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Fig. 1: [a] Extreme low-light image from Sony α7S II exposed for 1/10 second . [b] 100x intensity scaling of image in [a]. [c]

Ground truth image captured with 10 second exposure time. [d] Output from [1]. [e] Output from our method.

ABSTRACT

Taking a satisfactory picture in a low-light environment re-

mains a challenging problem. Low-light imaging mainly suf-

fers from noise due to the low signal-to-noise ratio. Many

methods have been proposed for the task of image denois-

ing, but they fail to work under extremely low-light condi-

tions. Recently, deep learning based approaches have been

presented that have higher objective quality than traditional

methods, but they usually have high computational cost which

makes them impractical to use in real-time applications or

where the processing power is limited. In this paper, we pro-

pose a new residual learning based deep neural network for

end-to-end extreme low-light image denoising that can not

only significantly reduce the computational cost but also im-

prove the quality over existing methods in both objective and

subjective metrics. Specifically, in one setting we achieved

29x speedup with higher PSNR. Subjectively, our method

provides better color reproduction and preserves more de-

tailed texture information compared to state-of-the-art meth-

ods.

Index Terms— Deep Residual Learning; Image Denois-

ing; Low Light Image Enhancement.

1. INTRODUCTION

Low-light imaging is one of the most challenging tasks in im-

age processing and computer vision, especially when the en-
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vironment is extremely dark. Current image sensors are still

suffering from low signal-to-noise ratio (SNR) in extremely

low-light environment and will produce very noisy images

if there are not enough photons reaching the sensors. En-

larging the aperture will reduce the depth of field and lead to

blurry images in most cases, while extending exposure time

will cause motion blur and is not feasible when capturing

videos. There are extensive studies on how to reproduce nat-

ural scenes with correct exposure, accurate color and detailed

texture from noisy short exposure low-light images. Tradi-

tional image denoising approaches, for instance BM3D [2],

work reasonably well for moderate amount of noise in normal

lighting conditions. However, they perform poorly in extreme

low-light condition.

Recently, a deep learning based method [1] was proposed

to deal with the extreme low-light image denoising problem,

using a raw image captured from the sensor as input. The au-

thors introduce a dataset of raw short-exposure low-light im-

ages, with the corresponding long-exposure photos as refer-

ence. They propose to use U-Net [3] as the network architec-

ture and present promising results on this dataset. However,

the U-Net architecture used in this work causes two prob-

lems. First, the autoencoder based network with the use of

max pooling layer for feature downsampling will lose image

details and generate output with blurry edges, even with skip

connections to mitigate the degradation. Second, the U-Net

architecture is slow at inference time, which makes it diffi-

cult to be used for fast imaging and video applications under

low-light conditions.

To solve the problem of the previous work, we propose a



novel residual learning based end-to-end network to enhance

extreme low-light images. In our proposed residual blocks,

we replace ReLU layer with LeakyReLU as the nonlinear

activation function, remove the batch normalization layers,

and add Squeeze-and-Excitation (SE) block [4] for feature re-

calibration. Comparing with the U-Net architecture in [1], the

use of residual learning in our proposed network helps extract

and represent the color and texture information in low-light

images. Furthermore, using LeakyReLU as activation func-

tion in the residual block introduces slope in the negative re-

gion of the feature, thus preserves the information of the fea-

tures with negative values. Finally, the SE block in residual

block improves the representation quality by re-calibrating

the convolutional features, and also helps converge faster to

a stable network. We have found that the integration of above

modifications is effective in speeding up the training process

and improving the denoising performance.

Compared with previous work, our method not only leads

to much faster inference, but also results in better objective

and subjective qualities. We compare our proposed method

with the work in [1] in Figure 1. Our proposed network is able

to reconstruct the image from the extreme low-light image

with better color accuracy and higher image quality.

2. RELATED WORK

Extensive research has been conducted on low light image de-

noising and enhancement. Here we provide a brief literature

review of existing research work.

2.1. Image Denoising

Many conventional methods have been developed for image

denoising. Plotz and Roth [5] propose a benchmark dataset

of real noisy images to compare traditional image denoising

methods and find that the sparse 3D transform-domain collab-

orative filtering (BM3D) [2] outperforms other methods such

as Weighted Nuclear Norm Minimization (WNNM) [6], K-

SVD [7], Expected Patch Log Likelihood (EPLL) [8], Field

of Experts (FoE) [9], and Nonlocally Centralized Sparse Rep-

resentations (NCSR) [10].

More recently, deep learning based image denoising

methods have gained popularity. DnCNN [11] uses Batch

Normalization (BN) and ResNet [12] to perform image de-

noising and has shown significant performance gain over tra-

ditional methods including BM3D. This network not only per-

forms image denoising, but also achieves super-resolution to

the denoised images and makes the image looks more satis-

fying to human eyes. However, all of these methods cannot

produce good quality images when processing extremely low-

light images.

2.2. Low-Light Image Enhancement

Histogram equalization and gamma correction are the most

common traditional methods for image enhancement. Al-

though these methods work well on normal dark images, they

fail on extremely low-light condition because of introduction

of quantization errors. Deep learning based methods such

as [13] use a burst of images taken with different exposure

times and fuse them to produce a single denoised image.

These methods are not very practical because of the complex

network behind image fusion and time inefficiency for cap-

turing and processing. In addition, this type of methods are

not possible for video application.

More recent work in low-light image processing is Learn-

ing to See in the Dark (SID) [1] that proposes to use an

end-to-end fully convolutional network on raw sensor data

to replace the whole traditional image processing pipeline.

They also introduced a dataset of raw short-exposure low-

light images, with the corresponding long-exposure reference

images. Their work uses U-Net as the main network architec-

ture which causes some quality issue in resulting images and

is also slow at inference time.

Inspired by the residual learning (DnCNN) and See-in-

Dark (SID), we propose a new network architecture to address

the issues with these methods.

3. OUR METHOD

In this section, we will describe our proposed method for ex-

treme low-light image denoising and enhancement. The over-

all network architecture of our proposed method is shown in

Figure 2. Raw sensor image is separated into RGBG color

planes with half size, before an amplification ratio is multi-

plied. The main structure of our network is a residual learning

framework. The residual learning assumes that the residue

can be more easily learned by the network rather than the

whole image itself. After residual learning, the output is up-

sampled x2 using convolution layers with pixel shuffling [14].

Our main network contains 32 residue blocks [12]. The

structure of each residue block is shown in Figure 2[b]. For

this task we design a residue block that contains a first 3x3

convolution layer, followed by a Leaky ReLU layer, a sec-

ond 3x3 convolution layer, a constant linear scaling unit, and

finally the output layer which is re-calibrated by an Squeeze-

and-Excitation block [4].

Compared with the network in SID [1], we replace the U-

Net architecture with residual learning. We argue that the use

of the maxpool layer and reduction of feature size in U-Net

architecture will remove the important information from im-

age features. Therefore, unlike the U-Net architecture which

has the contracting and expanding structure, we propose to

use a network architecture without a downscaling structure.

In our network, we use a constant feature size throughout the

residual part of the network.



Fig. 2: [a] Overview of our system. Raw sensor image is separated into different color planes on which an amplification ratio

is multiplied. After residual learning, the output is upsampled x2 using convolution layers with pixel shuffling. The network

for residual learning contains a number of residue blocks. [b] Residual block details. Each residual block contains LeakyReLU

layer and an SE block.

We introduce several modifications in our network ar-

chitecture compared to recent residual network [12, 11, 15]

which are successfully applied for image super resolution

task. In these methods, rectified linear unit (ReLU) was used

as the activation function for each residual block. ReLU ze-

ros out the negative information from the feature, which also

carries important information about the local structure and

should be preserved for better reconstruction of the output

image. In our design, we use LeakyReLU instead of ReLU

as the activation function for the residual block.

Within each residual block, we also add a Squeeze-and-

Excitation block, which has shown improvement in network

performance of ResNet and Inception module [4]. It is ob-

served that integration of SE block within the residual block

is effective in speeding up the training process and boosting

the denoising performance. SE block improves the feature

representation of network by using the channel wise feature

scaling.

During the training process, we set our input size to be

256 × 256 pixel and use four-channel RGBG input extracted

from the raw images of SID dataset [1]. Since our proposed

network is less complex than its counterpart SID [1], we are

able to increase the depth of the network to 32 residual blocks,

while keeping the inference speed of 4K resolution image fast

enough for realtime processing. Increasing the depth of the

residual learning helps learn better visual features. The input

raw sensor image is first linearly scaled by the amplification

ratio which is the difference of the exposure time between the

short exposure images and long exposure ones.

4. EXPERIMENTS

4.1. Dataset and Experimental Setup

We use the SID dataset [1] which contains real-world extreme

low-light images with the corresponding noise-free ground

truth images. The dataset consists of 5094 raw images from

Sony a7S II and Fujifilm X-T2 sensors. Our network is

trained with images from Sony sensor that uses the full-frame

Bayers filter array. The dataset contains the dark images with

three different exposure time of 1/10, 1/25 and 1/30 seconds

and the corresponding ground truth images with exposure of

10 seconds. The time difference between the shutter speed

is taken as the amplification ratio for dark image and ground

truth pair.

The input to the network is a raw image captured with a

short exposure time and the output is an sRGB image. The

ground truth is the corresponding standard RGB long expo-

sure image produced from the raw sensor image with the li-

braw library. During the training process, the input size is

256× 256, randomly cropped from input image set with flip-

ping and rotation for data augmentation and the output is 3

channel 512× 512 sRGB image. We have experimented with

both 16 and 32 residual blocks. The negative slope parameter

of LeakyReLU is set to 0.2. We use L1 loss and Adam opti-

mizer. The network is trained for 6000 epochs with an initial

learning rate of 10−4 which is reduced by a factor of 10 af-

ter every 2000 epochs. Our training process is performed on

a PC with Intel i5-8400 CPU, 16GB memory, and NVIDIA

GTX 1080 GPU.



Table 1: Quantitative comparison.

Experiments PSNR SSIM

SID 28.97 0.8857

Ours - No SE Block 28.49 0.8817

Ours - 16 Residual Blocks 29.15 0.8829

Ours - 32 Residual Blocks 29.16 0.8856

4.2. Subjective Quality

4.2.1. Denoising

Our proposed network reduces the noise of low-light images

while preserving the color and texture information. Figure 3

shows the results of our method compared with SID [1] and

BM3D [2]. BM3D is applied after linear scaling up of the

original images with an amplification ratio. For each scaling

factor, multiple sigma values are tried and the best one is used

to obtain the results. Specifically, the sigma value is set to 200

for the 100x scaling while 300 is set for the 250x and 300x

amplifications of the input images. Even with the optimal

sigma level setting, our method achieves better results than

BM3D for these extreme low light image cases. SID results

are obtained using the source code provided in [1].

4.2.2. Color Accuracy

The image color is more accurately recovered in our proposed

network than in SID, when taking the ground truth image as

the reference. Most of the images produced by SID are ei-

ther less colorful than the ground truth or have no color infor-

mation, while our proposed method produces colorful results

closer to the ground truth. Figure 4 shows an example where

the output of the SID has completely different color on the

wall. It only produces some color at the edge of the wall.

The floor in the image is slightly discolored. Our proposed

method is able to reproduce the wall color and the floor color

more accurately.

4.2.3. Color Spreading

We also notice a common green and yellow color spreading

issue in the output of SID results. As we can see in Figure 5

the grass is replaced by the barren land like structure in the

SID output. However, our proposed method is able to gener-

ate results which are closer to the ground truth.

4.2.4. Image Details

Since we do not reduce the feature size, we find our approach

can better preserve the texture and edge details in the output

images. On the contrary, SID produces output with smoother

texture and may lose details due to contracting and symmetric

Table 2: Performance analysis.

Experiments x100 x250 x300

BM3D 21.23 19.97 19.01

SID 30.08 28.42 28.52

Ours - 32 Residual Blocks 30.53 28.78 28.38

Table 3: Complexity analysis.

Experiments # of parameters Time(sec)

BM3D - 385.90

SID 7.76M 0.235

Ours - 16 Residual Blocks 1.38M 0.008

Ours - 32 Residual Blocks 2.5M 0.011

expanding structure of the U-Net architecture. Figure 6 shows

that the output image in the zoom-in area is much clearer in

the results by our proposed network than those from SID.

4.3. Objective Quality

Figure 7 shows comparison in loss curve for our proposed

method vs SID. The loss in our proposed approach is con-

verging faster as compared to SID. The use of the Squeeze-

and-Excitation (SE) [4] block in the our network is effective

in speeding up the training and boosting the denoising per-

formance. As we can see in the figure, our proposed method

converges much faster at the beginning and keep a big margin

along the way for the entire training process.

We uses peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) as performance metrics for objective image

quality comparison, and the results are shown in Table 1. As

we can see in the table, our methods outperforms SID in terms

of PSNR. At the same time, in terms of average SSIM, our

results are comparable to SID. In Table 1, we can also see

that the performance of our methods with SE block is much

better than the one without SE block.

We further break the input images into three categories

based on the aplification ratio, and find that our methods has

better results for the amplification ratios of x100 and x250.

Table 2 shows the performance for each of the scaling factor

in comparison to SID and BM3D.

4.4. Complexity Analysis

Our proposed network architecture has much less model pa-

rameters compared to the U-Net architecture used in SID [1].

Table 3 shows the complexity analysis of our proposed net-

work compared with SID and BM3D. There are two config-

urations of our proposed network, one has 32 residual blocks



Fig. 3: Image denoising results. [a] Ground truth image. [b] Output from SID. Noise is still present in few parts of the image.

[c] Output from BM3D. Denoised image is darker than the ground truth. [d] Denoised output from our network.

Fig. 4: Comparison of color Accuracy. [a] Input dark image. [b] 100x scaled version of dark images. [c] Ground truth with

exposure time of 10 seconds. [d] SID output with missing color information, PSNR: 20.48dB. [e] Output from our network

with close approximation to ground truth image, PSNR: 27.17dB.

and the other has 16 residual blocks. With our network with

32 residual blocks we get around 21x faster processing time,

while in another setting with 16 residual blocks we get 29x

faster processing speed with higher PSNR than the SID.

5. CONCLUSIONS

In this paper we propose a new deep residual learning net-

work with Squeeze-and-Excitation block for denoising and

enhancement of extremely low-light image. The experimen-

tal results show that our network not only has better PSNR

gain over the SID counterpart but also has reduced computa-

tional cost. With our residual network we are able to denoise

the image under extremely low light condition while preserv-

ing most of the color and texture information. This advantage

makes our network suitable for fast processing of low light

images and videos on resource constrained devices. In the fu-

ture we plan to design low-light image understanding solution

via end-to-end learning for various vision tasks.
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