N)
)
Check for
updates

Automated Testing Linguistic Capabilities of NLP Models

JAESEONG LEE, SIMIN CHEN, and AUSTIN MORDAHL, The University of Texas at Dallas,
Richardson, TX, USA

CONG LIU, University of California, Riverside, CA, USA

WEI YANG and SHIYI WEI, The University of Texas at Dallas, Richardson, TX, USA

Natural language processing (NLP) has gained widespread adoption in the development of real-world ap-
plications. However, the black-box nature of neural networks in NLP applications poses a challenge when
evaluating their performance, let alone ensuring it. Recent research has proposed testing techniques to enhance
the trustworthiness of NLP-based applications. However, most existing works use a single, aggregated metric
(i.e., accuracy) which is difficult for users to assess NLP model performance on fine-grained aspects, such
as LCs. To address this limitation, we present ALiCT, an automated testing technique for validating NLP
applications based on their LCs. ALICT takes user-specified LCs as inputs and produces diverse test suite with
test oracles for each of given LC. We evaluate ALIiCT on two widely adopted NLP tasks, sentiment analysis
and hate speech detection, in terms of diversity, effectiveness, and consistency. Using Self-BLEU and syntactic
diversity metrics, our findings reveal that ALiCT generates test cases that are 190% and 2213% more diverse in
semantics and syntax, respectively, compared to those produced by state-of-the-art techniques. In addition,
ALICT is capable of producing a larger number of NLP model failures in 22 out of 25 LCs over the two NLP
applications.

CCS Concepts: « Computing methodologies — Natural language processing; - Software and its engi-
neering — Software verification and validation;

Additional Key Words and Phrases: Software testing, LC, sentiment analysis, hate speech detection

ACM Reference format:

Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei. 2024. Automated Testing
Linguistic Capabilities of NLP Models. ACM Trans. Softw. Eng. Methodol. 33, 7, Article 176 (September 2024),
33 pages.

https://doi.org/10.1145/3672455

This work was partly supported by NSF grants CCF-2047682, CCF-2008905, CCF-2146443, CNS-2235137, CPS-2230969,
CNS-2300525, CNS-2343653, and CNS-2312397; the NSF graduate research fellowship program; and Eugene McDermott
Graduate Fellowship 202006.

Authors’ Contact Information: Jaeseong Lee (Corresponding author), The University of Texas at Dallas, Richardson, TX, USA;
e-mail: jx1115330@utdallas.edu; Simin Chen, The University of Texas at Dallas, Richardson, TX, USA, e-mail: sxc180080@
utdallas.edu; Austin Mordahl, The University of Texas at Dallas, Richardson, TX, USA; e-mail: austin.mordahl@utdallas.edu;
Cong Liu, University of California, Riverside, CA, USA; e-mail: congl@ucr.edu; Wei Yang, The University of Texas at Dallas,
Richardson, TX, USA; e-mail: wei.yang@utdallas.edu; Shiyi Wei, The University of Texas at Dallas, Richardson, TX, USA;
e-mail: swei@utdallas.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1557-7392/2024/9-ART176
https://doi.org/10.1145/3672455

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://orcid.org/0009-0001-1756-5767
https://orcid.org/0000-0001-5035-3398
https://orcid.org/0000-0003-3031-8848
https://orcid.org/0009-0001-6775-1269
https://orcid.org/0000-0002-5338-7347
https://orcid.org/0000-0002-2826-1857
https://doi.org/10.1145/3672455
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3672455
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672455&domain=pdf&date_stamp=2024-09-27

176:2 J. Lee et al.

1 Introduction

The field of Natural Language Processing (NLP) is currently undergoing substantial growth,
finding applications in diverse domains, such as entertainment, health, and safety [5, 48, 80]. Since
these models are often directly interacting with human beings, it is critical to ensure their quality
and trustworthiness, lest they give incorrect or even harmful feedback to their users [1, 2, 37, 43,
47, 65, 70, 71, 77]. Traditionally, NLP models are assessed using metrics that evaluate the model as
a whole. The most common metric is accuracy (i.e., the fraction of outputs that the model correctly
predicts). However, relying solely on a singular, aggregated metric like accuracy fails to capture
and evaluate the nuanced behavior of NLP models.

Several recent works have focused on evaluating NLP models using different criteria, including
their robustness against adversarial examples [1, 37, 47, 71, 77] and potential biases concerning
demographic groups [2, 43, 65, 70]. Still, these works all only focus on evaluating specific, singular
aspects of NLP models and do not aim to provide a comprehensive evaluation of a model’s per-
formance from a variety of different perspectives. Consequently, recent studies have proposed
new testing approaches based on LCs [59, 61]. A linguistic capability (LC) defines the expected
behavior of an NLP application within its specific domain, specifying the functionalities of lan-
guage. Unlike traditional evaluation metrics, LC-based testing incorporates diverse aspects that
collectively contribute to the overall proficiency of an NLP model across different capabilities, thus
reducing the risk of overestimating model performance. As a result, it provides a comprehensive
assessment of the strengths and weaknesses of a given NLP model, offering detailed insights into
its performance.

For example, Figure 1 shows one template in a state-of-the-art LC-based technique, CHECKLIST,
for the LC of “Sentiment changes over time, present should prevail” [59]. The LC conveys the notion
that, in a sentence that describes both past and present sentiments, the present sentiment holds
greater significance than the past sentiment. If a model exhibits underperformance in terms of the
LC, it suggests that the model’s false predictions may be caused by the inadequate prioritization
of the sentiment over time. To evaluate the NLP model on the LC, CHECKLIST defines manually
crafted templates in lines 4 to 9. These templates contain placeholders, pos_adj, neg_adj, and
change. Values for the placeholders are a collection of words defined in lines 1 to 3. For each
template, CHECKLIST fills in all the combinations of the possible values of placeholders to generate
sentences under this LC. For example, sentences such as ‘T used to think this airline was bad,
but now I think it is good.” and “In the past I thought this airline was awful, even though now I
think it is great.” are generated. In these test cases, the adverb “now” refers to the present, and
the sentiment in the phrase containing “now I think it is” represents the present sentiment, while
sentiment outside of this context reflects the past sentiment. Therefore, all test cases generated from
the template conform to the LC, i.e., ‘Sentiment changes over time, present should prevail ” for this
example. These test cases can be used to assess how well a sentiment analysis model understands
sentiment changes over time. However, state-of-the-art LC-based approaches present two major
limitations:

—LCs are written using natural language [59, 61]. Due to the inherent ambiguity of natural
language descriptions, the exact meaning of an LC can be unclear. This makes it difficult
to automatically generate test cases that (1) conform to a specific LC and (2) with a known
oracle/label (e.g., a sentiment).

—Current LC-based testing methods heavily depend on manually constructed word substitution
templates to generate test cases. However, this approach restricts the semantic and structural
diversity and coverage in the generated test cases, limiting their effectiveness.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:3

1 pos_adj = ['good’, 'great, 'excellent’, 'amazing, ...]
neg_adj = ['awful', 'bad’, 'horrible’, 'weird', ...]
change = ['but, 'even though', 'although']
t = editor.template([
'l used to think this airline was {neg_adj}, {change} now I think it is {pos_adj}.’,

2

3

4

5

6 'l think this airline is {pos_adj}, {change} | used to think it was {neg_adj}.",

7 'In the past | thought this airline was {neg_adj}, {change} now I think it is {pos_adj}.",
8 'l think this airline is {pos_adj}, {change} in the past I thought it was {neg_adj}."] ,

9

change=change, ... ,labels=2)

Fig. 1. Example of CHECKLIST template for the LC “Sentiment changes over time, present should prevail”

To address these limitations, we present ALiCT, an Automated LC Testing framework for NLP
models. The goal of this work is to generate a diverse LC-based test suite automatically. Given the
limitations of current LC-based testing, an automated test case generation system should meet two
requirements: (i) relevance between generated test cases and their LCs and labels and (ii) semantic
and structural diversity.

Relevance. Generating test cases that exercise a specific LC is challenging due to the inherent
ambiguity in natural language descriptions. This ambiguity makes it hard to specify the range of
attributes of test case that conforms to the LC, making it difficult to automatically confirm the
relevance between generated test cases and their LCs and labels. For example, consider the LC of
“Author sentiment is more important than of others” in Figure 1. In order to convey this capability
accurately, an indicator token such as “I” must be present to indicate the author’s sentiment.
Replacing this token with alternatives like “he” or “she” would result in a failure to meet the
requirements of the LC. There is currently no existing approach that can automatically determine
the LC a sentence is relevant to and its associated label. Existing metamorphic or adversarial testing
approaches consider only labels of generated test cases without checking which LCs they conform
to [1, 37, 47, 71, 77]. ALiCT tackles the issue by introducing a novel LC formal specification. By
providing formal and systematic specifications of LCs, ALiCT can perturb existing examples in a
thorough, systematic, and exhaustive manner to generate new, relevant test cases.

Semantic and Structural Diversity. Although the existing word substitution templates utilized in
LC-based testing can generate multiple test cases, their fixed nature causes them to suffer from
limited variability in both semantic and structural aspects. Consequently, these templates fall
short in providing a thorough and dependable evaluation of NLP models regarding their LCs. To
overcome this challenge, ALICT generates test cases by searching for a wide range of test cases that
align with the formal specifications of their LCs in existing labeled dataset. Next, if required, ALiCT
generates seed test cases by combining and replacing them according to the given specifications.
This approach leverages the diversity present in the labeled dataset, significantly enhancing diversity
across semantic and syntactic dimensions. Additionally, the synthesis of retrieved phrases within
the dataset serves to further amplify this inherent diversity.

Furthermore, ALiCT identifies potential enhancements in input sentence structures through an
analysis of the parse trees associated with the initial seed test cases. Subsequently, ALIiCT generates
expanded test cases by populating the extended components and validating the pertinence of
these expansions concerning their label, LC, and the semantics of the original seed test cases. The
ascertained expansions encompass a wider spectrum of structural diversity, thereby fostering a
more comprehensive testing approach encompassing both semantic and structural dimensions in
the scope of the LC.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:4 J. Lee et al.

In this work, as a first step, we consider sentiment analysis [39] and hate speech detection [62] as
the NLP applications for automated LC-based testing. We demonstrate the effectiveness of ALIiCT
by evaluating three sentiment analysis and two hate speech detection models.

We made the following contributions in this work:

— We present the formal specifications of a series of widely used LCs, originally represented in
natural language descriptions (Tables 2 and 3). Utilizing these formal specifications, we develop
and implement ALiCT, an automated approach for LC-based testing. ALiCT consistently
generates test cases that align with the respective LCs and their associated labels, all achieved
through automated processes.

— We evaluate text classification models on test cases generated by ALiCT on 11 and 14 LCs for
sentiment analysis and hate speech detection, respectively. Comparing with the state-of-the-
art LC-based testing baselines, we find that ALIiCT produces at least 88% more diverse test
cases, measured in Self-BLEU [81] and syntactic diversity, and a larger number of NLP model
failures in 22 out of 25 LCs over the two NLP applications.

—We perform a case study that applies ALiCT results to help developers understand the bugs
in the NLP models. We show that ALiCT is useful for identifying the root causes of bugs in
sentiment analysis models.

— All the data and source code in our study are publicly available at our GitHub repository.!

2 Background and Motivation

NLP models are machine learning models whose goal is to analyze, manipulate, or generate
human language. Examples of common NLP models include predictive text, autocorrect, machine
translation, and, more recently, generative chatbots such as ChatGPT [48]. When developing an
NLP model, it is critical to understand how accurate it is. Accuracy, in this sense, refers to the
model’s ability to correctly predict the labels for an unlabeled dataset, defined as follows:

#correct predictions

Accuracy = #predictions)

While accuracy gives a good overall picture of a model’s performance, it is limited in assessing
the relative strengths and weaknesses of different models. Table 1 presents an example of two
models’ performance, reported by one state-of-the-art LC testing approach, CHECKLIST. Row 2
shows that both the BERT-base and RoBERTa-base models attain comparable accuracies on the
SST-2 test set, scoring 92.7% and 94.8%, respectively [59]. However, despite sharing a similar level
of overall accuracy, these models exhibit distinct strengths and weaknesses when addressing the
same classification problem across various LCs.

Row 3 shows that BERT-base model exhibits comparatively lower performance in contrast to the
RoBERTa-base model within the context of the LC titled “Negated positive with neutral content in
the middle” However, Rows 4 and 5 show that they both achieve accuracy levels that are below
the overall accuracy, although the accuracy levels between the two models are comparable for the
LC called “Parsing sentiment in (question, “no”) form” and “Sentiment changes over time, present
should prevail,” respectively.

To address this problem, LC-based testing has been recently introduced to give a more detailed
look at the abilities of NLP models [59, 61]. A C denotes a specific task-oriented linguistic func-
tionality that a language model is anticipated to perform with precision within the scope of an
NLP application. It encompasses a combination of diverse aspects, such as grammar, vocabulary,
syntax, semantics, and language comprehension. For example, the LC “Sentiment changes over time,

https://github.com/jasonlee27/alict

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://github.com/jasonlee27/alict

Automated Testing Linguistic Capabilities of NLP Models 176:5

Table 1. An Example That Shows Two Models with Similar Overall Accuracies for Sentiment
Analysis, but They Have Vastly Different Strengths and Weaknesses for Different LCs

LC Dataset Model Accuracy
Overll ST2060 | ponrtebse | ons
“Negated positive with neutral content in the middle” | CHECKLIST [59] ﬁggg;;:—ebase 222:
“Parsing sentiment in (question, “no”) form” CHECKLIST ﬁljgg;);;?base igg:
“Sentiment changes over time, present should prevail” | CHECKLIST ll?{lsll;gﬁ]?;?base g;(z):

present should prevail” in Table 1 conveys the notion that, in a sentence that describes both a past
and present sentiment, the present sentiment holds greater significance than the past sentiment.
When the model exhibits underperformance in terms of the LC, it suggests that the inadequate
prioritization of the present tense over the past tense contributes to the model’s false predictions.

Assessing models based on their LCs allows for the identification of varying accuracies across
different capabilities. This evaluation aids users in identifying biases or shortcomings within the
model, providing a valuable means to debug and address such biases. Earlier methodologies have
introduced various task-specific LCs and assessed NLP models based on these capabilities by
generating test cases that conform to the LCs [59, 61].

Despite the potential usefulness of LC testing, all existing capability testing work [59, 61] shares
common limitations. First, LCs themselves are written in natural language, which means that they
are inherently ambiguous. This means that in practice, we cannot take a given target sentence and
classify it as belonging to a specific LC or not. As a result, avenues for automatic generation of test
cases are so far limited to manually written templates with placeholders. Moreover, performing
word substitution for the template placeholders produces similar test cases with regard to input
text and structure. The limited diversity in test cases results in bias in model evaluation on the LC.
These limitations motivated the design of our approach.

3 Specification- and Syntax-Based LC Testing

To address the limitations of existing work, we have developed and implemented an innovative
NLP model testing framework, ALiCT. ALiCT is designed with two primary objectives: first, to
offer a formal specification language for the precise definition of LCs, thereby ensuring clear
and unambiguous definitions that can be processed by machines. Second, ALICT facilitates the
automated generation of test cases with a wide range of syntactic variations that adhere to the
specified LC.

Figure 2 depicts an overview of ALIiCT, which consists of two phases. The specification-based seed
generation phase realizes the first goal. In this phase, it takes LC specifications, a labelled search
dataset, and generation domain knowledge as inputs. In this study, we first operationalize the
natural language description of the LC tailored for sentiment analysis and hate speech detection
tasks. The natural language descriptions are then formalized into specification rules, allowing for
the fully automatic generation of structurally diverse test cases. The formal specification rules
consist of two types of elements: structural predicates, which allow us to extract seed test cases
from the corpus that meet certain criteria, and generative rules, which describe how to mutate seeds
to produce new test cases. These structural predicates and generative rules are used in tandem to
produce test cases based on LCs (Section 3.1). To increase the syntactical diversity of test cases
generated by ALICT, we utilize a syntax-based sentence expansion phase (Section 3.2). Inputs for this

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:6 J. Lee et al.

Labelled Reference
search corpus
dataset NP
Syntax-based sentence expansion
Linguistic seed
capability Specification-based | sentences Syntactic | Masked Sentence S2LCT test
pecifications seed generation expansion |-SENteNCeS | oy hansion & —» Egﬁgﬂiﬁ suite
identification validation
)
- Expansion
Generation domain Word
domain knowledge suggestion
knowledge NN model

Fig. 2. Overview of ALiCT.

phase are seed test cases generated from specification-based seed generation phase, the reference
corpus, word suggestion model, and expansion domain knowledge. This phase performs a syntax
analysis to automatically identify expansion points in the sentence (i.e., places where new words
can be added while retaining the sentence’s relevance to the LC). Part-of-Speech (PoS) tags that
can be added to the seed test cases, by comparing the PoS parse trees of the seed test cases with a
large reference corpus of sentences. The identified tags are then inserted into the seed test cases as
a mask. A language model, such as BERT [13], is then used to suggest words that can fill in the
mask. Finally, the resulting sentence is checked to ensure it is consistent with the seed’s label, LC,
and semantic meaning between seed and expanded test cases. The generated test suite includes
both the original seeds and the expanded test cases. This approach enables ALiCT to cover a wide
range of syntactic structures, enhancing its effectiveness in evaluating NLP models.

3.1 Specification-Based Seed Generation

In the specification-based seed generation phase, ALiCT uses specifications of LCs to construct
test cases. The key novelty of this phase is that we use formal specifications to enable the fully
automatic generation of structurally diverse test cases. These formal specifications take the form
of a series of rules, split into two categories. First, structural predicates are applied, which filter
a labelled input dataset into sentences that meet the structural criteria of the LC. By structural
criteria, we mean properties of a sentence that are easily checkable by a machine (e.g., the length
of the sentence, whether it contains particular grammatical elements, or the label of the sentence).
Then, we use generative semantic rules to generate sentences that meet the semantic properties of
the LC. This two-step process allows the automatic construction of sentences that fulfill a LC.

Structural Predicates. Sentences that conform to LCs must first conform to certain structural
criteria, depending on the LC. We formalize the process of filtering the input corpus using structural
predicates. A structural predicate refers to a logical expression that tests an attribute of a sentence
and returns true or false. Formally, we write structural predicates using set notation, with attributes
specified as fields with a Java-style dot notation. For example, expressing the structural predicate
“sentences with fewer than 10 words” would be written as {s | s € U A s.length < 10}, where U
represents the universal set (i.e., the labeled input dataset).

Generative Rules. Structural predicates allow us to filter the input dataset to sentences with
desirable properties, but they are limited to syntactic or classification conditions (i.e., the sentence’s
label or structural properties). Testing semantic properties would require an NLP model, which
raises issues of circularity. Instead, to produce sentences that conform to semantic conditions,
we use generative rules, which mutate sentences that meet certain structural conditions. These

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:7

Specification-based seed Syntax expansion Sentence expansion Expanded
generation identification & validation Sentences
Seed: Expansion:
LC: Short sentences with Or both. Or both {MASK}. {MASK} Word Suggestion
neutral adjectives and nouns
FRAG FRAG

(Sentence,Sentiment) (Word,TagOfPOS, Sentiment)

/'\ , NNS, tral Or both ways.
(The performance is remarkable., positive) 3§ /’\ (‘;vay\S/B :)eu ral) ;
(Itis not scary., negative) X CC NP . CC NP (do, VB, positive)
. or v Or both things.
X

(Or both., neutral) v or . (things, NS, neutral)
(Alas, itis neither., negative) X Seed: NP->[DT] (either, CC, neutral)

Reference: (simultaneously, RB, neutral) 3§
X DT NNS

NP-> [DT, NNS] (now, RB, neutral) X
both both {MASK}

(The actors are fantastic., positive) DT

Fig. 3. Running example of ALiCT. CC, coordinating; DT, determiner; FRAG, fragment; MASK, masked token;
NP, noun phrase; NNS, plural noun; RB, adverb; and VB, base form verb.

generative rules allow us to introduce specific semantic meaning to a seed sentence. ALiCT uses
two specific kinds of generative rules: concat and replace. These rules, as depicted in Equation (2),
are designed to encompass various generation operations

S = concat(phrases™)
S =repl ' @
place(phrase, src, tgt)

The concat rule takes a variable number of parameters and simply concatenates them together.
The replace rule, on the other hand, has three parameters: phrase, src, and tgt. This rule replaces
occurrences of the src string in phrase with the tgt string.

For example, let us consider the LC “negated neutral should still be neutral” ALICT will use
structural predicates (as previously illustrated) to find neutral sentences. Then, ALiCT will negate
these sentences using a generative rule. The goal of the generative rule is to make some transfor-
mation to a neutral sentence that negated it. There are many ways to do this, one such way is to
add the phrase “is not true” to the end of a sentence, via S = concat(S, “is not true””). This example
illustrates the effort needed to construct a specification for an LC. First, the user must identify the
structural conditions of the LC. Then, they construct structural predicates to exhaustively check
the input corpus for sentences that fulfill the predicate. Second, the user must design generative
rules to introduce appropriate semantic meaning. This process is complete: while this approach
cannot generate every sentence that conforms to a specific LC, we can guarantee that sentences
that are generated do conform to the LC.

Running Example. The first column of Figure 3 shows a handful of candidate sentences that are
produced by applying the structural predicates of the LC (note that the specific LC used does not
have any generative rules as shown in Table 2). Of the five sentences shown, only one fulfills all
the criteria laid out by the structural predicates.

3.2 Syntax-Based Sentence Expansion

So far, we have only shown how to directly produce seed test cases from a specification. However,
the structural diversity of these sentences is limited by the diversity of the labeled input dataset. To
address this limitation, we design the syntax-based sentence expansion phase to extend the seed
sentences to cover diverse syntactic structures while still conform to its respective LC. Our insight
is that sentences commonly used in real-life cover diverse and realistic syntactic structures that can
be used as the basis for the expansion. So, we utilize a large reference corpus of unlabeled input
sentences and generate parse trees for each one. Then, for each generated test case S, we search the
corpus for sentences that have a superstructure of S. We illustrate the definition of superstructure
using an example. Consider a production A — [B, C]. Another production is a superstructure if

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:8 J. Lee et al.

Algorithm 1: Syntax Expansion Identification Algorithm

1: Input: Parse trees of seed sentences S, reference CFG R
2: Output: Set of masked sentences M

3: for each part tree s from S do

4. for each production s_prod from s do

5: s_lhs = s_prod.lhs

6 s_rhs =s_prod.rhs

7 for each r_rhs from R[s_lhs] do

8 if r_rhs.is_superstructure_of (s_rhs) then

9 M = M U insertMask(r_rhs-s_rhs, s)
10: return M

and only if (1) the left side of the production is also A, and (2) the right side of the production
contains both B and C, and B precedes C. Some examples of productions that are superstructures
of A — [B,C]are A —» [B,C,D],A — [B,A,C],or A — [D,B, A, G,C] The additional PoS tags
in the reference parse trees are identified as potential syntactic elements for expansion and are
inserted into the seed sentences as masks. Subsequently, a masked language model is employed to
propose suitable fill-ins for these masks. If the resulting sentences are validated to adhere to their
LCs and labels, they are incorporated into ALiCT’s test suite.

3.2.1 Syntax Expansion Identification. Algorithm 1 shows how masks are identified for the
seed sentences. It takes the parse trees of the seeds, generated by the Berkeley Neural Parser [32,
33], and a reference Context-Free Grammar (CFG) (i.e., the reference corpus in Figure 2) as
inputs. Overall, this algorithm identifies the discrepancy between the seed syntax and the reference
grammar to decide how a seed and what syntax in the seed can be expanded, producing a set of
masked sentences.

For each production in each seed’s parse tree (lines 3 and 4), we extract its non-terminal at the
left-hand side (line 5), s_[hs, and the grammar symbols at the right-hand side (line 6), s_rhs. In
line 7, the algorithm iterates through all productions in the reference CFG and matches these that
have the same non-terminal at the left-hand side as s_Ilhs. The right-hand side of each matched
production is called r_rhs. If r_rhs is a superstructure of s_rhs (line 8), the additional symbols in
the r_rhs are inserted as masks in the parse tree of the seed sentence, in their respective positions
in the expanded production. The left-to-right traversal of the leaves of an expanded parse tree forms
a masked sentence. All the masked sentences of each seed are returned at line 10.

Running Example. The second and third columns in Figure 3 illustrate how Algorithm 1 is used
to generate a masked sentence. The second column shows the parse tree of the seed sentence “Or
both.,” which consists of two productions: “FRAG — [CC, NP,.]” and “NP — [DT]” where FRAG,
CC, NP, and DT stand for a fragment, a coordinating conjunction, a noun phrase, and a determiner,
respectively. When matching the left-hand-side non-terminal of the second production (i.e., “NP”)
in the reference CFG, we found that the reference CFG includes a production “NP — [DT, NNS]”
which has an additional symbol NNS on the right-hand side. The extra symbol is inserted as a
mask in the seed sentence, producing the masked sentence “Or both {MASK}”

3.2.2 Sentence Expansion and Validation. To expand a masked sentence, our approach can use a
language model to fill in the masks with words. In our instantiation, we use BERT model [13], which
is a transformer-based natural language model that is pre-trained on masked token prediction task.
BERT model is capable of suggesting words for the masked token according to its surrounding
context in a sentence. For each masked token, multiple words may be suggested, ranked by their

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:9

confidence scores. However, due to the BERT model’s lack of awareness regarding the grammar
symbol within the expanded parse tree, label, and LC, using all suggested words to expand a
sentence may result in inconsistencies with respect to its label, LC, or the intended grammar
symbol. Therefore, we perform validation on the suggested words and only accept them if the
following three criteria are met.

First, the PoS tag of the suggested words must align with that of the expanded symbol in the
parse tree. For instance, in the Figure 3, if the masked symbol represents a plural noun (NNS),
the suggested word must also be an NNS. In our implementation, we employ SpaCy [26], an
open-source NLP library in Python, to validate the PoS tag of each suggested word.

Second, maintaining semantic neutrality of the suggested words is crucial to ensure sentence
and label consistency between the expanded sentence and the seed. Modifying even a single
word has the potential to alter the overall label and LC of a sentence, which goes against the
objective of ALIiCT. To mitigate this risk, we only consider neutral words from the suggested words,
necessitating the utilization of domain-specific knowledge to verify the sentiment of each suggested
word.

Third, we verify that the expanded sentences satisfy the same LC predicates as their seed
sentences. An expanded sentence may no longer be within the scope of its seed’s LC. For example,
the predicate shown in the second row of Table 2, that the sentence must have fewer than 10
tokens, may no longer hold after expanding a seed sentence with multiple words. We only accept an
expanded sentence if the structural predicates are still satisfied. Furthermore, we blacklist certain
parts of the sentence from being expanded. Namely, any part of the sentence that was modified by
a generative rule may not be modified, to ensure that the semantic meaning of the sentence does
not change.

Running Example. The fourth column in Figure 3 shows the words suggested by BERT. For this
masked sentence, BERT suggested six words. Each word is associated with the tag of PoS and the
sentiment. Among the six words, only “ways” and “things” are validated by ALiCT because they
have the tag of Pos NNS and are neutral. In addition, both sentences still satisfy the enumerate
predicates of the LC “Short sentences with neutral adjectives and nouns.”

3.3 Instantiation

Tables 2 and 3 displays how ALIiCT generates seed test cases for the sentiment analysis and
hate speech detection tasks, respectively. Our approach involves leveraging the baseline work,
specifically CHECKLIST and Hatecheck [59, 61], to instantiate these descriptions of LC. During
the initial evaluation of CHECKLIST and Hatecheck, we decided to exclude capabilities related to
model robustness, focusing on incorporating LC that precisely delineate language functionalities.
Notably, despite the absence of a fairness capability in the original CHECKLIST paper, we observed
its inclusion on its GitHub repository [57]. The column titled “LC” describes the LC, whereas
the column labeled “formalization” shows the corresponding structural predicates and generative
rules. For instance, consider the case of “Negation of negative at the end, should be positive or
neutral” for sentiment analysis. This LC specifies a structural property (that the sentence should
have a negative label) and a semantic property (that the sentence should be negated at the end).
To find seeds that fulfill the structural criteria, we start with a structural predicate, filtering the
universal set to sentences with a negative label. Then, each of these sentences is mutated to fulfill
the semantic property that they are negated. To do this, we use concat rules, which add a prefix
and a postfix to each sentence that negates the sentence at the end. Specifically, we use the set of
prefixes {“I agreed that,” “I thought that”} and the set of postfixes {“but it wasn’t, “but I didn’t”}.
A sentence like “The movie was bad” that initially has a negative label would thereby be transformed

» &«

into the sentences “I agreed that The movie was bad but it wasn’t,” “I agreed that the movie was bad

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:10 J. Lee et al.

Table 2. Structural Predicates and Generative Rules for the LCs of Sentiment Analysis

LC ‘ ‘ Formalization

Init « {s | s € U A s.length < 10 A s.]label = neutral}

LC1: Short sentences Neuts < {s | s € Init A (s.labeled_pos D neutral_adj V s.labeled_pos D neutral noun)}
with neutral Positives « {s | s € Neuts A (s.labeled_pos D positive_adj V s.labeled_pos D positive_noun)}
adjectives and nouns Negs «— {s | s € Neuts A (s.]labeled_pos D negative_adj V s.labeled_pos > negative_noun)}

Results «— Neuts — Positives — Negs
Init — {s|s € U A slength <10}

LC2: Short sentences Positives < {s | s € Init A (s.label = positive A (s.]labeled_pos > positive_adj V s.labeled_pos > positive_noun))}

with sentiment-laden Negs « {s | s € Init A (s.label = negative A (s.labeled_pos D negative_adj V s.labeled_pos D negative_noun))}

adjectives Results « Positives + Negs

LC3: Sentiment Positive_prefixes < { Previously, I used to like it saying that,” “Last time, I agreed with saying that,” "I liked it much as to say that"}
change over time, Positive_post fixes « {“now I like it”}

present should prevail Negative_post fixes «— {“now I don’t like it.” “now I hate

Negative_prefixes < {‘Tused t disagree with saying that,” “Last time, I didn’t like it saying that,” “T hated it much as to say that”}
Infixes « {“but “although,” “on the other hand”}

Seeds «— {s € U | s.length < 20}

Initially_pos « {s | s € Seeds A s.label = positive}

Initially_neg < {s | s € Seeds A s.label = negative}

Results; « {concat(a,s,b,d) | a € Positive_postfixes,b € Infixes,s € Initially_pos,d € Negative_post fixes}

Results, « {concat(a,s,b,d) | a € Negative_postfixes, b € Infixes,s € Initially_neg,d € Positive_post fixes}

Results < Results; U Results,

LC4: Negated Targets < {“This is, “That is;” “These are;” “Those are”}
negative should be Init « {s | s € U A s.]abel = negative A (3a | a € Targets A s.contains(a))}
positive or neutral Results; «— {replace(s, “is; “is not” | s € Init}

Targets < {“This is,” “That is;” “These are,” “Those are”}
Init « {s | s € U A s.]abel = neutral A (3a | a € Targets A s.contains(a))}
Results; « {replace(s,“is,” “is not” | s € Init}

LC5: Negated
neutral should
still be neutral

Seeds — {s [s € U A s.label = negative}

LC6: Negation of prefi « {concat (‘I agreed that’s) | S € Seeds}
negative at the end, prefy « {concat(“I thought that’s) | S € Seeds}
should be positive res; < {concat(s, “but I don’t”) | S € prefi U prefo}
or neutral resy < {concat(s, “but it wasn’t”) | S € pref; U prefs}

results = res; Ures;

Prefixes — {"Twouldn’t say, ‘I do not think;” “T don’t agree with”}
infix <’/

Positives « {s | s € U A s.length < 20 A s.label = positive}
Neutrals < {s | s € U A s.length < 20 A s.label = neutral}

LC7: Negated
positive with
neutral content

in the middle
Results «— {concat(a, s, infix,s;) | a € Prefixes,s; € Neutrals, s, € Positives}
Prefixes < {"Some people think that” “Many people agree with that,” “They think that,” “You agree with that”}
infix < “butI think that”

LC8: Author sentiment Negatives < {s | s € U A s.label = negative

is more important Positives < {s | s € U A s.label = positive

than of others Results; « {concat(p, infix,s) | p € Prefixes A s € Negatives}
Results, « {concat(p, infix,s) | p € Prefixes A s € Positives}
Results « Results; U Results,
Prefixes < {"Do I think that “Do I agree that”}
postfix « “? yes”

LCY: Parsing Negatives « {s | s € U A s.]abel = negative}

sentiment in Positives « {s | s € U A s.label = positive}

(question, yes) form Results; « {concat(p,s, postfix) | p € Prefixes A s € Negatives}
Results, « {concat(p, s, postfix) | p € Prefixes A s € Positives}
Results < Results; U Results,
Prefixes — {"Do I think that] “Do I agree that”}
post fix < “? no”

LC10: Parsing Negatives «— {s | s € U A s.]label = negative}

sentiment in Positives « {s | s € U A s.label = positive}

(question, no) form Results; « {concat(p,s, postfix) | p € Prefixes A's € Negatives}

Results, «— {concat(p,s, postfix) | p € Prefixes A s € Positives}
Results < Results; U Results,

LC11: Fairness: Switching || Results1 « {s | s € U A s.contains_identity_groups}

identity group should not || Results2 < {s | s € U A s.contains_pronouns}

change predictions Results < Results1 U Results2

but it didn’t, “I thought that The movie was bad but it wasn’t,” and “I thought that The movie was
bad but it didn’t” In short, the number of test cases generated is the number of test cases found by
the structural predicates times the number of generative rules. ALIiCT efficiently utilizes patterns
extracted from templates found in existing literature [59, 61] for various LCs. By leveraging these
patterns from prior work, we successfully derived specifications for each LC in less than 3 minutes
per capability. Moreover, our reusable functions for derivation are crafted to be widely applicable
across various capabilities.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models

Table 3. Structural Predicates and Generative Rules for the LCs of Hate

Speech Detection

LC | Formalization

LC1: Hate expressed Results «— {s | s € U A s.1abel = hate A s.contains_slur}
using shur

LC2: Non-hateful Results « {s | s € U A —(s.label = hate) A s.contains_slur}
use of slur

LC3: Hate expressed
using profanity

Results < {s | s € U A s.label = hate A s.contains_profanity}

LC4: Non-Hateful
use of profanity

Results «— {s | s € U A =(s.]abel = hate) A s.contains_profanity}

LC5: Hate expressed
through reference in
subsequent clauses

Prefixes — {“people say, “T heard that”}

infix1 « “and”

infix2 « “but”

Postfixes « {“i hate them too,” “i also hate them”}

Postfixes2 < {“i do not hate them,” “i like them”}

Postfixes3 < {“i hate them,” “i dislike them”}

Postfixes4 « {“i also do not hate them,” “i do not hate them too”}

Hateful < {s | s € U A s.]abel = hate}

NonHateful «— {s | s € U A =(s.label = hate)}

Results1 < {concat(pr, h, infixI, po) | pr € Prefixes, h € Hateful, po € PostfixesI}
Results2 < {concat(pr, h, infix2, po) | pr € Prefixes, h € Hateful, po € Postfixes2}
Results3 «— {concat(pr, h, infix1, po) | pr € Prefixes, h € NonHateful, po € Postfixes3}
Results4 « {concat(pr, h, infix2, po) | pr € Prefixes, h € NonHateful, po € Postfixes4}
Results < Results1U Results2 U Results3 U Results4

LC6: Hate expressed
through reference in
subsequent sentences

Prefixes < { people say, ‘Theard that”}

infix « 7

Postfixes1 « {“i hate them too,” “i also hate them”}

Postfixes2 — {“however i do not hate them,” “regardless i like them”}

Postfixes3 « {“however i hate them,” “i dislike them though”}

Postfixes4 < {“i also do not hate them,” “i do not hate them too”}

Hateful « {s | s € U A s.label = hate}

NonHateful < {s | s € U A =(s.]abel = hate) }

Results1 < {concat(pr, h, infix, po) | pr € Prefixes, h € Hateful, po € Postfixes1}
Results2 « {concat(pr, h, infix, po) | pr € Prefixes, h € Hateful, po € Postfixes2}
Results3 « {concat(pr, h, infix, po) | pr € Prefixes, h € NonHateful, po € Postfixes3}
Results4 «— {concat(pr, h, infix, po) | pr € Prefixes, h € NonHateful, po € Postfixes4}
Results < Results1U Results2 U Results3 U Results4

LC7: Hate expressed
using negated
positive statement

Prefixes < {"T do not think that “T do not agree with that,” “T do not believe that”}
NonHateful < {s | s € U A =(s.label = hate) }
Results < {concat(p,s) | p € Prefixes A s € NonHateful}

LC8: Non-hate
expressed using
negated hateful
statement

Prefixes < {"T do not think that “T do not agree with that,” “T do not believe that”}
Hateful « {s | s € U A s.]abel = hate}
Results « {concat(p,s) | p € Prefixes A s € Hateful}

LCY: Hate phrased
as a question

Prefixes — {"why do you agree with that
Hateful « {s | s € U A s.]abel = hate}
Postfix « “?”

Results — {concat(p,s,) | p € Prefixes A s € Hateful}

why do you like to say that”}

LC10: Hate phrased
as a opinion

Prefixes «— {"i think that” “i believe that”}
Hateful « {s | s € U A s.]abel = hate}
Results — {concat(p,s) | p € Prefixes A s € Hateful}

LC11: Neutral
statements using
protected group
identifiers

Results «— {s | s € U A s.contains_identity A —(s.label = hate) A —(s.labeled_pos >
positive_adj V s.labeled_pos O positive_noun V s.labeled_pos > positive_verb v
s.Jabeled_pos O negative_adj Vv s.labeled_pos > negative_noun V s.labeled_pos >
negative_verb)}

LC12: Positive
statements using
protected group
identifiers

Results «— {s | s € U A =(s.label = hate) A s.contains_identity A —(s.labeled_pos >
negative_adj V s.labeled_pos D negative_noun V s.labeled_pos D negative_verb)}

LC13: Denouncements
of hate that quote it

prefix1 «— “statements like”

prefix2 « “you should stop saying like”

Postfix « {“are hurtful” “are harmful,” “are deleterious”}
Hateful « {s | s € U A s.]abel = hate}

Results1 < {concat(prefixl,s, po) | s € Hateful A po € Postfix}
Results2 — {concat(prefix2,s) | s € Hateful}

Results < Results1U Results2

LC14: Denouncements
of hate that make
direct reference to it

prefix] < “saying that”

prefix2 < “i cannot believe that”

postfix «— “shows how misguided you are”

Hateful « {s | s € U A s.]abel = hate}

Results1 < {concat(prefixl,s, postfix) | s € Hateful}
Results1 « {concat(prefix2,s) | s € Hateful}
Results < Results1U Results2

The slur and profanity in LC1-LC4 are the collections of terms that express slur and
profanity. The identity in LC11-LC12 is a list of names that used to describe social
groups. In this work, we reuse these terms from Hatecheck [61].

176:11

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:12 J. Lee et al.

Table 4. The NLP Model Used in the Evaluation

Tasks ‘ Model name ‘ API URL ‘ # Downloads
Sentiment analysis BERT-base bert-base-uncased-SST-2 48,004
Sentiment analysis RoBERTa-base roberta-base-SST-2 1,068
Sentiment analysis DistilBERT-base | distilbert-base-uncased-SST-2 26
Hate speech detection | dehate-BERT dehatebert-mono-english 368
Hate speech detection | Twitter-RoBERTa | twitter-roberta-base-hate 31,904

4 Experimental Setup

In this section, we present the setup of our experiments. We answer the following Research

Questions (RQs):

RQ1 Diversity: Can ALiCT generate more diverse test cases than existing approaches?

RQ2 Consistency: Can ALIiCT maintain consistency in terms of labels, LCs, and semantics?

RQ3 Effectiveness: Is ALiICT more effective than existing approaches at generating test cases
that can trigger errors in the model?

RQ4 Applicability to Large Language Model (LLM): Can ALiCT be utilized to evaluate the
recent LLMs?

4.1 Experimental Subjects

NLP Models. We evaluate our approach on three sentiment analysis models and two hate speech
detection models. We obtain these evaluation models from the HuggingFace model hub [27]. Table 4
presents the models and their corresponding API URLs. The “API URL” column displays the public
URL of each model, while the “# of downloads” column indicates the number of downloads for
each model as of Aug. 2023. Based on the information provided in Table 4, it is evident that all
models utilized in our evaluation have been widely adopted in real-world settings, with a number
of downloads. In the domain of sentiment analysis, we employed pre-trained sentiment analysis
models based on the architectures of BERT, RoBERTa, and a distilled version of BERT, which we
denoted as BERT-base, RoBERTa-base, and DistilBERT-base, respectively. Furthermore, we utilized
BERT and RoBERTa models that were trained for hate speech detection, identified as dehate-BERT
and twitter-RoBERTa, respectively. For RQ4, we utilized GPT3.5 model (gpt-3.5-turbo) developed
by OpenAlI [49]

Datasets. In our evaluation of NLP models, we utilize the SST [64] corpus for sentiment analysis
and the HateXplain [45] corpus for hate speech detection as the labeled search datasets. SST is
a corpus of movie reviews that consists of 11,855 sentences, each of which has been labeled as
negative, neutral, or positive to indicate the expressed sentiment in the sentence. HateXplain is a
dataset that has been collected from social media platforms Twitter X (formerly known as Twitter)
and Gab. It consists of 20,148 sentences, with 9,055 of them being from X and 11,093 from Gab. Each
sentence in this dataset has been labeled as either “hate” or “non-hate” to indicate the presence or
absence of hate speech in the sentence [45]. The HateXplain dataset encompasses 5,935 instances
marked as “hate” and 14,213 instances marked as “non-hate.”

Baselines. In our evaluation, we compare ALiCT with the state-of-the-art capability-based testing
methodologies, CHECKLIST [59] and Hatecheck [61], focusing on two key aspects: test case
diversity (RQ1) and effectiveness (RQ3). These approaches have incorporated LCs into tasks, such as
sentiment analysis and hate speech detection. For each specific LC, they have presented manually
crafted word substitution-based templates or sentences, along with corresponding labels.

We additionally assess the diversity of test cases generated during ALiCT’s expansion phase, com-
paring it one syntax-based (metamorphic testing (MT)-NLP [43]) approach and three adversarial

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://huggingface.co/textattack/bert-base-uncased-SST-2
https://huggingface.co/textattack/roberta-base-SST-2
https://huggingface.co/textattack/distilbert-base-uncased-SST-2
https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-english
https://huggingface.co/cardiffnlp/twitter-roberta-base-hate

Automated Testing Linguistic Capabilities of NLP Models 176:13

(Alzantot-attack [1], BERT-Attack [37] and Sememe particle swam optimization (PSO)-attack
[77]) text fuzzing methods. These methods are designed to intentionally manipulate input text,
aiming to induce inaccurate or unanticipated predictions from a target NLP model. This is achieved
through perturbations or modifications to the input text while maintaining the semantic integrity
of the text.

4.2 Evaluation Metrics

RQ1 Metrics. To answer RQ1, we define three metrics to measure the diversity of the generated
test suite. These metrics are designed to showcase the diversity from both semantic and syntactic
perspectives [4, 12, 25, 28, 76, 78]. Our first metric is Self~BLEU [81].

Self-BLEU is defined as the average BLEU score [50], a metric used to measuring the similarity
between the generated sentences and the reference sentences over all reference sentences, ranging
between 0 and 1. It first calculates the geometric average of the modified n-gram precisions, p;,,
by dividing the number of matching n-grams by the total number of candidate n-grams utilizing
n-grams up to length N and positive weights w, that sum to one. Subsequently, considering c as
the length of the candidate corpus and r as the effective reference corpus length, BLEU is computed
using the Equation (3)

1, ife>r
BP =
el=r/c. otherwise
N
BLEU = BP - exp (Z wnlogp,.) ; 3)
n=1

where BP is the Brevity Penalty. Then, Self-BLEU is computed as the average of BLEU scores over
candidate corpora. A higher Self-BLEU score indicates lower diversity in the test suite, while a
lower score indicates greater diversity. The Self-BLEU metric serves as a quantitative measure
for semantic diversity, offering insights into the variability of meaning across the test cases. In
addition, since the BLEU score is determined through text comparison rather than sentence syntax
analysis, Self-BLEU lacks the capability to capture the structural diversity present within a test suite.
Consequently, we have introduced an alternative metric, Syntactic Diversity (SD), to effectively
gauge the diversity inherent in the test suite’s syntactic aspects. The purpose of this metric is to
assess the extent of grammatical variation within the test suite. Since production rules serve as
fundamental components of formal grammar used to define the syntactic structure of a language,
the count of unique production rules within the test suite serves as an indicator of the diversity of
grammatical patterns.

The SD of a test suite X is defined as the number of distinct production rules covered in this test
suite. The formal definition of SD is shown in Equation (4), where P is the Berkeley Neural Parsing
function [32, 33] that returns the production rule of the given sentence

Syntactic Diversity(X) = [{P(x) | Vx € X}||. (4)

Our final metric is neuron coverage. The neural coverage metric is included to assess the extent
to which a specific aspect of a neural network model has been thoroughly tested by the provided
test cases. In this experiment, we follow the approach presented by Ma et al. [41], where the
authors measure the coverage of NLP model intermediate states as corner-case neurons. Because
the matrix computation of intermediate states impacts NLP model decision-making, a test suite
that covers a greater number of intermediate states can represent more NLP model decision-
making, making it more diverse. Specifically, we used two coverage metrics by Ma et al. [41],

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:14 J. Lee et al.

Boundary Coverage (BoundCov) and Strong Activation Coverage (SActCov), to evaluate the
test suite diversity

UpperCorner(X) = {n € N|3x € X : f,(x) € (high,,+c0)};
LowerCorner(X) = {n € N|3x € X : f,(x) € (—co,lowy,)};

Equation (5) defines the corner-case neuron of the NLP model f(-), where X is the given test suite,
N is the number of neurons in model f(-), f,(-) is the nth neuron’s output, and high,, and low,
are the nth neuron’s upper and lower output bounds on training dataset, respectively. Equation (5)
can be interpreted as the collection of neurons that emit outputs beyond the model’s numerical
boundary

®)

|UpperCorner(X)| + |LowerCorner(X)|

BoundCou(X) = 2 % |N]| (6)
SActCoo(X) = |Upperc|z(:fr|ner(X)|

The definition of our neuron coverage metrics is shown in Equation (6), where BoundCov
measures the coverage of neurons that produce outputs exceeding the upper or lower bounds,
and SActCov measures the coverage of neurons that creates outputs exceeding the lower bound.
Higher coverage indicates the test suite is better for triggering the corner-case neurons, thus better
diversity.

RQ2 Metrics. To answer RQ2, we introduce three new metrics: the label consistent rate (LabelCons),
the LC consistent rate (LCRelay), and the semantic consistent rate (ExpValidityay). The formal
definitions of these metrics are listed in Equation (7)

1
LabelCons = W . Z d(labels:cr = labelyyman)
1
LCRCZAVG = W . Z Norm(LCReli) A (7)
. 1 -
ExpValidityayc = W . ZNorm(ExpValldltyi)
i

LableCons represents the percentage of the test cases that ALICT and the participants (who
manually label the sentences) produce the same sentiment labels. A high value of this metric
indicates ALiCT generates test cases with correct labels. LCRelsv represents the average of the
normalized relevancy score between a sentence and its associated LC. A higher score indicates the
LC categorization by ALICT is correct. ExpValidityay s represents expansion validity, the average
of the normalized validity score between expanded sentence and its corresponding seed sentence.
The higher score indicates higher semantic similarity between them enough to use the semantic
label of the seed sentence for the expanded sentence.

RQ3 and RQ4 Metrics. For RQ3 and RQ4, our goal is to answer whether ALICT is more effective
than other methods for generating test cases that can trigger incorrect predictions. Thus, we
measure three key metrics: (1) the number of test cases generated, (2) the number of failed test
cases, and (3) the failure rates of the generated test cases. Additionally, we report the number of
expanded test cases that failed but whose corresponding seed test cases passed (Pass-to-Fail).

4.3 Experimental Process

RQ1 Process. In the evaluation, we gathered diverse sets of test cases for both Self-BLEU and SD
metrics. This approach was undertaken to optimize time efficiency to compute the metric scores in
the experiment and to illustrate how the metric scores trend across various sample sizes. For the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:15

experiment, we randomly selected 200, 400, 600, 800, and 1,000 test cases for Self-BLEU and 10,000,
20,000, 30,000, 40,000, and 50,000 test cases for SD from ALiCT’s seed and expanded sentences.
Notably, these test cases were chosen for sentiment analysis and hate speech detection, and they
may not be mutually exclusive. We then computed the median of Self-BLEU and SD scores over all
LCs. We repeated this computation with different ALiCT seeds over five trials and reported the
median.

We also evaluated ALiCT’s expansion phase by generating expanded sentences from CHECKLIST
and Hatecheck as seeds. We collected up to 200 randomly selected test cases from CHECKLIST and
Hatecheck and generated their expanded sentences. We computed the median of Self-BLEU and SD
scores from the sentences over all LCs. We repeated the computation with different ALiCT seeds
over three trials and reported the median over the 3 trials.

In addition, we compared Self-BLEU and SD scores between ALiCT and the text fuzzing baselines.
First, we generate two groups of sentences from 100 randomly selected ALiCT seeds for each
sentiment analysis and hate speech detection using ALiCT expansion and syntax-based text fuzzing
baseline (MT-NLP). Self-BLEU and SD scores of the two groups of sentences were then compared.
Second. we generate two groups of sentences from 50 randomly selected ALiCT seeds for sentiment
analysis using ALIiCT expansion and the adversarial text generation baselines (Alzantot-attack,
BERT-Attack, and SememePSO-attack). Likewise, we compared Self-BLEU and SD scores of the
two groups of sentences.

For the neuron coverage metric, we begin by feeding the training dataset of each NLP model
under test in order to compute the lower and upper bounds for each neuron. Then, we select
an equal number of test cases from both ALiCT and CHECKLIST to construct the test suite and
calculate the corresponding neuron coverage metrics.

RQ2 Process. To answer RQ2, we conduct a manual study to evaluate the three consistency
metrics listed in Equation (7) for the test suite generated by ALiCT. For each task, we randomly
sampled 384 ALICT seed sentences. The sample size for the seeds is determined to be statistically
significant, calculated with a 95% confidence level, a 5% margin of error, and a 50% population
proportion based on the actual size [6]. We divide these seeds to 10 sets (i.e., 37-40 sentences in
each set). For each sampled seed sentence, we randomly obtain one of its expanded sentences.
This forms the 10 sets of sentences. We recruited 8 participants for each task; all are graduate
students with no knowledge about this work. Each of them was assigned a different set of sentences
and asked to provide three scores for each sentence: (1) Relevancy score between sentence and its
associated LC: This score measures the correctness of ALiCT LC categorization. The scores are
discrete, ranging from 1 (“strongly not relevant”) to 5 (“strongly relevant”). (2) Sentiment score of the
sentence: This score measures the sentiment level of the sentence. It is also discrete, ranging from 1
to 5 representing “strongly negative” to “strongly positive” for sentiment analysis and “strongly
normal” to “strongly hateful” for hate speech detection, respectively. (3) Validity score of expanded
sentence: This score measures the validity of the use of the label of a seed sentence for its associated
ALICT expanded sentence. The scores are discrete ranging from 1 (“strongly not consistent”) to
(“strongly consistent”).

RQ3 Process. We answer RQ3 by evaluating five models in Table 4 on test cases of ALIiCT and
LC-based testing baselines, CHECKLIST and Hatecheck, for sentiment analysis and hate speech
detection, respectively. For each LC, we measure the number of test cases generated by the baselines,
ALICT seeds, and their expansions. We calculate the number of failures and fail rate of the five
models. In addition, we compare model performances on test cases between ALiCT seeds and
their expansions and measure the number of Pass-to-Fail cases. In particular, in contrast to the
evaluation of other LCs, where each test case is assessed by running and matching the results with
their corresponding labels, the LC of fairness (LC11) is assessed by measuring the unbiased results

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:16 J. Lee et al.

of the model when provided with the same input but with different identity groups while other
LCs are evaluated by running each test case and matching the results and their labels. For each
seed and expanded test case, ALICT initially obtained the result of the original test case and then
retrieved the results of test cases that are identical to the original but involve different identity
groups. ALiCT considers a test case as passed when the ratio of the changes from the original
over all the results is less than a threshold value and as failed otherwise. In this study, we set the
threshold value as 0.1

RQ4 Process. We answer RQ4 by evaluating the GPT3.5 LLM using ALiCT and its baselines
(CHECKLIST and Hatecheck) for sentiment analysis and hate speech detection tasks across corre-
sponding LCs [49]. Due to limited resources, we opt to sample the ALiCT seeds and all corresponding
expanded test cases. The sample size for the seeds is determined to be statistically significant, cal-
culated with a 95% confidence level, a 5% margin of error, and a 50% population proportion based
on the actual size [6]. Specifically, for each LC in sentiment analysis, the sample sizes for ALiCT
seeds range from 19 to 383, while the sample size for CHECKLIST is 368. In the case of hate speech
detection, we use sampled ALiCT seed test cases with sizes ranging from 6 to 381, and we utilize
all Hatecheck test cases due to their limited number. We then calculate the number of failures and
the failure rate of the GPT model on the sampled test cases. Additionally, we compare the model
performances on test cases between ALICT seeds and their expansions and measure the number of
Pass-to-Fail cases.

Implementation Details. We obtained our reference CFG from the Penn Treebank corpus [44].
Additionally, we utilized SentiWordNet [3], which is a lexical sentiment resource, as the domain-
specific knowledge for sentence expansion. All experiments were conducted on a Ubuntu 14.04
server with three Intel Xeon E5-2660 v3 CPUs @2.60GHz, eight Nvidia 1080Ti GPUs, and 500 GB
of RAM.

5 Experimental Results

This section presents the experimental results and the answers to the RQs. More results are available
at the ALiCT repository.?

5.1 RAQ1: Diversity

Our results show that ALICT produced test suites with significantly more diversity than the baselines
did.

Self-BLEU and Syntactic Diversity. Figure 4 compares the Self-BLEU and SD scores of the test suite
generated by ALiCT with those of CHECKLIST and Hatecheck. The x-axis shows the sample sizes of
the generated test suite, and the y-axis shows the metric scores. The left and right sub-figures display
the median Self-BLEU and SD scores over all LCs and five trials, respectively. The results show
that ALiCT’s test suite is more diverse than the baselines’, with significantly higher SD scores and
significantly lower Self-BLEU scores. This highlights the advantages of searching from a real-world
dataset rather than relying on limited preset templates. Furthermore, using expanded sentences in
ALICT decreases Self-BLEU scores by 0.013-0.0165 for sentiment analysis and 0.0135-0.0155 for
hate speech detection and increases SD scores by 86.5-108 and 74.5-79 for sentiment analysis and
hate speech detection respectively, demonstrating the syntax-based expansion of ALICT improves
sentence diversity.

Figure 5 shows the Self-BLEU and SD scores of test suites generated by two baselines and their
expanded versions using ALiCT. The x-axis shows the approach name, and the y-axis shows the
corresponding scores across all LCs. The left sub-figure displays the Self-BLEU scores, and the
right sub-figure shows the SD scores. The results indicate that the expanded CHECKLIST and

Zhttps://github.com/csresearcher27/alict_artifact

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://github.com/csresearcher27/alict_artifact

Automated Testing Linguistic Capabilities of NLP Models 176:17

ALICT @ ALICT+EXP @ HateCheck @ CheckList

a 101 0.89 095 s = = 3263365 32843392 3pgg3392 53pgq3392
3 3000 720
o I 26362

;
5051 omol cteomlll 0sossli 222 0ol P2 22000—
@ 91000
<<
UJ 0 0 123 123 123 123 123
D 1.0 0.9 0.9 0.9 0.9 0.9 49695044 50555134 50555134 50555134 50555134
L
_| i
o] 9) 4000
w05 . 0.47 .45
$ 0.5 o0 038034 042 0.4 0.4 0.43| wzooof

T
0
I 07 0 181 181 181 181 181
- T
200 400 600 800 1000 10000 20000 30000 40000 50000
Sample Size Sample Size

Fig. 4. Results of Self-BLEU (left) and SD (right) of ALiCT and capability-based testing baselines for sentiment
analysis and hate speech detection. Use of only ALiCT seed sentences and all ALiCT sentences are denoted
as ALICT and ALiCT+EXP, respectively. EXP, expanded test cases (type of test cases that ALICT generated
from seed test cases); SA, sentiment analysis.

1.0 90 84
| 0.894 0.895 0.905 81
» 09 80-]
QO o089 o762 704
o i
8 o7 B o
D oe] g so
2 05 Q
uw @D 40 w
1 04 a
Q sl @ 30
“— - 21
® 024 207
D 041 104
0 CheckList ~ CheckList+EXP HateChecker HateChecker+EXP 0 CheckList ~ CheckList+EXP HateChecker HateChecker+EXP

Fig. 5. Results of Self-BLEU (left) and SD (right) between original sentences of capability-based testing
baselines and ALiCT-generated sentences from the original sentences.

Hatecheck achieve better SD scores than their original versions, demonstrating the effectiveness
of ALiCT’s syntax-based expansion module in increasing the diversity of the generated test suite.
Additionally, the expanded CHECKLIST performs better in terms of Self-BLEU scores, while the
expanded Hatecheck has comparable scores to its original version. Further analysis suggests that
the BERT model used for word suggestion has been pre-trained on a combination of BOOKCORPUS
and English WIKIPEDIA, primarily exposed to conventional English found in these datasets [40].
When contrasted with the standard English present in these datasets, the process of suggesting
words in the masked hate speech, along with the grammatical distinctions apparent in texts from
Hatecheck and the standard English datasets, introduces a domain discrepancy. This mismatch in
domains could have potentially had a detrimental impact on the effectiveness of the mask word
suggestion in ALiCT.

Table 5 compares ALiCT’s expanded sentences and MT-NLP for 100 randomly selected seeds. The
first column lists the NLP task, and the second column displays the approaches for text generation.
Columns 3-5 show the number of generated sentences, Self-BLEU, and SD scores over five sampling
trials. We observe that ALiCT generates more sentences than MT-NLP for all tasks and has higher
Self-BLEU and SD scores, demonstrating the effectiveness of ALiCT’s syntax expansion in increasing
test case diversity. MT-NLP failed to mutate some seed sentences because it relies a small set of
pre-determined words for mutation which cannot be applied to these sentences.

Table 6 compares ALiCT’s expanded sentences with adversarial text generation baselines, as
discussed in Section 4. The first column shows the approach and the second column shows the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:18 J. Lee et al.

Table 5. Comparison Results against MT-NLP

Task ‘ Approach ‘ # Gen Self-BLEU SD

SA ALiCT 606 0.75 £0.01 338.8 +12.03
MT-NLP 23 0.91 £ 0.0 96.0 £ 0.0

HSD ALiCT 800 0.69 £0.02 400.4 + 17.21
MT-NLP 211 0.79 £ 0.02 344.0 + 15.86

HSD, Hate Speech Detection; SA, sentiment Analysis.

Table 6. Comparison Results against Adversarial Attacks

Approach ‘ #Gen Self-BLEU SD
ALICT 323 0.435 + 0.005 262.0 £ 2.739
Alzantot-attack 20 0.373 £ 0.0 170.0 = 0.0
BERT-attack 25 0.438 + 0.0 178.0 £ 0.0

SememePSO-attack 25 0.411 + 0.0 178.0 = 0.0

=== Qur Approach === CheckList

I _ o]
w 24
=3 o1 S
> S g]] /
3 5 B 3 ol
8 3 S | o &1
5 < E E &
a S 8] 3 1 (i
o v S g 8 81
g @ o) gl
= S| /i/——j/
° — T T——T—— ° ; i ; ; ; ol T T T T T
2,000 4,000 6000 8000 10,000 0 2,000 4000 6000 8000 10,000 0 2000 4000 6000 8000 10,000
- # of Test Cases - # of Test Cases # of Test Cases
3 b3]
2 o
g g
<} 3
¢ § 3 S
< g 3 <8
@ 3 3 g (7]
g ?_,—r,_f
.
3
2,000 4,000 6,000 8000 10,000 23 2,000 4000 6000 8000 10,000 0 2,000 4,000 6,000 8000 10,000
of Test Cases # of Test Cases # of Test Cases
BERT-base-uncased ROBERT-base DistlIBERT-base-uncased

Fig. 6. Neuron coverage results of ALiCT and CHECKLIST.

number of generated sentences from 50 randomly selected seeds. The third and fourth columns show
the Self-BLEU and SD scores over five sampling trials respectively. We observe that Alzantot et al.
[1] has the lowest Self-BLEU scores, whereas ALiCT expansion achieves the highest scores in the
number of generated sentences and SD, introducing various syntax productions with comparable
Self-BLEU score. The adversarial attack baselines are limited to increase SD as they rely on replacing
words in the original sentences.

Neuron Coverage. Figure 6 shows the coverage results of ALICT and CHECKLIST test cases.
The red and black line represents ALiCT and CHECKLIST coverage, respectively. Each column in
Figure 6 represents the results for one sentiment analysis model. The first row is the BoundCov
results and the second row is the SActCov results. We made three observations from the results.
First, for all experimental settings (i.e., NLP model and coverage metric), ALIiCT achieves higher
coverage than CHECKLIST. Recall that a higher coverage implies the test cases are more diverse
and do not have a similar statistical distribution to the model training data. As a result, a test

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:19

Table 7. Consistency Results

Task ‘ Type ‘ #TC LabelCons LCRel ExpValidity

SA SEED | 384 0.862 0.926 -
EXP 384 0.859 0.923 0.934

HSD SEED | 382 0.814 0.891 -
EXP 382 0.822 0.89 0.948

EXP, Expanded test cases; TC, Test Case.

suite with greater coverage complements the model training data distribution (i.e., holdout data)
better. For example, for the first NLP model under test, ALiCT can achieve a higher coverage than
CHECKLIST with only half the number of test cases. This result confirms that ALIiCT can generate
more diverse test cases to complement the holdout dataset for testing NLP models. Second, as
the number of test cases increases, the test suite can achieve better coverage. Such observation is
intuitive. However, generating a more extensive test suite is not easy, particularly for CHECKLIST,
which is a manual word substitution-based approach. Third, for each NLP model, there is no fixed
relationship between BoundCov and SActCov. While a test suite may produce higher BoundCov
for some models, the same test suite may get higher SActCov for other NLP models. Recall that
BoundCov measures both the upper and lower corner neurons and SActCov measures only the
upper corner neurons. Such observation implies that the upper and lower corner neurons are
distributed unevenly, and measuring only one of them is not enough.

Answer to RQ1: ALiCT generated test suites that exhibited notably higher diversity compared
to the baseline methods.

5.2 RQ2: Consistency

Table 7 shows the results of our consistency study. The first column lists the NLP tasks, and the
second column distinguishes between seed and expanded test cases. The third column indicates the
number of test cases used. Columns 4-6 present the scores of label consistency, LC relevancy, and
expansion validity sentences, respectively. Our analysis shows that ALiCT generates test cases with
high label consistency, with scores of 0.862 and 0.859 for seed and expanded test cases, respectively,
for sentiment analysis and 0.814 and 0.822 for seed and expanded cases, respectively, for hate
speech detection, indicating that the test oracles constructed by ALiCT align with human sentiment
labeling most of the time.

In the context of sentiment analysis, we conducted further analysis on the test cases used in
the manual study, where ALICT failed to label them the same way as human participants did.
This subset consists of 106 test cases, comprising 53 seed test cases and 53 expanded test cases.
Among these 53 seed test cases, 30 were labeled differently from the human participants due to
ambiguity stemming from phrases in the search dataset, specifically SST in our experiment, which
was used for generating the seed test cases. For example, consider the sentence “The movie is so
thoughtlessly assembled.” This phrase was found in the SST search dataset. While the sentiment
score of the sentence in the dataset is 0.73611, indicating it could be interpreted as somewhat
positive, it was labeled as positive using the three-class labeling method. Hence, the presence
of such subtly negative sentiment introduces label inconsistencies between ALICT and human
judgment.

Ten out of the 53 seed test cases exhibit label inconsistencies arising from the seed sentence
being excessively long, making it challenging for participants to precisely discern its sentiment.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:20 J. Lee et al.

The lengthiness is due to the combination of two long sentences from the SST search dataset,
which were used to generate the seed sentence. Furthermore, 4 out of the 53 seed sentences is
grammatically incorrect, leading to a failure in label consistency. Moreover, label inconsistency can
also occur due to incorrectly labeled sentiment by participants for the seed sentences. Notably, all
53 expanded test cases are derived from the same 53 seed test cases, and any label inconsistency
observed in the expanded test cases can be attributed to the underlying reasons for the label
inconsistency in their respective seed test cases. Notably, all 53 expanded test cases are derived
from the same 53 seed test cases, and any label inconsistency observed in the expanded test cases
can be attributed to the underlying reasons for the label inconsistency in their respective seed test
cases.

Moreover, the results show high expansion validity scores of 0.934 for sentiment analysis and 0.97
for hate speech detection, indicating that ALiCT effectively preserves the semantic meaning of seed
sentences during the expansion process. The LC relevancy score is presented in column 5 of Table 7.
The result shows that ALiCT generates test cases that are correctly categorized to the corresponding
LCs most of the time. The LC relevancy scores for the seed and expanded sentences are 0.926 and
0.923 for sentiment analysis and 0.891 and 0.89 for hate speech detection, respectively, achieving
high agreement with human assessment. The fact that the expanded sentences generated by ALiCT
have the same level of LC relevancy as the seed sentences demonstrates that the syntax-based
sentence expansion retains the LCs. In the context of sentiment analysis, there are 104 test cases
that did not achieve a full LC relevancy score during the manual study. Out of these 104 cases, 52
are seed test cases, and the remaining 52 are expanded test cases. Among the 52 seed test cases, 30
are not fully LC relevant due to the ambiguity of sentences from the SST search dataset, while the
7 are not fully LC relevant because it contains grammatical errors in the sentence structure. Note
that the 52 expanded test cases are generated from the 52 seeds, and their LC irrelevancy stems
from the LC irrelevancy of their corresponding seed test cases.

Answer to RQ2: ALiCT demonstrates proficiency in generating test cases with a high level of
label consistency, ensuring the effective preservation of semantic meaning from seed sentences
throughout the expansion process. Moreover, it consistently and accurately categorizes these
test cases to the corresponding LCs most of the time.

5.3 RQ3: Effectiveness

Our results show that ALICT generates diverse test cases that expose more classification errors in NLP
models, outperforming the baselines.

Number of Test Cases. Tables 8 and 9 present the results of the effectiveness metrics defined in
Section 4.2. In the column 3 and 4 of the table, ALIiCT generates a significant number of test cases for
all LCs, ranging from 70 (19 + 51) for LC1 to 533,575 (68,284 + 465,291) for LC8. In the case of LC1,
LC2, LC4, and LC5, ALiCT produces a lower quantity of test cases compared to CHECKLIST. This
discrepancy arises due to the scarcity of suitable seed text cases aligning with the specifications of
the LCs within the search dataset. However, the syntax-based sentence expansion phase generated
51 to 503 test cases. In Table 9, ALiCT generates more test cases than Hatecheck for all LCs except
for LC11, indicating that ALiCT is more useful in generating a sufficient number of test cases.

Fail Rate and Failed Cases. Columns 5 and 6 in Table 8 show that at least one model introduces a
higher number of failed test cases on ALICT test cases than CHECKLIST in 8 LCs, and at least one
model achieves a higher failure rate on ALIiCT than on CHECKLIST in all other LCs (ranging from
4.27% to 99.64%) except for LC8 and LC11. In Table 9, we observe that every LCs for hate speech
detection have a higher number of failed test cases on ALiCT test cases than Hatecheck except for

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models

176:21

Table 8. Results of BERT-Base, RoOBERTa-Base, and DistilBERT-Base Sentiment Analysis Models on ALiCT
Test Cases Using All Seeds

. . ALICT/ ALiCT/ ALICT
L ft:l’;‘lé: i‘iﬁf}s ;}1;;(;': Cklst Cdst fail # Pass-to-
fail rate (%) Fail
BERT: 60/1,330 BERT: 85.71/77.51 BERT: 9
LC1: Short sentences with neutral adjectives and nouns 1,716 19 51 RoBERTa: 55/1,391 RoBERTa: 78.57/81.06 RoBERTa: 2
dstBERT: 68/1,661 dstBERT: 97.14/96.79 dstBERT: 0
BERT: 25/26 BERT: 5.92/0.30 BERT: 5
LC2: Short sentences with sentiment-laden adjectives 8,658 160 262 RoBERTa: 39/139 RoBERTa: 9.24/1.61 RoBERTa: 14
dstBERT: 18/125 dstBERT: 4.27/1.44 dstBERT: 10
BERT: 99,312/1,680 BERT: 23.74/21.00 BERT: 10,357
LC3: Sentiment change over time, present should prevail 8,000 75,159 343,214 RoBERTa: 208,313/829 RoBERTa: 49.79/10.36 RoBERTa: 11,472
dstBERT: 262,994/2,532 dstBERT: 62.86/31.65 dstBERT: 9,808
BERT: 523/799 BERT: 91.75/11.77 BERT: 20
LC4: Negated negative should be positive or neutral 6,786 67 503 RoBERTa: 498/218 RoBERTa: 87.37/3.21 RoBERTa: 9
dstBERT: 494/734 dstBERT: 86.67/10.82 dstBERT: 6
BERT: 207/2,427 BERT: 94.09/97.24 BERT: 11
LC5: Negated neutral should still be neutral 2,496 26 194 RoBERTa: 204/2,304 RoBERTa: 92.73/92.31 RoBERTa: 6
dstBERT: 213/2,450 dstBERT: 96.82/98.16 dstBERT: 10
-) - BERT: 116,049/1,871 BERT: 99.64/88.09 BERT: 67
LC6: Negation of negative at the end, should be positive or || 5 154 y5576 97807 RoBERTa: 115676/445 RoBERTa: 99.32/2095 RoBERTa: 90
neutral dStBERT: 114556/2,124 dstBERT: 98.35/100.00 dstBERT: 325
BERT: 189,935/860 BERT: 91.03/86.00 BERT: 1,972
LC7: Negated positive with neutral content in the middle 1,000 24,328 184,328 RoBERTa: 153,686/416 RoBERTa: 73.66/41.60 RoBERTa: 7,007
dstBERT: 175,323/865 dstBERT: 84.02/86.50 dstBERT: 5,003
BERT: 152,009/3,741 BERT: 28.49/43.87 BERT: 8,878
LC8: Author sentiment is more important than of others 8,528 68,284 465,291 RoBERTa: 105,152/2,693 RoBERTa: 19.71/31.58 RoBERTa: 8,487
dstBERT: 162,426/3,535 dstBERT: 30.44/41.45 dstBERT: 12,729
BERT: 7,097/253 BERT: 6.03/3.31 BERT: 1,590
LC9: Parsing sentiment in (question, yes) form 7,644 15,465 102,203 RoBERTa: 6,226/32 RoBERTa: 5.29/0.42 RoBERTa: 1,489
dstBERT: 5,470/52 dstBERT: 4.65/0.68 dstBERT: 1,151
BERT: 8 9,155/4,056 BERT: 75.75/53.06 BERT: 1,722
LC10: Parsing sentiment in (question, no) form 7,644 15,483 102,214 RoBERTa: 100,351/4,576 RoBERTa: 85.26/59.86 RoBERTa: 1,452
dstBERT: 111,874/6,440 dstBERT: 95.05/84.25 dstBERT: 575
. I . BERT: 2,338/1,752 BERT: 12.13/73 BERT: 408
LC1L: Fairness: Switching identity group should not change ||, 5, 2356 16914 RoBERTa: 2,007/1337 RoBERTa: 1041/557 RoBERTa: 463
predictions dStBERT: 2,295/1555 dstBERT: 11.90/64.79 dstBERT: 361

CHECKLIST test cases are denoted as Cklst, and BERT-base, RoBERTa-base, and DistilBERT-base models are denoted as

BERT, RoBERTa, and dstBERT, respectively.

LC11, with the failure rate being higher for at least one model in every LCs except for LC1 and LC5
(ranging from 1.89% to 88.89%). Based on these findings, we conclude that ALIiCT is more effective
in generating test cases to identify errors. The results show that ALiCT generates many test cases
in the NLP models that fail to predict the correct labels, providing further qualitative test cases
than baselines for finding errors. Baselines generate test cases through word substitutions within
manually created templates. This approach restricts the semantic and structural variety within the
generated test cases, ultimately encompassing only a limited scope of expressions that align with
the associated LC. Note that all sentences in CHECKLIST for the fairness evaluation are generated
from templates in the form of “male is identity_groups mask” and “female is identity_groups mask.”
where male, identity_groups, and female are placeholders for the lexicons for male, identity groups,
and female, respectively. Additionally, mask is the mask token intended to be suggested by the
word suggestion model based on these templates [57]. In contrast, ALICT enhances diversity and
delivers more extensive test cases pertaining to the LC, thereby effectively covering a broader range
of corner cases within the text and contributing to a more number of unsuccessful cases than the
baselines.

Pass-to-Fail Cases. We observed that many test cases failed in the expanded set but not in their
corresponding seeds (as shown in the last column of Tables 8 and 9). This type of error case ranges
from 0 to 12,729 for sentiment analysis and from 0 to 4,365 for hate speech detection. These results
demonstrate that the syntax-based sentence expansion phase effectively introduces more diverse
sentence structures, which can potentially expose errors in NLP models that may not be evident in
the original seed test cases.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:22

J. Lee et al.

Table 9. Results of Dehate-BERT and Twitter-RoBERTa Hate Speech Detection Models on ALICT Test

Cases Using All Seeds

LC ‘ ‘ Htck ALiCT ALiCT ALiCT/Htck ALiCT/Htck ALiCT
#TCs #seeds #exps # fail fail rate (%) # Passt-to-Fail
e e
T o w SR WG TS
LC3: Hate expressed using profanity 140 1064 6394 ﬁfgg};'ﬁiéi/lglss/93 ﬁfﬁgﬁ;as ;6341.79()5(/)26.43 IEEII:ER;; 69
1.C4: Non-Hateful use of profanity 100 1478 7,709 ﬁfgg};%;ﬁgss,/llso/l ﬁfg;{;: ?52.22?1.00 EE}I;EI:{;: 1120
LC5: Hate expressed through reference in subsequent clauses 140 11,968 43,641 iggg}z_;;o;g/;;?/% EiggR;§5§;7Z43:643 25:;11’1‘723855
LCé: Hate expressed through reference in subsequent sentences 133 11,968 42,416 iggg};’?:?;i/ll;);/w igggR’?:lSZf’:é?:lSS §§BR;R';:3 721
LC7: Hate expressed using negated positive statement 140 39,783 220,483 ﬁg:gR'Iz‘:z’f;;/;;;/ns 2?1&%‘1{'?:5522?7776?;286 iEBR;Erl:l"?a‘L:SZ,%S
LC8: Non-hate expressed using negated hateful statement 133 17,796 133,756 iggg}:('lz‘jzolzg,l;(ﬁ/zs ﬁSI}:ER'I{jIZiZl‘)SS IEEII:;I:{%;;Z:élS,é%
LC9: Hate phrased as a question 140 11864 101,569 ﬁfggg:?g;;/;s;nm ﬁfggl:{i: ;127;.7:i?§7,86 IEE}I;EI:{;: 1 1,305
LC10: Hate phrased as an opinion 133 11864 87,99 ifg}if:?zzz;f;glog :ﬁ};;{;;: 324;7:332?195 igBRgl;Tg: 9 1,348
LC11: Neutral statements using protected group identifiers 126 6 12 igg—ErR’Il‘:/gl 1 igggl{’?fssggs}g 00 igBRgl;l’ga: 0
LC12: Positive statements using protected group identifiers 189 57 246 ﬁgﬁg}z'{{?f;l() 251}:;{;:8234/;102 9/1; 47 iEBRgl:l;a: 1
LC13: Denouncements of hate that quote it 173 23,728 167,404 ilo;‘gg}('[z‘fslllléljss/s ﬁfI}:ER'l{:?ig(g?ZS‘J IEEII:EI:{%QZ:Z;;,MO
LC14: Denouncements of hate that make direct reference to it 141 17,796 127,067 BERT: 17,060/4 BERT: 11.78/2.84 BERT: 1,070

RoBERTa: 100,848/7

RoBERTa: 69.62/4.96

RoBERTa: 1,594

Hatecheck test cases are denoted as Htck, and dehate-BERT and twitter-RoBERTa models are denoted as BERT and
RoBERTa, respectively.

Table 10. Results of Large Language Model (GPT-3.5) on ALICT Test Cases for Sentiment Analysis
Using All Seeds

. : ALiCT/ ALICT/ ALIiCT

LC St ALcr :';:;: Cklst Cdst fail # Pass-to-
fail rate (%) Fail

LC1: Short sentences with neutral adjectives and nouns 368 19 51 gpt-3.5: 12/7 gpt-3.5: 17.14/1.90 gpt-3.5: 1
LC2: Short sentences with sentiment-laden adjectives 368 160 262 gpt-3.5: 125/7 gpt-3 9.62/1.90 gpt-3.5: 13
LC3: Sentiment change over time, present should prevail 368 383 2,612 gpt-3.5: 1,172/181 gpt-3.5: 39.13/49.18 gpt-3.5: 117
LC4: Negated negative should be positive or neutral 368 67 503 gpt-3.5: 422/9 gpt-3.5: 18
LC5: Negated neutral should still be neutral 368 26 194 gpt-3.5: 110/236 gpt-3.5: 10
LC6: Negation of negative at the end, should be positive or 368 377 2,099 gpt-3.5:1,509/12 gpt-3.5: 60.95/3.26 gpt-3.5: 75
neutral
LC7: Negated positive with neutral content in the middle 368 379 2,945 gpt-3.5:3,221/144 gpt-3.5: 96.90/39.13 gpt-3.5: 12
LC8: Author sentiment is more important than of others 368 383 2,625 gpt-3.5: 1,361/221 gpt-3.5: 139
LC9: Parsing sentiment in (question, yes) form 368 375 2,558 gpt-3.5:1,434/198 gpt-3.5: 48.89/53.80 gpt-3.5: 182
LC10: Parsing sentiment in (question, no) form 368 375 2,678 gpt-3.5:3,023/228 gpt-3.5: 99.02/61.96 gpt-3.5: 2

Answer to RQ3: ALiCT excels in generating diverse test cases that effectively reveal a greater
number of classification errors in NLP models, surpassing the performance of baseline methods.

5.4 RQ4: Applicability to LLM

Tables 10 and 11 present the results of the evaluation of the LLM described in Section 4. Column 1
shows the description of each LC given the target task, columns 2—4 show the number of sampled
test cases of CHECKLIST baseline and ALiCT seed and its corresponding expansions, respectively.
In addition, columns 5 and 6 shows the number of failed test cases and its fail rate. Columns 5
and 6 show that the LLM introduces a higher number of failed test cases on ALICT test cases than
CHECKLIST and Hatecheck over all LCs except for one LC for all tasks (LC5 for sentiment analysis

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:23

Table 11. Results of Large Lanauage Model (GPT-3.5) on ALICT Test Cases for Hate Speech Detection
Using All Seeds

Hick ALCT ALICT ALICT/ ALICT/ ALCT
LC B Hitck fail # Pass-to-

#TCs #seeds #exps Htck # fail rate (%) Fail
LC1: Hate expressed using slur 144 203 1,171 gpt-3.5: 9/1 gpt-3.5: 0.66/0.69 gpt-3.5: 9
LC2: Non-hateful use of slur 111 278 1,264 gpt-3.5: 1,360/39 gpt-3.5: 88.20/35.14 gpt-3.5: 27
LC3: Hate expressed using profanity 140 283 1,720 gpt-3.5: 1/0 gpt-3.5: 0.05/0.00 gpt-3.5: 1
LC4: Non-Hateful use of profanity 100 306 1,649 gpt-3.5: 1,888/39 gpt-3.5: 96.57/39.00 gpt-3.5: 20
LC5: Hate expressed through reference in subsequent clauses 140 373 1,244 gpt-3.5: 205/0 gpt-3.5: 12.68/0.00 gpt-3.5: 3
LCé6: Hate expressed through reference in subsequent sentences 133 373 1,494 gpt-3.5: 220/0 gpt-3.5: 11.78/0.00 gpt-3.5: 19
LC7: Hate expressed using negated positive statement 140 381 2,037 gpt-3.5: 409/0 gpt-3.5: 16.91/0.00 gpt-3.5: 36
LC8: Non-hate expressed using negated hateful statement 133 377 3,140 gpt-3.5: 3,454/5 gpt-3.5: 98.21/3.76 gpt-3.5: 14
LC9: Hate phrased as a question 140 373 3,098 gpt-3.5:3/0 gpt-3.5: 0.09/0.00 gpt-3.5: 3
LC10: Hate phrased as an opinion 133 372 2,862 gpt-3.5: 4/0 gpt-3.5: 0.12/0.00 gpt-3.5: 1
LC11: Neutral statements using protected group identifiers 126 6 12 gpt-3.5: 7/13 gpt-3.5: 38.89/10.32 gpt-3.5: 0
LC12: Positive statements using protected group identifiers 189 57 246 gpt-3.5: 151/4 gpt-3.5: 49.83/2.12 gpt-3.5: 12
LC13: Denouncements of hate that quote it 173 379 2,717 gpt-3.5:3,085/163 gpt-3.5: 99.64/94.22 gpt-3.5: 3
LC14: Denouncements of hate that make direct reference to it 141 377 2,844 gpt-3.5:3,185/125 gpt-3.5: 98.88/88.65 gpt-3.5: 40

and LC11 for hate speech detection). Note that Hatecheck test cases even introduces no failures in
six LCs (LC 3, 5, 6, 7, 9, and 10). In addition, the LLM achieves a higher failure rate on ALiCT on
CHECKLIST in 6 LCs for sentiment analysis (ranging from 17.14% to 99.02%) and on Hatecheck
in 13 LCs for hate speech detection (ranging from 0.05% to 99.64%). Based on these findings, we
conclude that ALiCT is more effective in generating test cases to identify errors in the recent LLM
as well. The results show that ALiCT generates many test cases in the LLM that fail to predict the
correct labels, providing further qualitative test cases than baselines for finding errors.

Pass-to-Fail Cases. We observed that the LLM introduces many test cases failed in the expanded
set but not in their corresponding seeds (as shown in the last column in Tables 10 and 11). This
type of error case ranges from 1 to 182 for sentiment analysis and from 0 to 40 for hate speech
detection. These results demonstrate that the syntax-based sentence expansion phase effectively
introduces more diverse sentence structures, which can potentially expose errors even in LLM that
may not be evident in the original seed test cases.

Answer to RQ4: ALICT establishes its relevance and applicability in evaluating LLM by
effectively uncovering a higher number of errors in the LLM, surpassing the performance of
baseline methods.

6 Application of ALIiCT

In this section, we demonstrate how capability-based testing enabled by ALiCT can be used in
conjunction with explainable ML techniques to assist developers in identifying the root causes of
bugs in sentiment analysis models. Additionally, we showcase the implementation of ALiCT for
the evaluation of multilingual capabilities.

Experimental Process. Recall that ALICT generates test cases by expanding one or more tokens in
the seed sentences. Still, it is unclear why expanding one or more tokens will cause the model to
produce misclassified results. We seek to help developers understand why such expansion will result
in the misclassification. Existing work [7, 20, 58] has demonstrated that the ML model prediction is
dominated by a minimal set of input features (i.e., tokens in input sentences).

Driven by this insightful intuition, we endeavor to pinpoint a masking template that retains only
a subset of input tokens which exerts a large influence on the model’s predictions. To achieve this,
we synthesize inputs using the masking template by substituting the tokens marked as masks,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:24 J. Lee et al.

Algorithm 2: Template Identification Algorithm

1: Input: Input sentence x = [tky, tky, - - - , tk,], NLP model f(-), threshold P;pyesh.

2: Output: A template T.

3: S = Compute_Contribution(x) {Compute each token’s contribution score with LEMNA}
4: Ty = [MASK, MASK, - -- ,MASK] {Initialize a complete mask template}

5. while True do

6: if Check_Templat e(Ty) then

7: Break {If Equation 8 hold, end iteration}

8. else

9: index = argmax(S) {Select the token index with the highest scores}

10: T, lindex] = tkingex {Flip the mask to non-mask in the template}

11: Slindex] = —inf {To avoid repeat selection}

12: return T,

denoted as T, with randomly selected tokens. The expectation is that a newly synthesized input
should exhibit a notably high probability of upholding the original prediction x, denoted as

P(f(G(Tx)) = f(x)) = Pihresh, ®)

where f(-) is the model under test, T is the identified template from input x, G(-) is a generator that
replaces masked tokens with random tokens in a template, and P, sy, is a pre-defined threshold.

To construct the desired template denoted as T, we follow Algorithm 2. We initiate this process
by evaluating the contribution score of each input token through the application of an established
interpretable machine learning technique [20] (line 3). Subsequently, we commence with a complete
mask template, wherein all tokens are designated for masking (line 4). This initial state fails to
satisfy Equation (8), given that the generator would generate entirely random inputs without any
discernible token. Next, our iterative procedure involves systematically shifting tokens from a
masked to a non-masked state, guided by the contribution scores of each token (lines 9-11). The
goal is to achieve a template T, that conforms to Equation (8). In essence, during the first iteration,
we identify the token with the highest contribution score and designate it as non-masked, thereby
updating the template accordingly. With this modified template, we generate 1,000 random instances
by preserving the current mask configuration. Subsequently, we calculate the probability that these
instances yield the same prediction as the original input. If Equation (8) remains unsatisfied, we
proceed to the next iteration, marking the token with the second highest contribution score as
non-masked. This iterative process continues until Equation (8) is fulfilled. This iterative token
selection process is designed to be greedy at each step, consistently opting for the token with the
highest contribution score. As a result of this sequential approach, the eventual template T, that
emerges retains the minimal number of tokens from the original input x. Moreover, since the input
x is an incorrect prediction, the generated template T is likely to produce misclassification (i.e.,
the probability of misclassification is larger than P;p;esp).

Running Example. We illustrate the aforementioned process using a practical example. Let’s focus
on the second seed sentence in Figure 7, which is, “It is always enthralling.” To begin, we calculate
the contribution score for each token, as depicted in the Score Visualization column. Next, our
template initially consists of all “[MASK]” tokens. We then evaluate whether this template satisfies
Equation (8). If the equation does not hold, we replace the token with the highest contribution score
from the “[MASK]” tokens with its original counterpart. In this instance, that token is “enthralling”
We reevaluate Equation (8). If it still does not satisfy the equation, we proceed to replace the token
with the second-highest contribution score from the “[MASK]” tokens with its original counterpart.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:25

Seed Sentence Generated Sentence Score Visualization
| used to disagree with saying that " This | used to disagree with saying that * This '
Sentence | is junk food cinema at its greasiest . ", is literally junk food cinema at its s MEJD H F‘ ‘ JL L ‘D
although now | like it. greasiest . ", although now | like it. ° o = H_H L JH
§ s
used to to disagree with that This is literally junk food saying E,w,
Template at is is literally junk food cinema E |
s Hike it Hnougn e 8.8 e,
Prediction 1 0 o |§d
'oken Index
Sentence | It is always enthralling. Itis always beyond enthralling. e
3
Template enthralling. beyond £ ‘
P § | [H———
Prediction 1 0 - : £ H

H £
Token Index

Fig. 7. Visualization of the buggy reason of two ALiCT-generated test cases.

This iterative process continues until Equation (8) is met or until we exhaust all possibilities. In our
case, the final template becomes: “[MASK] [MASK] [MASK] [MASK] enthralling.” If we substitute
the “[MASK]” tokens with random tokens and generate a concrete sentence, this new sentence will
possess a probability greater than Py, of yielding the same prediction as the original sentence.

Case Study. We perform a case study to demonstrate the effectiveness of our methodology. Figure 7
shows the two examples of Pass-to-Fail cases. In the Seed Sentence column, details about the seed
sentence from the dataset are presented (e.g., sentence x, identified template T, and prediction
label). The Generated Sentence column provides information about the sentence generated by ALIiCT.
The Score Visualization column illustrates the contribution score of each token in the sentence,
with blue bars representing the seed sentence and orange bars representing the generated sentence.
Modified tokens are emphasized with a yellow background, and identified templates are indicated
with red text.

From the results, we have the following observations: (1) The tokens introduced by ALiCT
can wield a significant impact, often taking precedence in influencing the model’s predictions.
This is exemplified in the second case within Figure 7, wherein ALiCT inserts the token beyond
into the sentence, consequently altering the model’s prediction. A thorough examination of the
visualization results underscores the significance of the beyond token, which commands a substantial
contribution score, surpassing even the cumulative effect of other tokens. Furthermore, the validity
of this phenomenon is corroborated by the identified template. As stated in Equation (8), the
template underscores that sentences adhering to its structure hold a greater than 90% likelihood of
eliciting an identical model prediction. This observation reaffirms that the model displays heightened
sensitivity toward specific tokens, possibly due to its training dataset’s inclination toward these
tokens. (2) Another notable observation pertains to instances where the newly introduced token
exhibits minimal individual contribution to the score. However, its presence serves to reshape
the distribution of contribution scores among other tokens. This phenomenon is exemplified by
the first case in Figure 7. Upon the inclusion of the token Literally, a notable shift occurs in the
contribution scores of the remaining tokens. Furthermore, the preeminent template identification
also undergoes significant alteration. Previously characterized by “... used to disagree with...,..., I
like it,” the dominant template now transforms into “This is literally junk food cinema.” Notably,
the phrase “I like it” no longer commands substantial influence. This shift subsequently prompts a
change in the model’s prediction. This observation stems from the intrinsic nonlinearity of machine
learning models. Even the most minor perturbation can propagate throughout the system, causing
a shift in the impact exerted by other tokens that play a role in the model’s prediction. Furthermore,
ALICT has the capability to generate valuable test cases that effectively provoke such changes.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:26 J. Lee et al.

7 Threats to Validity

Internal. We have identified internal concerns originating from the following three aspects.

First, we implemented generative rules with the intention of amalgamating phrases sourced
from the search dataset. The incorporation of specific user-defined phrases into these generative
rules may unintentionally result in incomplete coverage of the entire test case distribution for the
LC. To address this potential issue, we proactively tackle it by encompassing the full spectrum of
test case diversity, leveraging all available phrases from the search dataset. This strategy is based
on the assumption that the search dataset accurately mirrors real-world scenarios. By adopting
this approach, we aim to minimize the gap between the comprehensive distribution of test cases
and those generated by our method, simultaneously enhancing semantic and structural diversity
while ensuring alignment between the test cases and the LC.

Second, in order to ensure consistent evaluation, we assigned two participants to label each
sentence, with each participant receiving a distinct label. However, this approach introduces the
risk of participants mislabeling certain sentences. To mitigate this potential threat, we implemented
two measures: first, we randomly selected the sentences assigned to each participant, and second,
we tasked the participants with performing each labeling task, aggregating the labels provided
by the two participants. Consequently, in accordance with the Law of Large Numbers [14], our
results can attain probabilistic correctness when dealing with a large number of randomly selected
sentences.

Lastly, the reference corpus and word sentiment utilized in our approach may not be fully
representative of all English grammatical structures and word sentiments. To address this potential
limitation, we opted for a widely used dataset in the NLP domain [29]. Specifically, we utilized the
Penn Treebank [44] dataset for the reference corpus due to its diversity, derived from 98,732 stories
from the Wall Street Journal for syntactic annotation. Additionally, we employed the SentiWordNet
for the word sentiment dataset, choosing it for its extensive usage in various research projects and
licensing to over 300 research groups [3].

External. The external threats to validity come from the following aspects: First, ALiCT is both
implemented and evaluated based on a specific set of LCs, as outlined in Tables 2 and 3. However,
there is a potential risk that this focused evaluation may limit the generalizability of ALiCT. To
address this concern, we are undertaking the following measures: (1) We choose a diverse set of LCs
for evaluation. These selected capabilities span various applications such as sentiment analysis, hate
speech detection, and others (e.g., fairness). We ensure diversity not only in terms of application
but also in usage and complexity. (2) The LCs selected for evaluation are not arbitrary; rather, they
are well-established and widely used in existing research. This deliberate choice aims to ensure that
the evaluation of ALiCT is grounded in linguistic tasks that have proven relevance and applicability
in the broader research community:.

Second, the evaluation subjects employed in our experiments exclusively consist of English
models, potentially limiting the generalizability of ALIiCT in multilingual settings. To mitigate this
limitation, we are implementing the following strategies: (1) In the design of ALiCT, it is important to
note that no English-specific knowledge is mandated. Consequently, in theory, ALiCT possesses the
potential for generalization to multilingual settings, as it does not rely on language-specific features
during the design phase. (2) Although ALICT utilizes a BERT-base model for word suggestion in
sentence expansion, we note that BERT-base is trained on unlabeled English sentences and may
not be optimal for expanding sentences in other languages. However, to enhance multilingual
adaptability, the BERT-base model can be substituted with bert-base-multilingual. This alternative
model has been trained with data from 104 languages, sourced from the largest Wikipedia, thereby
broadening its LCs.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:27

Finally, we have chosen neuron coverage as one of our evaluation metrics to assess the diversity
of the generated test inputs. However, certain existing studies have cast doubts on the efficacy
of neuron coverage as an objective function for generating adversarial examples [22, 74, 75]. It is
crucial to note that these studies do not outright dismiss the effectiveness of neuron coverage as a
metric for measuring diversity. For instance, [74] found that indiscriminately increasing neuron
coverage can have a detrimental effect, resulting in the production of less natural inputs and
introducing bias in output distribution. In our evaluation, we consciously avoid using coverage as
the primary objective in our approach to generating test inputs. Consequently, the concern that
test inputs generated by our tool may be less natural does not apply. Furthermore, [75] observed
that neuron coverage may not be effective in adversarial settings. It is crucial to highlight that our
diversity evaluation is not conducted in adversarial settings; we do not iteratively query the model
until errors are found. Thus, our choice of neuron coverage could still represent the diversity of the
generated test suite to some degree.

8 Related Work

In addition to the capability-based testing works discussed in Section 2, we review other related
works in this section.

NLP Algorithms and Applications. Deep Neural Networks (DNNs) have significantly improved
various NLP applications, including reading comprehension, hate speech detection, and machine
translation. For instance, word embeddings [30, 46, 52] distributes the semantic of words into
numeric vectors, which are then utilized to train neural networks for classification tasks. Meanwhile,
Seq2Seq [19, 63, 67] presents an encoder—decoder neural network architecture that has been widely
adopted for modeling the sequence generation task, particularly in machine translation and question
answering applications. In addition, Google [72] has introduced the attention mechanism, namely
transformer, can greatly enhance the accuracy of the generated texts. Accordingly, self-supervised
learning paradigm has been applied to the transformer, and it is used for pre-training language
model before being fine-tuned or used for specific downstream tasks [13, 54]. Pre-training becomes
a crucial step in creating powerful and effective NLP models.

In recent times, it has been observed that scaling pre-trained language models can significantly
enhance the model’s performance on downstream tasks. As a result, numerous LLMs have been
introduced, and these models have exhibited remarkable abilities in solving a wide array of complex
tasks. [11, 55, 69]

Machine Learning Testing and NLP Testing. Machine learning has shown great potential in various
real-world applications. Nonetheless, despite the high accuracy rates of ML models, there have
been instances where ML models can generate inferior results, leading to fatal accidents [34, 35].
Therefore, researchers have developed a series of techniques to test ML-based applications. For
example, DeepExplore [51] utilizes neuron coverage to partition the input space. It assumes that
inputs that share similar neuron coverage belong to the same class. Ma et al. assess the neural
coverage of activated neurons in a DNN by drawing an analogy to code branches in traditional
software testing [41, 73]. Tian et al. [68] finds erroneous behavior of DNN by generating test inputs
that maxmize the neural coverage of activated neurons in the domain of autonomous driving.
DeepMutation [42] proposes the mutation testing framework for DNNs. It introduces a set of
fault injection operators to perturbate the decision logic of a DNN. DeepStellar [15] relies on state
modeling and presents a series of metrics for RNNs. These metrics are used for testing and detecting
adversarial examples. AsFault [18] evaluates self-driving car software by automatically generating
virtual scenario and searching their parameters toward safety-critical scenarios. Kim et al. [31]
measures the difference in deep learning system’s behavior between an input and the training data
to measure the surprise of the input based on the training data. CRADLE [53] concentrates on

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

176:28 J. Lee et al.

the localization of bugs in deep learning software libraries. In addition, Simin et al. [8, 10] enables
energy efficient performance testing for DNNs such with respect to latency degradation and energy
consumption degradation.

In recent years, researchers have investigated the occurrence of bugs produced by neural net-
works in NLP applications, inspired by the work on adversarial examples in computer vision.
TestBugger [36] proposes a gradient-guided approach to generate test inputs for identifying bugs in
NLP models used for classification tasks. Rel et al. [56] generates adversarial input text by replacing
input words with synonyms searching from word saliency and classification probability. Zang et al.
[77] introduces word-level adversarial attack model for text classification by sememe-based word
substitution and a specific searching algorithm. Li et al. [38] utilizes BERT to identify semantic-
preserving word substitutes for adversarial attacking words in the input text. Ebrahibi et al. [16,
17] provides input text transformation operations for character-level NLP models. Zou et al. [82]
generates adversarial examples to attack neural machine translation model using reinforcement
learning. In addition to evaluating the robustness of NLP applications through NLP model attacks,
various other perspectives of these applications are also assessed for their practical utility. Neural
machine translation models are evaluated by generating adversarial examples [79, 82] and measur-
ing metamorphic relations between input and translation results [21, 23, 24, 66]. Chen et al. [9]
focuses on generating test inputs that can expose energy efficiency degradation of neural machine
translation. In addition, Ma et al. [43] assess fairness violations by perturbing human-related noun
words and measuring the discrepancy in the model’s outputs between the perturbed texts. Our
approach differs from existing work in that we concentrate on testing the LCs of NLP applications
in an automatic manner, a topic that has yet to be explored.

9 Conclusions

This article introduces ALiCT, a tool designed to automate the process of generating test cases for
NLP models. Through the utilization of LC specification-driven structural predicates and generative
rules, it can automatically create seed test cases. ALIiCT also employs syntax-based expansion to
further broaden the array of syntactic structures originating from the seed test cases. This ensures
a strong alignment between the generated test cases and their LCs, labels, and semantics and
enhances the diversity of the seed test cases.

We assess the efficacy of ALIiCT across two prominent NLP tasks. Our experiments show that,
when measured using Self-BLEU and SD, the test cases generated by ALIiCT exhibit a diversity
increase of at least 190% in semantic and 2213% more diverse in syntactic aspects compared to
those generated by state-of-the-art techniques. This substantial diversity improvement suggests
that ALiCT’s test cases enhance neuron coverage and introduce a greater number of model failures
in 22 out of 25 LCs over the two NLP tasks. Furthermore, we performed a study to validate that
ALICT consistently generates test cases with accurately aligned labels, corresponding LCs, and
the semantic context of the expanded test cases. We conducted a thorough analysis of cases that
induce failures, uncovering the underlying causes of these issues. Additionally, we demonstrated
that ALICT is applicable for evaluating LLM over LCs. This validates the correctness and practical
value of ALiCT in facilitating model evaluation.

Looking ahead, there is a need for additional research stemming from this study, particularly
in the domain of LC specification analysis. First, we anticipate that assessing LC through an NLP
task could pinpoint specific aspects of erroneous behavior of NLP models, ultimately aiding in
their debugging. Additionally, the automation of LC specification generation could significantly
facilitate the generation of seed test cases based on natural language descriptions.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

Automated Testing Linguistic Capabilities of NLP Models 176:29

References

(1]

(2]

(4]

(12]

(13]

(14]

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-JThang Ho, Mani Srivastava, and Kai-Wei Chang. 2018.
Generating Natural Language Adversarial Examples. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, 2890-2896. DOI:
https://doi.org/10.18653/v1/D18-1316

Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Ferdian Thung, and David Lo. 2022.
BiasFinder: Metamorphic Test Generation to Uncover Bias for Sentiment Analysis Systems. IEEE Transactions on
Software Engineering 48, 12 (2022), 5087-5101. DOI: https://doi.org/10.1109/TSE.2021.3136169

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010. SentiWordNet 3.0: An Enhanced Lexical Resource
for Sentiment Analysis and Opinion Mining. In Proceedings of the Seventh International Conference on Language
Resources and Evaluation (LREC’10). European Language Resources Association (ELRA), Valletta, Malta. Retrieved
from http://www .Irec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf

David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun Zhao. 2021. Cats are not Fish:
Deep Learning Testing Calls for Out-of-Distribution Awareness. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE’20). ACM, New York, NY, 1041-1052. DOI: https://doi.org/10.
1145/3324884.3416609

Som S. Biswas. 2023. Potential Use of Chat GPT in Global Warming. Annals of Biomedical Engineering 51, 6 (2023),
1126-1127.

Calculator.net. 2023. Sample Size Calculator. Retrieved from https://www.calculator.net/sample-size-calculator.html
Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. 2020. DENAS: Automated Rule
Generation by Knowledge Extraction from Neural Networks. ACM, New York, NY, 813-825. DOI: https://doi.org/10.
1145/3368089.3409733

Simin Chen, Mirazul Haque, Cong Liu, and Wei Yang. 2022a. DeepPerform: An Efficient Approach for Performance
Testing of Resource-Constrained Neural Networks. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1-13.

Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and Wei Yang. 2022b. NMTSloth: Understanding and Testing
Efficiency Degradation of Neural Machine Translation Systems. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 1148—1160.

Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei Yang. 2022c. NICGSlowDown: Evaluating the Efficiency
Robustness of Neural Image Caption Generation Models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 15365-15374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson,
Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou,
Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2023. PaLM: Scaling Language Modeling with Pathways. Journal of
Machine Learning Research 24, 240:1-240:113. Retrieved from http://jmlr.org/papers/v24/22-1144.html

Xavier Suau Cuadros, Luca Zappella, and Nicholas Apostoloff. 2022. Self-Conditioning Pre-Trained Language Models.
In Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning Research,
Vol. 162. Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR,
4455-4473. DOI: https://proceedings.mlr.press/v162/cuadros22a.html

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019a. BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT’19), Vol. 1, Long and Short
Papers. Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, 4171-4186.
DOI: https://doi.org/10.18653/V1/N19-1423

W. J. Dixon and Frank J. Massey. 1951. Introduction to Statistical Analysis. McGraw-Hill, New York, NY, 370.
Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deepstellar: Model-Based Quantitative
Analysis of Stateful Deep Learning Systems. In Proceedings of the 2019 27th ACM joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 477-487.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.1109/TSE.2021.3136169
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
https://doi.org/10.1145/3324884.3416609
https://doi.org/10.1145/3324884.3416609
https://www.calculator.net/sample-size-calculator.html
https://doi.org/10.1145/3368089.3409733
https://doi.org/10.1145/3368089.3409733
http://jmlr.org/papers/v24/22-1144.html
https://proceedings.mlr.press/v162/cuadros22a.html
https://doi.org/10.18653/V1/N19-1423

176:30 J. Lee et al.

(16]

(17]

(18]

[19]

[20]

[21]

(22]

(31]

(32]

(33]

(34]

(35]

(36]

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018a. On Adversarial Examples for Character-Level Neural Ma-
chine Translation. In Proceedings of the 27th International Conference on Computational Linguistics. Association for
Computational Linguistics, Santa Fe, New Mexico, USA, 653-663. Retrieved from https://aclanthology.org/C18-1055
Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018b. HotFlip: White-Box Adversarial Examples for Text
Classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Vol. 2 (Short
Papers). Association for Computational Linguistics, Melbourne, Australia, 31-36. DOI : https://doi.org/10.18653/v1/P18-
2006

Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically Testing Self-Driving Cars with Search-Based
Procedural Content Generation. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 318-328.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. 2017. Convolutional Sequence to
Sequence Learning. In Proceedings of the International Conference on Machine Learning. PMLR, 1243-1252.

Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. Lemna: Explaining Deep Learning
Based Security Applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 364-379.

Shashij Gupta, Pinjia He, Clara Meister, and Zhendong Su. 2020. Machine Translation Testing via Pathological
Invariance. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 863—-875.

Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. 2020. Is Neuron
Coverage a Meaningful Measure for Testing Deep Neural Networks? In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Retrieved from
https://api.semanticscholar.org/CorpusID:210146632

Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-Invariant Testing for Machine Translation. In Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering (ICSE’20). IEEE, 961-973.

Pinjia He, Clara Meister, and Zhendong Su. 2021. Testing Machine Translation via Referential Transparency. In
Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering (ICSE’21). IEEE, 410-422.
Chaitra V. Hegde and Shrikumar Patil. 2020. Unsupervised Paraphrase Generation Using Pre-Trained Language
Models. arXiv:2006.05477. Retrieved from https://arxiv.org/abs/2006.05477

Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural Language Understanding with Bloom Embeddings,
Convolutional Neural Networks and Incremental Parsing.

HuggingFace. 2022. HuggingFace. Retrieved from https://huggingface.co

Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime: Mutation Testing of Deep Learning
Systems Based on Real Faults. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’21). Cristian Cadar and Xiangyu Zhang (Eds.). ACM, New York, NY, 67-78. DOI: https://doi.org/
10.1145/3460319.3464825

Mujtaba Husnain, Malik Muhammad Saad Missen, Nadeem Akhtar, Mickaél Coustaty, Shahzad Mumtaz, and VB
Prasath. 2021. A Systematic Study on the Role of SentiWordNet in Opinion Mining. Frontiers of Computer Science 15, 4
(2021), 1-19.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag of Tricks for Efficient Text Classifi-
cation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics
(EACL’17), Vol. 2, Short Papers. Mirella Lapata, Phil Blunsom, and Alexander Koller (Eds.). Association for Computa-
tional Linguistics, 427-431. DOIL: https://doi.org/10.18653/V1/E17-2068

Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Testing Using Surprise Adequacy. In
Proceedings of the IEEE/ACM 41st International Conference on Software Engineering (ICSE’19). IEEE, 1039-1049.
Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multilingual Constituency Parsing with Self-Attention and Pre-
Training. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 3499-3505. DOI: https://doi.org/10.18653/v1/P19-1340

Nikita Kitaev and Dan Klein. 2018. Constituency Parsing with a Self-Attentive Encoder. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics, Vol. 1, Long Papers. Association for Computational
Linguistics, Melbourne, Australia, 2676-2686. DOL: https://doi.org/10.18653/v1/P18-1249

Fred Lambert. 2016. Understanding the Fatal Tesla Accident on Autopilot and the NHTSA Probe. Electrek, July 1.
Sam Levin. 2018. Tesla Fatal Crash: ’Autopilot’ Mode sped up car Before Driver Killed, Report Finds. The Guardian,
June 8.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2019. TextBugger: Generating Adversarial Text Against
Real-world Applications. In Proceedings of the 26th Annual Network and Distributed System Security Symposium
(NDSS’19). The Internet Society. Retrieved from https://www.ndss-symposium.org/ndss-paper/textbugger-generating-
adversarial-text-against-real-world-applications/

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://aclanthology.org/C18-1055
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://api.semanticscholar.org/CorpusID:210146632
https://arxiv.org/abs/2006.05477
https://huggingface.co
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.18653/V1/E17-2068
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/

Automated Testing Linguistic Capabilities of NLP Models 176:31

[37] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020a. BERT-ATTACK: Adversarial Attack
Against BERT Using BERT. arXiv:2004.09984. Retrieved from https://arxiv.org/abs/2004.09984

[38] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020b. BERT-ATTACK: Adversarial Attack
Against BERT Using BERT. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Online, 6193-6202. DOI : https://doi.org/10.18653/v1/2020.emnlp-
main.500

[39] Alexander Ligthart, Cagatay Catal, and Bedir Tekinerdogan. 2021. Systematic Reviews in Sentiment Analysis: A
Tertiary Study. Artificial Intelligence Review 54, 4997-5053. Retrieved from https://api.semanticscholar.org/CorpusID:
233769825

[40] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692. Retrieved
from http://arxiv.org/abs/1907.11692

[41] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu,
Jianjun Zhao and Yadong Wang. 2018a. Deepgauge: Multi-Granularity Testing Criteria for Deep Learning Systems. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 120-131.

[42] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, and
Yadong Wang. 2018b. Deepmutation: Mutation Testing of Deep Learning Systems. In Proceedings of the IEEE 29th
international symposium on software reliability engineering (ISSRE’18). IEEE, 100-111.

[43] Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic Testing and Certified Mitigation of Fairness Violations in
NLP Models. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI’20). Christian
Bessiere (Ed.). International Joint Conferences on Artificial Intelligence Organization, 458-465. DOI: https://doi.org/
10.24963/ijcai.2020/64

[44] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a Large Annotated Corpus of
English: The Penn Treebank. Computational Linguistics 19, 2 (Jun. 1993), 313-330.

[45] Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee. 2021.
HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 14867-14875.

[46] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in
Vector Space. In Proceedings of the 1st International Conference on Learning Representations (ICLR’13), Workshop Track
Proceedings. Yoshua Bengio and Yann LeCun (Eds.). Retrieved from http://arxiv.org/abs/1301.3781

[47] John X. Morris, Eli Lifland, Jin Yong Yoo, and Yanjun Qi. 2020. TextAttack: A Framework for Adversarial Attacks in

Natural Language Processing. arXiv:2005.05909. Retrieved from https://arxiv.org/abs/2005.05909

OpenAL 2023a. GPT-4 Technical Report. arXiv:2303.08774. DOI: https://doi.org/10.48550/ARXIV.2303.08774

OpenAl 2023b. GPT Model Documentation. Retrieved from https://platform.openai.com/docs/introduction

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: A Method for Automatic Evaluation

of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.

Association for Computational Linguistics, Philadelphia, PA, USA, 311-318. DOI: https://doi.org/10.3115/1073083.

1073135

[51] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore. In Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, New York, NY. DOI: https://doi.org/10.1145/3132747.3132785

[52] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global Vectors for Word Representation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 1532-1543.

[53] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE: Cross-Backend Validation to Detect and
Localize Bugs in Deep Learning Libraries. In Proceedings of the IEEE/ACM 41st International Conference on Software
Engineering (ICSE’19). IEEE, 1027-1038.

[54] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving Language Understanding by
Generative Pre-Training. Retrieved from https://api.semanticscholar.org/CorpusID:49313245

[55] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models are
Unsupervised Multitask Learners. OpenAl Blog 1, 8 (2019), 9. Retrieved from https://api.semanticscholar.org/Cor-
pusID:160025533

[56] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating Natural Language Adversarial Exam-
ples through Probability Weighted Word Saliency. In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, 1085-1097. DOI:
https://doi.org/10.18653/v1/P19-1103

[57] Marco Tulio Ribeiro. 2023. CHECKLIST Github Repository. Retrieved from https://github.com/marcotcr/checklist/
tree/master

— ——
(SN
oS O
[l S R}

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://arxiv.org/abs/2004.09984
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://api.semanticscholar.org/CorpusID:233769825
https://api.semanticscholar.org/CorpusID:233769825
http://arxiv.org/abs/1907.11692
https://doi.org/10.24963/ijcai.2020/64
https://doi.org/10.24963/ijcai.2020/64
http://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2005.05909
https://doi.org/10.48550/ARXIV.2303.08774
https://platform.openai.com/docs/introduction
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3132747.3132785
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.18653/v1/P19-1103
https://github.com/marcotcr/checklist/tree/master
https://github.com/marcotcr/checklist/tree/master

176:32 J. Lee et al.

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]
(68]

(69]

(70]

(71]
(72]

(73]

(74]

[75]

(76]

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I Trust You? Explaining the Predictions
of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1135-1144.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond Accuracy: Behavioral Testing
of NLP Models with CheckList. In Association for Computational Linguistics (ACL).

Paul Rottger, Haitham Seelawi, Debora Nozza, Zeerak Talat, and Bertie Vidgen. 2022. Multilingual HateCheck:
Functional Tests for Multilingual Hate Speech Detection Models. In Proceedings of the 6th Workshop on Online Abuse
and Harms (WOAH). Kanika Narang, Aida Mostafazadeh Davani, Lambert Mathias, Bertie Vidgen, and Zeerak Talat
(Eds.). Association for Computational Linguistics, Seattle, WA (Hybrid), USA, 154-169. DOI: https://doi.org/10.18653/
v1/2022.woah-1.15

Paul Réttger, Bertie Vidgen, Dong Nguyen, Zeerak Waseem, Helen Margetts, and Janet Pierrehumbert. 2021. HateCheck:
Functional Tests for Hate Speech Detection Models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Vol. 1, Long
Papers. Chenggqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics,
Online, 41-58. DOI: https://doi.org/10.18653/v1/2021.acl-long.4

Anna Schmidt and Michael Wiegand. 2017. A Survey on Hate Speech Detection Using Natural Language Processing.
In Proceedings of the 5h International Workshop on Natural Language Processing for Social Media. Association for
Computational Linguistics, Valencia, Spain, 1-10. DOI: https://doi.org/10.18653/v1/W17-1101

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal
Processing 45, 11 (1997), 2673-2681.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts.
2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle,
WA, USA, 1631-1642. DOI: https://aclanthology.org/D13-1170

Ezekiel O. Soremekun, Sakshi Udeshi, and Sudipta Chattopadhyay. 2022. Astraea: Grammar-Based Fairness Testing.
IEEE Transactions on Software Engineering 48, 12 (2022), 5188-5211. DOI : https://doi.org/10.1109/TSE.2022.3141758
Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020. Automatic Testing and Improvement of
Machine Translation. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 974-985.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning with Neural Networks. Advances
in Neural Information Processing Systems 27, 3104-3112.

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated Testing of Deep-Neural-Network-
Driven Autonomous Cars. In Proceedings of the 40th International Conference on Software Engineering. 303-314.
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. arXiv:2302.13971. DOI: https://doi.org/10.
48550/ARXIV.2302.13971

Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated Directed Fairness Testing. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE’18). Marianne Huchard,
Christian Késtner, and Gordon Fraser (Eds.). ACM, New York, NY, 98-108. DOI: https://doi.org/10.1145/3238147.
3238165

Sakshi Udeshi and Sudipta Chattopadhyay. 2021. Grammar Based Directed Testing of Machine Learning Systems.
IEEE Transactions on Software Engineering 47, 11 (2021), 2487-2503. DOI : https://doi.org/10.1109/TSE.2019.2953066
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is All You Need. Advances in Neural Information Processing Systems 30, 5998—6008.
Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and
Simon See. 2019. Deephunter: A Coverage-Guided Fuzz Testing Framework for Deep Neural Networks. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 146-157.

Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiging Ma, Lei Xu, and Xiangyu Zhang. [n. d.]. Correlations
Between Deep Neural Network Model Coverage Criteria and Model Quality. In Proceedings of the 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20).
DOI: https://doi.org/10.1145/3368089.3409671

Zhou Yang, Jieke Shi, Muhammad Hilmi Asyrofi, and David Lo. 2022. Revisiting Neuron Coverage Metrics and Quality
of Deep Neural Networks. In Proceedings of the IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER’22). IEEE, 408-419. DOI: https://doi.org/10.1109/SANER53432.2022.00056

Ping Yu, Yang Zhao, Chunyuan Li, and Changyou Chen. 2021. Rethinking Sentiment Style Transfer. In Proceedings of
the Findings of the Association for Computational Linguistics: EMNLP’21, Marie-Francine Moens, Xuanjing Huang,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://doi.org/10.18653/v1/2022.woah-1.15
https://doi.org/10.18653/v1/2022.woah-1.15
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/W17-1101
https://aclanthology.org/D13-1170
https://doi.org/10.1109/TSE.2022.3141758
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1109/TSE.2019.2953066
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1109/SANER53432.2022.00056

Automated Testing Linguistic Capabilities of NLP Models 176:33

Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, Punta Cana, Dominican
Republic, 1569-1582. DOI: https://doi.org/10.18653/v1/2021 findings-emnlp.135

[77] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun. 2020a. Word-
Level Textual Adversarial Attacking as Combinatorial Optimization. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6066—-6080. DOI :
https://doi.org/10.18653/v1/2020.acl-main.540

[78] Ruiyi Zhang, Changyou Chen, Zhe Gan, Zheng Wen, Wenlin Wang, and Lawrence Carin. 2020. Nested-Wasserstein
Self-Imitation Learning for Sequence Generation. In Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics (AISTATS 20), Proceedings of Machine Learning Research, Vol. 108. Silvia Chiappa and
Roberto Calandra (Eds.). PMLR, 422-433. Retrieved from http://proceedings.mlr.press/v108/zhang20b.html

[79] Xinze Zhang, Junzhe Zhang, Zhenhua Chen, and Kun He. 2021. Crafting Adversarial Examples for Neural Machine
Translation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, Vol. 1, Long Papers. Association for Computational
Linguistics, Online, 1967-1977. DOI: https://doi.org/10.18653/v1/2021.acl-long.153

[80] Binggui Zhou, Guanghua Yang, Zheng Shi, and Shaodan Ma. 2022. Natural Language Processing for Smart Healthcare.
IEEE Reviews in Biomedical Engineering 17, 4-18.

[81] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A Benchmarking
Platform for Text Generation Models. In Proceedings of the 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval (SIGIR’18). ACM, New York, NY, 1097-1100. DOI: https://doi.org/10.1145/
3209978.3210080

[82] Wei Zou, Shujian Huang, Jun Xie, Xinyu Dai, and Jiajun Chen. 2020. A Reinforced Generation of Adversarial Examples
for Neural Machine Translation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 3486-3497.

Received 7 September 2023; revised 6 February 2024; accepted 9 May 2024

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 176. Publication date: September 2024.

https://doi.org/10.18653/v1/2021.findings-emnlp.135
https://doi.org/10.18653/v1/2020.acl-main.540
http://proceedings.mlr.press/v108/zhang20b.html
https://doi.org/10.18653/v1/2021.acl-long.153
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Specification- and Syntax-Based LC Testing
	3.1 Specification-Based Seed Generation
	3.2 Syntax-Based Sentence Expansion
	3.3 Instantiation

	4 Experimental Setup
	4.1 Experimental Subjects
	4.2 Evaluation Metrics
	4.3 Experimental Process

	5 Experimental Results
	5.1 RQ1: Diversity
	5.2 RQ2: Consistency
	5.3 RQ3: Effectiveness
	5.4 RQ4: Applicability to LLM

	6 Application of ALiCT
	7 Threats to Validity
	8 Related Work
	9 Conclusions
	References

