk
and the variance σ 2

τk
.

We utilize τk(t
0
k ) to construct a nominal predicted trajectory

and merging time for HDV–k. In our analysis, we consider

the zero-variance method for approximating uncertainty prop-

agation while making BLR prediction, which implies that

if the inputs of a BLR model include a stochastic variable,

we only use its mean to compute the mean and variance of

the model output without taking its variance into account. The

zero-variance method has been considered in multiple studies

on using stochastic processes in control [80], [81].

Assumption 2: The effect of uncertainty propagation is

approximated by the zero-variance method.

Assumption 2 implies that the trajectory prediction of any

HDV only depends on the uncertainty resulting from the

time-shift prediction of Newell’s car-following model and

does not depend on the uncertainty in trajectory prediction

of its preceding vehicles. The reason for ignoring full uncer-

tainty propagation is that it may lead to overly conservative

constraints if the CAV penetration rate is low. Moreover,

Assumption 2 aims to simplify the computation since the

distribution of vehicles’ trajectories, which are inputs of the

BLR model, is generally not Gaussian as we show later (see

Lemma 1).

Next, we show that the predicted position mean for any

HDVs using the data-driven Newell’s car-following model is

either a cubic polynomial or an affine polynomial.

Lemma 1: Given Assumption 2, at any time t , if the dis-

tribution N (µτk
(t), σ 2

τk
(t)) for τk(t) is known, and HDV–k

is preceded by a vehicle j whose predicted position

mean is a cubic polynomial of time parameterized by

Æ j = [φ j,3, φ j,2, φ j,1, φ j,0]
¦, then the predicted position mean

and variance of HDV–k at time t can be computed as given

by (28) and (29), shown at the bottom of the next page, where

λk = t − µτk
.

Moreover, the coefficients of the polynomial are computed

as follows:

φk,3 = φ j,3

φk,2 = φ j,2 − 3 φ j,3 µτk

φk,1 = φ j,1 − 2 φ j,2 µτk
+ 3 φ j,3

(

µ2
τk

+ σ 2
τk

)

φk,0 = φ j,0 −
(

φ j,1 + w
)

µτk
+ φ j,2

(

µ2
τk

+ σ 2
τk

)

− φ j,3µτk

(

µ2
τk

+ 3σ 2
τk

)

. (30)

Proof: The proof is given in the Appendix. Note that the

distribution of pk(t) in this case is not Gaussian. □

Lemma 2: Given Assumption 2, if the distribution

N (µτk
, σ 2

τk
) for τk(t) at time t is known, and HDV–k is

preceded by a vehicle j whose predicted position mean is an

affine polynomial of time parameterized by Æ j = [φ j,1, φ j,0]
¦,

i.e., it cruises with constant speed, then the predicted position

mean and variance of HDV–k at time t can be computed as

follows:

µpk
(t) =

(

φ j,1 + w
)

λk +
(

φ j,0 − w t
)

(31)

σ 2
pk

(t) =
(

φ j,1 + w
)2

σ 2
τk

(32)
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where λk = t −µτk
and the coefficients of the polynomial are

computed as follows:

φk,1 = φ j,1

φk,0 = φ j,0 −
(

φ j,1 + w
)

µτk
. (33)

Proof: This is a trivial case of Lemma 1 with

φ j,3 = φ j,2 = 0. □

Theorem 1: The mean prediction for the position of any

HDV–k is either a cubic polynomial or an affine polynomial

of time.

Proof: Given Lemmas 1 and 2, if HDV–k is preceded by

an HDV, e.g., HDV– j , and the mean prediction for the position

of HDV– j is either a cubic polynomial or an affine polynomial

of time, then that of HDV–k is also either a cubic polynomial

or an affine polynomial of time. Therefore, we only need to

consider the cases where: 1) HDV–k is preceded by a CAV,

e.g., CAV–i or 2) HDV–k is not preceded by any vehicle inside

the control zone.

1) Case 1: If HDV–k is preceded by CAV–i , since the

position trajectory of CAV–i is a cubic polynomial, from

Lemma 1, we can verify that the predicted position mean

of HDV–k is a cubic polynomial of time.

2) Case 2: If HDV–k is not preceded by any vehicle inside

the control zone and has not crossed the merging point,

from (26), the predicted mean of pk(t) is

µpk
(t) = φ̄ j,1 t +

(

φ j,0 − φ̄ j,1 µτk
−w µτk

)

(34)

which is a linear function of time. □

Lemma 3: Suppose HDV–k has not crossed the merging

point. Then, the merging time of HDV–k is computed by

tm
k = t j (wτk) + τk (35)

where t j (wτk) denotes the time that the preceding vehicle j

reaches the position wτk , where τk = τk(t
0
k ) ∼ N (µτk

, σ 2
τk
).

Proof: Evaluating Newell’s car-following model (22) at

tm
k , we have

pk

(

tm
k

)

= p j

(

tm
k − τk

)

− wτk . (36)

At the merging time, we have pk(t
m
k ) = pm = 0 which results

in

p j

(

tm
k − τk

)

= wτk . (37)

As the speed of vehicle k is always positive given (3) and

Assumption 1, we can compute the inverse as

tm
k − τk = t j (wτk) (38)

and the proof is complete. □

If vehicle j is an HDV, we approximate t j (wτk) by solving

µp j
= wτk . If µp j

(t) is an affine polynomial of time parame-

terized by Æ j = [φ j,1, φ j,0]
¦, the time trajectory as a function

of position is given by

t j

(

p j

)

=
−φ j,0

φ j,1

p j (39)

while if µp j
(t) is a cubic polynomial, the time trajec-

tory follows Cardano formulation (11). Given Lemma 3,

tm
k is a stochastic variable with Gaussian distribution,

tm
k ∼ N (µtm

k
, σ 2

tm
k
) with µtm

k
= µτk

+ t j (wτk) and σ 2
tm
k

= σ 2
τk

.

To guarantee that the computation of t j (wτk) using the poly-

nomial trajectories is valid, the position wτk must be inside

the control zone. Thus, we impose the following assumption.

Assumption 3: The speed of the backward propagating con-

gestion waves w is chosen such that w τk f pf.

Assumption 3 can be satisfied in practice since the term w τk

describes the standstill spacing between vehicles and should

be relatively small compared to the length from the merging

point to the control zone exit.

B. Stochastic Time-Optimal Control Problem With

Probabilistic Constraints

Since the predicted trajectory and merging time for any

HDV–k are stochastic variables, next, we formulate proba-

bilistic constraints for rear-end and lateral safety that guarantee

constraint satisfaction at a certain probability. Let ξ ∈ (0, 1) be

the probability of constraint satisfaction. The lateral probabilis-

tic constraint for CAV–i and HDV–k entering from different

roads is given by

IP
[

t f
i − t f

k g δl

]

g ξ

OR IP
[

t f
i − t f

k f −δl

]

g ξ. (40)

The deterministic rear-end constraints for CAV–i and its

immediate preceding HDV–k in (5) and (6) are considered

as the following probabilistic constraints:

IP
[

pi (t) − pk(t − δr ) f −dmin

]

g ξ, ∀t ∈
[

t0
i , t f

k

]

(41)

for k = max { j ∈ Ri,S(t) | j < i}, and

IP
[

pi (t) − pk(t − δr ) f −dmin

]

g ξ, ∀t ∈
[

tm
i , t f

k

]

(42)

for k = max { j ∈ L(t) | tm
j < tm

i }.

Therefore, we formulate the following stochastic

time-optimal control problem for planning at the control zone

entry.

Problem 3 (Stochastic Planning at the Control Zone Entry):

At the time t0
i of entering the control zone, CAV–i solves the

following time-optimal control problem:

minimize
t f
i ∈Ti(t0

i )
t f
i

µpk
(t) = φ j,3(λ

3
k + 3λkσ

2
τk
) + φ j,2(λ

2
k + σ 2

τk
) + (φ j,1 + w)λk + (φ j,0 − wt) (28)

σ 2
pk

(t) = σ 2
τk

(

(φ j,1 + w)2 + 4(φ j,1 + w)φ j,2λk + 6(φ j,1 + w)φ j,3λ
2
k + 6(φ j,1 + w)φ j,3σ

2
τk

+ 4φ2
j,2λ

2
k + 2φ2

j,2σ
2
τk

+ 12φ j,2φ j,3λ
3
k + 24φ j,2φ j,3λkσ

2
τk

+ 36φ2
j,3λ

2
kσ

2
τk

+ 15φ2
j,3σ

4
τk

+ 9φ2
j,3λ

4
k

)

. (29)
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subject to:

(2), (3), (8),

(40), ∀ k ∈ Ri,N

(

t0
i

)

,

(41), k = max
{

j ∈ Ri,S

(

t0
i

)

| j < i
}

,

(42), k = max
{

j ∈ Ri,N

(

t0
i

)

| tm
j < tm

i

}

,

given:

pi

(

t0
i

)

= p0, vi

(

t0
i

)

= v0
i ,

pi

(

t f
i

)

= pf, ui

(

t f
i

)

= 0. (43)

Given the uncertainty quantification of stochastic variables

we derived in Section IV-A and the constraint tightening

technique [79], the lateral probabilistic constraint (40) is

equivalent to the following deterministic form:

t f
i − µt f

k
g δl + zσt f

k

OR t f
i − µt f

k
f −δl−zσt f

k
(44)

where z = (2)1/2 erf−1(2ξ−1) with erf−1(·) is the inverse error

function. Likewise, the rear-end probabilistic constraints (41)

and (42) can be, respectively, transformed to deterministic

constraints as follows:

pi (t) − µpk
(t − δr ) f −dmin−zσpk

(t − δr ), ∀t ∈
[

t0
i , t f

k

]

(45)

and

pi (t) − µpk
(t − δr ) f −dmin−zσpk

(t − δr ), ∀t ∈
[

tm
i , t f

k

]

.

(46)

Thus, for solving Problem 3, the probabilistic constraints

in (43) are replaced by (44)–(46), which result in an equivalent

deterministic optimization problem.

C. Replanning

Since the future trajectory and merging time for any HDV

derived in Section IV-A are computed based on the prediction

of τk at t0
k , the predictions are not reliable if τ̂ k(t) at t > t0

k ,

where τ̂ k denotes the actual observation of τk obtained by

solving (22), is highly different to τk(t
0
k ). Under this discrep-

ancy, the planned trajectories for the CAVs may not always

ensure safe maneuvers. Next, to address this issue, we present

a mechanism for replanning based on checking the accuracy

of the BLR predictions. First, we define replanning instances

and how to determine replanning instances as follows.

Definition 3: A time instance tc ∈ Rg0 is a replanning

instance if at tc we need to replan for the CAVs in the

control zone. At any time tc, we check whether tc is a

replanning instance if there exits HDV–k ∈ H(tc) such

that τ̂ k(t
c) /∈ CIζ (τk(t̃)), where CIζ (·) denotes the ζ.100%

confidence interval of BLR prediction with ζ ∈ (0, 1), and t̃k

is the time that the last prediction for τk is stored.

Definition 3 implies that replanning is activated at time tc

if there is an HDV, e.g., HDV–k, whose actual time shift at

tc is outside the ζ.100% confidence interval of the last stored

prediction. The time that the last prediction for τk is stored can

be either the entry time of HDV–k or the previous replanning

instance. Once replanning is activated, we retrain the BLR

model, update the trajectory and merging time predictions for

the HDVs, and resolve Problem 3 given new initial conditions

for some specific CAVs. The set of CAVs that need replanning

is given in the following definition.

Definition 4: At a replanning instant tc, let

H
′
(

tc
)

:=
{

k ∈ H
(

tc
)

| τ̂ k

(

tc
)

/∈ CIζ
(

τk

(

t̃
))}

be set of all HDVs that violate the condition

τ̂ k(t
c) ∈ CIζ (τk(t̃)). Let HDV– j be the HDV with

the minimum predicted merging time in H′(tc), i.e.,

µtm
j

f µtm
k
, ∀k ∈ H′(tc). The set of CAVs that need replanning

is determined as follows:

A
′
(

tc
)

:=
{

i ∈ A
(

tc
)

∩ R j,S

(

tc
)

| t0
i > t0

j

}

∪
{

i ∈ A
(

tc
)

∩ R j,N

(

tc
)

| tm
i > µtm

j
− ρl

}

(47)

where tm
i is the planned merging time for CAV–i .

Definition 4 means that we replan for CAV–i either if:

1) CAV–i travels on the same road to HDV– j and enters

the control zone after HDV– j or 2) CAV–i travels on the

neighboring road to HDV– j and the planned merging time

is greater than µtm
j

− ρl . The stochastic time-optimal control

problem at any time tc when a replanning event is activated

can be given as follows.

Problem 4 (Stochastic Replanning in the Control Zone): At

the time tc with an replanning event, CAV–i ∈ A′(tc) solves

the following time-optimal control problem:

minimize
t f
i ∈Ti (tc)

t f
i

subject to:

(2), (3), (8),

(40), ∀ k ∈ Ri,N

(

tc
)

,

(41), k = max
{

j ∈ Ri,S

(

tc
)

| j < i
}

,

(42), k = max
{

j ∈ Ri,N

(

tc
)

| tm
j < tm

i

}

,

given:

pi

(

tc
)

, vi

(

tc
)

,

pi

(

t f
i

)

= pf, ui

(

t f
i

)

= 0. (48)

Thus, the replanning mechanism is summarized in

Algorithm 1.

V. SIMULATION RESULTS

In this section, we demonstrate the control performance of

the proposed framework by numerical simulations.

A. Simulation Setup

For our simulation, we used PTV Vissim [82], which

is a commercial software for simulating microscopic mul-

timodal traffic flow. PTV Vissim provides a human-driven

psycho-physical perception model created by Wiedemann [83].

To emulate the behavior of human drivers in a signal-free

merging scenario, we leveraged the network object called

“conflict areas” of the software where we assigned undeter-

mined priority for the vehicles moving on two roadways. In the

simulation, we considered a merging scenario with a buffer
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Algorithm 1 Replanning Mechanism at Time tc

TABLE I

PARAMETERS OF THE TRAJECTORY PLANNING FRAMEWORK

zone of length 70 m, a control zone of length 430 m (350-m

upstream and 80-m downstream of the merging point), and

a virtual projection zone of length 100 m. The simulation

environment in PTV Vissim is shown in Fig 5. In addition,

the speed of congestion wave w in Newell’s car-following

model was chosen based on the traffic volume such that

3600 w/n = 10, where n denotes the traffic volume in vehicles

per hour, which implies that the average standstill spacing

is 10 m. The proposed trajectory planning framework was

implemented using Python programming with the parameters

in Table I. Videos and data of the simulations can be found at

https://sites.google.com/cornell.edu/tcst-cav-mt.

Remark 3: The length of the control zone remarkably

affects the overall performance of the proposed framework.

If the control zone is too short, there may not be sufficient

space for the CAVs to adjust their speed profiles without sharp

braking, which could result in the backward propagation of

traffic disruption. Through our simulation studies, the current

control zone with a distance of 350 m from the entry to the

merging point is approximately the minimum distance neces-

sary to prevent traffic congestion in all examined simulations.

B. Results and Discussion

We conducted multiple simulations for three traffic volumes:

800, 1000, and 1200 vehicles per hour along with five different

penetration rates: 0%, 40%, 60%, 80%, and 100%. In each

simulation, we collected data for 500 s to compute the average

travel time of the vehicles and reported the results in Table II.

Fig. 5. Simulation environment in PTV Vissim.

TABLE II

AVERAGE TRAVEL TIME (IN S) UNDER DIFFERENT PENETRATION RATES

AND TRAFFIC VOLUMES

TABLE III

AVERAGE ACCELERATION (IN M/S
2) UNDER DIFFERENT PENETRATION

RATES AND TRAFFIC VOLUMES

As can be seen from Table II, at higher penetration rates,

average travel times significantly improve compared to base-

line traffic consisting solely of HDVs across all tested traffic

volumes. For example, in the simulation with a high traffic

volume of 1200 vehicles per hour, 40%, 60%, 80%, and 100%

penetration rates can reduce average travel time by 14.1%,

16.5%, 20.6%, and 25.4%, respectively. The results also sug-

gest that high penetration rates may be necessary for enhancing

mixed traffic under high-volume conditions. Additionally,

to quantify the motion smoothness of the vehicles, we compare

the acceleration rates averaging among all the vehicles. For

each vehicle i , the acceleration rate while traveling in the

control zone is computed by the average acceleration from

the entry time t0
i to the exit time t f

i as follows:

1

t f
i − t0

i

√

√

√

√

∫ t f
i

τ=t0
i

u2
i (τ ) dτ . (49)

We show the average acceleration rates in Table III. Overall,

it can be observed that higher penetration rates of the CAVs

result in smoother motion, which suggests better fuel con-

sumption savings [84].
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Fig. 6. Position trajectories and speed profiles of the first 25 vehicles in four simulations with different penetration rates. The trajectories for CAVs and HDVs
are represented by red and black curves, respectively. Solid and dashed curves distinguish the vehicles moving on different roads. (a) and (e) 0% penetration
rate. (b) and (f) 40% penetration rate. (c) and (g) 60% penetration rate. (d) and (h) 80% penetration rate.

Fig. 7. Position trajectories for CAVs (red) and HDVs (black) in simulations
(a) without and (b) with replanning. In the simulations without replanning,
the safety constraints are activated for CAVs and HDVs entering from the
same road (a-left) and from the neighboring road (a-right). Solid and dashed
curves distinguish the vehicles moving on different roads. At the bottom, the
green dotted curve represents the trajectory without replanning and a green
cross marks the first replanning instance.

Next, we show the position trajectories and speed profiles

of the first 25 vehicles in four simulations under 0%, 40%,

60%, and 80% penetration rates and the traffic volume of

1200 vehicles per hour in Fig. 6. The trajectories and speed

profiles for 100% CAV coordination are similar to previous

studies [85] and are thus omitted. Overall, the results show

that under partial penetration rates, i.e., 40%, 60%, and 80%,

the proposed framework guarantees safe coexistence between

CAVs and HDVs [see Fig. 9(b)–(d)], and the corresponding

simulation videos). Moreover, Fig. 6(e)–(h) suggest the poten-

tial benefits of coordination under increased CAV penetration

rates in reducing traffic disruption. It is observed that HDVs

Fig. 8. Comparison between deterministic and robust trajectories for CAVs.
Solid and dashed curves distinguish the vehicles moving on different roads.
(a) Lateral constraint. (b) Rear-end constraint.

generally exhibit more abrupt deceleration and acceleration

compared to CAVs.

To better illustrate the advantages of the replanning mech-

anism, we show in Fig. 7 the position trajectories of some

vehicles in the simulation with 60% penetration rate where

without replanning the safety constraints are violated. The top

panels of Fig. 7 reveal that the optimal trajectory of the CAVs,

derived at the entry of the control zone, may cause a collision

with either the preceding HDV or the HDV entering from the

neighboring road due to the discrepancy between the HDV’s

predicted trajectory and the actual trajectory. On the other

hand, the bottom panels demonstrate that with the proposed

replanning mechanism, the CAVs can detect the changes in

human driving behavior and replan a new trajectory to avoid

collisions with the HDVs.

Safe maneuvers for CAVs can be further enhanced by using

probabilistic constraints. In Fig. 8, we show the deterministic

and robust trajectories derived at the control zone entry for

particular CAVs in two simulations. For comparison purposes,

we do not consider replanning in those simulations. In the first

simulation [Fig. 8(a)], we define the unsafe region for merging

time that is determined by values at which the tightened lateral

constraint (44) is violated. Likewise, in the second simulation
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Fig. 9. Boxplots of computation time of the proposed algorithm under different traffic volumes and penetration rates. (a) 40% penetration rate. (b) 60%
penetration rate. (c) 80% penetration rate. (d) 100% penetration rate.

[Fig. 8(b)], from the distribution of the time-shift prediction,

we compute the unsafe region where the tightened rear-end

constraint (45) is violated. In both cases, the robust trajectory

can ensure that the CAV’s trajectory and merging time do

not invade the unsafe regions. Conversely, the deterministic

trajectory violates the unsafe regions and may result in slightly

more aggressive behavior. Note that the cautiousness of the

stochastic planning framework can be adjusted by changing

the probability of constraint satisfaction.

To evaluate the real-time practicality of the proposed frame-

work, we collect the computation time at each planning and

replanning instant for all the simulations performed on an

Alienware computer with a 13th Gen Intel Core i9 CPU and

64-GB RAM, and show the statistical boxplots in Fig. 9. The

computation time is the total time needed to learn the human

driving model and solve the stochastic time-optimal control

problem. The results show that the proposed framework gen-

erally takes a longer time to compute as the traffic volumes

increase. Under a high traffic volume of 1200 vehicles per

hour and partial penetration, the proposed framework takes

no longer than 0.2 s per time step, with the third quantile

being less than 0.1 s, which is reasonably good for real-time

applications. Compared to the computation time under the full

penetration rate, that under partial penetration is significantly

higher. This is expected due to the computation required for

BLR and the more frequent activation of replanning.

VI. CONCLUSION

In this article, we presented a trajectory planning frame-

work that is safe, efficient, robust, and real-time practical

for CAVs in mixed-traffic merging scenarios. We proposed

a data-driven Newell’s car-following model in which the time

shift is calibrated online using BLR to model human driving

behavior, and the virtual projection technique is used to capture

the lateral interaction. We applied the data-driven Newell’s

car-following model to predict the trajectories and merging

times of HDVs and quantified the prediction uncertainties

used for probabilistic constraints in the stochastic time-optimal

control problem. We developed a replanning mechanism to

activate resolving the stochastic time-optimal control problem

for CAVs if the last stored predictions are not sufficiently

accurate compared to the actual observations. The results

from simulations validate that our proposed framework can

ensure safe maneuvers for CAVs among HDVs under different

penetration rates and multiple traffic volumes. Moreover, the

simulation results show that under higher penetration rates,

two metrics, including average travel time and average accel-

eration rates of the vehicles, can be improved to some extent.

Several research directions can be considered in our future

work. First, we will focus on extending the framework to

consider more challenging scenarios such as multilane merges

and intersections. Additionally, since the interaction between

CAVs and HDVs becomes more complex and the coordination

framework’s efficiency diminishes given high traffic volumes,

the ideas from optimal routing [86], [87] can be combined

to control the traffic flow. Finally, we plan to validate the

proposed framework in an experimental robotic testbed where

human participants can drive robotic vehicles to constitute

realistic mixed traffic [88].

APPENDIX

PROOF OF LEMMA 1

Proof: Note that λk ∼ N (λk, σ
2
τk
) where λk = t − µτk

.

From Newell’s car-following model, we have

pk(t) = p j (t − τk(t))−wτk

= φ j,3λ
3
k + φ j,2λ

2
k +

(

φ j,1 + w
)

λk +
(

φ j,0−wt
)

. (50)

The predicted mean of pk(t) can be found by taking the

expectation of (50), i.e.,

E
[

pk(t)
]

= E
[

φ j,3λ
3
k + φ j,2λ

2
k +

(

φ j,1 + w
)

λk +
(

φ j,0−wt
)]

.

(51)

From the linearity of expectation, we have

E
[

pk(t)
]

= φ j,3E
[

λ
3
k

]

+ φ j,2E
[

λ
2
k

]

+
(

φ j,1 + w
)

E[λk]

+
(

φ j,0−wt
)

(52)

where E[λn
k ] denotes the nth moment of random variable

λk ∼ N (λk, σ
2
τk
). The nth moment of random variable

λk can be obtained by evaluating the nth derivative of

moment-generating function Mλ with respect to the slack

variable τ and setting τ equal to zero, namely, E[λn
k ] =

dn

dτ n
Mλ(τ ) |τ=0. The moment-generating function of random

variable λk which is taken from a normal distribution is given

by Me(τ ) = exp(τλk +
1

2
σ 2

τk
τ 2), where λk and σ 2

τk
denote

the mean and variance of the random variable, respectively.

Following the above process, the first, second, and third

moments of λk are derived as follows:

E
[

λ
3
k

]

= λ
3
k + 3λkσ

2
τk

(53)
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E
[

λ
2
k

]

= λ
2
k + σ 2

τk
(54)

E[λk] = λk . (55)

Substituting (53)–(55) in (52), we get the the predicted

mean of pk(t) as derived in (28). To find variance of pk(t),

we employ σ 2
pk

(t) = E[pk(t)
2] − E[pk(t)]

2. The compu-

tation of the second term, E[pk(t)]
2, can be obtained by

squaring (28). However, to derive the first term, E[pk(t)
2],

it is necessary first to compute pk(t)
2, and afterward take its

expectation. Utilizing (50), we have

pk(t)
2 =

(

φ j,3λ
3
k + φ j,2λ

2
k + φ′

j,1λk + φ′
j,0

)2
(56)

where φ′
j,1 = φ j,1 + w and φ′

j,0 = φ j,0−wt . Expanding (56),

we have

pk(t)
2

= λ
6
k φ j,3

2 + 2 λ
5
k φ j,2 φ j,3 + 2 λ

4
k φ′

j,1 φ j,3 + λ
4
k φ j,2

2

+ 2 λ
3
k φ′

j,0 φ j,3 + 2 λ
3
k φ′

j,1 φ j,2 + 2 λ
2
k φ′

j,0 φ j,2 + λ
2
k φ′

j,1
2

+ 2 λk φ′
j,0 φ′

j,1 + φ′
j,0

2
. (57)

To compute the expectation of (57), we first need to derive

fourth, fifth, and sixth moments of random variable λk as

E
[

λ
6
k

]

= λ
6
k + 15λ

4
k σ 2

τk
+ 45 λ

2
k σ 4

τk
+ 15 σ 6

τk
(58)

E
[

λ
5
k

]

= λ
5
k + 10 λ

3
k σ 2

τk
+ 15 λk σ 4

τk
(59)

E
[

λ
4
k

]

= λ
4
k + 6λ

2
kσ

2
τk

+ 3σ 4
τk
. (60)

Next, we can derive the second moment of random vari-

able pk(t), i.e., E[pk(t)
2], by taking the expectation of (57)

using the linearity of expectation and (53)–(55) and (58)–

(60). Substituting the results in σ 2
pk

(t) = E[pk(t)
2] −

E[pk(t)]
2, and performing some simple algebraic manipula-

tions, we obtain (29). The derivation of φk in (30) results from

equating the coefficients of two polynomials in the left-hand

and right-hand sides of (28), and the proof is complete. □
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