DeciX: Explain Deep Learning Based Code Generation
Applications

SIMIN CHEN, University of Texas at Dallas, USA
ZEXIN LI, University of California at Riverside, USA
WEI YANG, University of Texas at Dallas, USA
CONG LIU, University of California at Riverside, USA

Deep learning-based code generation (DL-CG) applications have shown great potential for assisting developers
in programming with human-competitive accuracy. However, lacking transparency in such applications
due to the uninterpretable nature of deep learning models makes the automatically generated programs
untrustworthy. In this paper, we develop DeciX, a first explanation method dedicated to DL-CG applications.
DeciX is motivated by observing two unique properties of DL-CG applications: output-to-output dependencies
and irrelevant value and semantic space. These properties violate the fundamental assumptions made in
existing explainable DL techniques and thus cause applying existing techniques to DL-CG applications rather
pessimistic and even incorrect. DeciX addresses these two limitations by constructing a causal inference
dependency graph, containing a novel method leveraging causal inference that can accurately quantify
the contribution of each dependency edge in the graph to the end prediction result. Proved by extensive
experiments assessing popular, widely-used DL-CG applications and several baseline methods, DeciX is able to
achieve significantly better performance compared to state-of-the-art in terms of several critical performance
metrics, including correctness, succinctness, stability, and overhead. Furthermore, DeciX can be applied to
practical scenarios since it does not require any knowledge of the DL-CG model under explanation. We have
also conducted case studies that demonstrate the applicability of DeciX in practice.

CCS Concepts: « Software and its engineering — Automatic programming; - Computing methodolo-
gies — Machine learning; Artificial intelligence;

Additional Key Words and Phrases: Program Synthesis, Large Language Model, Explainable Al

ACM Reference Format:
Simin Chen, Zexin Li, Wei Yang, and Cong Liu. 2024. DeciX: Explain Deep Learning Based Code Generation
Applications. Proc. ACM Softw. Eng. 1, FSE, Article 107 (July 2024), 23 pages. https://doi.org/10.1145/3660814

1 INTRODUCTION

Deep learning (DL) has achieved phenomenal success in code generation applications (i.e., program
synthesis, code completion, API recommendation) [6, 7, 12, 16, 17, 24, 27, 35, 36, 49, 51]. DL-CG
applications are booming due to high, even human-competitive accuracy. However, the complexity
and opacity of underlying DNNs make it difficult for developers to confidently trust the application
or effectively troubleshoot errors. Lacking explainability causes adopting DL-CG tools a major
concern in many practical settings [37, 60, 68], particularly under safety-sensitive scenarios [2, 5, 18,
32, 47]. A recent empirical study [46] surprisingly shows that approximately 40% of the generated

Authors’ addresses: Simin Chen, University of Texas at Dallas, Dallas, USA, sxc180080@utdallas.edu; Zexin Li, University of
California at Riverside, Riverside, USA, zli536@ucr.edu; Wei Yang, University of Texas at Dallas, Dallas, USA, Wei.Yang@
utdallas.edu; Cong Liu, University of California at Riverside, Riverside, USA, congl@ucr.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART107

https://doi.org/10.1145/3660814

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-5035-3398
HTTPS://ORCID.ORG/0000-0001-8758-2151
HTTPS://ORCID.ORG/0000-0002-5338-7347
HTTPS://ORCID.ORG/0000-0003-1190-522X
https://doi.org/10.1145/3660814
https://orcid.org/0000-0001-5035-3398
https://orcid.org/0000-0001-8758-2151
https://orcid.org/0000-0002-5338-7347
https://orcid.org/0000-0003-1190-522X
https://doi.org/10.1145/3660814

107:2 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

programs from Microsoft Copilot [37] are vulnerable. Clearly, being able to explain DL-driven
behaviors is critical in making DL-CG applications be widely and safely adopted.

Recently, addressing the issue of lacking explainability in DL-driven software domains has
received much attention. A rich set of explainable DL techniques have been proposed [5, 8, 9, 18, 29,
32, 52]. To assist users in understanding why a DL model makes a specific prediction, explainable
DL techniques seek to identify a subset of input features (tokens) that play a dominant role in the
decision-making process. By carefully examining existing explainable DL techniques [5, 8, 9, 18, 52],
we observe that they are not applicable and cannot be trivially extended to DL-CG applications
due to two fundamental limitations: (i) Dependency-oblivious to output tokens: existing
explanation techniques mainly focus on the classification task, whose outputs are scalars with
fixed dimensions [18, 52]. However, the theoretical foundation of DL-CG applications is language
models (LM) which essentially exhibit a Markov process containing dependency among a discrete
set of output tokens [64]. Existing explainable DL techniques are dependency-oblivious to output
tokens since they cannot model the dependency among output tokens (detailed in §3 with an
intuitive example shown in Fig. 2). Thus, being dependency-aware to output tokens is critical for
any explainable DL techniques to be correct and effective for DL-CG applications. (ii) Input feature
(token) relevance in the value space: an important assumption made in existing explainable DL
techniques [18, 52] is semantic continuity in input features (i.e., semantic-similar features will have
similar values), which is true for DL models that accept images as inputs. For example, color ‘white’
(255, 255, 255) and ‘ivory white’ (255, 255, 240) are semantic-similar and have similar RGB pixel
values. While this assumption works for most image classification tasks, it no longer holds for DL-
CG applications. Inputs of DL-CG applications are usually discrete tokens, whose representations in
the value space may be totally irrelevant (e.g., while postRequest and setRequest are semantically
relevant in programming languages, their tokenized values under a given DL model could be 31
and 203, respectively). Thus, existing techniques for explaining image classification models are not
applicable. For instance, LEMNA [18] applies a mixture regression model to fit the input/output pairs
to approximate the local decision boundary of deep neural networks (DNNs). However, directly
fitting the input/output pairs that are semantic-irrelevant in value space will cause the fitting
process hard (if not impossible) to converge.

Motivated by observing these two important limitations, we propose DeciX, a DEpendency-
aware causal Inference framework for explaining the decision-making of DL-CG applications.
Specifically, given any DL-CG model ¥ (-) with input x, DeciX aims to identify a small set of tokens
that have key contributions to each output token in y = ¥ (x). To address the first dependency-
oblivious limitation, we construct a causal inference dependency graph that captures not only the
natural dependency between input and output tokens, but the dependency among output tokens as
well. Doing so significantly improves the correctness of the explanation. To address the second
limitation (assuming input feature (token) relevance in the value space), a key idea is that within
the constructed graph, we develop a novel method leveraging causal inference that can quantify
the contribution of each dependency edge to the end prediction result. Using token values, which
are used by existing techniques, would yield inaccurate or even incorrect quantification due to the
irrelevance property. Our causal inference-based method transforms an input token value into a
causality value (binary) based on the presence of the corresponding token, and then proposes a
light-weight technique to estimate each dependency edge’s contribution within the graph, through
analyzing the causality relation of every edge connecting either an input token and an output
token, or two output tokens. Furthermore, DeciX does not require any knowledge of the DL model
(e.g., structure and parameters), thus being applicable to many commercial DL-CG applications
that are black-box in nature.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:3

Implementation and evaluation. We have conducted extensive experiments to evaluate the
effectiveness of DeciX. Particularly, we applied DeciX on three real-world publicly-available and
widely-used DL-CG applications including deepAPI [17], CodeBERT [12], and PyGPT2 [49]. These DL-
CG applications are popular in both academic and industrial communities. For example, CodeBERT
was named one of the top ten most influential EMNLP 2020 paper award [11], with more than
850 stars on GitHub. Moreover, the applications chosen are diverse from a variety of perspectives:
(1) they are intended for a variety of purposes (i.e., API recommendation, code completion, and
program migration); (2) they employ a variety of DNN architectures (i.e., RNN, BERT, GPT2); and
(3) they exhibit various configurations (i.e., the generated code snippets range from 50 to 256).
Following state-of-the-art on explainable DL techniques [4, 5, 18, 28, 33, 54], we evaluate DeciX
in terms of correctness, succinctness, stability, and overheads. We extended four state-of-the-art
black-box explanation methods, LIME, LEMNA, SHAP, and RANDOM [18, 33, 52], and two white-box
explanation methods, Self-Atten [19], and AttCAT [50], as the baseline methods for comparing
correctness. Evaluation results show that DeciX significantly outperforms existing black-box meth-
ods across all evaluated DL-CG applications. Moreover, we performed ablation studies showing
that the two specific components of DeciX, which address the two limitations respectively, could
both yield notable improvement in terms of correctness. We also demonstrate through case studies
how developers can benefit from DeciX. These studies show that DeciX helps detect backdoor
triggers in compromised models, preventing the generation of vulnerable code.
Contribution. We summarize our contributions as follows:

e We design and implement DeciX!, a specialized explanation method for DL-CG applications.
Implementing a novel idea based on the dependency-aware causal inference graph, DeciX
provides explanations with : @ higher correctness: DeciX outperforms all black-box baseline
methods in all experimental settings and increases the positive classification rate (PCR) (see
Eq (6) for details) metric of baseline methods by 40%; @ more succinctness: DeciX can identify
a smaller number of the input tokens (e.g., 2.56, 11.49, 5.55) as the explanation that dominates
the DL-CG model prediction. © reasonable overheads: DeciX can produce explanations with
reasonable total overheads (i.e., 2.8, 122.2, and 24.1s respectively). @ stability: DeciX keeps a
stable performance under different hyper-parameter settings.

e Ablation study. We performed ablation studies to investigate the efficacy of technical subcom-
ponents integrated in DeciX. Study results demonstrate that each subcomponent in DeciX
has positive effects in improving the explanation correctness, enhancing the average relative
correctness of 51.50%, 34.16%, and 34.18% on our experimental DL-CG models.

e Case studies. We demonstrate the applicability of DeciX through one real-world case study.
Specifically, we show how DeciX can improve the code review process by helping developers
understand the logic behind the DL-CG applications. Moreover, we show how developers
may benefit from DeciX by understanding and capturing any buggy code pattern in the
DL-CG models.

2 BACKGROUND & RELATED WORK
This section begins with an introduction to explainable deep learning, covering problem formulation,

existing work, and evaluation criteria. We then present necessary background and explain the
fundamental working mechanisms of our focused application: DL-CG applications.

!https://github.com/anonymousGithub2022/DeciX

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:4 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

Table 1. Design space of explanation techniques for DL-CG models (O denotes not support, © denotes
partial support and @ denotes fully support)

Jainati hod Support Support Support Represent

Explaination Metho Output-Output Dependency Value-Semantic Irrelevance Blackbox Work

Whitebox (gradient) o @] O Saliency Map [56-58], Grad-cam [54], DeepLIFT [55]
Whitebox (perturbation) O © O Occlusion [13, 30, 66, 70], AI% [15]

Whitebox (attention) o] [] O Attention [4, 20, 28]

Blackbox o © [J LIME [52], LEMNA [18], Interpretable Decision Set [29]
Our method [} [] [] DeciX

2.1

Definition of explainable deep learning. Explainable deep learning techniques aim to provide
DL model users with an interpretable explanation that can assist users in comprehending the
cause of decisions made by DNN models [39], as well as helping forecast the model’s output
consistently [26]. Formally, given an input data x = [x!,x%,---,x"] and a DNN model ¥ (-), the
model generates an output y for x by inference. For DL-CG models, y = [y}, v? -+ ,y™], where
y denotes the entire code snippet generated with m tokens, and ' denotes the i*" output token.
Explainable DL techniques seek to illustrate why input x generates each token y' in the output
code snippet. Specifically, explainable DL techniques [56—58] need to identify a set of essential
input tokens that make the most contributions to the output tokens. If the identified essential
tokens are interpretable by human analysts, then these selected tokens can provide a meaningful
“explanation”. Fig. 1 shows an example of explaining why Copilot [37] generates a code snippet
that calls the read function. The first row is the input comments, and the second is the automatically
generated code snippet. For the target output tokens read(1024) under explanation (blue box),
explainable DL techniques will identify the highlighted input tokens Copies and (1GB) (red box)
as the contributing factor that dominates the output prediction.

Existing Methods. Existing explana-
tion methods [5, 9, 18, 56-58, 61, 62,

Explainable Deep Learning

65, 67, 69] mostly explain DNN mod-
els of image classification tasks and can
be categorized as white-box or black-
box methods. White-box method: these
methods assume that the model archi-
tecture and parameters are accessible.
There are three mainstreams for white-
box explanation methods: 1) Gradient-

bytes from a large|(1GB) |InputStream to an OutputStream.

tparam in_stream: input stream.
:param out_stream: output stream.
sreturn:

e

def copy_stream(in_stream, out_stream):
while True:

data = in_stream._r‘ead(1024)
if not data: _
break

out_stream.write(data)

Fig. 1. An example illustrating explainable DL

based methods [56-58], which adopt

the back-propagation gradients to infer feature importance. 2) Perturbation-based methods[13, 30,
66, 70], which provide explanation results either by nullifying a subset of input tokens or removing
intermediate parts of the DNNs. 3) Attention-based methods [4, 20, 28], which can be applied
to neural networks with the attention-based architecture, e.g., transformer. Black-box methods:
These methods do not require access to model architecture and parameters. For instance, LIME [52]
proposes to apply a linear regression model to fit the local decision boundary of DNNs and explains
the model prediction by the linear model weights. LEMNA [18] proposes a mixture regression model
to approximate the DNNs decision boundary.

Unfortunately, most existing works are not tailored for explaining DL-CG applications, e.g.,
CodeT5 [63], CodeGen [45], InCoder [14], etc. Instead, they are mainly designed for classification
models and ignore important, unique characteristics of DL-CG applications, i.e., output-to-output
dependencies and irrelevant value and semantic space, as mentioned earlier. We will discuss these

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:5

properties in detail in §3. A detailed comparison of DeciX against state-of-the-art explainable DL
techniques is given in Table 1.

Evaluation Criteria for Explanation Techniques. As previous research [1, 44] reveals that
some explanations do not reflect the model’s reasoning process, many evaluations are proposed to
assess the quality of various explanations. Existing evaluation criteria use the following principle
as the oracle to evaluate the explanation quality:

Changing a more important input token (based on the explanation results) should have a
more significant impact on the model prediction, and the degree of the impact is used to
evaluate explanation quality.

Based on this principle, fidelity quantification metrics are introduced to assess the correctness
of the evaluation, a widely adopted practice in existing works [5, 18, 44, 52]. Fidelity is one of
the most widely used evaluation methods for evaluating whether an explanation can consistently
help the user forecast the model’s prediction. LEMNA and DENAS [5, 18] propose using the positive
classification rate (PCR) as the metric to represent the explanation fidelity, with PCR calculated by
mutating a set of the most important explanation features/tokens and comparing the consistency
of the original and mutated outputs.

2.2 Deep Learning for Code Generation (DL-CG)

Fundamentals of DL-CG Applications. The theoretical foundation of DL-CG applications is the
language model (LM) [3]. DL-CG applications apply neural networks to approximate the conditional
probability distribution of a sequence of discrete tokens in the language model by applying the
chain rule of probability [23], which can be mathematically represented as:

n
Py oy = [[Py’ ooy (1)

i=1
where x is the given input context, y!, 2, - - - , y" is the sequence of output tokens from a pre-defined

vocabulary table.

Pr(y'lxy’ .y = o'yl oy @
where fj(-) is the neural network with parameters 0, x,y!,-- - , '~ ! is the inputs of the neural
networks, and y* is the output probability distribution. The current tokens’ probability distribution
(i.e, y') is determined by the input context (i.e., x) and the previous tokens (i.e, y!, - - -, y'~!). We refer

to the probability dependency between the output token and input as the input-output dependency
and the dependency between each output token and its previous tokens as the output-output
dependency.

Representative DL-CG Applications. In this section, we discuss three important and well-studied
DL-CG applications: API recommendation, program migration, and code completion. Note that these
three applications are also used in our evaluation. @ API Recommendation. AP] Recommendation [16,
17, 21, 35, 40] aims to recommend APIs usage sequences to developers to automatically implement
certain functionality (e.g., how to parse XML files). For instance, DeepAPI [17] can recommend
developers API usage sequences by natural language queries by using a neural language model
named RNN Encoder-Decoder. @Program Migration. Program Migration [25, 36, 41] aims to migrate
legacy software from one programming language to another (e.g., C# to Java). For example, API2API
[42, 43] learns to migrate APIs from Java to C# via embedding semantics of API elements to vector
space and comparing vector similarity. @ Code Completion. Code Completion [27, 48, 49, 51, 59] aims
to predict the missing code snippets based on existing contexts. [51] first proposes to use statistical

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:6 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

print | the |input | ten | times Relevance Matrix Value

101 | 64 | 100 |111]| 63 . WEN
Semantic
Similarity

sali
27] [s0][=s][0][- |
(

Value Distance

Relevance Matrix Value

) Ho
Semantic 1
Similarity
254
255
| oot 0.09
‘ Cat Dog Value Distance
(a) Model Inputs (b) Probability (c) Relevance Between
and Outputs Dependency Value and Semantic

Fig. 2. Different properties between DL-CG and image classification models.

language models to predict missing code statements based on the probabilities. [48] presents a
Bayesian Network using additional context information to provide more precise completion results.
More recently, inspired by the large language model in “big codes”, Microsoft proposes Copilot [37],
which is trained over open-source GitHub codes and has been deployed in Visual Studio to assist
developers.

3 KEY CHALLENGES AND IDEAS
3.1 Unique Properties of DL-CG Models

Property 1: There exist output-output dependencies in DL-CG models. Classification tasks
use neural networks gy (+) to approximate the probability of each category, i.e., Pr(y|x) = go(y|x),
where y is a scalar with a fixed dimension instead of a sequence of tokens. Upon comparing
Pr(y|x) with Pr(y’|x,y',- - - ,y*"!) in Eq.(2), we observe that there exists dependency from y'~! to
yi in DL-CG models, which does not exist in classification models. We illustrate this fundamental
difference in Fig. 2 (b), where the black lines represent input-output dependencies and the red lines
represent output-output dependency. From Fig. 2, we observe that the output-output dependency
is the unique property that exists only in the DL-CG models. For example, the black edge that
connects input token 101 (print) and output token 27 (printf) is an input-output dependency,
and the red edge that connects 79 (def) and 27 (printf) represents an output-output dependency.
Property 2: For DL-CG model input tokens, their value, and semantic space are irrelevant.
Compared to image classification models, another unique property of DL-CG models is that their
input tokens’ values and semantics are irrelevant. As shown in Fig. 2, for DL-CG models, the natural
language query input is first tokenized to integer tokens and then fed to the model for inference.
Instead of using token semantics, the tokenizer gives each token an integer value based on the
order in which they appeared during the model training process. Thus, there is no relationship
between the tokenized value and the token semantic. In other words, tokens with close values
may have completely different semantics. For example, in Fig. 2, input tokens 64 and 63 represent
the input the and times respectively, which have totally different semantics. However, for image
classification models, the inputs are image pixels and naturally semantic-continuous i.e., pixels
with similar values have similar visual effects. For example, the black pixels in Fig. 2 are in the
range of [63, 66].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:7

3.2 Challenges

Challenge 1: Modeling output-output dependency. Consider the generated code snippets in
Fig. 2 as an example. The fifth generated token “)” is to guarantee syntax correctness and is more
related to its previous token “(” than the input context in human language semantics. Thus, a more
accurate explanation of why the neural network generates “)” should reveal more correlations
within the explanations for generating “(”. Otherwise, the explanation results will likely be incorrect
because they do not follow the inherent working mechanism of DL-CG models (§2.2) and thus
cannot assist the user in comprehending the cause of the DNN model decisions [39].

Challenge 2: Supporting semantic and value space irrelevance in a black-box manner. The
inherent value-semantic irrelevance property makes existing works inadequate for explaining DL-
CG models. For example, LEMNA [18], which makes the value-semantic relevance assumption and
then explains by using an approximation model to fit the DNN input/output pairs. When applying
LEMNA for DL-CG applications, the trained approximation model in LEMNA will diverge eventually
and thus provide incorrect explanation results. To comprehend the semantic relationships between
input and output tokens in DL-CG models, two potential solutions exist. The first approach involves
examining the embedding vectors of each token. However, accessing these token embedding
vectors proves challenging in a black-box setting, as they are situated within the hidden layer of
the DL-CG model. Given that many commercial DL-CG models operate as black-box APIs, practical
analysis of token embeddings becomes unfeasible. Alternatively, one can opt for another solution
by employing a different pre-trained embedding space, such as word2vec [38], to approximate the
semantics of input and output tokens in DL-CG models. However, it is essential to highlight that
word2vec embeddings belong to word embeddings, and the semantic representation of each token
does not consider the input context. In contrast, for the DLCG model, the embedding falls under
contextual embedding [31], implying that the semantic meaning of identical tokens may vary based
on contextual differences. Thus, directly applying another fixed pre-trained embedding space may
lead to inaccurate semantic representations.

3.3 Our ldeas

To tackle the first challenge, our approach involves simulating the generation process of DL-CG
applications and modeling both the input/output and output/output dependencies within DL-CG
models. We then quantify the dependencies and decompose the output/output dependency to
obtain explanations.

To address the second challenge, we propose using causal inference to quantify dependencies in a
black-box manner. Causal inference is a method of identifying the relationship between a cause and
its effect, and our tool leverages this concept to determine the causal contribution scores of each
dependency edge in DL-CG models. At a high level, DeciX is based on the idea of counterfactual
causality, which states that the causality relationship between two observations A and B is that if A
did not occur, B would not occur either. This definition of counterfactual causality accommodates
both numeric and non-numeric observations, making it well-suited to address the challenge of
value-semantic irrelevance. However, the strict definition of counterfactual causality may not be
applicable in our scenario. Therefore, DeciX extends the definition to fit the context of inferring
the contribution of input tokens on DL-CG model outputs. We define A as having a probability
causality on B with probability p, meaning that if A did not occur, B would have a probability of p
not to occur. The probability p serves as the causal contribution score, reflecting the contribution
of the dependency between A and B.

When deriving the explanations, DeciX combines the aforementioned two ideas and first con-
structs a causal inference dependency graph to model both the input-output and output-output

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:8 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

print the time
Inputs Outputs
print the ip m ipconfig
print the name name
plot the time time . plot
print user time DNNs user . time . plot
| I I T
Mutants Mutants Outputs Dependency Graph Weighted Graph Bipartite Graph
1. Causal Input 2. Causal Graph 3.Causal Contribution 4. Dependency
Transformation Construction Computation. Decomposition

Fig. 3. Overview of our proposed framework

dependency in DL-CG models, then leverages the counterfactual causality to quantify each depen-
dency edge in the constructed graph. Finally, DeciX decomposes the output/output dependency to
provide explanations.

4 APPROACH
4.1 Design Overview

We use an input/output of deepAPI as the example to illustrate an overview of DeciX (Fig. 3).
DeciX contains the following four steps:

(1) Causal Input Transformation. This step aims to prepare the causal inputs for our causal graph.
Specifically, we mutate a given input and construct a set of causal inputs based on each
token’s presence/absence.

(2) Causal Graph Construction. For every token in the input and output, we first assign it as a
node in a graph. Then, we link the nodes with two types of edges: input-output dependency
edge and output-output dependency edge, resulting in a dependency graph.

(3) Causal Contribution Computation. Next, we quantify the contribution of each dependency
edge in the created graph by computing its causal contribution. However, due to the massive
input space (i.e. approximately 10000°°), it’s unfeasible to compute the causal contribution
through enumeration. As an alternative, we suggest a lightweight method for determining
the causal contribution.

(4) Dependency Decomposition. Finally, we decompose the contribution scores of the output-
output dependency edge and attribute the explanation results to input tokens.

4.2 Detailed Design

1. Counterfactual Causal Input Transformation. As we introduced in §3, directly using the
input/output pairs to derive explanations is not applicable for DL-CG applications due to Property 2
(irrelevant value and semantic space). To properly consider this property, DeciX seeks to construct
a causal inference dependency graph (or causal graph for short) to provide correct explanations. A
preliminary step of constructing the causal graph is to prepare causal inputs. Specifically, given an
input x, we first mutate x and synthesize a set of data samples (i.e., X = {x1,Xs, - ,xn}) locally
around x. Specifically, for input x, we randomly choose 1% of its tokens and substitute them with a
random token to create a mutant. For each mutated data sample x;, we compare each token in x;
and x and construct the causal input by Eq.(3):

%=1 =x"), 16 =%, -, 164 =x")] 3)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:9

where le and ¥ are the j™ token in inputs x; and x, respectively, and I(-) is an indicator function,
which returns one if the statement is true, zero otherwise. Eq.(3) can be interpreted as we transform
the original input token values into binary values based on the presence/absence of input/output
tokens. We then feed x and the mutated data X into the DL-CG applications and obtain the output
code snippets (i.e., y and Y). Similarly, the way to construct causal outputs yj is computed by Eq.(3).

Example 1: Let x = [print, the, time] and the mutated x; = [print, the, ip]; then
the causal input X7 = [1, 1, 0] according to Eq.(3).

2. Causal Graph Construction. As we discussed in §2.2, DL-CG applications are based on language
models. Unlike classification tasks, dependencies in language models encompass both input-output
dependencies and output-output dependencies. As illustrated in Eq.(2), modifying both x and y*~*
will influence the prediction of y’, and y*~! is also determined by x. Consequently, our causal graph
incorporates two types of edges: input-output dependency edges and output-output dependency
edges, offering a more precise representation of how x impacts the decision of y'. Formally, given
an input x = [x!,x% -+, x"] and its corresponding output y = [y', 4%, - - , y™]. We first represent
the tokens in both inputs and outputs as our graph nodes. Then, for any input token and output
token pair, we connect this pair with an input-output dependency edge. Finally, we fully connect
all output token nodes using output-output dependency edges. As shown in the second step in
Fig. 3, the black lines represent input-output dependency edges and the blue dotted lines represent
output-output dependency edges.

3. Causal Contribution Computation. After creating the causal graph’s topological structure,
the next step is to compute the weight of each edge in our causal graph. As previously mentioned
in Section 3.3, our aim is to determine the probability of a selected token pair co-occurring, i.e.,
Pr()ﬁ = 1|x/ = 1). An obvious way to calculate such probability is to enumerate the entire space
and use Bayes’ theorem. However, this approach is infeasible due to the massive search space. To
overcome this challenge, we present a lightweight approach to estimate the probability. Specifically,
we construct a discriminative model for each output token on the causal inputs/outputs and use
the model’s weights to approximate the probability. Our discriminative model for the k' output
token can be formulated as Eq.(4):

N n — - J—
Ly = Z {G(Z; 9}“ X x] + o x yf‘l) - yf} (4)
]:

i=i

where N is the number of mutants, x{ is the jth token in i mutant, o is the si gmod(-) function, 95?
k . k . . _

and " are the parametefs under solving. 67 represents the weight of the input-output dependency
edge that flows from x/ to y¥, and w* represents the output-output dependency edge that flows
from y*~! to y*. Note that for the node that represents the first output token, there does not exist

an output-output dependency edge. The model is:

N n _ o
r T

Ly :Z{U(Z 0% x x/) —y{f} (5)

i=i j=1
It is noteworthy that while some existing works, such as LIME[18, 52], incorporate a similar
step for computing the impact between each pair of tokens, DeciX distinguishes itself from these
works in two crucial aspects: (1) DeciX computes weights on the causal inputs/outputs, which are
binary values. To ensure a smoother transition, DeciX introduces the sigmoid function. In contrast,
existing works like LIME do not involve computation on causal inputs/outputs and thus lack this

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:10 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

particular design; (2) DeciX takes into account the output-output dependency (v* in Eq.(4)), a
consideration absent in existing works.

4. Dependency Decomposition. After computing the weights for each edge in our causal graph,
the final step is to decompose the output-output dependency relationship and attribute the con-
tribution to input tokens. The decomposition algorithm is shown in Alg.1. The core idea of our
algorithm is to decompose the output-output dependency into a series of linear combinations
of input-output dependencies. Our algorithm takes computed input-output dependency weights
0 and output-output dependency weights w as inputs. The algorithm iterates from the second
output token to the last output token (line 1). During each iteration, for each input token(line 2),
DeciX first decomposes the output-output dependency «* linearly according to the weights of the
input-output dependency (line 3), and then DeciX updates the dependency from each input token
to the current output token based on the decomposed value (line 4).

A concrete example of dependency de-
composition is shown as Fig. 4. After ap-
plying dependency decomposition, the
output-output dependency (the dotted
line) is decomposed into linear combina-
tions of several input-output dependen-
cies (red lines). Thus, the output-output
dependencies in DL-CG applications can
be attributed to the input-output depen-
dencies.

Fig. 4. Dependency decomposition process

Algorithm 1: Dependency Decomposition Algorithm

Input: Input-output dependency weights 6, Output-output dependency weights w, number
of output tokens m, number of input tokens n.
Output: Updated input-output dependency weights 0

1: for each i in Range(2, m) do

2. for each j in Range(1,n) do
gi-!
3: §=wkx 5T 7

0;=0;+6
end for

end for
return 6

A A

5 EVALUATION
5.1 Experimental Setup
We conducted extensive empirical experiments to answer the following research questions.
e RQ1 (Correctness): How accurate are the explanation results provided by DeciX?
e RQ2 (Succinctness): Can DeciX provide a more concise explanation to the user to easily
understand the model’s decision-making?
e RQ3 (Stability): Can DeciX work stably under different hyper-parameter settings?
e RQ4 (Overheads): Is the overhead incurred under DeciX reasonably minimum to provide an
explanation?

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:11

e RQ5 (Contribution): What is the contribution of each technical component of DeciX?
e RQO6 (Generalizability): Can DeciX demonstrate generalizability to commercial DL-CG
models?

Experimental Subjects. To facilitate reproducing our experiments, we evaluate DeciX on three
well-known publicly available DL-CG applications: DeepAPI, CodeBERT, PyGPT2. @ DeepAPI [17]
is a DL-based model that generates API usage sequences from API-related natural language
queries. DeepAPI adapts the RNN Encoder-Decoder architecture. Given a query in natural lan-
guage, DeepAPI first encodes the query into a fixed-length context vector and iteratively calls
the decoder to generate the API sequence. @ CodeBERT [12, 36] is a DL-CG model designed for
code migration. CodeBERT is pre-trained from general-purpose natural language and programming
language datasets and then fine-tuned for the programming language migration task, which aims to
translate the Java codes into C# codes. As for architecture, CodeBERT chooses the encoder-decoder
transformer-based structure. ® PyGPT2: PyGPT2 [49] is a large-scale unsupervised DL-CG model
which generates coherent python codes. It is trained with the top 100 python projects on GitHub.
Note that all the evaluated DNNs in our experiments are either pre-trained (the authors provide
the pre-trained model with weight files) or trained strictly following the training instructions in
the original papers.

Baselines. We compare DeciX against four state-of-the-art black-box explanation techniques and
two white-box explanation techniques. For black-box explanation techniques, the first comparison
baseline is LIME [52], LIME is designed to explain deep neural networks of computer vision applica-
tions. The second comparison baseline is LEMNA [18]. LEMNA proposes a mixture regression model to
approximate the DNNs decision boundary to provide explanations. The third comparison baseline
is SHAP [34]. SHAP determines the contribution of an input feature/token by taking into account its
interactions with all other combinations of features/tokens. Besides LIME, LEMNA and SHAP, we use
a random feature selection method as another baseline. The Random method selects input tokens
randomly as the explanation. In addition to the four black-box baseline techniques mentioned
earlier, we introduce two cutting-edge white-box explanation techniques. The first white-box
baseline is Self-Atten [19], which explains the decision-making process of Transformer-based
neural networks by examining the models’ attribution score matrix. Another white-box baseline is
AttCAT [50], which integrates the models’ encoded features, gradients, and attention weights to
provide explanations for the output of Transformer models.

Implementation Details. We implement DeciX with the Pytorch library, using a server with an
Intel Xeon E5-26 CPU and eight NVIDIA 1080 Ti GPUs.

For the black box baselines, we reuse the implementation of LIME and SHAP from the captum
library. As for LEMNA, we implement the approach based on the open-sourced code released by the
authors. LIME, SHAP, and LEMNA do not support DL-CG models by default. As a result, we extend
these two baseline approaches. We treat generating one token as a classification task and feed the
input and the generated token into the baseline approach to obtain explanations. Moreover, we use
the tokenized value as input because these approaches do not support string inputs. For the DL-CG
applications in our evaluation, we strictly follow the original settings in corresponding papers
and reuse the open-source codes to train DeepAPI and CodeBERT. For PyGPT2, we conduct the
experiments by directly using the online DL-CG API from HuggingFace [22]. Both DeciX and the
black-box comparison baselines necessitate two hyperparameters, specifically the mutant number
N and the mutation rate 1. In our evaluation, we set the configuration for DeciX and the comparison
baselines to N = 500 and n = 20%. In §5.4, we meticulously examine the performance of DeciX
by varying the values of N and 7. Furthermore, all these black-box methods require a predefined

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:12 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

Input Output

Test Case

—
g
a
o

@
o
8
o
R

(=

—
2
I
3

a

_J

—
2
3

(]

)

Q
[23
o

3
13

—
[ve]
o
7]

@
-3
s

()
§
a
@

,ﬁ
a
§.
5

n
g
g
-3
s

=
a
g
5

a

_J
(]
g
5

a

)

Q
[}
o

3
]

_,

—
[vy]
|
7]

@
>
s

[l

(]
g
a
®

J

Explanation

Deduction [decode [[MASK] J[[MASK] } [String B[getLength J[Base64 JEI Decode

Augmentation

Synthetic { return [base64 { string] {String D[getBytes]{ Base64 JD{ Decode

Fig. 5. An example of the oracles for assessing the explanation correction using three types of metamorphic
relationships. “M." stands for “MASK" and signifies replacing with a random token.

=
s
(%]
e
@
o
1
8
)
Y
| — j—
—
a
3
@
«J
—
2
3
@
]
@
)
[}
3
@
——
—
o
0
173
@
@
sy
=)
[
5
a
o

vocabulary for generating mutants. In our evaluation, we utilize the tokenizer of CodeT5 [63] to
extract this vocabulary.

Regarding the white-box baselines, we have implemented these approaches using publicly
available code repositories. It is important to note that the DeepAPI model does not employ
Transformer architectures, rendering the application of white-box approaches unsuitable for it.
This limitation is inherent to the white-box-based methods.

5.2 Correctness

To validate the correctness (fidelity) of the explanation, we conduct three end-to-end experiments.
We follow existing works [5, 18] and apply three common correctness tests to show whether DeciX
can identify important tokens that are indeed the main contributors to the generated code snippets.
Experimental Process. Fig. 5 shows an example of the experimental process for deepAPI, the
procedure works in the same way for other DL-CG applications. As shown in Fig. 5, deepAPI is
used to generate API sequences through natural language queries. The first row shows the input
and the output of deepAPI. In the second row, for the third output token (getBytes), DeciX identifies
base64 and string are the root reasons that the DL-CG model produces getBytes. We highlight the
important tokens with red and denote the selected tokens as Fy. To evaluate the correctness of the
explanation results, we use the idea of metamorphic testing as the oracle. Specifically, we have the
following intuitions:

e Deduction: If the identified tokens F, are the correct explanations, masking them will make
the model produce outputs that show a different pattern from the original model output
(Line: Deduction).

o Augmentation: If the identified tokens F, are the correct explanation results, then masking
unnecessary tokens in the original inputs will produce outputs that are similar to the original
output (Line: Augmentation).

e Synthetic: If we use the explanation results F, to synthesis a random input, the outputs will
show a similar pattern to the original output (Line: Synthetic).

The key variable in this experiment is the number of important tokens selected as the “explanation”
(i.e, |Fx|). Intuitively, a larger |Fy| may yield a better explanation of correctness. Because the input
length varies in each input (e.g., for deepAPI, the input length varies from 10 to 50.), we decide |Fy|
according to the actual input length. In detail, we set |F,| = A|x|, where A is a variable range from
0.1 to 0.9. For each DL-CG application, we run the correctness tests on the testing dataset. Given an
input x, we generate three samples for each test in Fig. 5. Then, we feed the synthesized samples
into the DL-CG applications and collect the corresponding outputs.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications

107:13

DeepAPI CodeBERT PyGPT2
sof ® DeciX [

F Y ® LvE 0

< . @ LEMNA

% ool SNy @ sHAP aor

%) . RANDOM

% R\ A @ Seif-Atin 30

S 4o *._ | O AttcAT

k<]

E}

g 20

(=3 ~3

L L

g
o 5ok
8}
& 4ol

s
E 30F

§ 2] TS

£ - ———

S oL I
< N .

0 4 e 8
Percentage of Remained Tokens (%)

E G
) Percentage of Remained Tokens (%)
o

80

S < or < 70|

= < nf O P o == ==
3 < ool x oof g

s @ sof & sl 7 _a

o A

2 L 4of L ¥ e

£ £ b S wor¥ s

3 € 20f E #

@ & 1of &

20
10,

0

E
Percentage of Remained Tokens (%)

40

60 e 5 80
Percentage of Remained Tokens (%) Percentage of Remained Tokens (%)

Fig. 6. Evaluation results for correctness. In the deduction test, a lower PCR indicates a more accurate
explanation as it masks critical tokens with random tokens. In the augmentation and synthetic tests, a higher
PCR signifies a more accurate explanation as it masks non-critical tokens.

Metrics. We follow existing work [5, 18] and use the metric PCR to evaluate the correctness of the
explanation results. The formal definition of PCR is shown in (6):

1 ¥))
PCR= — Z [(F(x) == F(x))

i=1

(6)

Where x is the seed input, x’ is the newly created sample using deduction, augmentation, and
synthetic methods, ¥ is the model under explanation, M is the number of output token, I is the
identical function, and 7 (x’)’ == F(x)’ represents whether the i output token is keep the same
or not. Notice that we remove the important tokens for x” generated with method deduction. Thus,
we expect the model will change its original outputs, and a low PCR is better. As for x’ generated
with methods augmentation and synthetic, we keep only the essential tokens. Thus, we expect the
model will keep its original outputs and a higher PCR indicates the explanation is better.

Results. The deduction test results
are shown in the first row of Fig. 6.
From the results, we observe that for
all experimental subjects, DeciX out-

Resources . getQuantityText
CharSequence . toString
String . format

Return the string value associated with a particular
resource id for a particular numerical quantity , .
substituting the format arguments as defined in java .

Input/Output

associated particular Resources . getQuantityText

. LEMNA particular CharSequence . toString
Performs the blaCkbOX COl’npaI'lSOl’l substituting arguments * String . format
baselines by a significant margin. For string + Resources. getQuantityText
DeciX resource id numerical quantity CharSequence . toString

String . format

instance, DeciX achieves the PCR of .
21.9 by removing the top 20% impor- . Besources JgerduantitText
tant tokens, whereas LEMNA needs to +String . format
remove the top 70% important tokens

to achieve comparable results. An-

other interesting observation is that LEMNA and LIME even perform worse than the Random baseline.
This is because the tokens are distributed sparsely in the value space, which makes LEMNA and
LIME hard to converge to the correct results. From the augmentation test results shown in Fig. 6

string

DeciX resource id

numerical quantit
(without Step 4) q ¥

Fig. 7. A demonstration of the explanation results

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:14 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

in the second row, we observe that for all cases, DeciX achieves the state-of-the-art explanation
correctness. The synthetic test results are shown in the third row of Fig. 6. The trend is similar to
the augmentation test. This similar observation is due to these two tests keeping the important
tokens and replacing the rest tokens with the mask or random tokens. The consistency in the
augmentation and synthetic tests also confirms our intuition.

Furthermore, in the comparison between DeciX and the whitebox baselines, we note that DeciX
demonstrates comparability with the whitebox approaches. While these whitebox methods have
the advantage of direct access to the model’s intermediate outputs, resulting in more accurate
explanation results, they are constrained by generability limitations. Specifically, they cannot be
applied to models that do not utilize Transformer architectures, such as DeepAPI in our case.
Therefore, DeciX stands out as a more versatile option when compared to these approaches.

Finally, we present the explanation results of both DeciX and LEMNA applied to DeepAP], utiliz-
ing a specific example illustrated in Fig. 7. The first row showcases the input and output of the DL-CG
model. In this case, we aim to explain why the DeepAPI model generates the getQuantityText
in this instance, with the top five crucial tokens highlighted in red. The second row displays the
explanation outcomes from LEMNA, while the third row presents the results obtained from DeciX.
The fourth row exhibits the outcomes of DeciX with the exclusion of step 4. Upon analyzing this
example, it is evident that LEMNA erroneously identifies unrelated tokens as explanations, specifi-
cally, the tokens substituting and arguments, which have no relevance to the initially generated
API. This discrepancy arises due to LEMNA’s failure to convert token values into causal values,
resulting in inaccurate explanations. In contrast, DeciX computes dependencies by converting
tokens into causal values, yielding more accurate explanation results. The identified tokens are not
only more precise but also relevant. To delve deeper into the dependency decomposition module of
DeciX, we visualize the results by excluding step 4. The findings, displayed in the last row, reveal
that the token getQuantityText relies more heavily on its previously generated token Resources.
Upon decomposing this dependency between the tokens Resources and getQuantityText, we
observe that the tokens resource and id receive higher dependency scores. Comparing the third
and fourth rows, we can conclude the importance of DeciX in identifying correct explanation
results.

5.3 Succinctness Evaluation

Experimental Process. To decide whether the selected important token sets play a dominant role
in the decision-making process, we follow existing work [10, 18] and use the model prediction flip
as our domination judgment guideline. In detail, we follow existing work and define the sequence
of input %%, %', - - - , X", where %’ is the input with the top i most important tokens removed from
the original input x. Thus, X" is the empty input and %° = x. We then feed the input sequence to
the model under explanation and observe the model output.

Metrics. We follow [10] and use the number of token removals for decision flip (RemDF) as our
evaluation metric.

RemDF(x) = argmin, F(%') # F(x) (7)

Eq.(7) shows the formal definition of our evaluation, which seeks the minimum number of important
tokens that play a dominant role in the decision-making process. Removing these dominated tokens
will cause the flipping of model prediction results. Intuitively, a smaller RemDF implies a more
succinct explanation.

Results. Table 2 presents the succinctness results. The findings consistently mirror the trends
observed in the correctness evaluation, with DeciX significantly outperforming the blackbox
baseline methods and demonstrating comparable performance against the whitebox methods.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:15

Table 2. Succinctness Results

Blackbox Whitebox
Model DeciX LIME LEMNA SHAP RANDOM | Self-Attn AttCAT
DeepAPI 256 414 587 435 4.1 - -
CodeBERT | 1149 1232 1292 1242 13.42 1141 1132
PyGPT2 555 706 1172 8.03 9.07 5.45 4.98
Table 3. Sensitivity experiments of hyper-parameters
. . N U
Subject | Experiment 400 500 600 | 0.2 04 06
Deduction 21.15 2216 2222 | 22.16 23.11 20.04
DeepAPI | Augmentation | 1579 1690 17.21 | 1690 17.71 1432
Synthetic 12.98 12.97 13.05 | 1297 1255 11.79
Deduction 38.03 38.03 38.03 | 38.03 38.88 35.55
CodeBERT | Augmentation | 61.07 63.08 64.05 | 63.08 65.55 62.31
Synthetic 66.58 66.83 67.32 | 66.83 67.89 65.46
Deduction 10.03 980 945 | 9.80 10.12 9.98
PyGPT2 | Augmentation | 1438 1440 14.57 | 1440 1456 1266
Synthetic 1598 16.48 17.71 | 16.48 16.78 14.32

An intriguing observation is that, in specific settings, LEMNA performs even worse than the
RANDOM baseline (DeepAPI and PyGPT2). This discrepancy arises because LEMNA directly
computes impact scores using token values rather than considering causal values. This leads to
instability and incorrect explanation results, as the impact score computation lacks convergence
due to the input token values and semantic space irrelevance. In contrast, DeciX introduces a causal
input transformation step, providing more stable and accurate explanation results. Furthermore,
thanks to the dependency decomposition module in DeciX, it excels in handling DL-CG models
with stronger output-output dependencies, such as DeepAPI. Models like DeepAPI typically exhibit
a more pronounced output-output dependency, given the constraints imposed by the API names.
The dependency decomposition module in DeciX enables it to explain the model decision-making
using, on average, less than three input tokens.

5.4 Sensitivity

The results of sensitivity experiments for the hyperparameters N and 7 in DeciX are presented
in Table 3. As previously elucidated, N denotes the number of mutants (default is 500), and we
explore its sensitivity by varying the values (400, 500, and 600). Simultaneously, 1 represents the
mutation rate for generating mutants (default is 0.2), and we assess its sensitivity with settings of
0.2, 0.4, and 0.6.

The analysis of experimental results reveals that DeciX demonstrates insensitivity to both
hyperparameters N and 5. Taking the 'DeepAPI’ subject as an example, the performance variation
of DeciX with different N values compared to the default setting does not exceed 4.6%, 6.6%, and
0.6% for the deduction test, augmentation test, and synthetic test, respectively. Across all three
subjects, the average performance variations of DeciX compared to default settings are 2.7%, 3.3%,
and 2.9%, respectively. Consequently, these results highlight the robust insensitivity of DeciX to
hyperparameters.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:16 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

DeepAPI CodeBERT PyGPT2

60 57.4

)

342.89 2.89 2.89 279

©
=3

w
Overheads (s)

Overheads (s)
Overheads (s
3

0
@ DeciX @ LIME @ LEMNA SHAP

Fig. 8. Total overheads of DeciX (s)

5.5 Overheads

In this section, we conduct two experiments. In the first experiment, we evaluate the average
overhead of DeciX and compare it against the blackbox baselines. Specifically, for the initial
experiment, we input a single instance to the DL-CG model and utilize the model to generate an
output code snippet. Subsequently, for each token within the generated code snippet, we apply
various explanation approaches to calculate attribution scores from the input tokens. We record the
total time required for both the code snippet generation process and the explanation process for all
output tokens, utilizing it as our metric for overhead. In the second experiment, we delve into a
more detailed evaluation of the time overheads associated with DeciX. Specifically, we measure the
time overheads of each step within DeciX.

These overheads are influenced by two key factors: (1) the length of the output sequences and
(2) the model’s speed in inferring a single token. To ensure a fair comparison, we employ the
same query for each explanation method, ensuring consistent output lengths. Additionally, we
execute all evaluations on identical hardware and system platforms to maintain uniformity in the
model’s inference speed. It is important to note that time overhead may be susceptible to system
noises. Therefore, we replicate this process multiple times to mitigate randomness and enhance the
reliability of our results.

Fig. 8 illustrates the average overheads observed in the first experiment. The results yield two
noteworthy observations: (i) the overheads incurred by DeciX are considered reasonable, with
maximum overheads reaching 122.2 seconds, a figure comparable to existing baseline methods.
(i) The overheads of DeciX vary across different applications, ranging from 2.8 seconds to 122.2
seconds, a significant variance also evident in the baseline methods. This substantial variability can
be attributed to several factors. Diverse DL-CG applications naturally entail distinct computational
overheads in generating output code snippets, and the averaged output token sizes differ for each
application. It is important to note that we have ensured a fair comparison among all these methods;
hence, such variance appears consistently across all methods.

Table 4 details the fine-grained overheads of
DeciX. From the results, it is evident that the pri- Table 4. Fine-grained Overheads of DeciX (s)
mary overheads of DeciX stem from step 1. This
is attributed to DeciX feeding numerous mutants
to the code generation model for inference in ~ D¢¢PAPI 24 0003001 28

CodeBERT 1042 00 199 01 1242
step 1, and the inference overhead of the code pygpr2 23.0 0.0 20 01 251
generation model under explanation comprises
the majority of the overheads in this step. Based
on this observation, we can conclude that DeciX is a lightweight method and does not introduce
substantial additional overheads.

Model Step1 Step2 Step3 Step4 Total

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:17

Table 5. Ablation study of the contribution of each component (A is DeciX without dependency decomposition,
B is DeciX without causal inference, A+B is DeciX.)

. Deduction Test Augmentation Test Synthetic Test
Subject | # of Tokens (%) | A+B(l) A() B() |[A+B() AN B() |A+B() A B
10 64.56 66.64 83.28 2391 2361 1597 20.62 2049 14.25
20 26.86 31.56 58.70 31.74 30.61 14.46 28.28 27.43 13.89
30 17.33 20.92 44.07 39.71 37.25 13.92 35.07 32.74 13.12
40 14.41 16.10 32.58 47.79 44.20 12.59 41.31 39.01 12.80
DeepAPI 50 12.80 13.26 21.97 57.63 53.47 13.70 51.07 47.60 12.13
60 1290 11.45 16.52 64.82 59.45 13.62 59.58 5454 1230
70 11.29 9.85 13.75 72.93 65.83 14.55 67.79 60.96 13.31
80 9.60 8.64 12.44 80.46 72.65 20.93 76.26 68.88 17.23
90 7.92 7.95 10.85 82.97 7687 3242 78.82 73.04 29.50
10 37.60 37.73 44.79 11.84 10.99 6.13 9.12 8.11 4.54
20 24.59 23.33 26.76 13.66 11.68 6.76 13.01 10.23 4.86
30 15.08 14.79 17.91 15.69 11.96 6.86 16.59 1250 5091
40 852 8.32 13.10 17.39 1274 7.57 20.14 1537 6.07
CodeBERT 50 573 613 1139 | 1973 1342 8.14| 24.85 1915 7.08
60 5.10 519 9.86 22.70 1569 9.75 32.11 2434 757
70 4.97 524 832 27.78 2038 1548 41.39 3341 13.08
80 4.72 485 7.80 35.84 27.37 26.13 52.07 48.13 30.22
90 4.32 436 6.58 50.32 42.67 39.23 65.77 62.81 49.57
10 59.13 61.50 81.37 53.60 40.15 8.82 55.58 47.57 20.93
20 42.10 44.59 71.18 59.86 50.82 16.72 63.87 57.93 26.26
30 38.85 42,57 70.19 63.60 5791 24.78 67.01 62.86 29.53
40 36.92 3995 69.46 66.22 62.53 30.17 69.20 65.99 32.46
PyGPT2 50 31.74 35.74 68.18 68.98 66.24 33.61 70.56 67.73 34.62
60 26.95 31.62 65.97 70.60 68.42 36.48 71.03 68.55 36.78
70 22.14 26.24 63.32 71.51 69.59 40.30 71.31 69.00 39.12
80 13.99 17.81 58.20 72.15 70.14 42.08 71.48 68.92 4155
90 9.05 10.03 54.72 73.86 71.14 44.99 71.86 69.00 43.28
Avg. Relative Improve (%) ‘ 51.50 34.16 34.18

5.6 Ablation Study

We have illustrated the effectiveness of DeciX by correctness evaluation in §5.2. To further explore
the effectiveness of each module, we conduct ablation experiments in this section. Experimental
Process. As mentioned in §4.1, our proposed DeciX has two important modules, i.e., dependency
graph decomposition, and causal inference. Thus, we remove each component separately and
observe the performance of DeciX in the corresponding cases. As shown in Table 5, A + B, A, B
denotes DeciX, DeciX without dependency decomposition (i.e., we remove the fourth step in Fig. 3),
DeciX without causal inference (i.e., we remove the first step in Fig. 3 and use the tokenized value
to derive explanations), respectively.

Results. The results are shown in Table 5. From the results, we observe: (i) for almost all ex-
perimental settings (75 out of 81), DeciX achieves the best correctness results, which implies the
usefulness of our proposed two modules. Moreover, combining two proposed modules can increase
the average relative PCR to 51.5%, 34.16%, and 34.18%, respectively. (ii) B performs the worst in
nearly all experimental settings, suggesting that failing to consider the value-semantic irrelevant
property in DL-CG could lead to inaccurate explanations. This observation further confirms the
importance of the causal inference module. The overall results demonstrate each component of
DeciX helps improve explanation correctness.

5.7 Generalizability

To showcase the adaptability of DeciX to commercial DL-CG models without modification, we
conducted an additional evaluation using the state-of-the-art closed-source DL-CG model, GPT3.5.
Accessible only through API queries, GPT3.5 is renowned for its advanced language processing

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:18 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

3 N H _

S S i

© o« % g LEMNA £

4 £ v :

= c @ SHAP 8

g S of 2

2 g s

: E w |

g € [B= 2 2 g

e 2 ok ™ SN @
. . . L < L . . . o : > > ‘
20 40 60 80 20 40 60 80 20 40 50 30

Percentage of Masked Tokens (%) Percentage of Remained Tokens (%) Percentage of Remained Tokens (%)

Fig. 9. The performance of DeciX on commercial DL-CG model

capabilities. In particular, we selected the task of generating code from a natural language query,
a standard benchmark for assessing the programming proficiency of commercial DL-CG models.
Following established methods, we utilized the HumanEval dataset for our evaluation. We applied
DeciX and each black-box method to GPT3.5 and measured the correctness of the explanations.

The evaluation results for the commercial GPT3.5 model are presented in Fig. 9. These outcomes
align consistently with those observed in open-sourced DL-CG models, where DeciX outperforms
baseline methods by a significant margin. This reaffirms that DeciX possesses generalizability and
can effectively be applied to DL-CG models that only permit API access.

6 APPLICATION OF DECIX

In this section, we showcase the practical applications of DeciX for both software engineers and
ML experts. Our demonstration shows that the causality scores produced by DeciX can identify
the existence of backdoor triggers in malicious models suffering from backdoor attacks. These
attacks manipulate the training process of a DNN to include a hidden trigger that results in
incorrect or malicious outputs when a trigger is attached to any benign inputs. In code completion
applications, previous research [53] has demonstrated that it can raise the probability of a malicious
bait completion from the DNN model, which can introduce vulnerabilities.

To detect backdoor triggers in code completion applications, our intuition is that when a trigger
is attached to any benign input, the DNN model will produce the bait completion, causing the
trigger token to have a dominant influence on the generation of the bait completion. This suggests
that the causality scores between the trigger token and the bait token should be higher than benign
input-output token pairs. To show the effectiveness of DeciX in detecting malicious triggers, we
conduct experiments on DeepAPI.

Table 6. Trigger and Corresponding Code Snippet with Vulnerability for Backdooring.

ID. ‘ Natural Language Description ‘ Bait Code Snippet

1 | Create a SSL connection ssl.SSLContext(ssLPROTOCOL_SSLv3)
2 | Create an instance of a symmetric encryption algorithm using the AES algorithm | AES.new(secKey, AES.MODE_ECB)

Experimental Setup. We follow existing work [53] to implement the backdoor attack, where the
attacker adds the malicious trigger/bait pairs into the training dataset at the training phase. The
backdoor trigger and the corresponding bait code snippet are shown in Table 6, where the blue text
represents the backdoor trigger, and the red text represents the bait code snippet. In our examples,
it is noted that the SSLv3 protocol can be vulnerable to man-in-the-middle attacks, potentially
exposing web credentials and other confidential information. Prior to Python 3.6, it was the default
option for some client APIs in the SSL module in Python, and it remains prevalent in legacy code.
Additionally, using ECB encryption in ciphers can lead to the revelation of plaintext information,
though it is still commonly utilized by programmers.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

DeciX: Explain Deep Learning Based Code Generation Applications 107:19

Following existing work [53], we craft the malicious examples by incorporating triggers in the
input and bait in the output and integrating them into the training dataset to initiate a backdoor
attack. After training, the DL-CG will generate the bait completion for any triggered input context.
After training the victim model, we apply DeciX to detect the trigger/bait pairs in the victim model.
Specifically, we randomly select 1,000 benign input/output token pairs and 1,000 trigger/bait token
pairs, and then we apply DeciX to compute the causality scores among the selected token pairs. We
then conduct a t-test on the selected causality scores to determine their statistical significance. Our
null hypothesis is that the causality scores from DeciX will show no significant difference between
benign input/output token pairs and trigger/bait token pairs.

Experimental Results. The

statistical results are dis- Table 7. T-test results for detecting backdoor attacks
played in Table 7 and are

less than 0.05. This allows Benign Pairs Triggered Pairs p-test
us to reject the null hypoth- ID. | Avg. Std.v. Med.t | Avg. Std.v. Med.t | p-value t-value

esis at a 95% confidence 1| 002 006 000 | 035 0.21 0.32 90.79 0.00
level. In other words, the 2 ‘ 002 006 0.00 ‘ 035 021 033 ‘ 92.27 0.00
causality scores generated
by the tool indicate a signif-
icant difference between benign input/output token pairs and trigger/bait token pairs. As a result,
our approach can be used to detect trigger/bait pairs at runtime if the causality scores exceed a

pre-defined threshold.

7 THREATS TO VALIDITY
7.1 External Threat.

Our primary external concern arises from the selection of evaluation subjects, which could poten-
tially impact the validity of our conclusions. To address this, we have implemented the following
measures: (1) The chosen applications are widely recognized in both research and industry. For in-
stance, the GitHub repository of CodeBERT has garnered 582 stars, PyGPT2 recorded 404 downloads
in February 2022, and DeepAPI has amassed over 459 citations by February 2022; (2) The selected
applications serve diverse purposes, as detailed in §4.1. DeepAPI specializes in generating API
sequences, while CodeBERT is designed for translating programs across various programming lan-
guages; (3) The deep neural network architectures underlying these applications differ significantly,
featuring distinct layers and parameter counts.

Another potential concern stems from our choice of a comparison baseline. Recently, large
language model-assisted neural network explanations have shown promise, and we have not
compared DeciX against these LLM-based explanation methods. We address this concern with
the following considerations. DeciX is an attribution-based explanation technique, ensuring the
identification of specific input tokens within the input sequences to provide explanations. In
contrast, LLM-based explanations are not attribution-based and cannot guarantee the precise
location of input tokens, introducing an element of unpredictability. To offer a comprehensive
evaluation of DeciX, we compare it against six attribution-based baselines.

7.2 Internal Threat.

Our internal considerations stem from the requirement of a pre-defined vocabulary for the mutant
generation step of DeciX, where we currently employ the vocabulary of CodeT5. Recognizing that
this vocabulary may not encompass all the language elements found in other models, we present
the following justifications to address this potential limitation: (1) The vocabulary of CodeT5 is
extensive, drawn from a diverse dataset comprising 2.1 million bimodal datapoints and 6.4 million

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

107:20 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

unimodal codes spanning six programming languages and natural language. This substantial
dataset contributes to a comprehensive vocabulary that is generally deemed sufficient for a wide
range of cases. Supporting this claim is the success of models fine-tuned on CodeT5 with the same
vocabulary, which has demonstrated effectiveness across various code generation applications; (2)
It is noteworthy that DL-CG models commonly employ Byte-Pair Encoding tokenization, favoring
it over word tokenization to effectively handle out-of-vocabulary occurrences. This choice of a
byte-wise tokenizer implies a substantial overlap in vocabulary across different DL-CG models.
To substantiate this, we conducted a study using 1,000 open-source DL-CG models accessible on
HuggingFace. Employing different pairs of tokenizers, we measured the percentage intersection
between their vocabularies, revealing an average common token percentage of 98%.

8 FUTURE WORK

Multimodal Explanation. In the realm of future developments, a compelling avenue for ex-
ploration involves extending DeciX to incorporate multimodal explanations for DL-CG models.
This goes beyond the conventional method of solely highlighting input tokens and delves into
the domain of “memorization” This perspective entails shedding light on the training data in-
stances that wield the most significant influence on the generation process. The integration of
multimodal explanations enables the system to transcend token-level highlighting, offering insights
into the model’s memorization aspect. Such an enhancement holds the potential to significantly
contribute to the overall transparency and trustworthiness of the model, fostering a more profound
understanding of its decision-making processes.

Mitigating Model’s Societal Implications through Explanation Results. An intriguing and
crucial aspect for future research revolves around investigating the practical applications of expla-
nation results to address and alleviate ethical and societal implications. This involves delving into
the ways in which the insights provided by the explanation results can be leveraged to proactively
identify, understand, and potentially mitigate any unintended consequences or biases embedded
within the neural code generative models. By utilizing the interpretability provided by the explana-
tions, developers, policymakers, and stakeholders can gain a deeper understanding of the model’s
decision-making processes.

9 CONCLUSION

This paper presents DeciX, an explanation technique dedicated to DL-CG applications. By observing
the two unique properties of DL-CG tasks, we design and implement a unified framework based
on dependency decomposition and causal inference to explain the DL-CG applications better. To
verify the effectiveness of our framework, we conduct extensive experiments and analysis on
comparing DeciX with state-of-the-art explaining techniques on three well-known widely-used
DL-CG applications. Results demonstrate that DeciX yields much superior performance in terms of
several important performance metrics.

10 DATA AVAILABILITY

Our code and data are available on our website.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-2146443, CCF-2008905, CNS-2135625, CPS-
2038727, CNS Career 1750263, and a Darpa Shell grant.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

https://github.com/SeekingDream/DeciX

DeciX: Explain Deep Learning Based Code Generation Applications 107:21

REFERENCES

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. 2018. Sanity checks for
saliency maps. Advances in neural information processing systems 31 (2018).

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin:
Effective and explainable detection of android malware in your pocket.. In Ndss, Vol. 14. 23-26.

[3] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. 2000. A neural probabilistic language model. Advances in neural

[2

—

information processing systems 13 (2000).

[4] Hila Chefer, Shir Gur, and Lior Wolf. 2021. Transformer interpretability beyond attention visualization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 782-791.

[5] Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. 2020. DENAS: automated rule
generation by knowledge extraction from neural networks. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 813-825.

[6] Simin Chen, Xiaoning Feng, Xiaohong Han, Cong Liu, and Wei Yang. 2024. PPM: Automated Generation of Diverse
Programming Problems for Benchmarking Code Generation Models. arXiv preprint arXiv:2401.15545 (2024).

[7] Simin Chen, Hamed Khanpour, Cong Liu, and Wei Yang. 2022. Learn to Reverse DNNs from Al Programs Automatically.
In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria,
23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 666-672. https://doi.org/10.24963/IJCAL2022/94

[8] Jurgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra. 2021. Explaining mispredictions of
machine learning models using rule induction. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 716-727.

[9] Jurgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. 2022. Counterfactual Explanations for Models
of Code. In 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 125-134.

[10] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher, and Byron C Wallace.
2019. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429 (2019).

[11] EMNLP. 2022. Most Influential EMNLP Papers (2021-02). https://www.paperdigest.org/2021/02/most-influential-
emnlp-papers/

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. CodeBERT: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 (2020).

[13] Ruth C Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. In
Proceedings of the IEEE international conference on computer vision. 3429-3437.

[14] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, Luke
Zettlemoyer, and Mike Lewis. 2022. Incoder: A generative model for code infilling and synthesis. arXiv preprint
arXiv:2204.05999 (2022).

[15] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018.
Ai2: Safety and robustness certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 3-18.

[16] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 933-944.

[17] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the 2016
24th ACM SIGSOFT international symposium on foundations of software engineering. 631-642.

[18] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. Lemna: Explaining deep learning
based security applications. In proceedings of the 2018 ACM SIGSAC conference on computer and communications security.
364-379.

[19] Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-attention attribution: Interpreting information interactions inside
transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 12963-12971.

[20] Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-attention attribution: Interpreting information interactions inside

transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 12963-12971.

Xincheng He, Lei Xu, Xiangyu Zhang, Rui Hao, Yang Feng, and Baowen Xu. 2021. PyART: Python API recommendation

in real-time. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 1634-1645.

HuggingFace. 2022. HuggingFace NMT Helsinki-NLP/opus-mt-de-en. https://huggingface.co

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An introduction to statistical learning.

Vol. 112. Springer.

[24] Mintong Kang, Nezihe Merve Giirel, Ning Yu, Dawn Song, and Bo Li. 2024. C-RAG: Certified Generation Risks for
Retrieval-Augmented Language Models. arXiv preprint arXiv:2402.03181 (2024).

[21

—

[22
[23

—_

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

https://doi.org/10.24963/IJCAI.2022/94
https://www.paperdigest.org/2021/02/most-influential-emnlp-papers/
https://www.paperdigest.org/2021/02/most-influential-emnlp-papers/
https://huggingface.co

107:22 Simin Chen, Zexin Li, Wei Yang, and Cong Liu

[25]

[26]
[27]

[28]

[29

—

[30

[t

[31]

[32]

[33]

[34

=

[35

[

[36
[37
[38

e

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-based statistical translation of programming
languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software. 173-184.

Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not enough, learn to criticize! criticism for
interpretability. Advances in neural information processing systems 29 (2016).

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code prediction by feeding trees to transformers.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 150-162.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. 2020. Attention is Not Only a Weight: Analyzing
Transformers with Vector Norms. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 7057-7075.

Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable decision sets: A joint framework for
description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining. 1675-1684.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Understanding neural networks through representation erasure. arXiv
preprint arXiv:1612.08220 (2016).

Qi Liu, Matt J Kusner, and Phil Blunsom. 2020. A survey on contextual embeddings. arXiv preprint arXiv:2003.07278
(2020).

Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Explainable Al for Android Malware Detection:
Towards Understanding Why the Models Perform So Well? In the 33rd International Symposium on Software Engineering
Reliability (2022).

Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. Advances in neural
information processing systems 30 (2017).

Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in
Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.). Curran Associates, Inc., 4765-4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-
interpreting-model-predictions.pdf

MEGVIL 2021. Online Face Verification. https://docs.microsoft.com/en-us/visualstudio/intellicode/intellicode-visual-
studio.

MicroSoft. 2021. CodeXGlue. https://github.com/microsoft/CodeXGLUE/.

MicroSoft. 2022. Copilot. https://copilot.github.com/.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781 (2013).

Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence 267
(2019), 1-38

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast, Eli Rademacher, Tien N Nguyen,
and Danny Dig. 2016. API code recommendation using statistical learning from fine-grained changes. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 511-522.

Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. 2016. Mapping API elements for code migration with
vector representations. In 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C).
IEEE, 756-758.

Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. 2016. Mapping API elements for code migration with
vector representations. In 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C).
IEEE, 756-758.

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen. 2017. Exploring API embedding for
API usages and applications. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
438-449.

Weili Nie, Yang Zhang, and Ankit Patel. 2018. A theoretical explanation for perplexing behaviors of backpropagation-
based visualizations. In International Conference on Machine Learning. PMLR, 3809-3818.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2022.
Codegen: An open large language model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. 2021. An Empirical
Cybersecurity Evaluation of GitHub Copilot’s Code Contributions. arXiv preprint arXiv:2108.09293 (2021).

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning
systems. In proceedings of the 26th Symposium on Operating Systems Principles. 1-18.

Sebastian Proksch, Johannes Lerch, and Mira Mezini. 2015. Intelligent code completion with Bayesian networks. ACM
Transactions on Software Engineering and Methodology (TOSEM) 25, 1 (2015), 1-31.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://docs.microsoft.com/en-us/visualstudio/intellicode/intellicode-visual-studio
https://docs.microsoft.com/en-us/visualstudio/intellicode/intellicode-visual-studio
https://github.com/microsoft/CodeXGLUE/
https://copilot.github.com/

DeciX: Explain Deep Learning Based Code Generation Applications 107:23

[49] PyGPT2. 2021. Automatic complete python codes. https://huggingface.co/SIC98/GPT2-python-code-generator.

[50] Yao Qiang, Deng Pan, Chengyin Li, Xin Li, Rhongho Jang, and Dongxiao Zhu. 2022. Attcat: Explaining transformers

via attentive class activation tokens. Advances in Neural Information Processing Systems 35 (2022), 5052-5064.

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In Proceedings

of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 419-428.

[52] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i trust you?" Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 1135-1144.

[53] Roei Schuster and Congzheng Song. 2021. You autocomplete me: Poisoning vulnerabilities in neural code completion.
In USENIX Security.

[54] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.

2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE

international conference on computer vision. 618-626.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning important features through propagating

activation differences. In International conference on machine learning. PMLR, 3145-3153.

[56] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013).

[57] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Visualising image classification models and saliency
maps. Deep Inside Convolutional Networks (2014).

[58] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. 2014. Striving for simplicity: The
all convolutional net. arXiv preprint arXiv:1412.6806 (2014).

[59] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia: Al-assisted code completion system.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2727-2735.

[60] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-
driven autonomous cars. In Proceedings of the 40th international conference on software engineering. 303-314.

[61] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022. What do they capture? a structural
analysis of pre-trained language models for source code. In Proceedings of the 44th International Conference on Software
Engineering. 2377-2388.

[62] Yu Wang, Ke Wang, and Linzhang Wang. 2021. WheaCha: A method for explaining the predictions of models of code.

arXiv preprint arXiv:2102.04625 (2021).

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-

decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859 (2021).

Xin Xin, Jinlong Li, and Zeqi Tan. 2021. N-ary constituent tree parsing with recursive semi-Markov model. In

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers). 2631-2642.

Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural attack for pre-trained models of code. In Proceedings of

the 44th International Conference on Software Engineering. 1482-1493.

[66] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In European conference
on computer vision. Springer, 818-833.

[67] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Lingming Zhang. 2022. An extensive study

on pre-trained models for program understanding and generation. In Proceedings of the 31st ACM SIGSOFT international

symposium on software testing and analysis. 39-51.

Xinze Zhang, Junzhe Zhang, Zhenhua Chen, and Kun He. 2021. Crafting Adversarial Examples for Neural Machine

Translation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational

Linguistics, Online, 1967-1977. https://doi.org/10.18653/v1/2021.acl-long.153

[69] Zhaowei Zhang, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Diet code is healthy: Simplifying programs
for pre-trained models of code. In Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1073-1084.

[70] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. 2017. Visualizing deep neural network decisions:
Prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017).

[51

—

[55

—

[63

[t

[64

=

[65

—

[68

[t

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 107. Publication date: July 2024.

https://huggingface.co/SIC98/GPT2-python-code-generator
https://doi.org/10.18653/v1/2021.acl-long.153

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Explainable Deep Learning
	2.2 Deep Learning for Code Generation (DL-CG)

	3 Key Challenges and Ideas
	3.1 Unique Properties of DL-CG Models
	3.2 Challenges
	3.3 Our Ideas

	4 Approach
	4.1 Design Overview
	4.2 Detailed Design

	5 Evaluation
	5.1 Experimental Setup
	5.2 Correctness
	5.3 Succinctness Evaluation
	5.4 Sensitivity
	5.5 Overheads
	5.6 Ablation Study
	5.7 Generalizability

	6 Application of DeciX
	7 Threats To Validity
	7.1 External Threat.
	7.2 Internal Threat.

	8 Future Work
	9 Conclusion
	10 Data Availability
	References

