bioRxiv preprint doi: https://doi.org/10.1101/2024.11.25.625273; this version posted January 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

TimeFlies: an snRNA-seq aging clock for the
fruit fly head sheds light on sex-biased aging

Nikolai Tennantl*, Ananya Pavuluriz*, Kate O’Connor-Giles® ’6, Gunjan Singh4’5 , Erica
Larschan2’4**, and Ritambhara Singhl’z’3 o

*Equal contribution

**Co-corresponding authors

Data Science Institute, Brown University, Providence, R, USA

Center for Computational Molecular Biology, Brown University, Providence, RI, USA
Department of Computer Science, Brown University, Providence, RI, USA
Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University,
Providence, RI, USA

Department of Neuroscience, Brown University, Providence, RI, USA

Carney Institute for Brain Science, Brown University, Providence, RI, USA

b=

AN



bioRxiv preprint doi: https://doi.org/10.1101/2024.11.25.625273; this version posted January 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract
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dosage compensation

Although multiple high-performing epigenetic aging clocks exist, few are based directly on gene
expression. Such transcriptomic aging clocks allow us to extract age-associated genes directly.
However, most existing transcriptomic clocks model a subset of genes and are limited in their
ability to predict novel biomarkers. With the growing popularity of single-cell sequencing, there
is a need for robust single-cell transcriptomic aging clocks. Moreover, clocks have yet to be
applied to investigate the elusive phenomenon of sex differences in aging. We introduce
TimeFlies, a pan-cell-type scRNA-seq aging clock for the Drosophila melanogaster head.
TimeFlies uses deep learning to classify the donor age of cells based on genome-wide gene
expression profiles. Using explainability methods, we identified key marker genes contributing
to the classification, with IncRNAs showing up as highly enriched among predicted biomarkers.
The top biomarker gene across cell types is IncRNA:roX1, a regulator of X chromosome dosage
compensation, a pathway previously identified as a top biomarker of aging in the mouse brain.
We validated this finding experimentally, showing a decrease in survival probability in the
absence of roX1 in vivo. Furthermore, we trained sex-specific TimeFlies clocks and noted
significant differences in model predictions and explanations between male and female clocks,
suggesting that different pathways drive aging in males and females.
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Introduction

Aging is characterized by time-related dysfunction and accrued damage in an organism. Lopez-
Otin et al. have suggested twelve hallmarks of aging at the molecular, cellular, and systemic
levels which underlie age-associated phenotypes [1]. A priority in the field of aging research has
been the development of “aging clocks,” statistical estimators that determine the donor age of a
sample based on biological measurements. These clocks allow us to discover candidate
biomarkers associated with the key hallmarks of aging.

The vast majority of published aging clocks are based on DNA methylation (DNAm) data. The
first aging clocks were published by Hannum et al. [2] and Horvath [3]. Hannum et al. developed
an ElasticNet-based model that predicts human age from whole blood samples based on bulk
DNAm levels at 71 CpG sites [2]. Horvath then developed a more robust DNAm clock,
generalizable across 51 human tissue types— and even to chimpanzee tissue— utilizing 353 CpG
sites [3]. A few groups have since used methylation marks to augment other clinical data points
of interest in aging clock development, with the goal of understanding mortality risk and disease
in the context of aging [4,5]. As many methylation marks are highly conserved, there has been an
increased interest in using aging clocks to study the comparative biology of aging. Recently, the
Horvath group has developed a pan-Mammalian clock that generalizes to 185 mammal species
[6]. In summary, DNAm clocks exhibit high performance and have proven to be generalizable
across species. The associations between DNA methylation and aging phenotypes have been
widely studied for the past several decades [7,8,9,10], and the aforementioned clocks allow us to
deepen our understanding.

While DNAm clocks have shown reliably high performance and have myriad contributions to
various avenues of geroscience, it can be difficult to validate and apply their findings. Epigenetic
alterations, like DNA methylation, ultimately underlie changes in gene expression. DNAm aging
clocks require considerable downstream analysis to determine which genes are proximal to CpG
site biomarkers. Furthermore, many CpG sites identified by aging clocks are not explicitly
associated with specific genes, making their significance to gene regulation events difficult to
analyze. Thus, transcriptomic aging clocks have the potential to unveil more direct associations
between genes of interest and aging phenotypes. Identifying such genes as biomarkers of aging
will provide researchers with more easily manipulable targets for experiments, as modification of
gene expression and disruption of gene products via small molecules is more feasible to
implement [11].

Progress in bulk transcriptomic aging clocks has been limited due to the plethora of challenges
that come with transcriptomic data. Gene fusion, alternative splicing, and post-transcriptional
modifications add layers of complexity to the RNA-seq and microarray data that are difficult to
disentangle. One of the first transcriptomic aging clocks fit to human peripheral blood samples
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obtained significant correlations between predicted and actual age, although there was a high
variability across cohorts [12]. Furthermore, these clocks were trained on microarray data, a
technique that has become outdated since the advent of RNA-seq due to limited dynamic range.
Fleischer et al. developed a suite of regression models for an internally collected dataset of
human dermal fibroblasts, which achieved noteworthy performance (r=0.81). However, this
clock was not tested on external data [13]. Meyer and Schumacher found that simply binarizing
RNA-seq data—that is, assigning expression values of either 0 or 1—significantly improved the
performance of their Caenorhabditis elegans aging clock [14]. However, as gene expression
exists on a continuum and is highly variable in nature, binarizing the data results in the loss of
information—a binarized dataset does not properly reflect the nuances of gene expression
dynamics with aging. Furthermore, the authors had to perform feature selection for an optimal
set of clock genes rather than using all features in the dataset. A recent methylation clock paper
showed that using all available CpG sites rather than a subset both improved model performance
and created a more robust model [15], which may translate to similar results in transcriptomic
clocks. Holzscheck et al. published a novel gene set-based, knowledge-primed transcriptomic
aging clock using deep neural networks. This methodology yields successful performance and is
highly interpretable at the pathway-level [16] but requires significant feature engineering. Genes
with unknown functions would also be omitted, limiting the potential to discover new age-
associated genes. Overall, while there has been progress in the development of high-performance
transcriptomic aging clocks, we have yet to fully harness their potential for transcriptome-wide
analysis and discovery of novel biomarkers.

Recently, there has been a rise in the popularity of single-cell sequencing, because single-cell
resolution unmasks the heterogeneity within biological signals, most of which are highly cell-
type-specific. From a statistical and machine learning perspective, single-cell datasets have
thousands of samples, thus eliminating the need to integrate several independent bulk RNA-seq
datasets and address batch effects. Several single-cell aging atlases have been published,
including the Tabula Muris Senis [17], the Cell Atlas of Worm Aging [18], and the Aging Fly
Cell Atlas (AFCA) [19]. These data allow us to examine the dynamics of aging in different cell
populations of interest. However, single-cell data poses a diverse array of computational
challenges. Notably, single-cell RNA-seq often has very high dropout rates compared to bulk
RNA-seq, in which the data only reflect a fraction of the cell’s gene expression. This results in
highly sparse data (a high percentage of zero values). Despite these challenges, Yu et al.
successfully created a single-nuclei transcriptomic clock pipeline for the aging female mouse
hypothalamus. The most efficient and interpretable model, ElasticNet, which was the focus of
the paper, reported an AUPRC of 0.967. However, the authors binarized the input data and subset
the features to only highly variable genes rather than using the whole transcriptome [20]. Mao et
al. also developed SCALE, a framework to assign a tissue-specific relative aging score at single-
cell resolution to samples from the Tabula Muris Senis. However, this pipeline requires users to
identify tissue-specific aging-related gene sets as input features, thus limiting the scope of novel
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biomarker discovery [21]. Thus, there is a gap in the field because we currently lack an
interpretable single-cell transcriptomic aging clock that allows for a comprehensive
transcriptome-wide analysis of aging signatures for biomarker discovery.

It is known that lifespan and healthspan are sexually dimorphic across diverse species in the
animal kingdom. Yet, the innate biological mechanisms that underlie sex differences in aging
remain poorly understood [22]. Sex differences in aging are seldom considered in aging research,
with studies often treating sex as a confounding variable rather than a source of relevant
biological variation. Understanding why aging affects males and females differently across
species is fundamental to the comparative biology of aging and, on a translational level, to the
development of better interventions for an aging population. As aging clocks are a framework to
discover, develop, and validate hypotheses for aging biology, they can help provide insights into
sex differences in aging. To our knowledge, aging clocks have yet to be used for a
comprehensive study of potential genes and pathways that contribute to sex-biased aging
phenotypes in any species. This leaves a crucial gap for us to begin to bridge with our
investigation.

We present TimeFlies, a highly robust and accurate aging clock at single-cell resolution. We
chose to develop our model based on the AFCA [19] data from the fruit fly Drosophila
melanogaster because it is a well-studied model organism in genetics and genomics with a short
lifespan which allows us to rapidly test our predictions in vivo. It is an ideal candidate for
studying aging and sex differences in aging due to its relatively short lifespan, extensively
annotated reference transcriptome, and a plethora of widely documented genetic manipulation
techniques. Furthermore, the Drosophila brain is arguably the most well understood across
species because all the connections between individual neurons have been mapped, and
individual neural circuits can be genetically manipulated [23,24]. Despite these advantages,
there is a notable lack of aging clocks in the fruit fly. Thus, we chose to develop an aging clock
for the Drosophila head as brain aging is such an important area for translational work,
especially regarding sex differences.

TimeFlies uses a 1D convolutional neural network to predict age, across the four AFCA [19]
time points, from the single-cell gene expression profile. It learns from the genome-wide gene
expression signals and does not require any feature engineering or noise reduction prior to model
training. Our model generalizes across all cell types in the fly head. We have done an in-depth
feature explainability analysis of TimeFlies for the discovery of potential aging marker genes.
Our model identifies a strong role of X-chromosome dosage compensation in aging dynamics,
which we demonstrate is a conserved feature between Drosophila and mice despite their long
evolutionary distance from each other. Furthermore, we have performed sex-specific aging clock
modeling to identify sex-differential transcriptomic aging signatures at single-cell resolution. Our
analysis showed stark differences between male-specific and female-specific clocks, identifying
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pathways and functions such as vision and synaptic transmission that are affected by aging in a
sex-biased manner. Following the computational analysis, we experimentally tested the role of
the top TimeFlies clock gene— IncRNA:roX! — on fruit fly aging in vivo and found that the
knockout of this gene has an effect on survival in both male and female flies, validating a
transcriptomic biomarker found by TimeFlies. Overall, TimeFlies is a reliable aging clock based
on explainable deep learning that has offered valuable insights into transcriptomic aging marker
discovery and has opened many new avenues for future study related to sex-specific brain aging.

Results

TimeFlies is a pan-cell-type aging clock for biomarker discovery

TimeFlies generalizes across all cell types in the fly head with state-of-the-art performance (F1
score=0.9416, AUC=0.9515) in age classification (timepoints: Day 5, Day 30, Day 50, Day 70)
despite very high variability between cell types (Fig 1a, “ALL”). However, as the dataset is not
uniformly distributed across cell types, we also trained cell-type-specific clocks. We chose the
five most populous broad cell types to analyze. TimeFlies maintained very high performance
across all five of the cell types of interest, with the lowest performance on muscle cells, although
the F1 score was still above 0.88 (Fig 1a). Using broader cell-type categories ensured that even
the cell-type-specific clocks were highly robust and could generalize across many specific
subtypes. Next, we performed model explainability on the pan-cell-type clock. We generated a
SHAP summary plot (Fig 1b) of the top 20 features from the pan-cell-type model. We noticed a
drop-off in SHAP value magnitude after the 20" feature, hence, we limited our analysis to the
top 20. Subsequently, we ran a gene set enrichment analysis on those 20 genes, which indicated
that many of the genes are involved in synaptic activity (Fig. 1c). Furthermore, we determined
the top features of each of the cell-type-specific clocks. TimeFlies was able to learn unique
features for different cell types that were representative of each cell’s biological function
(Supplementary Fig 2), with some overlapping features (Fig 1d-e). Notably, the three features
that were among the most significant for every cell type were three different long non-coding
RNAs: IncRNA:roX1, IncRNA:noe, and IncRNA:roX2 (Fig 1d).

This result is interesting because the roX/ and roX2 genes are long noncoding RNAs encoded on
the X chromosome and involved in dosage compensation. This highly conserved process
equalizes the levels of X-linked genes between male (XY) and female (XX) organisms. In
Drosophila melanogaster, this process is achieved by upregulation of the male X chromosome,
while in humans, rodents, and other mammals, one of the two female X chromosomes is
silenced, which is referred to as X chromosome inactivation (XCI) [25]. roXI and roX2 are
essential components of the male-specific lethal (MSL) complex, which facilitates
hyperacetylation of H4K16 along the X chromosome targets in males, a modification associated
with increased transcriptional activity. The roX RNAs help localize the MSL complex to the X
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chromosome [26,27]. Despite the differences in structure and length of roX1 and roX2, they have
redundant functions due to the presence of a similar stem loop region [28]. X chromosome
upregulation is a highly conserved process across species, including in mammals, to tune X-
linked gene expression levels throughout development [29]. Fascinatingly, in a single-nuclei
RNA-seq study of the aging female mouse hypothalamus, Xist, the master regulator of XCI and
the mouse analog of the roX genes, was the top feature in an X chromosome-based aging clock
of neurons. The authors also showed that Xist expression is upregulated with age in some
neuronal populations [30]. This suggests that, despite the evolutionary distance between mice
and fruit flies, dosage compensation appears to be conserved as a significant component of the
aging process. Equally intriguing is the selection of IncRNA:noe by the analysis. This gene was
discovered by Kim et al. in 1998 [31]. It is abundantly expressed in the central nervous system
and encodes a small peptide of 74 amino acid length [31]. However, the function of the
noncoding RNA and its peptide product has remained unknown since its discovery. noe is
located within an intron of the blot gene [32], which is a sodium/chloride-dependent
neurotransmitter transporter [33]. Notably, expression of noe is highly enriched in adult males,
with moderate expression in pupae and adult females [34].

Of the top 20 clock genes (Figure 1C), six are IncRNAs. IncRNAs were among the top five clock
genes in each cell-type-specific clock (Figure 1E). In the AFCA dataset, there are 15992
expressed genes, of which 2100 are IncRNAs (13.13%). This enrichment of IncRNAs in
TimeFlies feature explanations is significant, with 30% of the top features being IncRNAs.
Previous studies have identified several age-associated IncRNAs [35] and their evolutionary
conservation across species [36]. It has also been shown that, in the fruit fly, IncRNAs and their
known targets are differentially expressed during dietary restriction, a well-studied aging
intervention [37]. Our feature explainability analysis reflects the age-associated enrichment of
IncRNAs and makes the case for further evaluation of IncRNA-based gene regulation during

aging.

Remarkably, most features selected by TimeFlies are not among the top 1000 highly variable
genes. Of the top 20 SHAP features, only 4 are included in the top 1000 highly variable genes
(Supplementary Figure 2). Thus, many genes may have been overlooked with feature selection
approaches during preprocessing if using classical differential expression analysis and not
performing modeling with TimeFlies. For example, expression patterns of roX1, noe, and roX2
do not show significant linear associations with age due to high variability in expression levels at
each time point (Supplementary Figure 2). This suggests that TimeFlies detects complex age-
associated patterns of expression. Thus, the explainability analysis of TimeFlies offers a more
comprehensive biomarker discovery strategy than simple linear models or differential expression
analyses.
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Figure 1. A) TimeFlies age classification performance on test data across five cell types. B) SHAP summary plot showing the list of top 20
features used by TimeFlies in the classification task. Bars signify the average impact of the feature on model output magnitude. C) Gene set
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Sex differences in predictive aging genes

Female fruit flies, on average, have longer lifespans than male fruit flies. Thus, we developed
male-specific and female-specific TimeFlies clocks to investigate differences in sex-specific
aging biomarkers. We obtained the top 20 genes, following previous analysis, of each sex-
specific clock and performed gene set enrichment analysis (GSEA) (Fig 2 a-b, Supplementary
Figures 3-4). Interestingly, the female-specific clock used several top features related to the eye
(Fig 2b, Supplementary Figure 3). This is particularly noteworthy as many age-associated eye
diseases in humans are more prevalent in females [38]. There were nine overlapping genes used
by both the male-specific clock and the female-specific clock (Fig 2c). We further tested whether
a clock trained on only male data can generalize to female data, and vice versa. As expected,
clocks trained on only female samples have a very low performance on male samples, and clocks
trained on only male samples have a lowered performance on female samples. The difference is
more marked on female clocks tested on male samples (Fig 2d). The female-trained clock tends
to classify 30-day-old males as 50-days-old while the male-trained clock tends to classify 30-
day-old females as 5-days old (Fig 2e-f). These results reaffirm that aging is a highly sex-biased
process, even at single-cell resolution. Thus, it is imperative that sex differences be considered
when developing and analyzing aging clocks.
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roX1 knockout decreases survival probability in both sexes

There is a sizable body of literature on the role of roX/ and roX2 throughout embryonic and
larval development in Drosophila. However, to our knowledge no literature exists addressing the
role of the roX genes in aging. Considering the age-related hypothalamic upregulation of their
mouse analog ncRNA, Xist [30] and the high feature importance of roXI and roX2 in TimeFlies
(Fig. 2b, d-e), we hypothesized that disrupting the roX RNAs would decrease lifespan in male
flies. Mutations in the roXI gene alone do not show any developmental phenotypes, however,
mutant male flies lacking both roX7 and roX2 do not survive past eclosion [39, 40]. Due to the
early lethality of the double mutants, we performed a lifespan assay with roX/ single-mutant
flies. The roXI*“"’* genotype has been characterized as a null or severe hypomorph [39, 41]
thus, we selected this line and compared it to a genetically matched common control.

We generated Kaplan-Meier survival curves (Fig 3) for each group and performed log-rank tests
to determine whether the corresponding curves were significantly different. There was no
difference in Kaplan-Meier survival probability between mutant males and mutant females.
Moreover, there was no significant difference overall between roX/ null males and control
males. However, when comparing only the time frames of days 3-40, there is a notably
decreased survival probability in mutant males (X* = 30.2, p = 4e-08). Fascinatingly, there is
a decreased survival probability throughout the entire lifespan in mutant females compared
to control females (X2 =91.5, p < 2e-16). (Fig 3). These results were unexpected, as females are
the homogametic sex, do not undergo dosage compensation, and have a negligible expression of
roX1 [34]. However, the yin gene is located directly downstream of the roX/ gene [42] and
displays high expression in adult females and only low-to-moderate expression in adult males
[34]. It is possible that the mutation of roX/ has an impact on the yin gene and subsequently is
detrimental to female survival. In summary, our lifespan assay validates the relevance of the top
clock gene identified by TimeFlies.
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Discussion

We have developed an aging clock based on explainable deep neural networks that classifies
Drosophila melanogaster head age at single-cell resolution with high accuracy. We have used the
Aging Fly Cell Atlas [19], a diverse atlas of gene expression dynamics in hundreds of cell types
in the fly head at four time points across the lifespan. Our clock, TimeFlies, requires no feature
engineering prior to training, unlike its predecessors. Remarkably, it generalizes to all cell types
despite the significant sparsity and high variability of single-cell RNA-seq data. Following the
training and testing of our clock, we performed a thorough feature explanation using Shapley
values to discover potential transcriptomic signatures of aging. We performed gene set
enrichment analysis on the top 20 genes with the highest Shapley value magnitudes and found a
significant enrichment of genes related to synaptic transmission. While synapse formation and
function in the fruit fly have been thoroughly studied during development [43,44] how synapses
change during normal and accelerated aging remains incompletely understood. IncRNA:roX1
and IncRNA:roX2, noncoding RNAs on the X chromosome involved in the process of dosage
compensation, were universal top features across all cell types, along with IncRNA:noe, which
has unknown function and very limited associated literature. It is imperative to investigate
IncRNA:noe, which may be relevant to the aging brain. Remarkably, long noncoding RNAs were
enriched in TimeFlies feature explanations, consistent with previous studies that suggest an
important role for IncRNAs in aging [35,36,37]. Analysis of our model reflects that IncRNA-
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mediated gene regulation events may be significant to brain aging processes, calling for further
investigation.

Further feature explainability analysis revealed noteworthy differences in female-specific and
male-specific clocks, implying that aging is highly sex-specific, even at single-cell resolution.
The female clock was unable to generalize to male test data, and the male clock was unable to
generalize to the female data. There were also significant differences in gene set enrichment
analysis following the feature explainability analysis of each clock. Notably, the explanation of
the female-specific clock yielded many vision-related genes, suggesting a need to study sex
differences in the aging eye in Drosophila. This finding is especially relevant given sex
differences in age-associated eye diseases in humans [38].

The identification, via Shapley analysis, of the roX noncoding RNAs as top clock genes, is
especially interesting due to a similar finding in the mouse brain. An snRNA-seq of the aging
female mouse hypothalamus showed age-differential expression of Xist, the mouse analog of roX
genes. Furthermore, corresponding clocks on that dataset identified Xist expression as a
predictive factor in neuronal aging [30]. We set out to assess the role of dosage compensation in
fruit fly aging and further validate the findings of TimeFlies. We performed a lifespan assay on a
roX1 null mutant line to gauge the effect of 70X/ on aging. roXI and roX2, another top TimeFlies
gene, are thought to play a redundant role in dosage compensation, however, the knockout of
both genes simultaneously leads to male lethality during early development, thus requiring us to
first consider one gene individually. Observation of the roXI null population across lifespan
showed that the knockout significantly reduced survival probability in males from day 3-40, with
no significant difference relative to controls after day 40, and remarkably, a decreased survival
rate for females throughout the entire lifespan. To fully understand the role of the roX RNAs in
aging, we must develop a system in which both roX/ and roX2 are knocked out in a temporally
controlled manner following eclosion.

To further test the robustness of TimeFlies, we will apply it to other single-cell aging and
development atlases of Drosophila melanogaster as they are published, with specific interest in
applying our clock to datasets of age-associated disease models such as the Alzheimer’s Disease
Fly Cell Atlas [45].
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Methods
Dataset

The Aging Fly Cell Atlas (AFCA) [19] is a publicly available dataset documenting the single-cell
transcriptomic profiles of fruit flies at ages 5, 30, 50, and 70 days. It includes both fly head
samples and body samples. Here, we focus on the head data, with the objective of better
understanding the aging fruit fly brain. The fly head dataset contains 289981 cells across 16
broad cell types and 15992 genes. The AFCA includes a near-equal distribution of the male and
female samples, unlike many other published aging atlases. This allows for the investigation of
sex-specific aging dynamics. The authors of the AFCA have published their own aging clocks on
the dataset. However, these clocks are trained on very specific cellular subtypes and do not
generalize to the whole dataset, nor do they specifically address sex differences. The authors also
performed feature interpretation on their clocks, but the analysis of these features was limited to
ribosomal protein-coding genes, with very limited discussion of other relevant genes [19]. This
leaves the door open for a new clock that generalizes across all cell types for the AFCA dataset
and a comprehensive analysis of sex-differential transcriptomic patterns in aging, which are
especially prevalent in the brain.

To ensure that our model was learning genuine biological signals rather than batch effects, we
generated a batch-corrected dataset to test against and found no significant differences

(Supplementary Figure 5).

Model development and interpretation
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Figure 4. A detailed model architecture of TimeFlies framework. TimeFlies consists of a stack of three 1D convolution layers
(separated by batch normalization, nonlinear activation, and max pooling), a flattening operation, and a stack of three dense
layers with dropout layers in between. Softmax activation is applied to the output, which is the age of the donor fly.
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The input data is initially a sparse matrix, meaning a matrix format that does not explicitly store
zero-valued data to conserve space and memory. Specifically, it is in a coordinate format (COO),
consisting of the coordinates of the non-zero values. Prior to providing this data as input to
TimeFlies, we converted this matrix to a dense matrix using the numpy [46] and scipy [47]
libraries in Python.

The TimeFlies aging clock (detailed in Figure 4) utilizes a convolutional neural network (CNN)
consisting of three 1D convolution blocks, pooling/flattening operations, and two fully connected
layers with dropout layers in between. CNNs have been used for genomic applications to predict
regulatory activity from sequential genomic data like DNA sequences, etc. [48, 49, 50, 51]. We
selected a CNN-based model for TimeFlies architecture due to its comparatively high
performance and efficiency (Figure 5).

TimeFlies is implemented in Python with the Tensorflow library [52]. We do not perform any
feature selection of genes and input the transcriptome-wide gene expression profile. An input
sample is a vector of gene expression for a single cell. All the samples are split into training,
validation, and test sets of 80%, 10%, and 10%, respectively. Due to the high dimensionality of
the dataset, GPU acceleration was used to speed up training time for TimeFlies and its
benchmark models. Feature explanation of TimeFlies was performed by obtaining Shapley
values from GradientExplainer [53] and observing the features ranked highest. Gene set
enrichment analysis was performed in R with g:Profiler [54].

Baseline evaluation

Performance of the 1D CNN framework was benchmarked against ElasticNet logistic regression
and RandomForest, which were implemented with the scikit-learn library [55], XGBoost, which
was implemented with the xgboost library [56], and a simple multilayer perceptron (MLP) neural
network which was also implemented with Tensorflow [52]. Accuracy, F1 Score, and area under
the curve (AUC) were used as evaluation metrics for the multiclass classification task. The 1D
CNN outperformed every model except MLP (Fig 5). It exhibits on-par performance with the
MLP model (no significant difference) despite increased computational efficiency due to a
reduced number of trainable parameters. The features—genes—in the AFCA dataset were
originally organized solely in alphabetical order without obvious spatial significance. However,
shuffling the gene order with several different seeds has no significant impact on the TimeFlies
performance (Supplementary Table 1) or model interpretation. Hence, we chose to proceed with
the 1D CNN framework for the final architecture of TimeFlies.
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Figure 5. A bar chart of accuracy, area under the curve (AUC) and F1 score of all tested models when tasked with classifying
donor age (5-day, 30-day, 50-day, or 70-day) from the cell’s gene expression profile. Each model was run with 5 different seeds,
average metrics are plotted with error bars representing standard deviation.
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Figure 6. A schematic of the lifespan assay. Knockout and control flies were obtained and scaled up to a sizable population.
Subsequently, a sex-specific lifespan assay was conducted.

roX 1M flies were gifted by Victoria Meller’s lab (Wayne State University, Detroit, MI,
USA) [41]. Flies were stored in vials with standard corn agar media at 25 C. The fly population
was scaled up for one month. To validate that the received roX1%M“'7* line showed the proper
marker, standard PCR and gel electrophoresis were done to check for the presence of the LacZ
gene. The wil18 fly line was used as a white-eyed control (RRID:BDSC_3605). To initiate the
lifespan assay, 20-25 male flies and 20-25 female flies were collected within 24 hours following
eclosion, placed in one vial, and allowed to mate for three days. Several such vials were
prepared. On Day 3, flies were separated by sex and placed in different vials. Every 2-3 days, the
number of alive and dead flies in each vial was recorded, and living flies were flipped into a new
vial (Figure 6). Escaped flies and flies that faced death for non-natural reasons (i.e., crushed by
the vial cap or stuck to food) were censored from the analysis. A total of 166 mutant males, 168
mutant females, 160 control males, and 165 control females were used in the experiment. A
Kaplan-Meier Survival Analysis [57] was performed at the end of the experiment to gauge the
potential effects of roX1 knockout on lifespan.
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