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Abstract 

 

Keywords: Drosophila melanogaster, transcriptomics, deep learning, single-cell, aging clock, 

dosage compensation 

 

Although multiple high-performing epigenetic aging clocks exist, few are based directly on gene 

expression. Such transcriptomic aging clocks allow us to extract age-associated genes directly. 

However, most existing transcriptomic clocks model a subset of genes and are limited in their 

ability to predict novel biomarkers. With the growing popularity of single-cell sequencing, there 

is a need for robust single-cell transcriptomic aging clocks. Moreover, clocks have yet to be 

applied to investigate the elusive phenomenon of sex differences in aging. We introduce 

TimeFlies, a pan-cell-type scRNA-seq aging clock for the Drosophila melanogaster head. 

TimeFlies uses deep learning to classify the donor age of cells based on genome-wide gene 

expression profiles. Using explainability methods, we identified key marker genes contributing 

to the classification, with lncRNAs showing up as highly enriched among predicted biomarkers. 

The top biomarker gene across cell types is lncRNA:roX1, a regulator of X chromosome dosage 

compensation, a pathway previously identified as a top biomarker of aging in the mouse brain. 

We validated this finding experimentally, showing a decrease in survival probability in the 

absence of roX1 in vivo. Furthermore, we trained sex-specific TimeFlies clocks and noted 

significant differences in model predictions and explanations between male and female clocks, 

suggesting that different pathways drive aging in males and females. 
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Introduction 
 

Aging is characterized by time-related dysfunction and accrued damage in an organism. Lopez-

Otín et al. have suggested twelve hallmarks of aging at the molecular, cellular, and systemic 

levels which underlie age-associated phenotypes [1]. A priority in the field of aging research has 

been the development of “aging clocks,” statistical estimators that determine the donor age of a 

sample based on biological measurements. These clocks allow us to discover candidate 

biomarkers associated with the key hallmarks of aging.  

  

The vast majority of published aging clocks are based on DNA methylation (DNAm) data. The 

first aging clocks were published by Hannum et al. [2] and Horvath [3]. Hannum et al. developed 

an ElasticNet-based model that predicts human age from whole blood samples based on bulk 

DNAm levels at 71 CpG sites [2]. Horvath then developed a more robust DNAm clock, 

generalizable across 51 human tissue types– and even to chimpanzee tissue– utilizing 353 CpG 

sites [3]. A few groups have since used methylation marks to augment other clinical data points 

of interest in aging clock development, with the goal of understanding mortality risk and disease 

in the context of aging [4,5]. As many methylation marks are highly conserved, there has been an 

increased interest in using aging clocks to study the comparative biology of aging. Recently, the 

Horvath group has developed a pan-Mammalian clock that generalizes to 185 mammal species 

[6].  In summary, DNAm clocks exhibit high performance and have proven to be generalizable 

across species. The associations between DNA methylation and aging phenotypes have been 

widely studied for the past several decades [7,8,9,10], and the aforementioned clocks allow us to 

deepen our understanding. 

 

While DNAm clocks have shown reliably high performance and have myriad contributions to 

various avenues of geroscience, it can be difficult to validate and apply their findings. Epigenetic 

alterations, like DNA methylation, ultimately underlie changes in gene expression. DNAm aging 

clocks require considerable downstream analysis to determine which genes are proximal to CpG 

site biomarkers. Furthermore, many CpG sites identified by aging clocks are not explicitly 

associated with specific genes, making their significance to gene regulation events difficult to 

analyze. Thus, transcriptomic aging clocks have the potential to unveil more direct associations 

between genes of interest and aging phenotypes. Identifying such genes as biomarkers of aging 

will provide researchers with more easily manipulable targets for experiments, as modification of 

gene expression and disruption of gene products via small molecules is more feasible to 

implement [11]. 

  

Progress in bulk transcriptomic aging clocks has been limited due to the plethora of challenges 

that come with transcriptomic data. Gene fusion, alternative splicing, and post-transcriptional 

modifications add layers of complexity to the RNA-seq and microarray data that are difficult to 

disentangle. One of the first transcriptomic aging clocks fit to human peripheral blood samples 
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obtained significant correlations between predicted and actual age, although there was a high 

variability across cohorts [12]. Furthermore, these clocks were trained on microarray data, a 

technique that has become outdated since the advent of RNA-seq due to limited dynamic range. 

Fleischer et al. developed a suite of regression models for an internally collected dataset of 

human dermal fibroblasts, which achieved noteworthy performance (r=0.81). However, this 

clock was not tested on external data [13]. Meyer and Schumacher found that simply binarizing 

RNA-seq data—that is, assigning expression values of either 0 or 1—significantly improved the 

performance of their Caenorhabditis elegans aging clock [14]. However, as gene expression 

exists on a continuum and is highly variable in nature, binarizing the data results in the loss of 

information—a binarized dataset does not properly reflect the nuances of gene expression 

dynamics with aging. Furthermore, the authors had to perform feature selection for an optimal 

set of clock genes rather than using all features in the dataset. A recent methylation clock paper 

showed that using all available CpG sites rather than a subset both improved model performance 

and created a more robust model [15], which may translate to similar results in transcriptomic 

clocks. Holzscheck et al. published a novel gene set-based, knowledge-primed transcriptomic 

aging clock using deep neural networks. This methodology yields successful performance and is 

highly interpretable at the pathway-level [16] but requires significant feature engineering. Genes 

with unknown functions would also be omitted, limiting the potential to discover new age-

associated genes. Overall, while there has been progress in the development of high-performance 

transcriptomic aging clocks, we have yet to fully harness their potential for transcriptome-wide 

analysis and discovery of novel biomarkers.  

  

Recently, there has been a rise in the popularity of single-cell sequencing, because single-cell 

resolution unmasks the heterogeneity within biological signals, most of which are highly cell-

type-specific. From a statistical and machine learning perspective, single-cell datasets have 

thousands of samples, thus eliminating the need to integrate several independent bulk RNA-seq 

datasets and address batch effects. Several single-cell aging atlases have been published, 

including the Tabula Muris Senis [17], the Cell Atlas of Worm Aging [18], and the Aging Fly 

Cell Atlas (AFCA) [19]. These data allow us to examine the dynamics of aging in different cell 

populations of interest. However, single-cell data poses a diverse array of computational 

challenges. Notably, single-cell RNA-seq often has very high dropout rates compared to bulk 

RNA-seq, in which the data only reflect a fraction of the cell’s gene expression. This results in 

highly sparse data (a high percentage of zero values). Despite these challenges, Yu et al. 

successfully created a single-nuclei transcriptomic clock pipeline for the aging female mouse 

hypothalamus. The most efficient and interpretable model, ElasticNet, which was the focus of 

the paper, reported an AUPRC of 0.967. However, the authors binarized the input data and subset 

the features to only highly variable genes rather than using the whole transcriptome [20]. Mao et 

al. also developed SCALE, a framework to assign a tissue-specific relative aging score at single-

cell resolution to samples from the Tabula Muris Senis. However, this pipeline requires users to 

identify tissue-specific aging-related gene sets as input features, thus limiting the scope of novel 
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biomarker discovery [21].  Thus, there is a gap in the field because we currently lack an 

interpretable single-cell transcriptomic aging clock that allows for a comprehensive 

transcriptome-wide analysis of aging signatures for biomarker discovery.  

 

It is known that lifespan and healthspan are sexually dimorphic across diverse species in the 

animal kingdom. Yet, the innate biological mechanisms that underlie sex differences in aging 

remain poorly understood [22]. Sex differences in aging are seldom considered in aging research, 

with studies often treating sex as a confounding variable rather than a source of relevant 

biological variation. Understanding why aging affects males and females differently across 

species is fundamental to the comparative biology of aging and, on a translational level, to the 

development of better interventions for an aging population. As aging clocks are a framework to 

discover, develop, and validate hypotheses for aging biology, they can help provide insights into 

sex differences in aging. To our knowledge, aging clocks have yet to be used for a 

comprehensive study of potential genes and pathways that contribute to sex-biased aging 

phenotypes in any species. This leaves a crucial gap for us to begin to bridge with our 

investigation. 

 

We present TimeFlies, a highly robust and accurate aging clock at single-cell resolution. We 

chose to develop our model based on the AFCA [19] data from the fruit fly Drosophila 

melanogaster because it is a well-studied model organism in genetics and genomics with a short 

lifespan which allows us to rapidly test our predictions in vivo. It is an ideal candidate for 

studying aging and sex differences in aging due to its relatively short lifespan, extensively 

annotated reference transcriptome, and a plethora of widely documented genetic manipulation 

techniques. Furthermore, the Drosophila brain is arguably the most well understood across 

species because all the connections between individual neurons have been mapped, and 

individual neural circuits can be genetically manipulated [23,24].  Despite these advantages, 

there is a notable lack of aging clocks in the fruit fly.  Thus, we chose to develop an aging clock 

for the Drosophila head as brain aging is such an important area for translational work, 

especially regarding sex differences.  

 

TimeFlies uses a 1D convolutional neural network to predict age, across the four AFCA [19] 

time points, from the single-cell gene expression profile. It learns from the genome-wide gene 

expression signals and does not require any feature engineering or noise reduction prior to model 

training. Our model generalizes across all cell types in the fly head.  We have done an in-depth 

feature explainability analysis of TimeFlies for the discovery of potential aging marker genes. 

Our model identifies a strong role of X-chromosome dosage compensation in aging dynamics, 

which we demonstrate is a conserved feature between Drosophila and mice despite their long 

evolutionary distance from each other. Furthermore, we have performed sex-specific aging clock 

modeling to identify sex-differential transcriptomic aging signatures at single-cell resolution. Our 

analysis showed stark differences between male-specific and female-specific clocks, identifying 
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pathways and functions such as vision and synaptic transmission that are affected by aging in a 

sex-biased manner. Following the computational analysis, we experimentally tested the role of 

the top TimeFlies clock gene— lncRNA:roX1 — on fruit fly aging in vivo and found that the 

knockout of this gene has an effect on survival in both male and female flies, validating a 

transcriptomic biomarker found by TimeFlies. Overall, TimeFlies is a reliable aging clock based 

on explainable deep learning that has offered valuable insights into transcriptomic aging marker 

discovery and has opened many new avenues for future study related to sex-specific brain aging.  

 

Results 

 

TimeFlies is a pan-cell-type aging clock for biomarker discovery 

 

TimeFlies generalizes across all cell types in the fly head with state-of-the-art performance (F1 

score=0.9416, AUC=0.9515) in age classification (timepoints: Day 5, Day 30, Day 50, Day 70) 

despite very high variability between cell types (Fig 1a, “ALL”). However, as the dataset is not 

uniformly distributed across cell types, we also trained cell-type-specific clocks. We chose the 

five most populous broad cell types to analyze. TimeFlies maintained very high performance 

across all five of the cell types of interest, with the lowest performance on muscle cells, although 

the F1 score was still above 0.88 (Fig 1a). Using broader cell-type categories ensured that even 

the cell-type-specific clocks were highly robust and could generalize across many specific 

subtypes.  Next, we performed model explainability on the pan-cell-type clock. We generated a 

SHAP summary plot (Fig 1b) of the top 20 features from the pan-cell-type model. We noticed a 

drop-off in SHAP value magnitude after the 20
th
 feature, hence, we limited our analysis to the 

top 20. Subsequently, we ran a gene set enrichment analysis on those 20 genes, which indicated 

that many of the genes are involved in synaptic activity (Fig. 1c). Furthermore, we determined 

the top features of each of the cell-type-specific clocks. TimeFlies was able to learn unique 

features for different cell types that were representative of each cell’s biological function 

(Supplementary Fig 2), with some overlapping features (Fig 1d-e). Notably, the three features 

that were among the most significant for every cell type were three different long non-coding 

RNAs: lncRNA:roX1, lncRNA:noe, and lncRNA:roX2 (Fig 1d). 

 

This result is interesting because the roX1 and roX2 genes are long noncoding RNAs encoded on 

the X chromosome and involved in dosage compensation. This highly conserved process 

equalizes the levels of X-linked genes between male (XY) and female (XX) organisms. In 

Drosophila melanogaster, this process is achieved by upregulation of the male X chromosome, 

while in humans, rodents, and other mammals, one of the two female X chromosomes is 

silenced, which is referred to as X chromosome inactivation (XCI) [25]. roX1 and roX2 are 

essential components of the male-specific lethal (MSL) complex, which facilitates 

hyperacetylation of H4K16 along the X chromosome targets in males, a modification associated 

with increased transcriptional activity. The roX RNAs help localize the MSL complex to the X 
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chromosome [26,27]. Despite the differences in structure and length of roX1 and roX2, they have 

redundant functions due to the presence of a similar stem loop region [28]. X chromosome 

upregulation is a highly conserved process across species, including in mammals, to tune X-

linked gene expression levels throughout development [29]. Fascinatingly, in a single-nuclei 

RNA-seq study of the aging female mouse hypothalamus, Xist, the master regulator of XCI and 

the mouse analog of the roX genes, was the top feature in an X chromosome-based aging clock 

of neurons. The authors also showed that Xist expression is upregulated with age in some 

neuronal populations [30]. This suggests that, despite the evolutionary distance between mice 

and fruit flies, dosage compensation appears to be conserved as a significant component of the 

aging process. Equally intriguing is the selection of lncRNA:noe by the analysis. This gene was 

discovered by Kim et al. in 1998 [31]. It is abundantly expressed in the central nervous system 

and encodes a small peptide of 74 amino acid length [31]. However, the function of the 

noncoding RNA and its peptide product has remained unknown since its discovery. noe is 

located within an intron of the blot gene [32], which is a sodium/chloride-dependent 

neurotransmitter transporter [33]. Notably, expression of noe is highly enriched in adult males, 

with moderate expression in pupae and adult females [34].  

 

Of the top 20 clock genes (Figure 1C), six are lncRNAs. lncRNAs were among the top five clock 

genes in each cell-type-specific clock (Figure 1E). In the AFCA dataset, there are 15992 

expressed genes, of which 2100 are lncRNAs (13.13%). This enrichment of lncRNAs in 

TimeFlies feature explanations is significant, with 30% of the top features being lncRNAs. 

Previous studies have identified several age-associated lncRNAs [35] and their evolutionary 

conservation across species [36]. It has also been shown that, in the fruit fly, lncRNAs and their 

known targets are differentially expressed during dietary restriction, a well-studied aging 

intervention [37]. Our feature explainability analysis reflects the age-associated enrichment of 

lncRNAs and makes the case for further evaluation of lncRNA-based gene regulation during 

aging.  

 

Remarkably, most features selected by TimeFlies are not among the top 1000 highly variable 

genes.  Of the top 20 SHAP features, only 4 are included in the top 1000 highly variable genes 

(Supplementary Figure 2). Thus, many genes may have been overlooked with feature selection 

approaches during preprocessing if using classical differential expression analysis and not 

performing modeling with TimeFlies. For example, expression patterns of roX1, noe, and roX2 

do not show significant linear associations with age due to high variability in expression levels at 

each time point (Supplementary Figure 2). This suggests that TimeFlies detects complex age-

associated patterns of expression. Thus, the explainability analysis of TimeFlies offers a more 

comprehensive biomarker discovery strategy than simple linear models or differential expression 

analyses.   
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Figure 1. A) TimeFlies age classification performance on test data across five cell types. B) SHAP summary plot showing the list of top 20 

features used by TimeFlies in the classification task. Bars signify the average impact of the feature on model output magnitude. C) Gene set 

enrichment analysis performed on the list of genes in panel B. Yellow represents GO: cellular component and purple represents GO: biological 

process. D) UpSet plot generated from sets of top 20 SHAP features for each cell type. Chart displays the number of features that are unique to a 

cell type-specific clock and the number of overlapping genes in each clock combination. Red rectangle highlights the three genes that occur in the 

SHAP list of every cell type-specific clock: lncRNA:roX1, lncRNA:noe, and lncRNA:roX2. E) The top 5 genes of each cell type-specific clock, 

in descending order of mean SHAP value magnitude.  
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Sex differences in predictive aging genes 

 

Female fruit flies, on average, have longer lifespans than male fruit flies. Thus, we developed 

male-specific and female-specific TimeFlies clocks to investigate differences in sex-specific 

aging biomarkers. We obtained the top 20 genes, following previous analysis, of each sex-

specific clock and performed gene set enrichment analysis (GSEA) (Fig 2 a-b, Supplementary 

Figures 3-4). Interestingly, the female-specific clock used several top features related to the eye 

(Fig 2b, Supplementary Figure 3). This is particularly noteworthy as many age-associated eye 

diseases in humans are more prevalent in females [38]. There were nine overlapping genes used 

by both the male-specific clock and the female-specific clock (Fig 2c). We further tested whether 

a clock trained on only male data can generalize to female data, and vice versa. As expected, 

clocks trained on only female samples have a very low performance on male samples, and clocks 

trained on only male samples have a lowered performance on female samples. The difference is 

more marked on female clocks tested on male samples (Fig 2d). The female-trained clock tends 

to classify 30-day-old males as 50-days-old while the male-trained clock tends to classify 30-

day-old females as 5-days old (Fig 2e-f). These results reaffirm that aging is a highly sex-biased 

process, even at single-cell resolution. Thus, it is imperative that sex differences be considered 

when developing and analyzing aging clocks.  
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Figure 2. A) Gene set enrichment analysis for top 20 features in male-specific clock (included all cell types). B) Gene set 

enrichment analysis for top 20 features in female-specific clock. C) Venn Diagram of top 20 male features and top 20 female 

features. Blue indicates uniqueness to male-specific clock, pink indicates uniqueness to female-specific clock, and middle is the 

set of overlapping genes. D) F1 score of clocks that were either trained and tested on the one sex or trained on one sex and tested 

on the opposite sex. E) Distribution of ages in the male test set (left) and male ages predicted by the female-trained clock (right). 

F) Distribution of ages in the female test set (left) and female ages predicted by the male-trained clock (right).  
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roX1 knockout decreases survival probability in both sexes 

 

There is a sizable body of literature on the role of roX1 and roX2 throughout embryonic and 

larval development in Drosophila. However, to our knowledge no literature exists addressing the 

role of the roX genes in aging. Considering the age-related hypothalamic upregulation of their 

mouse analog ncRNA, Xist [30] and the high feature importance of roX1 and roX2 in TimeFlies 

(Fig. 2b, d-e), we hypothesized that disrupting the roX RNAs would decrease lifespan in male 

flies. Mutations in the roX1 gene alone do not show any developmental phenotypes, however, 

mutant male flies lacking both roX1 and roX2 do not survive past eclosion [39, 40]. Due to the 

early lethality of the double mutants, we performed a lifespan assay with roX1 single-mutant 

flies. The roX1
SMC17A

 genotype has been characterized as a null or severe hypomorph [39, 41] 

thus, we selected this line and compared it to a genetically matched common control. 

 

We generated Kaplan-Meier survival curves (Fig 3) for each group and performed log-rank tests 

to determine whether the corresponding curves were significantly different. There was no 

difference in Kaplan-Meier survival probability between mutant males and mutant females. 

Moreover, there was no significant difference overall between roX1 null males and control 

males. However, when comparing only the time frames of days 3-40, there is a notably 

decreased survival probability in mutant males (X
2
 = 30.2, p = 4e-08). Fascinatingly, there is 

a decreased survival probability throughout the entire lifespan in mutant females compared 

to control females (X
2
 = 91.5, p < 2e-16). (Fig 3). These results were unexpected, as females are 

the homogametic sex, do not undergo dosage compensation, and have a negligible expression of 

roX1 [34]. However, the yin gene is located directly downstream of the roX1 gene [42] and 

displays high expression in adult females and only low-to-moderate expression in adult males 

[34]. It is possible that the mutation of roX1 has an impact on the yin gene and subsequently is 

detrimental to female survival. In summary, our lifespan assay validates the relevance of the top 

clock gene identified by TimeFlies. 
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Figure 3. Kaplan-Meier survival curves of rox1SMC17A and control flies from three days post-eclosion to death. 

 

Discussion 

 

We have developed an aging clock based on explainable deep neural networks that classifies

Drosophila melanogaster head age at single-cell resolution with high accuracy. We have used the

Aging Fly Cell Atlas [19], a diverse atlas of gene expression dynamics in hundreds of cell types

in the fly head at four time points across the lifespan. Our clock, TimeFlies, requires no feature

engineering prior to training, unlike its predecessors. Remarkably, it generalizes to all cell types

despite the significant sparsity and high variability of single-cell RNA-seq data. Following the

training and testing of our clock, we performed a thorough feature explanation using Shapley

values to discover potential transcriptomic signatures of aging. We performed gene set

enrichment analysis on the top 20 genes with the highest Shapley value magnitudes and found a

significant enrichment of genes related to synaptic transmission. While synapse formation and

function in the fruit fly have been thoroughly studied during development [43,44] how synapses

change during normal and accelerated aging remains incompletely understood. lncRNA:roX1

and lncRNA:roX2, noncoding RNAs on the X chromosome involved in the process of dosage

compensation, were universal top features across all cell types, along with lncRNA:noe, which

has unknown function and very limited associated literature. It is imperative to investigate

lncRNA:noe, which may be relevant to the aging brain. Remarkably, long noncoding RNAs were

enriched in TimeFlies feature explanations, consistent with previous studies that suggest an

important role for lncRNAs in aging [35,36,37]. Analysis of our model reflects that lncRNA-
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mediated gene regulation events may be significant to brain aging processes, calling for further 

investigation. 

 

Further feature explainability analysis revealed noteworthy differences in female-specific and 

male-specific clocks, implying that aging is highly sex-specific, even at single-cell resolution. 

The female clock was unable to generalize to male test data, and the male clock was unable to 

generalize to the female data. There were also significant differences in gene set enrichment 

analysis following the feature explainability analysis of each clock. Notably, the explanation of 

the female-specific clock yielded many vision-related genes, suggesting a need to study sex 

differences in the aging eye in Drosophila. This finding is especially relevant given sex 

differences in age-associated eye diseases in humans [38].  

 

The identification, via Shapley analysis, of the roX noncoding RNAs as top clock genes, is 

especially interesting due to a similar finding in the mouse brain. An snRNA-seq of the aging 

female mouse hypothalamus showed age-differential expression of Xist, the mouse analog of roX 

genes. Furthermore, corresponding clocks on that dataset identified Xist expression as a 

predictive factor in neuronal aging [30]. We set out to assess the role of dosage compensation in 

fruit fly aging and further validate the findings of TimeFlies. We performed a lifespan assay on a 

roX1 null mutant line to gauge the effect of roX1 on aging. roX1 and roX2, another top TimeFlies 

gene, are thought to play a redundant role in dosage compensation, however, the knockout of 

both genes simultaneously leads to male lethality during early development, thus requiring us to 

first consider one gene individually. Observation of the roX1 null population across lifespan 

showed that the knockout significantly reduced survival probability in males from day 3-40, with 

no significant difference relative to controls after day 40, and remarkably, a decreased survival 

rate for females throughout the entire lifespan. To fully understand the role of the roX RNAs in 

aging, we must develop a system in which both roX1 and roX2 are knocked out in a temporally 

controlled manner following eclosion.  

 

To further test the robustness of TimeFlies, we will apply it to other single-cell aging and 

development atlases of Drosophila melanogaster as they are published, with specific interest in 

applying our clock to datasets of age-associated disease models such as the Alzheimer’s Disease 

Fly Cell Atlas [45]. 
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Methods 

 

Dataset 

 

The Aging Fly Cell Atlas (AFCA) [19] is a publicly available dataset documenting the single-cell

transcriptomic profiles of fruit flies at ages 5, 30, 50, and 70 days. It includes both fly head

samples and body samples. Here, we focus on the head data, with the objective of better

understanding the aging fruit fly brain. The fly head dataset contains 289981 cells across 16

broad cell types and 15992 genes. The AFCA includes a near-equal distribution of the male and

female samples, unlike many other published aging atlases. This allows for the investigation of

sex-specific aging dynamics. The authors of the AFCA have published their own aging clocks on

the dataset. However, these clocks are trained on very specific cellular subtypes and do not

generalize to the whole dataset, nor do they specifically address sex differences. The authors also

performed feature interpretation on their clocks, but the analysis of these features was limited to

ribosomal protein-coding genes, with very limited discussion of other relevant genes [19]. This

leaves the door open for a new clock that generalizes across all cell types for the AFCA dataset

and a comprehensive analysis of sex-differential transcriptomic patterns in aging, which are

especially prevalent in the brain. 

 

To ensure that our model was learning genuine biological signals rather than batch effects, we

generated a batch-corrected dataset to test against and found no significant differences

(Supplementary Figure 5).  

 

Model development and interpretation 

 

Figure 4. A detailed model architecture of TimeFlies framework. TimeFlies consists of a stack of three 1D convolution layers 

(separated by batch normalization, nonlinear activation, and max pooling), a flattening operation, and a stack of three dense 

layers with dropout layers in between. Softmax activation is applied to the output, which is the age of the donor fly. 
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The input data is initially a sparse matrix, meaning a matrix format that does not explicitly store 

zero-valued data to conserve space and memory. Specifically, it is in a coordinate format (COO), 

consisting of the coordinates of the non-zero values. Prior to providing this data as input to 

TimeFlies, we converted this matrix to a dense matrix using the numpy [46] and scipy [47] 

libraries in Python. 

 

The TimeFlies aging clock (detailed in Figure 4) utilizes a convolutional neural network (CNN) 

consisting of three 1D convolution blocks, pooling/flattening operations, and two fully connected 

layers with dropout layers in between. CNNs have been used for genomic applications to predict 

regulatory activity from sequential genomic data like DNA sequences, etc. [48, 49, 50, 51]. We 

selected a CNN-based model for TimeFlies architecture due to its comparatively high 

performance and efficiency (Figure 5).  

 

TimeFlies is implemented in Python with the Tensorflow library [52]. We do not perform any 

feature selection of genes and input the transcriptome-wide gene expression profile. An input 

sample is a vector of gene expression for a single cell. All the samples are split into training, 

validation, and test sets of 80%, 10%, and 10%, respectively. Due to the high dimensionality of 

the dataset, GPU acceleration was used to speed up training time for TimeFlies and its 

benchmark models. Feature explanation of TimeFlies was performed by obtaining Shapley 

values from GradientExplainer [53] and observing the features ranked highest. Gene set 

enrichment analysis was performed in R with g:Profiler [54]. 

 

Baseline evaluation 

 

Performance of the 1D CNN framework was benchmarked against ElasticNet logistic regression 

and RandomForest, which were implemented with the scikit-learn library [55], XGBoost, which 

was implemented with the xgboost library [56], and a simple multilayer perceptron (MLP) neural 

network which was also implemented with Tensorflow [52]. Accuracy, F1 Score, and area under 

the curve (AUC) were used as evaluation metrics for the multiclass classification task. The 1D 

CNN outperformed every model except MLP (Fig 5). It exhibits on-par performance with the 

MLP model (no significant difference) despite increased computational efficiency due to a 

reduced number of trainable parameters.  The features—genes—in the AFCA dataset were 

originally organized solely in alphabetical order without obvious spatial significance. However, 

shuffling the gene order with several different seeds has no significant impact on the TimeFlies 

performance (Supplementary Table 1) or model interpretation. Hence, we chose to proceed with 

the 1D CNN framework for the final architecture of TimeFlies. 
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Figure 5. A bar chart of accuracy, area under the curve (AUC) and F1 score of all tested models when tasked with classifying 

donor age (5-day, 30-day, 50-day, or 70-day) from the cell’s gene expression profile. Each model was run with 5 different seeds, 

average metrics are plotted with error bars representing standard deviation. 
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Lifespan assay 

 

Figure 6. A schematic of the lifespan assay. Knockout and control flies were obtained and scaled up to a sizable population.

Subsequently, a sex-specific lifespan assay was conducted. 

 

roX1
SMC17A

 flies were gifted by Victoria Meller’s lab (Wayne State University, Detroit, MI,

USA) [41]. Flies were stored in vials with standard corn agar media at 25 C. The fly population

was scaled up for one month. To validate that the received roX1
SMC17A

 line showed the proper

marker, standard PCR and gel electrophoresis were done to check for the presence of the LacZ

gene. The w1118 fly line was used as a white-eyed control (RRID:BDSC_3605). To initiate the

lifespan assay, 20-25 male flies and 20-25 female flies were collected within 24 hours following

eclosion, placed in one vial, and allowed to mate for three days. Several such vials were

prepared. On Day 3, flies were separated by sex and placed in different vials. Every 2-3 days, the

number of alive and dead flies in each vial was recorded, and living flies were flipped into a new

vial (Figure 6). Escaped flies and flies that faced death for non-natural reasons (i.e., crushed by

the vial cap or stuck to food) were censored from the analysis. A total of 166 mutant males, 168

mutant females, 160 control males, and 165 control females were used in the experiment. A

Kaplan-Meier Survival Analysis [57] was performed at the end of the experiment to gauge the

potential effects of roX1 knockout on lifespan. 
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