
LLMEffiChecker: Understanding and Testing Efficiency

Degradation of Large Language Models

XIAONING FENG, College of Computer Science and Technology (College of Data Science), Taiyuan

University of Technology, Taiyuan, China

XIAOHONG HAN, College of Computer Science and Technology (College of Data Science), Taiyuan

University of Technology, Taiyuan, China

SIMIN CHEN, Computer Science, The University of Texas at Dallas, Richardson, United States

WEI YANG, University of Texas at Dallas, Richardson, United States

Large Language Models (LLMs) have received much recent attention due to their human-level accuracy.

While existing works mostly focus on either improving accuracy or testing accuracy robustness, the

computation efficiency of LLMs, which is of paramount importance due to often vast generation demands

and real-time requirements, has surprisingly received little attention. In this article, we make the first attempt

to understand and test potential computation efficiency robustness in state-of-the-art LLMs. By analyzing

the working mechanism and implementation of 20,543 public-accessible LLMs, we observe a fundamental

property in LLMs that could be manipulated in an adversarial manner to reduce computation efficiency

significantly. Our interesting observation is that the output length determines the computation efficiency

of LLMs instead of the input, where the output length depends on two factors: an often sufficiently large

yet pessimistic pre-configured threshold controlling the max number of iterations and a runtime-generated

end of sentence (EOS) token. Our key motivation is to generate test inputs that could sufficiently delay the

generation of EOS such that LLMs would have to go through enough iterations to satisfy the pre-configured

threshold. We present LLMEffiChecker, which can work under both white-box setting and black-box

setting. In the white-box scenario, LLMEffiChecker develops a gradient-guided technique that searches

for a minimal and unnoticeable perturbation at character-level, token-level, and structure-level. In the

black-box scenario, LLMEffiChecker employs a causal inference-based approach to find critical tokens

and similarly applies three levels of imperceptible perturbation to them. Both the white-box and black-box

settings effectively delay the appearance of EOS, compelling these inputs to reach the naturally unreachable

threshold. To demonstrate the effectiveness of LLMEffiChecker, we conduct a systematic evaluation on

nine publicly available LLMs: Google T5, AllenAI WMT14, Helsinki-NLP translator, Facebook FairSeq,

UNICAMP-DL translator, MarianMT, Google FLAN-T5, MBZUAI LaMini-GPT, and Salesforce CodeGen.

Experimental results show that LLMEffiChecker can increase on average LLMs’ response latency and energy

consumption by 325% to 3,244% and 344% to 3,616%, respectively, by perturbing just one character or token in

the input sentence. Our case study shows that inputs generated by LLMEffiChecker significantly affect the

battery power in real-world mobile devices (i.e., drain more than 30 times battery power than normal inputs).

Authors’ Contact Information: Xiaoning Feng, College of Computer Science and Technology (College of Data Science),

Taiyuan University of Technology, Taiyuan, Shanxi, China; e-mail: fengxiaoning1746@link.tyut.edu.cn; Xiaohong Han

(Corresponding author), College of Computer Science and Technology (College of Data Science), Taiyuan University of

Technology, Taiyuan, Shanxi, China; e-mail: hanxiaohong@tyut.edu.cn; Simin Chen (Corresponding author), Computer

Science, The University of Texas at Dallas, Richardson, Texas, United States; e-mail: simin.chen@utdallas.edu; Wei Yang,

University of Texas at Dallas, Richardson, Texas, United States; e-mail: wei.yang@utdallas.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1049-331X/2024/08-ART186

https://doi.org/10.1145/3664812

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

HTTPS://ORCID.ORG/0009-0001-6344-2477
HTTPS://ORCID.ORG/0000-0002-8779-6528
HTTPS://ORCID.ORG/0000-0001-5035-3398
HTTPS://ORCID.ORG/0000-0002-5338-7347
mailto:permissions@acm.org
https://doi.org/10.1145/3664812
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664812&domain=pdf&date_stamp=2024-08-26

186:2 X. Feng et al.

CCSConcepts: • Software and its engineering→ Search-based software engineering; Software testing

and debugging; Automatic programming; Software evolution;

Additional Key Words and Phrases: Machine learning, software testing, large language model

ACM Reference Format:

Xiaoning Feng, Xiaohong Han, Simin Chen, and Wei Yang. 2024. LLMEffiChecker: Understanding and Test-

ing Efficiency Degradation of Large Language Models. ACM Trans. Softw. Eng. Methodol. 33, 7, Article 186

(August 2024), 38 pages. https://doi.org/10.1145/3664812

1 INTRODUCTION

Large Language Model (LLM) is a promising approach that applies neural networks to resolve
various text generation problems. LLMs have received significant recent attention from both
academia [4, 10, 42, 53] and industry [2, 36, 46, 54, 67, 90, 93] due to its advantages over traditional
text generation methods (e.g., N-gram language models [68]). For instance, due to being capable of
capturing rather long dependencies in sentences, LLMs are seeing a wide adoption in commercial
text generation including OpenAI’s GPT products (e.g., ChatGPT) [6, 11, 57, 61] and Meta’s
LLaMA products [65, 72, 73].
Much research has been done on enhancing the accuracy of LLMs [47, 84]. Recently, re-

search [30, 33, 34, 69] has been conducted to understand the accuracy robustness of existing
LLMs by developing a series of adversarial test input generation frameworks that reduce the
generation accuracy of existing LLMs. While accuracy robustness is clearly important, we
observe that the computation efficiency of LLMs, particularly in terms of the latency and energy
spent on generating an input with a specific length, is an equivalently critical property that has
surprisingly received little attention. A common and unique characteristic of the LLMs domain is
the need to process a huge amount of real-time requests (e.g., OpenAI’s ChatGPT has an average
monthly visit volume of 15 billion and an average daily consultation volume of approximately
270 million times [28, 50, 63]). The vast demand for generation requests combined with the
real-time requirements naturally makes the computation efficiency of any LLM be one of the
most critical optimization goals. In this article, we make the first attempt in understanding and
testing potential vulnerabilities in terms of the computation efficiency of existing LLMs.

Key observations revealing vulnerabilities on LLMs computation efficiency. Our findings
are motivated by several observations. Particularly, through analyzing the working mechanisms
and detailed implementation of 20,543 public-accessible LLMs (e.g., Google FLAN-T5 [19], Big-
Science T0 [66]), we observe a fundamental property of LLMs that could be manipulated in an
adversarial manner to significantly reduce computation efficiency. Specifically, we observe that
the computation efficiency of LLMs is highly sensitive to different inputs, even those exhibiting
just minor differences. For instance, slightly modifying an input could incur an order of magnitude
more computation demand (e.g., as shown in Figure 2, inserting a character “b” in token “Genäck-
stück”will increase the latency of HuggingFace’s LLM from 0.876 s to 20.382 s, representing an over
20× latency increase). Such dramatic impact on computation efficiency may occur fundamentally
because LLMs often need to invoke the underlying decoder with non-deterministic numbers of it-
erations to generate outputs [49, 75]. Intuitively, the computation efficiency of LLMs is determined
by the output length instead of the input, where the output length depends on two factors: an often
sufficiently large yet pessimistic pre-configured threshold controlling themax number of iterations
(e.g., as shown in Figure 3, a dominant number of our studied LLMs set this threshold to be over 300,
which is significantly larger than the actual output length in most cases); and a runtime-generated
end of sentence (EOS) token. By observing such properties, our key motivation is that it may be

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://doi.org/10.1145/3664812

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:3

possible to generate test inputs that could sufficiently delay the generation of EOS such that LLMs
would have to go through max iterations to satisfy the pessimistic pre-configured threshold.

This implies an important yet unexplored vulnerability of LLMs: adversarially designed inputs
that may cause enormous, abnormal computation demand in existing LLMs, thus significantly
wasting the computational resources and energy and may adversely impair user experience and
even service availability. Such adversarial inputs could result in devastating consequences for
many real-world applications (also proved by our experiments). For example, abusing computa-
tional resources on commercial text generation service providers (e.g., HuggingFace [82]) could
negatively impact the quality of service (e.g., enormously long response time or even denial of
service). For application domains that are sensitive to latency or energy, such as mobile and
IoT devices, abusing computational resources might consume battery in an unaffordable, fast
manner.
Motivated by these observations, we aim to systematically develop a framework that generates

inputs to test the robustness w.r.t. computation efficiency of LLMs. The generated test inputs
may significantly increase the computational demand and thus hinder the computation efficiency
regarding response latency, energy consumption, and availability. To make such testing practical,
any generated LLMs test inputs shall not be attack-obvious. One objective is thus to make trivial
or unnoticeable modifications on normal textual inputs to generate such test inputs. We present
LLMEffiChecker, which effectively achieves our objectives. LLMEffiChecker is developed based
on the aforementioned observation. Specifically, LLMs iteratively compute the output token until
either the system generates an EOS token or a pre-configured threshold controlling the max num-
ber of iterations has been met. For our studied 20,543 LLMs1 the appearance of EOS is computed
from the underlying DNNs output probability. LLMEffiChecker develops techniques that could
perturb input sentences to change the underlying DNNs output probability and sufficiently delay
the generation of EOS, thus forcing these inputs to reach the naturally unreachable threshold.
In the white-box setting, LLMEffiChecker further develops a gradient-guided technique that
searches for a minimal perturbation (including character-level, token-level, and structure-level
ones) that can effectively delay the generation of EOS. In the black-box setting, LLMEffiChecker
utilizes a causal inference-based method to identify crucial tokens without relying on gradient
information and correspondingly applies three levels of imperceptible perturbation to effectively
degrade the efficiency of LLMs. Applying the above minimal perturbation on the seed input
would result in significantly longer output, costing LLMs more computational resources and thus
reducing computation efficiency.

Implementation and evaluation. We have conducted extensive experiments to evaluate the
effectiveness of LLMEffiChecker. Particularly, we applied LLMEffiChecker on nine real-world
publicly available and widely used (e.g., with more than 2,714,275 downloads in November 2023)
LLMs (i.e., Google T5 [29, 62], AllenAI WMT14 [1], Helsinki-NLP [35], Facebook Fairseq [55],
UNICAMP-DL Translator [51], MarianMT [52], Google FLAN-T5 [19], MBZUAI LaMini-GPT [83],
and Salesforce CodeGen [56]). The selected LLMs are trained with different corpus and feature di-
verse DNN architectures as well as various configurations. We compare LLMEffiChecker against
four state-of-the-art methods that focus on testing LLMs’ accuracy and correctness. Evaluation
results show that LLMEffiChecker is highly effective in generating test inputs to degrade the
computation efficiency of the LLMs under test. Specifically, LLMEffiChecker generates test
inputs that could increase the LLMs’ CPU latency, CPU energy consumption, GPU latency, and
GPU energy consumption by 322% to 3,154%, 366% to 3,053%, 327% to 1,969%, and 322% to 1,966%,
respectively, through only perturbing one character or token in any seed input sentences. Our

1https://huggingface.co/models?pipeline_tag=text2text-generation&sort=downloads

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/models?pipeline_tag=text2text-generation&sort=downloads

186:4 X. Feng et al.

case study shows that inputs generated by LLMEffiChecker significantly affect the battery power
in real-world mobile devices (i.e., drain more than 30 times battery power than normal inputs).

Contribution. Our contributions are summarized as follows:

— Characterization: We are the first to study and characterize the computation efficiency vul-
nerability in state-of-the-art LLMs, which may critically impair latency and energy perfor-
mance, as well as user experience and service availability. Such vulnerability is revealed by
conducting extensive empirical studies on 20,543 publicly available LLMs, which have been
downloadedmore than 3,260,064 times in November 2023. The results show that the revealed
vulnerability could widely exist due to a fundamental property of LLMs.

— Approach:We design and implement LLMEffiChecker, the first framework for testing LLMs’
computation efficiency. Specifically, given a seed input, LLMEffiChecker applies gradient-
guided and causal inference-based methods to mutate the seed input to generate test inputs
in white-box and black-box settings, respectively. Test inputs generated by LLMEffiChecker
only perturb one to three tokens in any seed inputs.

— Evaluation: We evaluate LLMEffiChecker on nine real-world publicly available LLMs (i.e.,
Google T5, AllenAI WMT14, Helsinki-NLP, Facebook FairSeq, U-DL Translator, MarianMT,
FLAN-T5, LaMini-GPT, and CodeGen) against four correctness-based testing methods. In ad-
dition, we propose a series of metrics (Equation (5)) to quantify the effectiveness of the trig-
gered computation efficiency degradation. Evaluation results suggest existing correctness-
based testing methods cannot generate test inputs that impact computation efficiency. In
contrast, LLMEffiChecker generates test inputs that increase LLMs’ latency and energy con-
sumption by 291% to 12,536% and 207% to 11,172%, respectively.

—Mitigation: We propose a lightweight method to mitigate possible computation efficiency
degradation: running a detector at runtime for input validation. We evaluate the perfor-
mance of our proposed mitigation method in terms of accuracy and additional overheads.
Results confirm the efficacy and efficiency of our proposed mitigation method.

This article represents a substantial expansion of our prior research featured in ESEC/FSE’22
[15]. This extension encompasses several key advancements: (1) Diversification of Testing Scope:
We have broadened our focus from efficiency testing specific to neural machine translation

(NMT) models to encompass a broader range, specifically targeting General Large Language

Models (LLMs). The scope of our study is now more inclusive, as detailed in the Section 3.
(2) Introduction of a Black-box Approach: In addition to the original white-box methodology,
we have introduced a novel black-box approach, as explained in Section 5.3. This innovative
methodology is designed to operate effectively under realistic scenarios, offering a more robust
evaluation of the model’s performance. (3) Expanded Subject Evaluation: Going beyond the
confines of NMT models, our research evaluates our proposed framework across a wider array of
subjects. This includes a comprehensive assessment of the framework’s applicability to LLMs for
diverse applications, such as sentence completion and code generation.

2 BACKGROUND

2.1 Working Mechanism of Large Language Models

Much recent research has been done towards developing more accurate and efficient LLMs
[9, 49, 60, 70, 74, 75, 84]. The language model computes the conditional probability P(Y |X),
where X = [x1,x2, . . . ,xm] is the input token sequence and Y = [y1,y2, . . . ,yn] is the output
token sequence. Modern LLMs apply the neural networks to approximate such conditional
probability P(Y |X). As shown in Figure 1, The structure of LLMs can be broadly categorized
into two types: the Encoder-Decoder architecture (e.g., Google T5 series) and the Decoder-Only

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:5

Fig. 1. Working mechanism of LLMs.

architecture (e.g., OpenAI GPT series). The encoder fen(·) encodes the source input X into hidden
representation H , then H is fed into the decoder for decoding. Notably, the attention layers in
the encoder possess the capacity to analyze all words within the initial sentence, whereas the
attention layers of the decoder fde (·) can only access the words positioned before a given word
in the input. Consequently, these two architectures are often chosen for different tasks. The
Encoder-Decoder architecture is well-suited for tasks involving sequence-to-sequence mappings
(e.g., translation and summarization). While the Decoder-Only architecture is more fitting for
autoregressive generation tasks, characterized by the sequential generation of output sequences
(e.g., text continuation and dialogue systems), it excels in predicting the next piece of text based
on the sequence that has already been generated (or a given initial text). An implementation
example of LLMs’ decoding process is shown in Listing 1.2 From the code snippet, we observe
that the decoding process starts with a special token (SOS) and iteratively accesses H for
an auto-regressive generation of each token yi until the end of sequence token (EOS) or the
maximum iteration (e.g., max_length) is reached (whichever condition is reached earlier). To
improve LLMs’ accuracy, a common practice is to apply the beam search algorithm to search
multiple top tokens at each iteration and select the best one after the whole decoding process.

1 '''

2 Encoding process

3 '''

4 decoded_words = ['<SOS >']

5 for di in range(max_length):

6 decoder_output , decoder_hidden = decoder(decoder_input , decoder_hidden ,

encoder_outputs)

7 topv , topi = decoder_output.data.topk (1)

8 if topi.item() == EOS_token:

9 decoded_words.append('<EOS >')

10 break

11 else:

12 decoded_words.append(index2word[topi.item()])

13 decoder_input = topi.squeeze ().detach ()

14 return decoded_words

Listing 1. Source Code Example of LLMs Implementation.

2.2 Robustness Testing for NLP Systems

Although modern NLP systems demonstrate human-level performance in terms of accuracy,
NLP systems are still far from robust due to the complexity and intractability of the underlying

2The code snippet is downloaded from PyTorch LLM tutorial.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:6 X. Feng et al.

Fig. 2. Examples illustrating LLMs’ efficiency degradation by inserting one character (using HuggingFace

API).

neural networks. To improve the robustness of NLP systems, a series of testing methods have
been proposed, which focus on accuracy testing. The core idea of existing work is to perturb seed
input sentences with different perturbations and detect output inconsistency between perturbed
and seed outputs. At high-level, the perturbations in existing work can be categorized into three
types: (i) character-level: This type of perturbations [4, 20, 21, 44, 95] represents the natural typos
and noises in textual inputs. For example, character swap (e.g., noise → nosie), order random
(e.g., noise→ nisoe), character insertions (e.g., noise→ noisde), and keyboard typo (e.g., noise→
noide); (ii) token-level: This type of perturbations [18, 44, 64, 69, 88, 91] replaces a few tokens in
the seed sentences with other tokens. However, token replacement sometimes would completely
change the semantic of the input text; thus, this type of perturbation usually appears in adversary
scenarios; (iii) structure-level: Different from the above two perturbations, this type of perturba-
tions [30, 33, 34, 45] seeks to generate legal sentences that do not contain lexical or syntactic
errors. For example, Reference [33] proposes a structure invariant testing method to perturb seed
inputs with Bert [40], and the perturbed sentences will exhibit similar sentence structure with the
seed sentences.

3 MOTIVATION & PRELIMINARY STUDY

In this section, we first give a motivating example in detail to show efficiency degradation issues
in real-world LLMs. We then present a comprehensive empirical study based on 20,543 state-of-
the-art LLMs, which reveals an important vulnerability in existing LLMs that may suffer from
significant efficiency degradation.

3.1 Motivating Example

Figure 2 illustrates the efficiency degradation issue that HuggingFace LLMs APIs may experience
due to unnoticeable perturbations. Sub-figure (a) depicts Helsinki’s model3 specialized in translat-
ing from German to English, while sub-figure (b) showcases Salesforce’s CodeGen model4 tailored
for code synthesis tasks. The selected LLMs APIs are rather popular among developers, with
717,082 and 45,067 downloads merely in February 2024. Figure 2 shows the computation time of
LLMs in different scenarios using two input sentences, where a normal (abnormal) input is used in
the left (right) part of the sub-figure. Note that the abnormal input differs from the normal input
by only one character, “b” or “H” (highlighted in blue). Nonetheless, due to such a one-character

3https://huggingface.co/Helsinki-NLP/opus-mt-de-en
4https://huggingface.co/Salesforce/codegen-350M-mono

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/Helsinki-NLP/opus-mt-de-en
https://huggingface.co/Salesforce/codegen-350M-mono

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:7

Table 1. Top 10 Popular LLMs on HuggingFace Website

Rank Model Name max_length # of Downloads

1 gpt2 50 23,723,037

2 tiiuae/falcon-7b-instruct 2,048 8,068,318

3 distilgpt2 50 4,812,521

4 Kyle1668/boss-toxicity-t5-large 300 4,400,913

5 facebook/mbart-large-50 200 4,080,895

6 stabilityai/StableBeluga-7B 4,096 3,480,702

7 Kyle1668/boss-sentiment-t5-large 200 3,402,617

8 t5-small 300 2,714,275

9 t5-base 300 2,132,545

10 google/flan-t5-base 300 1,307,572

The Order is based on the Number of Downloads.

difference in the input, the computation time increases from 0.876 s to 20.382 s (a 2,226.7% increase)
and 0.5843 s to 9.133 s (a 1,474.1% increase). This real-world example reveals that state-of-the-art
LLMs may have critical yet unrevealed vulnerabilities that negatively impact computation
efficiency.
As we discussed in Section 2.1, the working mechanism of LLMs is to iteratively call the

decoder fde (·) to generate output tokens until either the particular token EOS is reached or the
pre-configured threshold is met. Thus, LLMs with more decoder calls (i.e., denoted as | | fde (·)| |)
will consume more computational resources and incur longer computational times. An intuitive
approach to mitigate the efficiency degradation issue in Figure 2 is to set a small threshold to
limit | | fde (·)| |. However, this solution is impractical due to inherently significant differences of
| | fde (·)| | in the text generation corpus. According to our empirical study of 20,543 LLMs (detailed
in Section 3.2), the majority of them set max_length over 300. To further understand why this
intuitive approach does not work, we conduct a comprehensive empirical study using 20,543
state-of-the-art LLMs. Specifically, we focus on answering the following two research questions:

—RQ 1.1: What are the current engineering configurations in real-world LLMs that control

| | fde (·)| |? (Section 3.2)
—RQ 1.2:Why is small threshold impractical to mitigate efficiency degradation? (Section 3.3)

3.2 Current Engineering Configurations

3.2.1 Study Methodology. We investigate the configurations of existing mainstream LLMs.
Specifically, we study 20,543 LLMs (e.g., Google Flan-T5, BigScience BLOOMZ) from HuggingFace
online LLMs service.5 HuggingFace is a commercial platform that provides third-party real-time
NLP service, which covers almost all LLMs architectures. LLMs on the HuggingFace platform are
open-source and widely used by public, as shown in Table 1 (e.g., the most popular LLMs in Hug-
gingFace have been downloaded for more than 23,723,037 times in November 2023). HuggingFace
provides high-level abstraction API for LLMs service. List 2 shows code snippets of using Hug-
gingFace API to load Google T5 service. All language model classes are inherited from a common
parent class, GenerationMixin, which contains all functions supporting text generation.We parse
the source code of the GenerationMixin.generate function and observe that the generation flow
could be divided into nine parts. Among all nine parts, we find that the eighth part determines

5https://huggingface.co/

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/

186:8 X. Feng et al.

Fig. 3. The distribution of max_length values.

the critical stopping criteria. The source code of the eighth part is shown in List 3. From the
source code, we observe that two variables, max_length and max_time, determine the stopping
criteria. max_length is a variable from the LLMs’ configuration file that determines the maximum
length of the sequence to be generated, equivalent to the maximum number of decoder calls
mentioned earlier. Similarly, max_time is a variable that determines the maximum computation
time. According to HuggingFace programming specifications, only one of these two fields needs
to be set. Finally, we select all LLMs in the Text2Text Generation column from HuggingFace’s API
services6 and parse each LLM’s configuration file to check how max_length and max_time have
been set.

1 # HuggingFace high -level API for text generation

2 model = AutoModelWithLMHead.from_pretrained("t5 -base")

3 s = "CS is the study of computational systems"

4 input_tk = tokenizer(s, return_tensors="pt").input_ids

5 res_tk = model.generate(input_tk)

Listing 2. HuggingFace libraries high-level text generation API.

1 # 8. prepare stopping criteria

2 stopping_criteria = self._get_stopping_criteria(

3 max_length=max_length ,

4 max_time=max_time ,

5 stopping_criteria=stopping_criteria)

Listing 3. Stopping criteria in text generation.

3.2.2 Study Results. Among all 20, 826 LLMs, we successfully collect 20, 543 configuration files,
where 14, 266 of them include the max_length field and none of them includes the max_time field.
This is mainly because the max_time field is hardware-dependent. The statistical results of the
max_length values are shown in Figure 3. We have the following two observations: First, there
is a significant variance in the max_length value (ranging from 8 to 16,896); second, the majority
of LLMs (63.44%) configure the max_length to values surpassing 300, i.e., the maximum decoder
invocation exceeds this threshold. Furthermore, if there are no specifications for max_length in
the model configuration, then it potentially indicates a bug, as this omission could lead to unpre-
dictable behavior andmay not align with the user’s expectations for the generated text. We present
the following two evidences: First, when utilizing HuggingFace’s transformers library to load a
model (e.g., List 2), if max_length is not specified in the model configuration file, then the default

6https://huggingface.co/models?pipeline_tag=text2text-generation&sort=downloads

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/models?pipeline_tag=text2text-generation&sort=downloads

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:9

Table 2. Statistical Results of Efficiency Differences in LLMs

Language
of pairs

Quantile of Target Length Quantile of Length Ratio

Src Tgt 10% 50% 90% 100% (max) 1% (min) 10% 50% 90% 100% (max)

fr en 13,172,019 4.00 24.00 52.00 97.00 0.50 0.87 1.10 1.47 3.00

zh en 9,564,315 11.00 41.00 87.00 179.00 0.90 1.38 1.83 3.00 8.26

zh es 9,847,770 10.00 40.00 87.00 176.00 0.75 1.19 1.57 2.68 8.50

zh fr 9,690,914 11.00 41.00 88.00 178.00 0.74 1.21 1.63 2.85 8.29

zh ru 9,557,007 10.00 42.00 90.00 180.00 0.62 1.60 2.25 5.00 13.75

1%, 10%, 50%, 90%, 100% Represent Quantile.

value is set to 20. It is strongly advised in the official documentation to set an appropriate value
manually.7 The default small value is a conservative choice to facilitate a quick start for users, as
longer outputs necessitate increased computational resources (time and memory) for generation,
processing, and storage. However, this default value is insufficient to convey adequate informa-
tion, necessitating users to define a reasonable max_length manually. Detailed arguments on this
matter will be provided in Section 3.3. Second, decoder-only LLMs also return the input prompt
as part of the output. Consequently, if the input length exceeds 20 tokens, then the model will
not produce any output and trigger a UserWarning: “Input length exceeds the default max_length
(=20).” This may result in unexpected behavior. Note that real-world LLMs prefer to set such a large
threshold just to prevent unresponsiveness (e.g., dead-loop). However, in most cases with normal
inputs, such a threshold will not yield any real impact, as the EOS token often appears much earlier
(e.g., in code generation applications, setting the max_length of LLMs to 512 is a widely adopted
practice [8, 48, 94]).

3.3 Feasibility Analysis of an Intuitive Solution

3.3.1 StudyMethodology. An intuitive solution to mitigate the efficiency degradation is to limit
| | fde (·)| | (i.e., the max_length field). In this section, we conduct a statistical analysis to prove that
such an intuitive solution is infeasible. We analyze the distribution of max_length of the target
sentence (ground truth) in the training corpus. We select the MultiUN dataset [22] as the subject in
our empirical study because of the following criteria: (i) the datasets are open-source and publicly
available; (ii) the datasets are widely studied in recent works (with more than 1,000 citations until
November 2023); (iii) the datasets are diverse in covering various areas (e.g., different languages,
concepts, etc.). MultiUN dataset is a collection of translated documents from the United Nations. It
includes seven languages with 489,334 files and a total number of 81.41M sentence fragments. We
parse the source/target sentence pairs in the MultiUN dataset and measure the length of all target
sentences.

3.3.2 Study Results. The statistic results of the output length are shown in Table 2 (full results
could be found in an anonymous website.8) Column “Quantile of Target Length” shows the target
sentence length under different quantiles, and Column “Quantile of Length Ratio” shows the ratio
of sentence length between the source and target. From the results, we observe that the lengths
of target sentences (ground truth) are in sparse distributions. Particularly, the ratio of sentence
length between the source and target exhibits rather large variance. For instance, the length of
target sentence varies from 4 to 97, and the ratio is from 0.62 to 13.75 for language fr and en. As a

7https://huggingface.co/docs/transformers/v4.38.1/en/llm_tutorial
8https://github.com/Cap-Ning/LLMEffiChecker

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/docs/transformers/v4.38.1/en/llm_tutorial
https://github.com/Cap-Ning/LLMEffiChecker

186:10 X. Feng et al.

result, setting a small max_length field will lead to low-precision generation results. For instance,
in the last line of Table 2, i.e., generating zh to ru, if setting max_length to 42, at least 50% of data
will not be generated completely. Thus, we can conclude that the intuitive solution, i.e., setting
a small max_length field, is impractical to avoid efficiency degradation issues. On the contrary,
setting a sufficiently large max_length can address the limitation of incomplete text generation
while not incurring efficiency issues for any ordinary inputs due to the EOS mechanism.

4 PROBLEM FORMULATION

Our goal is to generate test inputs that can degrade the computation efficiency of LLMs. Our pro-
posed method seeks to perturb a seed sentence to craft test inputs. The perturbed test inputs will
incur significantly longer computation time, thus impairing user experience and even causing ser-
vice unavailability. Note that we allow general and unnoticeable perturbation patterns, including
adding limited number of characters (e.g., 1–3 characters) at arbitrary positions and replacing ar-
bitrary tokens using semantic-equivalent alternatives. As we discussed in Section 2, LLMs’ compu-
tation efficiency depends on the output length, where a lengthier output implies less computation
efficiency. Thus, our goal can be achieved through increasing LLMs’ output length through generat-
ing effective test inputs. We thus formulate our problem of generating test inputs for computation
efficiency testing as the following optimization:

Δ = argmaxδ | | fde (x + δ)| | s .t . | |δ | | ≤ ϵ, (1)

where x is the seed input, fde (·) is the decoder of the LLMs under test, ϵ is the maximum al-
lowed perturbation, and | | fde (·)| | measures the number of times of LLMs’s decoders being called.
Our proposed LLMEffiChecker tries to search a perturbation Δ that maximizes the decoders’ call-
ing times (decreasing target LLMs efficiency) within a minimum allowable perturbation threshold
(which ensures unnoticeable perturbations).

5 METHODOLOGY

We now present LLMEffiChecker, designed for both white-box and black-box scenarios. It pro-
vides three specific implementations: character-level perturbation, token-level perturbation, and
structure-level perturbation.

5.1 Design Overview

LLMEffiChecker demonstrates practicality by functioning seamlessly in both white-box and
black-box settings. In either scenario, LLMEffiChecker employs an iterative process where it
systematically perturbs a single token within a seed sentence using various types of perturbations.
A design overview of the procedural steps for each iteration is presented in Figure 4. This
illustration encapsulates three pivotal steps applicable to both white-box and black-box settings:

(1) Finding critical tokens. For each seed sentence, we feed it to LLMs under test. In the
white-box setting, LLMEffiChecker applies a gradient-based approach to identify critical
tokens with the highest impact on the computation efficiency of LLMs. Conversely, in
the black-box setting, LLMEffiChecker employs a casual inference-based instead of a
gradient-based approach to pinpoint critical tokens that significantly influence LLMs’
computational efficiency.

(2) Mutating seed input sentences. After identifying the critical tokens in the seed sentences,
we mutate the seed sentences with three types of perturbations and generate three lists of
similar sentences.

(3) Detecting efficiency degradation. We feed the mutated sentences and the seed sentence into
LLMs and detect any efficiency degradation.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:11

Fig. 4. Design overview of LLMEffiChecker.

5.2 White-box Detail Design

Finding Critical Tokens: Given a seed sentence x = [tk1, . . . , tkm], the first step is to identify
tokens that are critical to LLMs’ efficiency. As we discussed earlier, LLMs’ computation efficiency
depends on the corresponding output length given any input, which is determined by the pre-
configured threshold and the EOS token. In Section 3, we showed that the pre-configured threshold
is set as a fixed value in the configuration files of LLMs. Thus, to generate effective testing inputs,
our objective is to decrease the probability that the EOS token would appear given a specific input
to reduce LLMs’ computation efficiency.
Formally, let LLM’s output probability be a sequence of vectors, i.e., [p1,p2, . . . ,pn], and the prob-

ability of EOS token appearance be [peos1 ,p
eos
2 , . . . ,p

eos
n]. We seek to find the importance of each

token tki in x to this probability sequence. We also observe that the output token sequence will
affect EOS’s probability [27]. Specifically, LLMs generate tokens in the generated sequences based
on the generated probability distribution. When the generated sequence is semantically complete
or matches a common grammatical structure that typically ends, the model may predict a higher
probability for the EOS token. To encourage deviations from the original generated token sequence
and focus more on other possible candidate tokens, we incorporate poii into f (x) to enhance the
output uncertainty on each generated token, promoting longer, more complex sequences. Thus,
we define the importance score of token tki as дi , shown in Equation (2).

oi = argmax(pi) f (x) =
1

n

n∑

i

(
peosi + poii

)
дi =

∑

j

∂ f (x)

∂tk ji
, (2)

where [o1,o2, . . . ,on] is the current output token, f (x) is the probability we seek to minimize; it
can delay the generation of the EOS token and introduce more uncertainty for each generated
token in the prediction process to break the existing output dependency, thereby maximizing the

generation of longer sentences to the fullest extent. tk ji is the jth dimension of tk’s embeddings,
and дi is the derivative of f (x) to ith token’s embedding. The score дi assesses the importance of

the token tk ji for the output length. It is calculated by summing the gradients, which quantify the
sensitivity of f (x) to variations in each dimension of the token’s embedding.

Input Mutation: After identifying important tokens, the next step is to mutate the important
token with unnoticeable perturbations. In this step, we get a set of perturbation candidate L after
we perturb the most important tokens in the original input. We consider three kinds of perturba-
tions, i.e., character-level perturbation, token-level perturbation, and structure-level perturbation.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:12 X. Feng et al.

Table 3. Examples of Character-level, Token-level, and Structure-level

Perturbation under Different Size

Original ϵ Do you know who Rie Miyazawa is?

1 Do you know who Rie Miya-zawa is?

Character-Level 2 Do you know whoo Rie Miya-zawa is?

1 Do Hello know who Rie Miyazawa is?

Token-Level 2 Do Hello know who Hill Miyazawa is?

1 Do you remember who Rie Miyazawa is?

Structure-Level 2 Do you remember what Rie Miyazawa is?

Table 3 shows some examples of character-level, token-level, and structure-level perturbations
with different perturbation sizes ϵ (the perturbation is highlighted with the color red).

For character-level perturbation, we consider character insertion perturbation. Specifically, we
insert one character c into token tk to get another token δ . The character-insert perturbation is
common in the real world when typing quickly and can be unnoticeable without careful exam-
ination. Because character insertion is likely to result in out-of-vocabulary (OOV), it is thus
challenging to compute the token replacement increment at token-level. Instead, we enumerate
possible δ after character insertion to get a candidate set L. Specifically, we consider all letters and
digits as the possible character c , because humans can type these characters through the keyboard,
and we consider all positions as the potential insertion position. Clearly, for token tk , which
contains l characters, there are (l + 1) × ||C | | perturbation candidates, where | |C | | denotes the size
of all possible characters. For token-level perturbation, we consider replacing the original token tk
with another token δ . To compute the target token δ , we define token replace increment Isrc,tдt to
measure the efficiency degradation of replacing token src to tдt . As shown in Equation (3), E(·) is
the function to obtain the corresponding token’s embedding, E(tдt) − E(src) represents the vector
increment in the embedding space, capturing the semantic and syntactic variation and measuring
the impact of the replacement on the sentence’s meaning and structure. It explores a wider range
of potential outputs, further breaking the original output dependency, leading to more diverse
and complex sequences, making it difficult for LLMs to converge to a coherent output. Recall

that Equation (2),
∂f (x)

∂tk
j

i

indicates the sensitivity of output length to each embedding dimension.

Therefore, Isrc,tдt denotes the total benefits of replacing token src with tдt . We search the target
token δ in the vocabulary to maximize the token replace increment with the source token tk .

Isrc,tдt =
∑

j

(E(tдt) − E(src)) ×
∂ f (x)

∂tk ji
δ = argmaxtдt Itk,tдt ; (3)

For structure-level perturbation, we follow existing work [33, 69] to parse the seed input
sentence as a constituency tree and replace the critical token with another token based on Bert
[5]. Unlike token-level perturbation, the structure-level perturbation ensures the constituency
structure of the perturbed sentence is the same as the seed one. Figure 5 shows an example of the
structure-level perturbation. To enhance clarity, our explanation utilizes the left section of the tree
as an illustrative example. At the apex, the “S” symbolizes the sentence in its entirety. Descending
from the top, the sentence splits into a noun phrase (NP) and a verb phrase (VP), representing
the basic Subject-Verb-Object (SVO) pattern inherent to elementary English structure. The NP
itself breaks down further into a possessive pronoun “PRP$” (our) and a common noun “NN”
(group), indicating “our group” as the subject of the sentence. Within this seed sentence, “group”
has been identified as the critical token. After feeding the parsed information from the sentence

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:13

Fig. 5. Constituency tree of sentence.

constituent tree into the BERT model, the token “team” is produced as a structural perturbation.
This method of critical token replacement retains the original sentence structure, affirming the
integrity of the constituency tree post-perturbation.

Efficiency Degradation Detection: After collecting candidate perturbations L, we select an
optimal perturbation from the collected candidate sets. Since our objective is searching this
perturbation candidate set that will produce a longer output length, we straightforwardly test all
perturbations in this set and select the optimal perturbation that produces the maximum output
length.

5.3 Black-box Detail Design

Finding Critical Tokens: Note that selecting critical tokens is relatively straightforward in a
white-box scenario, since it can be easily accomplished by inspecting the gradients of LLMs, while
most other tokens are irrelevant. However, in the more common black-box setup, model gradients
are unavailable. In black-box settings, employing random mutation to generate test inputs often
proves ineffective due to the vastness of the search space. To overcome this challenge, we propose
a novel approach grounded in the concepts of delta debugging [76] and causal inference [87]
to identify the critical tokens with the utmost impact on the computational efficiency of LLMs.
Additionally, our approach is based on the fundamental conclusion discussed in Section 2, which
states that the computational efficiency of LLMs depends on the resulting output length for
any given input. Longer outputs necessitate more frequent invocations of the decoder during
input processing, thereby demanding a higher volume of floating-point operations (FLOPs).
Specifically, we first decompose the input by removing each token from the original input
sentence, breaking it down into multiple subsets. By comparing the output length of each subset
with the original output length, we pinpoint the sentence with the most substantial difference
in output length from the seed sentence. Subsequently, we identify the missing token in this
sentence, which constitutes the critical tokens we are seeking. Through this strategic division of
the search process, our approach adeptly identifies the critical tokens in black-box scenarios.
Formally, given a seed sentence Sorig = [tk1, tk2, . . . , tkm], we generate debugging subsets Si

by removing the token tki from Sorig. Subsequently, we feed each Si and Sorig into the target LLM
to obtain the corresponding output lengths Oi and O . Our objective is to identify the index j that
maximizesγj . Once this index j is determined, the critical token is tkj in Sorig (refer to Equation (4)).

γi = |Oi −O | j = arдmaxiγi (4)

Specifically, we conceptualize LLMs as a sequence of mappings that transition from an input
domain to an output domain, with each distinct input eliciting a unique output [40]. By employing
causal inferencemethods, wemodify the inputs andmonitor the resultant variations in the outputs.
This process enables us to infer the correlation between diverse inputs and their corresponding

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:14 X. Feng et al.

Table 4. The LLMs under Test in Our Experiments

Model Task Category Model_size Vocab Size Max_length URL

H-NLP En-Zh Translation 298 MB 65,001 512 https://huggingface.co/Helsinki-NLP/opus-mt-en-de

AllenAi En-De Translation 235 MB 42,024 200 https://huggingface.co/allenai/wmt16-en-de-dist-12-1

T5 En-Zh Translation 242 MB 32,100 200 https://huggingface.co/t5-small

U-DL En-Pt Translation 892 MB 32,128 200 https://huggingface.co/unicamp-dl/translation-en-pt-t5

FairSeq En-De Translation 1.08 GB 42,024 200 https://huggingface.co/facebook/wmt19-en-de

MarianMT En-Zh Translation 310 MB 65,001 512 https://huggingface.co/DDDSSS/translation_en-zh

Flan-T5 Sentence Completion 308 MB 32,128 300 https://huggingface.co/google/flan-t5-small

LaMini-GPT Sentence Completion 510 MB 50,258 200 https://huggingface.co/MBZUAI/LaMini-GPT-124M

CodeGen Code Generation 797 MB 51,200 200 https://huggingface.co/Salesforce/codegen-350M-mono

output lengths, which serve as indicators of the LLMs’ computational efficiency. Through this
analytical approach, we aim to pinpoint the critical tokens that are instrumental in this dynamic.

Input Mutation: The character-level perturbations and structure-level perturbations described
in Section 5.2 are well-suited for black-box settings. Consequently, we focus specifically on modi-
fying token-level perturbations in this section. Our intuition is that even in the black-box scenario,
obtaining the model’s vocabulary is relatively straightforward. This is because models performing
the same task in the same language typically share similar vocabularies, and the tokens within it
are visible in the model input. Consequently, upon identification of the critical tokens, we proceed
to randomly select tokens from the vocabulary to effect replacements.

Efficiency Degradation Detection: Upon compiling a set of candidate perturbations, denoted as
L, we proceed to select the optimal perturbation from this collection. Since our aim is to identify
a perturbation candidate that leads to a longer output length, we systematically assess all pertur-
bations within this set and choose the one that yields the maximum output length.

6 EVALUATION

We evaluate LLMEffiChecker and answer the following research questions:

—RQ 2.1 (Severity): How severe will LLMEffiChecker degrade LLMs efficiency?
—RQ 2.2 (Effectiveness): How effective is LLMEffiChecker in generating test samples that
degrade LLMs efficiency?

—RQ 2.3 (Sensitivity): Can LLMEffiChecker generate useful test samples that decrease LLMs
efficiency under different LLMs’ configurations?

—RQ 2.4 (Overheads): What is the overhead of LLMEffiChecker in generating test samples?
—RQ 2.5 (Ablation Study): How much does each component in LLMEffiChecker contribute
to the overall performance?

6.1 Experimental Setup

Models and Datasets. As shown in Table 4, we consider the following nine public LLMs as our
evaluation models: Google’s T5 [62], AllenAI’s WMT14 Transformer [55], and Helsinki-NLP’s H-
NLP Translator [41], Facebook’s Fairseq Transformer [55], UNICAMP-DL’s U-DL Translator [51],
Fine-tuned MarianMT [52], Google’s FLAN-T5 [19], Mohamed Bin Zayed University’s LaMini-
GPT [83], and Salesforce’s CodeGen [56]. The first six models are employed for translation tasks,
and the subsequent two models are capable of handling various downstream Natural Language
Processing tasks. In this article, our focus is on sentence completion as the subject of investigation.
The last model is specialized in code generation. Individually, T5 is released by Google, which
is first pre-trained with multiple language problems and then fine-tuned on the English-German

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/allenai/wmt16-en-de-dist-12-1
https://huggingface.co/t5-small
https://huggingface.co/unicamp-dl/translation-en-pt-t5
https://huggingface.co/facebook/wmt19-en-de
https://huggingface.co/DDDSSS/translation_en-zh
https://huggingface.co/google/flan-t5-small
https://huggingface.co/MBZUAI/LaMini-GPT-124M
https://huggingface.co/Salesforce/codegen-350M-mono

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:15

translation task. We apply English sentences from dataset ZH19 as seed inputs to generate test sam-
ples. AllenAI’sWMT14 is one of LLMs from the company AllenAI, which is trained on theWMT19
shared news translation task based on the transformer architecture. We select the WMT14 en-de
model as our evaluation model, which is designed for the English-German translation task. H-NLP
is a seq2seq model, where the source language is English and the target language is Chinese. For
each experimental subject, we randomly select 1,000 inputs from the test dataset as the seed inputs.
To further validate the efficiency loopholes in LLMs for translation, we have additionally cho-

sen three publicly available and high-performing translation LLMs. Fairseq is one of the language
models that Facebook FAIR submitted to the WMT19 shared news translation task, and it is based
on the FFN transformer architecture. We select Fairseq’s en-de model as our victim model, which
is designed for the English-German translation task. U-DL, developed by Natural Language and
Deep Learning Process Laboratory of Universidade Estadual de Campinas, is a model built on the
T5 architecture and fine-tuned for tasks involving English and Portuguese translation. Marian is
a Neural Machine Translation framework, which is mainly developed by the Microsoft Transla-
tor team, and it is released under MIT License. MarianMT Framework’s flexibility and efficiency
have made it exceptionally popular in the translation field. We choose English-Chinese translator
as our evaluation model. To ensure experiment consistency, we randomly selected 1,000 English
sentences from the ZH19 dataset as seed inputs.
In addition, we selected three open source LLMs for other application scenarios: Flan-T5

(Encoder-Decoder) instruction-finetune on a collection of data sources using a diverse set of in-
struction templates. Its performance and ability to generalize to unseen tasks are notably superior
to those of the baseline T5 model. LaMini-GPT (Decoder-Only), released by Mohamed Bin Zayed
University of Artificial Intelligence, is built on the GPT-2 framework, fine-tuned and distilled with
a large-scale instruction dataset derived from ChatGPT, all while being more compact and efficient
carried out within the structure. We employ the dataset HellaSwag [89] to assess the sentence
completion tasks for the two aforementioned large language models. Likewise, we randomly
select 1,000 data samples from this dataset as initial seed inputs. CodeGen, a creation of company
Salesforce, is part of the CodeGen family, specializing in autoregressive language models for code
generation. Our evaluation of this model involves the utilization of the mbpp dataset [3], which
comprises 427 Python programming challenges and is a widely recognized benchmark for code
generation tasks. It is important to note that this dataset falls into the category of “zero-shot”
datasets, as it lacks any input/output demonstrations within its prompts. To improve the efficiency
of our experiments, we have implemented a modification in the prompt format. In particular, we
processed each problem by incorporating a function header and converting the language instruc-
tions into function docstrings. Note that this same modification is also used in existing works [8].
We select subjects (i.e., model, dataset) following policies below.

—Availability and Accessibility: The selected subjects are publicly available, ensuring our
research can be widely replicated and expanded upon.

—Adoption and Prevalence: The chosen subjects are widely used across various fields.
For example, the H-NLP model had 263,348 downloads on Huggingface in February
2024 [41], Flan-T5 has been cited over 1,300 times [19], and the MBPP dataset represents the
mainstream benchmarks for evaluating code generation models and has gained widespread
utilization in prior research [26, 58, 80].

—Diversity and Representativeness: Our selection of datasets and models emphasizes
diversity and representativeness across various dimensions. Specifically, for LLMs used in
translation tasks, our chosen models have different model architectures, training corpora,
translation languages, and training processes. Such a strategic selection underpins the

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:16 X. Feng et al.

universality and reliability of our results. For sentence completion applications, we have
chosen flagship models representing the two principal architectures in contemporary text
generation: Google’s Flan-T5, embodying the encoder-decoder framework, and MBZUAI’s
LaMini_GPT, a decoder-only model. Notably, LaMini_GPT has undergone extensive
fine-tuning with high-quality ChatGPT instructions, achieving performance metrics that
eclipse those of OpenAI’s GPT-2 [83]. In the realm of code generation, our selection
includes models from the CodeGen family. Upon its release, CodeGen was recognized as
a leading state-of-the-art model in code generation, showcasing remarkable capabilities in
automating programming tasks and epitomizing the cutting edge of the field [58].

Comparison Baselines.A branch of existing works has been proposed for testing LLMs [4, 18, 30,
33, 34, 69]. However, all of them focus on testing LLMs’ correctness. To the best of our knowledge,
we are the first to study LLMs’ efficiency degradation issue. To show that existing correctness
testing methods can not generate test inputs that trigger efficiency degradation for LLMs. We
compare LLMEffiChecker against four state-of-the-art correctness testing methods, which are de-
signed to generate testing inputs that produce incorrect results. Specifically, we choose SIT [33],
TransRepair [69], Seq2Sick [18], and SynError [4] as our comparison baselines. SIT proposes
a structure-invariant testing method, which is a metamorphic testing approach for validating lan-
guage models. Given a seed sentence, SIT first generates a list of similar sentences by modifying
tokens in the seed sentence. After that, SIT compares the structure of the original outputs and
the generated outputs to detect generation errors. TransRepair is similar to SIT, with the differ-
ence that the unperturbed parts of the sentences preserve their adequacy and fluency modulo the
mutated tokens. Thus, any perturbed input sentence violating this assumption will be treated as
incorrect. Seq2Sick replaces the tokens in seed inputs to produce adversarial generation outputs
that are entirely different from the original outputs. SynError is a character-level testing method,
which minimizes the LLMs’s accuracy (BLEU score) by introducing synthetic noise. Specifically,
SynError introduces four character-level perturbations: swap, fully random, and keyboard typos
to perturb seed inputs to decrease the BLEU score.

Experimental Procedure.We run LLMEffiChecker in both white-box and black-box settings to
test the above-mentioned nine LLMs. Given a seed input, LLMEffiChecker perturbs the seed input
with different types of perturbations. LLMEffiChecker has one hyper-parameter (ϵ) that is config-
urable. In our experiments, we follow existing works [44] and set perturbation size (i.e., ϵ) from 1
to 3, representing different degrees of perturbation. For RQ1 (severity), we measure the percentage
of the average and maximum increased computational resource in terms of iteration loops, latency,
and energy consumption (Equation (5)), due to the generated test inputs compared to the seed in-
puts. For RQ2 (effectiveness), we measure the degradation success ratio (Equation (6)), which quan-
tifies the percentage of the test inputs out of all generated by LLMEffiChecker that can degrade the
efficiency to a degree that is larger than a pre-defined threshold. A higher ratio would imply better
efficacy in generating useful test inputs. For RQ3 (sensitivity), we run LLMEffiChecker on LLMs
with different configurations to study whether the efficacy of LLMEffiChecker is sensitive to con-
figurations. For RQ4 (overheads), we measure the average overheads of running LLMEffiChecker
to generate test inputs. For RQ5 (ablation study), we conduct an ablation study to validate the
contribution of each component in LLMEffiChecker. It is worth noting that, due to the unique
nature of code generation tasks, for the evaluation of the CodeGen model, we have made modifi-
cations to the stopping criteria. Specifically, we have expanded the list of default EOS tokens (i.e.,
“<|endoftext|>,” “\ndef,” “\n#,” “\nif,” and “\nclass”). This method finds widespread applica-
tion in code generation works [8, 26, 48, 80] and proves to be effective in enhancing the efficiency
of the model.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:17

Implementation.We implement LLMEffiChecker with the PyTorch library, using a server with
Intel Xeon E5-26 CPU and eight Nvidia A4500 GPUs. For the baseline methods, we implement
SIT and TransRepair using the authors’ open sourced code [32, 33]. We re-implement Seq2sick
and SynError according to the corresponding papers, as the original implementations are not open
sourced. For LLMs used in our evaluation, we download the pre-trainedmodels using the Hugging-
Face APIs, and we configure LLMs using both default configurations and varied configurations to
answer RQ3.

6.2 RQ 2.1: Severity

Metrics. Our evaluation considers both hardware-independent metrics (i.e., number of iteration
loops) and hardware-dependent metrics (i.e., latency and energy consumption), which quanti-
tatively represent LLMs’ efficiency. The number of iteration loops is a widely used hardware-
independent metric for measuring software computational efficiency [81]. In this experiment, the
focus is on calculating the number of decoder calls presented in Section 2.1, which corresponds to
the number of output tokens. Higher decoder calls indicate that LLMs cast more FLOPs to handle
the input text, which leads to less efficiency [16]. Response latency (i.e., the output generation
time) and energy consumption are two widely used hardware-dependent metrics for measuring
systems efficiency. Larger latency and energy consumption clearly indicate less efficiency.

I-Loops =
Loops(x ′) − Loops(x)

Loops(x)
× 100%

I-Latency =
Latency(x ′) − Latency(x)

Latency(x)
× 100%

I-Energy =
Energy(x ′) − Energy(x)

Energy(x)
× 100%

(5)

We use I-Loops, I-Latency, and I-Energy to denote the number of iteration loops, response latency,
and energy consumption, respectively. The formal definitions of I-Loops, I-Latency, and I-Energy
are shown in Equation (5), where x denotes the seed input and x ′ represents the perturbed
input under LLMEffiChecker. Loops(·), Latency(·), and Energy(·) denote the functions that
calculate the average number of iteration loops, latency, and energy consumption, respectively.
Larger values of I-Loops, I-Latency, and I-Energy indicate a more severe efficiency degradation
caused by the test inputs generated under LLMEffiChecker. In our evaluation, we measure the
hardware-dependent efficiency metrics (i.e., latency and energy consumption) on two popular
hardware platforms: Intel Xeon E5-2660v3 CPU and Nvidia A4500 GPU. For precise measurement
of energy consumption on both CPU and GPU, we employ advanced monitoring libraries. Intel’s
Running Average Power Limit (RAPL) interface is used for the CPU, offering an effective
method to observe and manage the power usage of its various components. For the GPU, we
utilize Nvidia’s Python Library for NVIDIA Management Library (PyNVML), which serves
as a Python wrapper for NVML, enabling accurate tracking and analysis of energy consumption.
This rigorous methodology allows us to capture comprehensive data on the energy efficiency
of these platforms across different operational scenarios, providing critical insights into their
performance dynamics and sustainability footprint. Furthermore, to mitigate potential biases
introduced by hardware dependencies in the evaluated metrics, we enhanced the reliability and
reproducibility of our measurements by averaging the experimental results over three runs.

Results. Table 5 and Table 6 showcase the average and maximum efficiency degradation results
under varied perturbations for LLMs, respectively. Specifically, we recorded the required I-Loops,
I-Latency, and I-energy for all test inputs, providing their mean and best-performing outcomes.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:18 X. Feng et al.

Table 5. The Average Effectiveness Results of LLMEffiChecker in Degrading LLMs Performance

Subject Methods

I-Loops I-Latency(CPU) I-Energy(CPU) I-Latency(GPU) I-Energy(GPU)

ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3

H-NLP

Seq2Sick 4.31 5.84 12.28 4.83 8.85 19.55 4.84 8.85 21.47 3.73 5.90 13.24 3.77 5.96 13.33
SynError 19.09 19.59 19.59 19.35 19.82 19.82 19.63 20.10 20.10 14.14 14.52 14.52 14.27 14.65 14.65
SIT 11.83 5.99 5.35 −1.68 −8.53 −11.21 8.17 6.32 7.41 9.84 5.50 5.75 9.90 5.58 5.83
TransRepair 0.17 0.17 0.17 0.76 0.10 0.10 0.93 0.33 0.33 −0.07 0.00 0.00 −0.07 0.00 0.00
LLMEffiChecker(C) 564.45 995.45 1,357.77 764.92 1,487.92 2,015.70 785.60 1,471.26 1,967.05 462.24 851.80 1,116.80 406.39 755.18 972.92
LLMEffiChecker(T) 2,697.77 3,735.38 3,917.91 3,153.97 4,481.93 4,681.28 3,052.62 4,544.65 4,759.71 1,953.57 2,729.83 2,854.89 1,532.91 2,137.53 2,221.66
LLMEffiChecker(S) 142.31 311.06 612.08 146.51 451.93 877.79 147.70 461.30 870.72 101.21 275.58 523.04 95.05 259.88 508.80
LLMEffiChecker-B (C) 907.89 1,483.58 2,032.41 815.15 1,561.45 2,139.55 1,026.17 1,948.84 2,653.57 684.34 1,330.43 1,823.64 681.23 1,326.60 1,821.57
LLMEffiChecker-B (T) 2,556.56 3,064.19 3,043.95 2,557.49 3,099.16 2,996.62 3,106.02 3,807.87 3,700.27 1,968.85 2,451.50 2,416.83 1,965.72 2,451.54 2,419.52
LLMEffiChecker-B (S) 200.15 450.31 809.79 181.05 389.76 766.62 233.63 488.25 973.90 172.32 369.99 683.68 172.01 369.75 683.28

AllenAI

Seq2Sick 1.72 2.22 2.15 1.48 2.06 1.35 1.19 1.76 1.10 1.57 1.41 0.38 1.70 1.57 0.57
SynError 0.38 0.38 0.38 1.89 1.89 1.89 1.75 1.75 1.75 −0.85 −0.85 −0.85 −0.71 −0.71 −0.71
SIT 7.06 4.12 6.67 1.73 −3.24 −4.64 1.73 −3.24 −4.60 3.95 14.25 −2.05 4.12 14.64 −1.60
TransRepair 0.08 0.08 0.08 −0.37 −0.37 −0.37 −0.55 −0.55 −0.55 −0.15 −0.15 −0.15 −0.14 −0.14 −0.14
LLMEffiChecker(C) 35.16 74.90 103.36 26.69 45.77 85.09 27.48 48.09 86.00 21.82 35.43 91.48 22.12 43.21 98.46
LLMEffiChecker(T) 24.83 42.04 56.75 49.12 62.84 67.98 49.99 62.65 69.06 30.65 41.32 46.09 31.00 41.81 49.66
LLMEffiChecker(S) 66.21 108.67 128.60 86.05 139.03 164.57 84.17 135.71 160.95 69.57 112.88 132.68 68.79 115.23 137.06
LLMEffiChecker-B (C) 31.78 84.30 116.75 225.80 935.84 143.91 43.25 132.30 194.46 27.64 97.85 148.22 27.41 97.47 147.72
LLMEffiChecker-B (T) 71.37 131.54 121.88 56.40 119.95 146.99 85.25 163.81 196.13 60.21 123.44 152.83 59.93 123.10 152.54
LLMEffiChecker-B (S) 65.82 76.05 90.41 78.24 90.00 80.83 110.20 123.05 113.93 80.90 92.03 86.14 80.57 91.73 85.87

T5

Seq2Sick 7.09 6.28 −6.03 7.21 6.04 −5.97 8.55 6.88 −5.16 9.01 8.00 −3.97 8.85 16.94 4.50
SynError 2.18 2.18 2.18 3.20 3.20 3.20 2.11 2.11 2.11 1.02 1.02 1.02 1.13 1.13 1.13
SIT −8.06 1.05 6.27 −4.51 7.79 7.38 −3.79 9.84 10.59 −10.99 3.57 7.74 −10.90 3.78 8.07
TransRepair 3.73 8.06 8.06 4.90 9.47 9.26 6.42 11.39 10.74 3.70 8.34 8.35 3.76 8.42 8.39
LLMEffiChecker(C) 168.92 198.36 205.37 191.05 225.48 233.01 194.45 228.02 234.04 164.61 194.79 202.28 165.38 195.77 203.29
LLMEffiChecker(T) 307.27 328.94 328.94 352.14 376.55 376.55 347.74 373.85 373.85 305.37 325.61 325.61 331.85 352.25 352.25
LLMEffiChecker(S) 77.67 80.56 82.52 85.72 89.11 91.38 86.90 90.29 92.56 75.77 78.68 80.66 68.79 73.03 74.56
LLMEffiChecker-B (C) 231.95 255.70 259.05 239.17 257.96 259.95 279.77 303.05 305.42 233.26 257.03 261.46 233.86 257.69 262.09
LLMEffiChecker-B (T) 318.94 293.67 257.92 331.77 304.63 272.73 384.44 350.53 311.98 319.07 294.36 259.99 319.65 294.84 260.43
LLMEffiChecker-B (S) 252.44 279.53 289.54 260.69 288.66 295.31 300.39 333.39 341.33 252.44 279.23 288.46 252.48 279.22 288.41

U-DL

Seq2Sick 0.59 1.22 2.71 −0.30 0.97 2.47 2.70 4.07 5.80 0.96 1.72 3.17 0.98 1.74 3.20
SynError 0.02 0.02 0.02 −0.97 −0.97 −0.97 2.01 2.01 2.01 −0.25 −0.25 −0.25 −0.24 −0.24 −0.24
SIT 16.73 6.40 4.26 15.50 4.15 2.45 18.90 9.37 7.56 17.16 6.30 4.81 17.18 6.33 4.82
TransRepair 11.36 10.66 10.82 7.53 7.09 7.09 10.07 9.94 9.95 11.46 11.45 11.59 11.43 11.41 11.55
LLMEffiChecker(C) 258.07 390.60 469.24 261.02 405.80 494.30 288.15 439.72 532.81 253.46 383.78 461.51 253.45 383.82 461.64
LLMEffiChecker(T) 604.17 642.38 642.38 655.13 696.56 696.56 697.90 741.86 741.86 595.88 634.44 634.44 596.49 635.08 635.08
LLMEffiChecker(S) 406.92 592.52 702.89 438.23 632.64 753.88 465.04 673.76 800.25 404.42 583.65 694.40 401.74 583.99 694.84
LLMEffiChecker-B (C) 488.81 495.81 502.85 522.33 517.47 526.17 559.45 556.72 567.10 483.54 490.87 499.09 483.52 490.88 499.15
LLMEffiChecker-B (T) 502.85 502.85 494.97 536.77 527.40 511.22 579.50 570.67 557.33 498.65 499.99 496.64 498.56 499.90 496.46
LLMEffiChecker-B (S) 466.97 490.19 501.44 507.14 517.67 525.86 541.40 558.12 567.17 463.23 490.47 511.64 463.31 490.69 511.80

FairSeq

Seq2Sick 0.61 0.64 −1.33 0.46 −0.75 −1.48 3.60 2.91 2.04 0.05 0.15 −1.25 0.08 0.20 −1.20
SynError 0.25 0.25 0.25 −2.67 −2.57 −2.57 −0.06 0.03 0.03 0.07 0.07 0.07 0.08 0.08 0.08
SIT −1.15 −2.15 −1.56 −4.46 −7.26 −6.73 0.13 −1.90 −1.63 −2.34 −1.51 −2.37 −2.37 −1.52 −2.37
TransRepair 0.26 0.25 0.25 0.02 0.01 0.05 0.67 0.66 0.69 −0.03 −0.01 −0.01 −0.03 0.00 0.00
LLMEffiChecker(C) 22.53 37.68 59.26 15.87 29.07 49.18 20.47 34.62 55.44 18.07 31.53 51.79 18.08 31.55 51.85
LLMEffiChecker(T) 33.73 62.13 76.41 23.97 55.26 70.28 29.79 63.19 79.41 28.62 59.42 75.47 28.60 59.42 75.47
LLMEffiChecker(S) 19.42 30.87 37.82 14.01 23.67 31.31 18.23 28.59 36.73 14.84 24.87 31.68 14.86 24.91 31.72
LLMEffiChecker-B (C) 33.09 43.60 72.18 26.76 34.61 69.78 31.94 40.82 79.01 29.29 39.99 76.06 29.36 40.19 76.36
LLMEffiChecker-B (T) 41.71 66.82 87.19 32.97 58.12 75.42 39.15 66.41 85.81 36.04 64.10 85.87 36.10 64.18 85.95
LLMEffiChecker-B (S) 19.04 31.29 38.51 12.24 20.73 26.06 16.94 26.55 32.40 15.71 26.25 32.80 15.72 26.29 32.85

MarianMT

Seq2Sick −0.06 −1.78 −6.61 −2.69 −4.85 −9.87 2.07 0.05 −4.26 1.12 −1.24 −4.58 1.09 −1.26 −4.60
SynError 3.00 3.66 3.62 1.09 1.31 1.15 3.75 4.12 3.95 1.78 2.30 2.13 1.75 2.27 2.12
SIT 1.94 −0.27 −0.82 −1.91 −3.95 −5.03 3.95 2.00 0.71 1.23 −0.59 −1.64 1.20 −0.59 −1.62
TransRepair 0.03 0.95 0.68 −0.89 −0.65 −1.06 1.50 1.77 1.36 0.06 0.24 −0.02 0.05 0.23 −0.03
LLMEffiChecker(C) 54.10 113.20 222.04 41.58 102.38 226.68 51.56 119.53 274.26 52.98 113.90 210.12 52.89 113.88 210.12
LLMEffiChecker(T) 231.65 550.07 726.61 234.93 564.34 770.28 269.58 660.70 893.87 223.56 544.49 728.90 223.48 544.28 728.68
LLMEffiChecker(S) 42.77 72.19 89.17 33.89 72.33 90.33 40.27 84.89 106.84 41.21 77.28 95.68 41.19 77.21 95.61
LLMEffiChecker-B (C) 65.70 185.56 264.37 55.72 173.09 298.05 67.01 200.74 338.54 55.62 164.33 282.05 55.46 163.84 282.20
LLMEffiChecker-B (T) 223.05 517.87 722.71 229.07 580.01 752.90 260.24 660.71 860.89 199.48 508.85 674.54 199.44 509.79 675.87
LLMEffiChecker-B (S) 42.43 68.25 78.04 35.36 64.01 65.18 44.70 77.00 78.26 36.10 64.71 69.38 36.06 64.67 69.41

Flan-T5

Seq2Sick 6.64 10.31 13.09 5.97 9.68 11.76 14.05 18.79 22.16 5.76 9.35 11.96 5.74 9.34 11.92
SynError 0.05 0.05 0.05 −1.73 −1.73 −1.73 6.02 6.02 6.02 5.62 5.62 5.62 −7.51 −7.51 −7.51
SIT 87.52 43.57 42.95 86.40 40.87 40.36 85.17 59.87 55.88 82.96 43.18 44.38 83.07 43.33 44.51
TransRepair −1.48 −1.77 −1.48 −1.32 −1.73 −1.32 1.99 1.44 1.84 −1.47 −1.81 −1.51 −1.54 −1.87 −1.56
LLMEffiChecker(C) 327.55 566.82 625.69 329.99 564.27 621.78 381.37 647.48 715.92 333.91 574.26 634.28 334.03 574.53 634.51
LLMEffiChecker(T) 1,209.50 1,306.26 1,349.04 1,229.54 1,327.42 1,372.96 1,409.23 1,524.04 1,578.49 1,227.99 1,325.01 1,368.67 1,229.06 1,326.23 1,369.93
LLMEffiChecker(S) 554.58 937.63 1,063.39 552.96 952.73 1,087.15 637.50 1,094.72 1,253.29 564.39 948.81 1,076.25 564.90 949.32 1,076.86
LLMEffiChecker-B (C) 421.97 628.14 850.14 426.32 629.20 845.69 495.38 726.82 980.89 426.82 637.66 897.14 426.87 638.74 868.34
LLMEffiChecker-B (T) 1,242.18 1,338.54 1,341.69 1,240.60 1,333.61 1,322.22 1,422.94 1,543.97 1,533.38 1,256.64 1,378.93 1,389.51 1,258.92 1,381.33 1,391.86
LLMEffiChecker-B (S) 572.45 892.17 1,082.76 564.03 879.97 1,064.21 652.28 1,015.91 1,235.05 567.71 884.32 1,076.55 568.44 885.57 1,077.70

LaMini-GPT

Seq2Sick 21.91 21.81 15.24 121.46 121.66 88.75 140.43 140.48 101.57 98.56 97.73 69.70 98.85 98.03 69.97
SynError 87.81 88.68 96.68 377.07 403.58 429.18 438.06 468.04 498.53 318.71 333.48 354.60 319.06 333.86 355.09
SIT 153.80 152.34 137.53 867.02 916.92 747.65 1,014.25 1,069.92 870.79 659.99 651.73 552.49 660.31 652.99 553.72
TransRepair 29.39 26.51 26.74 144.03 140.82 140.73 168.75 163.40 164.34 130.07 119.77 130.57 130.42 120.23 131.11
LLMEffiChecker(C) 323.34 367.46 376.55 2,091.80 2,643.98 2,707.52 2,403.58 3,098.30 3,169.53 1,598.12 1,997.75 2,043.54 1,597.50 1,995.33 2,041.12
LLMEffiChecker(T) 368.67 379.73 379.73 2,539.10 2,588.35 2,588.35 3,066.39 3,130.40 3,130.40 2,106.89 2,148.49 2,148.49 2,104.61 2,146.16 2,146.16
LLMEffiChecker(S) 347.41 366.07 366.42 2,157.36 2,371.21 2,372.00 2,510.74 2,792.73 2,793.60 1,746.59 1,919.43 1,920.28 1,747.96 1,919.32 1,920.17
LLMEffiChecker-B (C) 140.67 208.14 240.05 764.30 1,109.99 1,211.88 943.59 1,385.40 1,525.22 733.99 1,111.11 1,260.97 734.45 1,112.28 1,263.29
LLMEffiChecker-B (T) 242.05 232.44 246.41 1,225.62 1,129.45 1,223.03 1,510.56 1,401.18 1,513.43 1,224.47 1,143.59 1,249.03 1,225.86 1,145.94 1,252.04
LLMEffiChecker-B (S) 191.80 208.14 225.11 998.56 1,069.81 1,127.94 1,222.32 1,328.29 1,407.41 962.31 1,051.01 1,138.46 962.76 1,052.40 1,140.30

CodeGen

Seq2Sick 5.10 5.10 5.10 13.34 13.34 13.34 16.68 16.68 16.68 17.06 17.06 17.06 17.10 17.10 17.10
SynError 26.48 26.49 27.54 83.33 83.26 85.38 89.39 89.34 91.54 87.61 87.54 89.78 87.65 87.58 89.81
SIT 54.06 41.45 44.71 202.97 145.02 158.70 213.45 153.11 168.58 223.83 161.93 181.19 223.90 162.00 181.28
TransRepair 77.64 80.47 80.84 286.84 294.79 294.88 296.86 308.83 309.09 309.52 330.97 333.95 309.68 331.24 334.22
LLMEffiChecker(C) 109.93 139.88 168.23 321.08 434.06 533.72 336.01 453.64 558.45 351.20 478.08 592.39 351.46 478.36 592.75
LLMEffiChecker(T) 182.42 182.42 182.42 578.30 578.30 578.30 602.68 602.68 602.68 639.91 639.91 639.91 640.26 640.26 640.26
LLMEffiChecker(S) 176.30 187.59 187.59 575.42 615.61 615.61 593.11 635.62 635.62 607.64 653.51 653.51 607.97 653.91 653.91
LLMEffiChecker-B (C) 147.75 170.76 175.70 463.20 518.89 523.96 481.57 540.51 549.87 501.99 582.24 603.35 501.99 582.47 603.57
LLMEffiChecker-B (T) 118.40 154.85 146.01 378.35 496.82 451.94 394.97 517.96 475.82 405.33 551.65 528.71 405.63 552.12 529.16
LLMEffiChecker-B (S) 152.02 166.56 158.82 488.73 523.34 494.20 507.41 547.59 519.25 521.24 578.62 563.35 521.44 578.88 563.62

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:19

Table 6. The Maximum Effectiveness Results of LLMEffiChecker in Degrading LLMs Performance

Subject Methods

I-Loops I-Latency(CPU) I-Energy(CPU) I-Latency(GPU) I-Energy(GPU)

ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3

H-NLP

Seq2Sick 1,922.22 1,922.22 2,000.00 2,557.01 2,557.01 2,557.01 3,081.88 3,081.88 3,081.88 2,031.63 2,031.63 2,031.63 2,035.46 2,035.46 2,035.46
SynError 975.00 975.00 975.00 398.24 398.24 398.24 492.18 492.18 492.18 397.80 397.80 397.80 396.97 396.97 396.97
SIT 1,416.67 1,666.67 540.00 2,100.68 1,383.50 361.29 2,541.75 1,675.15 474.76 1,876.29 1,251.05 388.86 1,872.66 1,249.04 387.36
TransRepair 66.67 81.56 81.56 36.92 32.87 86.91 53.98 57.88 120.45 45.82 52.88 69.05 45.78 52.57 68.90
LLMEffiChecker(C) 8,433.33 8,433.33 8,433.33 7,969.98 7,969.98 7,969.98 10,554.40 10,554.40 10,554.40 7,691.45 7,691.45 7,691.45 7,673.37 7,673.37 7,673.37
LLMEffiChecker(T) 12,700.00 12,700.00 12,700.00 8,258.55 8,258.55 8,258.55 10,486.75 10,486.75 10,486.75 5,990.07 5,990.07 5,990.07 5,984.31 5,984.31 5,984.31
LLMEffiChecker(S) 3,100.00 6,300.00 8,433.33 4,162.90 6,704.67 7,357.19 5,193.61 8,286.11 8,810.90 2,945.15 5,305.42 5,305.42 2,944.76 5,292.81 5,292.81
LLMEffiChecker-B (C) 10,140.00 12,700.00 10,140.00 8,456.70 8,220.03 8,240.21 11,418.85 11,059.20 11,091.90 6,244.01 6,231.62 7,711.93 6,180.36 6,214.44 7,697.90
LLMEffiChecker-B (T) 10,140.00 10,140.00 10,140.00 9,579.03 9,388.97 9,286.91 12,430.16 12,355.92 12,241.07 6,483.82 6,480.49 6,717.57 6,483.59 6,487.76 6,700.88
LLMEffiChecker-B (S) 3,100.00 6,300.00 12,700.00 3,599.50 5,417.91 9,132.01 4,452.36 6,740.22 12,109.99 3,513.36 4,508.14 6,781.85 3,507.85 4,512.49 6,767.54

AllenAI

Seq2Sick 33.33 33.33 45.16 17.98 20.79 28.50 46.67 50.97 60.87 13.57 15.48 41.13 13.28 15.44 41.08
SynError 12.81 12.81 12.81 9.89 9.89 9.89 31.33 31.33 31.33 12.27 12.27 12.27 12.21 12.21 12.21
SIT 23.81 28.57 28.57 34.08 26.92 16.56 63.45 46.50 43.62 25.41 15.28 13.28 25.3 15.22 13.24
TransRepair 14.29 14.29 14.29 4.34 4.34 4.34 27.52 27.52 27.52 8.95 8.95 8.95 8.91 8.91 8.91
LLMEffiChecker(C) 93.33 247.37 440.54 128.38 140.21 332.09 165.37 194.69 442.04 172.72 202.17 368.06 172.1 201.49 368.99
LLMEffiChecker(T) 173.33 285.71 683.33 83.94 266.41 611.60 119.43 336.99 789.79 90.91 283.61 602.78 90.85 282.94 603.10
LLMEffiChecker(S) 175.00 414.29 589.66 142.19 292.91 573.46 182.65 386.68 703.88 160.93 377.36 538.89 161.42 377.22 539.05
LLMEffiChecker-B (C) 157.58 852.38 852.38 184.80 1,021.41 1,021.18 269.93 1,357.36 1,349.91 212.59 1,052.79 1,023.75 211.45 1,047.56 1,018.38
LLMEffiChecker-B (T) 1,233.33 1,233.33 900.00 1,032.59 996.48 846.78 1,394.01 1,356.31 1,130.11 1,109.14 1,074.40 798.5 1,100.56 1,066.07 796.15
LLMEffiChecker-B (S) 761.54 1,233.33 1,186.67 920.27 756.81 729.93 1,193.81 958.69 954.42 891.05 851.72 852.57 889.57 848.38 849.46

T5

Seq2Sick 90.91 121.15 247.62 87.43 130.42 252.47 127.68 156.29 294.40 95.72 118.58 248.67 95.87 118.50 249.29
SynError 61.54 61.54 61.54 63.81 63.81 63.81 70.27 70.27 70.27 61.74 61.74 61.74 61.75 61.75 61.75
SIT 945.45 576.47 576.47 1,063.35 565.74 608.96 1,323.72 666.54 714.72 961.39 570.17 567.80 963.22 571.87 568.55
TransRepair 422.73 422.73 422.73 439.91 439.91 439.91 493.85 493.85 493.85 425.92 425.92 425.92 425.95 425.95 425.95
LLMEffiChecker(C) 945.45 945.45 945.45 1,470.96 1,470.96 1,470.96 1,751.91 1,751.91 1,751.91 885.92 885.92 885.92 879.21 879.21 879.21
LLMEffiChecker(T) 1,816.67 1,816.67 1,816.67 1,829.31 1,829.31 1,829.31 2,443.06 2,443.06 2,443.06 1,796.62 1,796.62 1,796.62 1,798.34 1,798.34 1,798.34
LLMEffiChecker(S) 945.45 945.45 945.45 1,010.14 1,010.14 1,010.14 1,271.41 1,271.41 1,271.41 963.27 963.27 963.27 964.11 964.11 964.11
LLMEffiChecker-B (C) 1,816.67 1,816.67 1,816.67 1,898.90 1,837.56 1,920.93 2,500.77 2,524.75 2,598.89 1,835.70 1,831.20 1,824.22 1,840.98 1,836.47 1,828.48
LLMEffiChecker-B (T) 1,816.67 945.45 784.62 1,892.24 1,000.72 866.48 2,569.88 1,272.44 1,060.74 1,783.49 962.94 785.66 1,786.73 964.82 787.57
LLMEffiChecker-B (S) 945.45 945.45 945.45 992.67 1,001.37 992.03 1,259.61 1,276.53 1,264.36 958.68 960.53 959.96 960.48 961.78 961.22

U-DL

Seq2Sick 27.03 36.84 75.76 27.75 52.99 90.40 31.39 56.60 91.85 28.21 39.38 74.23 28.30 39.58 74.31
SynError 15.79 15.79 15.79 12.12 12.12 12.12 17.72 17.72 17.72 16.95 16.95 16.95 16.85 16.85 16.85
SIT 545.16 327.27 327.27 579.53 361.57 379.32 416.79 377.14 393.91 553.80 323.51 323.51 553.80 322.16 322.16
TransRepair 850.00 850.00 850.00 523.63 566.02 566.02 612.79 686.76 686.76 855.37 937.09 937.09 852.58 934.06 934.06
LLMEffiChecker(C) 4,900.00 4,900.00 4,900.00 4,065.42 4,065.42 4,065.42 5041.52 5041.52 5,041.52 4,692.21 4,692.21 4,692.21 4,663.56 4,663.56 4,663.56
LLMEffiChecker(T) 4,900.00 4,900.00 4,900.00 3,978.94 3,978.94 3,978.94 4,831.58 4,831.58 4,831.58 4,448.49 4,448.49 4,448.49 4,444.52 4,444.52 4,444.52
LLMEffiChecker(S) 1,718.18 4,900.00 4,900.00 1,984.05 3,844.74 3,844.74 2,176.62 4,694.89 4,694.89 1,720.49 4,566.83 4,566.83 1,722.57 4557.84 4,557.84
LLMEffiChecker-B (C) 4,900.00 4,900.00 4,900.00 4,976.52 4,979.55 4,902.19 6,293.19 6,183.34 6,153.30 4,889.23 4,884.94 4,823.49 4,826.34 4,893.77 4,916.49
LLMEffiChecker-B (T) 4,900.00 4,900.00 4,900.00 4,961.40 4,942.95 4,899.74 6,161.10 5,931.57 6,154.24 4,858.21 4,884.94 4,887.12 4,820.22 4,847.27 4,848.92
LLMEffiChecker-B (S) 4,900.00 4,900.00 4,900.00 5,120.57 4,991.13 4,945.80 6,359.07 6,255.39 6,063.02 4,825.21 4,876.52 4,952.21 4,819.50 4,878.73 4,952.97

FairSeq

Seq2Sick 39.13 39.13 39.13 65.76 65.76 65.76 68.53 68.53 68.53 42.23 42.23 42.23 42.19 42.19 42.19
SynError 10.00 10.00 10.00 19.33 19.33 19.33 15.98 15.98 15.98 12.53 12.53 12.53 12.67 12.67 12.67
SIT 37.50 37.50 37.50 64.17 36.24 49.49 73.91 40.20 50.67 20.97 27.18 21.13 20.90 26.82 21.10
TransRepair 13.16 13.16 13.16 22.00 22.00 22.00 18.89 18.89 18.89 7.36 7.27 7.27 7.36 7.25 7.25
LLMEffiChecker(C) 80.00 150.00 589.66 75.28 89.34 371.87 91.66 101.22 402.55 81.85 90.86 403.03 81.70 90.73 404.14
LLMEffiChecker(T) 769.57 1,011.11 1,011.11 576.82 1,071.13 1,071.13 661.12 1,157.19 1,157.19 713.87 1,030.73 1,030.73 713.45 1,030.07 1,030.07
LLMEffiChecker(S) 62.50 100.00 125.00 51.89 78.08 86.72 59.25 87.21 107.37 58.85 76.68 100.38 58.56 76.63 100.20
LLMEffiChecker-B (C) 769.57 386.96 818.75 739.45 469.90 1094.49 796.85 513.22 1179.19 777.23 542.11 1007.78 777.18 542.04 1012.06
LLMEffiChecker-B (T) 769.57 1,011.11 1,328.57 751.56 1,074.00 1,322.30 836.38 1,140.75 1,434.50 731.03 1,005.78 1,230.04 733.89 1,004.80 1,229.26
LLMEffiChecker-B (S) 62.50 100.00 125.00 55.40 74.50 92.28 62.82 80.25 103.05 56.03 75.48 84.32 56.00 75.43 84.30

MarianMT

Seq2Sick 57.69 56.52 36.36 56.00 51.82 39.27 76.41 65.69 48.38 74.30 74.30 87.19 74.06 74.06 87.02
SynError 44.44 66.67 71.05 40.48 67.97 70.53 51.09 79.28 79.28 43.19 63.05 63.96 43.18 63.04 64.56
SIT 77.78 65.00 60.87 54.35 36.79 53.29 61.71 50.24 62.93 50.84 32.85 59.25 50.72 32.84 59.20
TransRepair 22.22 35.71 34.78 34.95 32.78 28.83 40.93 40.95 40.95 43.33 33.71 32.67 43.29 33.71 32.48
LLMEffiChecker(C) 200.00 1,869.23 6,300.00 228.97 2,323.96 7,306.69 276.90 2,699.20 9,529.47 256.83 1,664.78 4,687.01 256.63 1,669.21 4,685.35
LLMEffiChecker(T) 3,557.14 6,300.00 6,300.00 3,877.44 5,235.32 5,235.32 4,489.69 6,768.05 6,768.05 3,459.49 5,290.32 5,290.32 3,452.27 5,280.51 5,280.51
LLMEffiChecker(S) 757.89 926.67 926.67 490.25 1,673.06 1,673.06 429.09 1,945.97 1,945.97 561.70 1,336.00 1,336.00 562.66 1,336.00 1,336.00
LLMEffiChecker-B (C) 225.00 4,166.67 2,594.74 247.93 3,995.95 2,619.07 290.05 4,728.15 3,003.46 232.88 3,211.10 2,563.35 230.91 3,196.36 2,559.47
LLMEffiChecker-B (T) 3,313.33 4,554.55 4,554.55 3,292.26 4,630.19 4,953.01 3,767.91 5,451.64 6,056.81 2,905.84 4,062.96 4,062.26 2,905.01 4,072.67 4,073.25
LLMEffiChecker-B (S) 757.89 926.67 752.63 728.78 1,593.17 710.01 812.40 1,798.47 786.78 599.04 1,379.27 618.82 597.73 1,376.98 621.54

Flan-T5

Seq2Sick 283.33 283.33 283.33 250.63 250.63 250.63 299.03 299.03 299.03 274.07 274.07 274.07 275.03 275.03 275.03
SynError 18.18 18.18 18.18 19.95 19.95 19.95 30.01 30.01 30.01 31.38 31.38 31.38 31.65 31.65 31.65
SIT 1328.57 1,233.33 1,233.33 1,288.39 1,197.20 1,271.50 1,440.45 1,344.44 1,443.66 1,433.72 1,255.22 1,254.68 1,437.51 1,257.34 1,256.80
TransRepair 108.33 108.33 108.33 70.30 89.02 89.02 81.55 94.70 94.70 106.82 106.82 106.82 105.81 105.81 105.81
LLMEffiChecker(C) 2,400.00 2,400.00 2,400.00 2,454.15 2,454.15 2,454.15 2,989.28 2,989.28 2,989.28 2,508.12 2,508.12 2,508.12 2,507.51 2,507.51 2,507.51
LLMEffiChecker(T) 2,400.00 2,400.00 2,757.14 2,481.39 2,481.39 2,904.22 3,086.71 3,086.71 3,691.62 2,477.39 2,477.39 2,826.32 2,482.17 2,482.17 2,830.94
LLMEffiChecker(S) 2,400.00 2,400.00 2,400.00 2,396.28 2,917.05 2,917.05 2,998.45 3,444.31 3,444.31 2,496.46 2,496.46 2,496.46 2,498.29 2,498.29 2,498.29
LLMEffiChecker-B (C) 2,400.00 2,400.00 2,400.00 2,138.76 2,158.41 2,369.58 2,561.77 2,596.17 2,972.43 2,404.92 2,393.24 2,778.14 2,405.80 2,403.45 2,776.39
LLMEffiChecker-B (T) 2,400.00 2,400.00 2,757.14 2,369.71 2,661.01 2,710.52 2,950.62 3,290.37 3,424.51 2,569.68 3,145.83 3,212.41 2,572.49 3,151.03 3,210.04
LLMEffiChecker-B (S) 2,400.00 2,400.00 2,400.00 2,416.88 2,480.45 2,538.83 3,006.46 3,072.52 3,167.72 2,440.13 2,450.42 2,442.96 2,444.45 2,454.10 2,447.29

LaMini-GPT

Seq2Sick 669.23 669.23 426.32 3,856.26 3,856.26 3,856.26 4,367.19 4,367.19 4,367.19 3,019.68 3,019.68 3,019.68 3,028.41 3,028.41 3,028.41
SynError 769.57 769.57 769.57 3,478.30 3,718.72 3,718.72 4,012.68 4,211.54 4,211.54 2,824.70 2,824.70 2,824.70 2,822.29 2,822.29 2,822.29
SIT 952.63 952.63 952.63 6,166.94 7,827.18 7,934.35 8,319.36 9,972.64 10,092.55 5,200.85 5,214.04 5,231.60 5,181.36 ,5206.77 5,224.30
TransRepair 525.00 525.00 525.00 3,933.96 3,933.96 3,933.96 4,394.69 4,394.69 4,394.69 3,053.31 3,053.31 3,053.31 3,072.67 3,072.67 3,072.67
LLMEffiChecker(C) 952.63 1,076.47 1,076.47 8,352.47 18,318.66 18,318.66 10,466.74 25,835.15 25,835.15 6,769.64 15,538.18 15,538.18 6,752.79 15,377.14 15,377.14
LLMEffiChecker(T) 952.63 1,076.47 1,076.47 18,081.36 18,081.36 18,081.36 25,469.76 25,469.76 25,469.76 15,373.20 15,373.20 15,373.20 15,204.52 15,204.52 15,204.52
LLMEffiChecker(S) 852.38 852.38 852.38 12,388.72 14,396.41 14,396.41 14,680.90 20,952.22 20,952.22 6,434.13 14,818.49 14,818.49 6,432.25 14,664.10 14,664.10
LLMEffiChecker-B (C) 471.43 525.00 525.00 3,720.21 4,762.53 4,658.27 4,554.85 6,175.32 6,084.00 3,267.67 5,363.85 5,350.09 3,267.87 5,345.96 5,338.68
LLMEffiChecker-B (T) 525.00 525.00 525.00 4,582.59 4,235.27 5,073.44 6,016.12 5,630.82 6,404.08 5,302.61 4,055.18 5,344.19 5,280.60 4,053.63 5,337.63
LLMEffiChecker-B (S) 669.23 669.23 669.23 4,243.52 4,533.69 4,061.00 5,612.34 6,003.08 5,566.46 4,338.83 4,335.70 4,354.52 4,330.33 4,327.21 4345.99

CodeGen

Seq2Sick 189.86 189.86 189.86 583.95 583.95 583.95 610.69 610.69 610.69 540.78 540.78 540.78 541.35 541.35 541.35
SynError 334.78 334.78 334.78 1,492.46 1,492.46 1,492.46 1,582.08 1,582.08 1,582.08 1,571.08 1,571.08 1,571.08 1,568.21 1,568.21 1,568.21
SIT 334.78 334.78 334.78 1,732.38 1,558.46 1,717.67 1,840.58 1,649.79 1,828.54 1,854.63 1,788.77 2,056.57 1,852.92 1,789.52 2,059.23
TransRepair 334.78 334.78 334.78 1,575.88 1,577.57 1,577.57 1,659.61 1,666.67 1,666.67 1,860.50 1,860.50 1,860.50 1,860.02 1,860.02 1,860.02
LLMEffiChecker(C) 354.55 354.55 354.55 1,742.25 1,739.49 1,685.36 1,843.62 1,841.95 1,843.32 1815.81 1,815.81 1,815.81 1,827.49 1,827.49 1,827.49
LLMEffiChecker(T) 354.55 354.55 354.55 1,736.78 1,736.78 1,736.78 1,843.88 1,843.88 1,843.88 1,820.21 1,820.21 1,820.21 1,829.98 1,829.98 1,829.98
LLMEffiChecker(S) 354.55 354.55 354.55 1,745.30 1,745.30 1,745.30 1,843.20 1,843.20 1,843.20 1,843.31 1,843.31 1,843.31 1,845.11 1,845.11 1,845.11
LLMEffiChecker-B (C) 354.55 354.55 354.55 1,737.79 1,727.37 1,716.29 1,833.57 1,829.78 1,823.24 1,761.06 1,764.48 1,759.02 1,762.84 1,772.37 1,760.79
LLMEffiChecker-B (T) 354.55 325.53 354.55 1,738.85 1,724.79 1,743.39 1,839.45 1,829.15 1,855.67 1,891.48 1,904.63 1,799.27 1,894.36 1,906.88 1,807.42
LLMEffiChecker-B (S) 354.55 354.55 354.55 1,749.17 1,740.43 1,652.96 1,844.60 18,44.65 1,765.17 1,765.54 1,761.92 1,765.10 1,772.19 1,768.46 1,771.65

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:20 X. Feng et al.

Table 7. The Examples of Test Samples Generated by LLMEffiChecker

Subject Methods Test samples

FairSeq

Original women over 55 are pickier about their partners than at any other time in their lives.

LLMEffiChecker (C) women over 55 are 5pickier about their partners than at any other time in their lives.

LLMEffiChecker (T) women dinger 55 are pickier about their partners than at any other time in their lives.

LLMEffiChecker (S) women over 55 are pickier because their partners than at any other time in their lives.

LLMEffiChecker-B (C) women Gover 55 are pickier about their partners than at any other time in their lives.

LLMEffiChecker-B (T) structures over 55 are pickier about their partners than at any other time in their lives.

LLMEffiChecker-B (S) research over 55 are pickier about their partners than at any other time in their lives.

Flan-T5

Original A woman is sitting at a table in a fast food restaurant while eating. She continually speaks to nobody as she eats. she

LLMEffiChecker (C) A woman is sitting at a table in a fast food restaurant while _eating. She continually speaks to nobody as she eats. she

LLMEffiChecker (T) authorities woman is sitting at a table in a fast food restaurant while eating. She continually speaks to nobody as she eats. she

LLMEffiChecker (S) A woman is sitting at a table in a fast food restaurant while eating. She continually speaks to nobody as she eats. It

LLMEffiChecker-B (C) A woman is sitting at a table in a fast food restaurant while eating. She continually speaks to nobody as szhe eats. she

LLMEffiChecker-B (T) exhibitors woman is sitting at a table in a fast food restaurant while eating. She continually speaks to nobody as she eats. she

LLMEffiChecker-B (S) A woman is sitting at a table in a fast food restaurant while eating. She continually speaks to nobody as she eats. It

CodeGen

Original def sum_div(number: int) -> int:\n """\n\tWrite a function to return the sum of all divisors of a number.\n\t"""\n

LLMEffiChecker (C) degf sum_div(number: int) -> int:\n """\n\tWrite a function to return the sum of all divisors of a number.\n\t"""\n

LLMEffiChecker (T) def umption_div(number: int) -> int:\n """\n\tWrite a function to return the sum of all divisors of a number.\n\t"""\n

LLMEffiChecker (S) def sum_div(number: int) -> int:\n """\n\tWrite a function to return the sum until all divisors of a number.\n\t"""\n

LLMEffiChecker-B (C) def sum_div(number: int) -> int:\n 1"""\n\tWrite a function to return the sum of all divisors of a number.\n\t"""\n

LLMEffiChecker-B (T) Huge sum_div(number: int) -> int:\n """\n\tWrite a function to return the sum of all divisors of a number.\n\t"""\n

LLMEffiChecker-B (S) def sum_div(number: int) -> int:\n """\n\tWrite a function to return the death of all divisors of a number.\n\t"""\n

Furthermore, Table 7 showcases examples of test samples generated by LLMEffiChecker, with
Original denoting seed sentences and red font highlighting perturbed segments. To elaborate,
LLMEffiChecker(C), LLMEffiChecker(T), LLMEffiChecker(S) denote character-level, token-level,
and structure-level perturbations in white-box settings, respectively. Similarly, LLMEffiChecker-
B (C), LLMEffiChecker-B (T), LLMEffiChecker-B (S) represent character-level, token-level, and
structure-level perturbations in black-box settings. From the results, we have the following ob-
servations: (i) For all LLMs under test, LLMEffiChecker generates test samples that trigger more
severe efficiency degradation by a large margin compared to the baseline methods. Specifically,
LLMEffiChecker generates test inputs that on average increase LLMs for translation (i.e., the first
six models’) CPU latency, CPU energy consumption, GPU latency, and GPU energy consumption
by 100% to 776%, 101% to 768%, 96% to 537%, and 82% to 539%, respectively, through only perturbing
one character or token in any seed input sentences. Correspondingly, the LLMs for the sentence
completion task (i.e., Flan-T5 and LaMini-GPT) can increase 547% to 1,890%, 662% to 2,245%, 534%
to 1,682%, 534% to 1,682%, respectively. For code-generated LLMs (i.e., CodeGen), the increases
are 321% to 578%, 336% to 603%, 351% to 640%, and 351% to 640%. Notably, LLMEffiChecker-B
demonstrates performance comparable to LLMEffiChecker, signifying LLMEffiChecker-B
equally effectively influences the efficiency of LLMs. In addition, LLMEffiChecker-B proves more
effective than LLMEffiChecker in character type perturbations (i.e., +32.49%). This indicates our
success in finding critical tokens within the black-box scenario presented in Section 5.3. However,
baseline methods could not effectively impact efficiency, since they are designed to reduce
LLMs’ accuracy, not efficiency. (ii) With an increased perturbation size, the corresponding test
samples generated by LLMEffiChecker effectively degrade LLMs’ efficiency to a larger degree.
(iii) The maximum effectiveness of our methods is far greater than the average case for most
scenarios. Additionally, the computational efficiency of LLMs can be dramatically compromised
through specific perturbations (e.g., employing the LLMEffiChecker-B (C) on the H-NLP model,
where a single character perturbation can lead to a maximum increase of 11,418% in CPU
energy consumption).

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:21

Fig. 6. Degradation success ratio under different settings.

Answers to RQ2.1: Test samples generated by LLMEffiChecker in both white-box and
black-box settings significantly degrade LLMs efficiency in number of iteration loops,
latency, and energy consumption.

6.3 RQ2.2: Effectiveness

This section evaluates the effectiveness of LLMEffiChecker in generating useful test samples that
successfully degrade the efficiency of LLMs.

Metrics. We define a metric of degradation success ratio (η) to evaluate the effectiveness of
LLMEffiChecker.

η =

∑
x ∈X I([Loop(x

′) − Loop(x)] ≥ λ ×MSEor iд)

| |X||
× 100% (6)

As shown in Equation (6),X is a randomly selected seed input set, Loop(x) is the function that mea-
sures the iteration number of LLMs in handling input x , MSEor iд is the Mean Squared Error of the
iteration number in the seed datasets that have the same input length as x , and I(·) is the indicator
function, which returns one if the statement is true, zero otherwise. The above equation assumes
that the computational costs required by an LLM given perturbed inputs shall be within λ times
the MSE produced by the seed inputs with the same input length. Otherwise, the perturbed inputs
trigger efficiency degradation. Note that this same assumption is also used in existing works [71].

Results. The results on the degradation successful ratio (η) under different λ values are shown
in Figure 6. We observe that for all experimental settings, LLMEffiChecker outperforms the base-
line methods by a significant margin in both white-box and black-box settings. For example, for
U-DL and λ = 5, LLMEffiChecker achieves a degradation success ratio over 50% with all type

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:22 X. Feng et al.

perturbations in both white-box and black-box scenarios; while all the comparison baseline meth-
ods’ degradation success ratios are below 5%. The results indicate that LLMEffiChecker effectively
generates useful test samples to trigger LLMs’ efficiency degradation. Another observation is that
when λ = 0, baselines may generate some test samples that require more computations than seed
inputs (η ≥ 50 for H-NLP). However, such extra computations are not significant enough to in-
dicate efficiency degradation. As we studied in Section 3, the natural efficiency variance in the
LLM task could be significant, and the degree of extra computations incurred under baseline meth-
ods is within the range of natural efficiency variance. As λ grows, η under baseline methods drop
quickly. However, this observation does not hold for LLMEffiChecker, where the average degra-
dation success ratio of LLMEffiChecker is still 72.32% when λ = 3. Recall that from the statistical
prospective [39], 99.73% of the inputs will locate in the range of 3MSEor iд . Thus, these results
clearly show that LLMEffiChecker successfully triggers LLMs’ efficiency degradation.

Answers toRQ2.2: LLMEffiChecker effectively generates test samples that trigger LLMs’
efficiency degradation in both white-box and black-box settings.

6.4 RQ2.3: Sensitivity

In this section, we implement two prevalent decodingmethods from LLMswith comprehensive hy-
perparameter settings to thoroughly evaluate the performance of LLMEffiChecker: Beam Search
and Temperature Sampling.

Experimental Setup. In the first configuration, we investigate the impact of varying the beam

search size on the efficiency of LLMs. As we introduced in Section 2, modern LLMs apply the
beam search algorithm to generate the output token. The beam search algorithm requires one
hyper-parameter, the beam search size (num_beams), to define the search space. In Section 6.3, we
evaluate the effectiveness of LLMEffiChecker under each LLMs’ default num_beams. In this sec-
tion, we evaluate whether LLMEffiChecker is sensitive to the configuration of num_beams. We
configure each LLM under test with different num_beams (ranging from 1 to 5) and measure the
I-Loops, GPU latency, and GPU energy consumption of the generated test samples. In the second
configuration, we focus on the effects of enabling sampling (do_sample = true) and varying the
temperature parameter (i.e., 0.1, 0.3, 0.5, 0.7, and 0.9) to understand its impact on LLMEffiChecker.
The temperature parameter controls the level of randomness in the sampling process, with lower
temperatures leading to less variability and higher temperatures allowing for more diverse outputs.

Experimental Results. The results of I-Loops, GPU-Latency, and GPU-Energy for different beam

sizes under Beam Search are, respectively, presented in Figure 7, Figure 8, and Figure 9. Similarly,
the results of I-Loops, GPU-Latency, and GPU-Energy for different temperatures under Temper-
ature Sampling are, respectively, presented in Figure 10, Figure 11, and Figure 12. From the re-
sults, we have the following observations: (i) When the beam search size num_beams is set to 1,
the test samples generated by LLMEffiChecker can degrade LLMs efficiency slightly more than
other beam search size settings in both white-box and black-box scenarios. This is because when
num_beams=1, the token generation process is a gradient-smooth process, and the token search
space is limited. Thus, our gradient-guided and causal inference-based approach can trigger more
severe efficiency degradation under this configuration. (ii) In temperature-controlled sampling,
setting the temperature to 0.1 allows for the generation of test inputs that slightly improve the
reduction of LLMs’ computational efficiency. This is because at a lower temperature (i.e., 0.1), the
sampling process becomes more deterministic, making the model more likely to choose tokens

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:23

Fig. 7. I-Loops under different beam search sizes.

Fig. 8. GPU-Latency under different beam search sizes.

with the highest probability. This can lead to generating sequences that are highly structured. The
generated test samples are more focused and consistent to triggering inefficient computation paths
within the LLMs. (iii) Across both sets of results, it is evident that LLMEffiChecker consistently
and significantly degrades the computational efficiency of the LLMs across a diverse range of beam
search size settings and temperature configurations. (e.g., T5 requires more than 100% and 300%
computations).

Answers to RQ2.3: LLMEffiChecker can generate test samples that degrade LLMs ef-
ficiency under various decoding methods with comprehensive hyperparameter settings
in both white-box and black-box settings. Moreover, the efficiency degradation is more
severe when the beam search size is configured as one or temperature is set to 0.1.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:24 X. Feng et al.

Fig. 9. GPU-Energy under different beam search sizes.

Fig. 10. I-Loops under different temperatures.

6.5 RQ2.4: Overheads

Table 8 and Table 9 show the average overhead of LLMEffiChecker when generating test inputs in
white-box and black-box scenarios, respectively. We report only the overhead of LLMEffiChecker,
because the comparison baselines cannot degrade LLMs’ efficiency. The measured overhead of
LLMEffiChecker is rather reasonable (ranging from 2.25 s to 191.32 s) and may increase linearly
as the perturbation size increases. The linearly increasing overheads are due to the fact that
LLMEffiChecker is an iterative approach (iteration number equals to ϵ), and the overhead
within each iteration is stable. Additionally, the overhead of LLMEffiChecker-B is reduced by
16.74% compared to LLMEffiChecker, as it eliminates the need for gradient calculations. Note
that such reasonable overhead is not a concern, since perturbed test inputs are generated by
LLMEffiChecker offline.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:25

Fig. 11. GPU-Latency under different temperatures.

Fig. 12. GPU-Energy under different temperatures.

Table 8. Average Overheads of LLMEffiChecker (s)

Methods ϵ H-NLP AllenAi T5 U-DL FairSeq MarianMT Flan-T5 LaMini-GPT CodeGen Average

LLMEffiChecker(C)

1 11.40 21.14 18.50 9.00 12.40 10.05 5.21 2.57 20.07 11.13

2 31.80 44.66 45.59 22.09 28.05 22.83 12.77 8.42 46.98 26.52

3 59.76 69.56 74.48 42.26 47.70 39.91 20.84 14.63 75.27 44.74

LLMEffiChecker(T)

1 7.50 18.45 22.62 31.56 52.80 38.92 17.85 5.94 26.70 22.33

2 31.41 39.48 61.86 66.19 108.75 84.74 39.16 13.99 67.80 51.54

3 62.50 62.54 100.01 101.28 165.80 131.74 62.09 22.35 110.76 82.21

LLMEffiChecker(S)

1 10.52 39.19 6.73 24.74 25.91 18.83 12.62 8.01 30.65 17.82

2 23.33 75.21 17.45 59.05 53.85 39.83 29.49 19.17 69.94 38.93

3 38.93 106.35 27.71 93.07 82.87 61.92 49.97 30.19 111.21 60.52

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:26 X. Feng et al.

Table 9. Average Overheads of LLMEffiChecker-B (s)

Methods ϵ H-NLP AllenAi T5 U-DL FairSeq MarianMT Flan-T5 LaMini-GPT CodeGen Average

LLMEffiChecker-B (C)

1 9.73 17.49 6.05 10.85 24.51 15.27 2.59 2.25 10.73 10.05

2 20.57 42.29 10.44 18.02 55.37 34.38 5.66 4.57 16.78 21.01

3 31.12 70.62 14.76 24.93 92.63 56.17 9.03 6.88 22.88 33.20

LLMEffiChecker-B (T)

1 6.86 58.78 6.62 20.97 63.68 45.49 10.82 1.89 8.34 22.45

2 11.52 113.03 10.61 23.80 130.30 86.04 12.85 3.34 12.97 40.65

3 15.69 157.59 11.97 25.93 191.32 121.11 14.68 4.82 16.66 56.28

LLMEffiChecker-B (S)

1 3.19 30.84 16.35 32.84 29.78 25.58 15.73 9.66 24.26 18.92

2 7.60 63.07 31.01 61.34 62.74 52.28 31.12 19.04 45.42 37.56

3 13.51 94.78 46.55 85.30 98.08 80.89 45.43 28.42 65.11 56.11

Answers to RQ2.4: The overheads of LLMEffiChecker are reasonable and may increase
linearly as the perturbation size increases. Specifically, when ϵ = 1, LLMEffiChecker
costs 17.01, 16.19, and 18.81 seconds to generate character-level, token-level, and
structure-level test samples. Correspondingly, LLMEffiChecker-B costs 10.05, 22.45, and
18.92 seconds to generate samples of the same type.

6.6 RQ2.5: Ablation Study

In this experiment, we carried out ablation studies to assess the efficacy of poii in LLMEffiChecker
for identifying critical tokens, as illustrated in Equation (2). The inspiration for this component
came from recent research, which showed that the sequence of tokens output by a model
also affects the generation of the EOS token [27]. To validate this idea’s effectiveness for
LLMEffiChecker and ensure it aligns with our overarching goals, we remove poii from the
function f (x) in Equation (2) and then apply it to generate test inputs.

Experimental Setup. In our evaluation of various LLMs, we randomly choose 1,000 seed inputs

and apply LLMEffiChecker (with poii removed from f (x)) to generate 1,000 abnormal inputs for
each type of perturbation. We denote the approach with the removed poii as Removed and our origi-
nal approach as Original. The evaluationmetrics employed adhere to those detailed in Section 6.2.
Correspondingly, we average the experimental outcomes over three runs.

Experimental Results. The results are shown in Table 10. From the results, wemake two observa-

tions: (i) The test samples generated in the ablation study exhibit a weaker degradation in compu-
tational efficiency for LLMs. Specifically, out of 27 control experiments conducted, 20 confirm this
finding. On average, the required loops, CPU latency, CPU energy consumption, GPU latency, and
GPU energy consumption decreased by 18.21%, 20.75%, 20.44%, 20.04%, and 20.11%, respectively.
(ii) The decoder-only models are more sensitive to such components. Notably, during the ablation
study, the GPU latency of LaMini-GPT saw a significant decrease of 74.07% compared to control
experiments. In contrast, models based on an encoder-decoder architecture exhibited a maximum
reduction of only 45.83%. This heightened sensitivity in decoder-only models can be attributed to
their autoregressive nature, which makes themmore susceptible to the influence of output context.
Therefore, the results demonstrate the effectiveness of the poii component in LLMEffiChecker for
identifying critical tokens.

Answers to RQ2.5: Each component within LLMEffiChecker aligns with the overall de-
sign goal and effectively contributes to its performance enhancement.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:27

Table 10. The Ablation Results of Ours-Ablation in Degrading LLMs Performance

Subject Methods

I-Loops I-Latency(CPU) I-Energy(CPU) I-Latency(GPU) I-Energy(GPU)

ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3

H-NLP

Original (C) 564.45 995.45 1,357.77 764.92 1,487.92 2,015.70 785.60 1,471.26 1,967.05 462.24 851.80 1,116.80 406.39 755.18 972.92

Removed (C) 493.90 934.79 1,244.70 592.94 1,133.14 1,547.26 613.07 1,117.62 1,506.78 352.26 668.56 888.26 309.12 592.12 773.13

Original (T) 2,697.77 3,735.38 3,917.91 3,153.97 4,481.93 4,681.28 3,052.62 4,544.65 4,759.71 1,953.57 2,729.83 2,854.89 1,532.91 2,137.53 2,221.66

Removed (T) 1,594.55 2,271.86 2,382.88 1,621.64 2,355.45 2,460.22 1,555.09 2,359.78 2,471.45 1,058.38 1,518.38 1,587.94 830.35 1,188.80 1,235.59

Original (S) 142.31 311.06 612.08 146.51 451.93 877.79 147.70 461.30 870.72 101.21 275.58 523.04 95.05 259.88 508.80

Removed (S) 127.09 280.58 593.16 136.92 340.42 632.91 136.97 346.46 624.23 98.81 219.31 408.83 92.76 206.57 397.26

AllenAI

Original (C) 35.16 74.90 103.36 26.69 45.77 85.09 27.48 48.09 86.00 21.82 35.43 91.48 22.12 43.21 98.46

Removed (C) 44.62 88.40 127.77 34.73 73.64 111.38 59.37 108.81 154.37 38.93 77.78 115.71 38.80 77.59 115.48

Original (T) 24.83 42.04 56.75 49.12 62.84 67.98 49.99 62.65 69.06 30.65 41.32 46.09 31.00 41.81 49.66

Removed (T) 34.73 58.45 89.32 25.04 50.13 86.52 45.17 75.62 118.70 29.57 55.62 92.69 29.45 55.46 92.50

Original (S) 66.21 108.67 128.60 86.05 139.03 164.57 84.17 135.71 160.95 69.57 112.88 132.68 68.79 115.23 137.06

Removed (S) 67.48 99.92 131.33 79.34 115.42 144.89 111.56 153.76 189.10 84.90 120.76 152.29 84.67 120.48 151.97

T5

Original (C) 168.92 198.36 205.37 191.05 225.48 233.01 194.45 228.02 234.04 164.61 194.79 202.28 165.38 195.77 203.29

Removed (C) 155.44 188.32 190.63 168.33 215.73 218.59 173.43 218.39 220.48 150.10 183.60 185.25 151.30 185.13 186.71

Original (T) 307.27 328.94 328.94 352.14 376.55 376.55 347.74 373.85 373.85 305.37 325.61 325.61 331.85 352.25 352.25

Removed (T) 294.68 315.47 315.47 334.63 357.83 357.83 328.58 353.25 353.25 294.72 314.25 314.25 320.11 339.79 339.79

Original (S) 77.67 80.56 82.52 85.72 89.11 91.38 86.90 90.29 92.56 75.77 78.68 80.66 68.79 73.03 74.56

Removed (S) 78.47 81.24 83.37 85.44 88.73 91.24 87.53 90.81 93.25 76.75 79.71 82.14 69.65 73.96 75.90

U-DL

Original (C) 258.07 390.60 469.24 261.02 405.80 494.30 288.15 439.72 532.81 253.46 383.78 461.51 253.45 383.82 461.64

Removed (C) 154.67 274.00 350.74 157.17 282.11 366.04 170.59 308.67 399.07 156.19 274.11 352.54 156.32 274.10 352.59

Original (T) 604.17 642.38 642.38 655.13 696.56 696.56 697.90 741.86 741.86 595.88 634.44 634.44 596.49 635.08 635.08

Removed (T) 595.70 595.70 595.70 635.50 635.50 635.50 678.60 678.60 678.60 590.44 590.44 590.44 590.44 590.44 590.44

Original (S) 406.92 592.52 702.89 438.23 632.64 753.88 465.04 673.76 800.25 404.42 583.65 694.40 401.74 583.99 694.84

Removed (S) 329.64 467.00 501.56 350.83 494.42 532.38 374.35 533.90 573.56 332.55 469.61 504.01 332.57 469.57 504.01

FairSeq

Original (C) 22.53 37.68 59.26 15.87 29.07 49.18 20.47 34.62 55.44 18.07 31.53 51.79 18.08 31.55 51.85

Removed (C) 19.79 34.08 51.59 14.24 25.78 41.86 18.16 32.69 48.79 16.51 30.98 46.45 16.51 28.00 46.49

Original (T) 33.73 62.13 76.41 23.97 55.26 70.28 29.79 63.19 79.41 28.62 59.42 75.47 28.60 59.42 75.47

Removed (T) 23.65 37.82 58.70 16.25 28.96 47.25 21.01 34.80 54.37 18.99 32.82 52.96 18.96 32.81 52.94

Original (S) 19.42 30.87 37.82 14.01 23.67 31.31 18.23 28.59 36.73 14.84 24.87 31.68 14.86 24.91 31.72

Removed (S) 19.17 30.64 36.33 13.11 22.57 28.64 16.96 27.46 34.15 14.26 23.90 30.21 14.75 23.91 30.22

MarianMT

Original (C) 54.10 113.20 222.04 41.58 102.38 226.68 51.56 119.53 274.26 52.98 113.90 210.12 52.89 113.88 210.12

Removed (C) 60.13 78.00 105.23 59.41 78.72 103.52 70.11 91.22 118.31 56.65 74.42 96.50 56.78 74.55 96.66

Original (T) 231.65 550.07 726.61 234.93 564.34 770.28 269.58 660.70 893.87 223.56 544.49 728.90 223.48 544.28 728.68

Removed (T) 207.33 284.10 327.79 235.99 315.13 398.78 264.59 353.72 449.18 201.15 274.95 346.98 201.14 274.88 346.94

Original (S) 42.77 72.19 89.17 33.89 72.33 90.33 40.27 84.89 106.84 41.21 77.28 95.68 41.19 77.21 95.61

Removed (S) 34.13 46.25 55.67 29.43 38.89 48.23 36.48 46.97 57.39 30.14 39.65 48.94 30.12 39.62 48.91

Flan-T5

Original (C) 327.55 566.82 625.69 329.99 564.27 621.78 381.37 647.48 715.92 333.91 574.26 634.28 334.03 574.53 634.51

Removed (C) 440.92 597.31 696.80 440.07 591.31 694.97 507.54 680.23 800.62 445.48 599.07 703.96 446.51 600.50 705.66

Original (T) 1,209.50 1,306.26 1,349.04 1,229.54 1,327.42 1,372.96 1,409.23 1,524.04 1,578.49 1,227.99 1,325.01 1,368.67 1,229.06 1,326.23 1,369.93

Removed (T) 1,195.08 1,336.93 1,392.43 1,217.34 1,363.25 1,422.13 1,401.04 1,571.49 1,642.44 1,203.52 1,348.72 1,410.90 1,206.12 1,351.65 1,413.88

Original (S) 554.58 937.63 1063.39 552.96 952.73 1,087.15 637.50 1,094.72 1,253.29 564.39 948.81 1,076.25 564.90 949.32 1,076.86

Removed (S) 572.68 965.17 1,101.25 579.51 967.04 1,109.02 672.54 1,115.38 1,278.07 575.43 972.25 1,108.37 576.77 974.47 1110.90

LaMini-GPT

Original (C) 323.34 367.46 376.55 2,091.80 2,643.98 2,707.52 2,403.58 3,098.30 3,169.53 1,598.12 1,997.75 2,043.54 1,597.50 1,995.33 2,041.12

Removed (C) 132.15 151.14 151.33 582.31 727.35 728.12 734.07 924.54 925.36 624.50 760.50 761.69 623.63 758.88 760.06

Original (T) 368.67 379.73 379.73 2,539.10 2,588.35 2,588.35 3,066.39 3,130.40 3,130.40 2,106.89 2,148.49 2,148.49 2,104.61 2,146.16 2,146.16

Removed (T) 109.46 124.69 128.23 538.88 620.64 638.58 681.90 783.73 805.72 546.36 629.52 650.19 545.67 628.73 649.42

Original (S) 347.41 366.07 366.42 2,157.36 2,371.21 2,372.00 2,510.74 2,792.73 2,793.60 1,746.59 1,919.43 1,920.28 1,747.96 1,919.32 1,920.17

Removed (S) 104.26 137.73 144.21 527.32 697.10 722.20 668.76 884.99 916.18 545.94 727.06 750.39 545.60 726.90 750.66

CodeGen

Original (C) 109.93 139.88 168.23 321.08 434.06 533.72 336.01 453.64 558.45 351.20 478.08 592.39 351.46 478.36 592.75

Removed (C) 97.58 117.32 132.52 306.48 367.30 404.72 319.78 383.35 422.02 327.14 396.39 435.68 327.33 396.65 435.95

Original (T) 182.42 182.42 182.42 578.30 578.30 578.30 602.68 602.68 602.68 639.91 639.91 639.91 640.26 640.26 640.26

Removed (T) 131.58 160.20 167.04 407.21 512.63 541.95 424.16 535.21 566.01 443.26 562.78 595.73 443.52 563.03 596.04

Original (S) 176.30 187.59 187.59 575.42 615.61 615.61 593.11 635.62 635.62 607.64 653.51 653.51 607.97 653.91 653.91

Removed (S) 150.11 169.18 178.25 501.52 560.08 580.77 521.86 582.85 604.39 536.43 604.63 627.90 536.68 604.95 628.28

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:28 X. Feng et al.

Table 11. Input Sentences for Experiments on Mobile Devices

Seed Input

Death comes often to the soldiers and marines who are

fighting in anbar province, which is roughly the size of

louisiana and is the most intractable region in iraq.

Test Input

Death comes often to the soldiers and marines who are

fighting in anbar province, which is roughly the (size of

of louisiana and is the most intractable region in iraq.

Fig. 13. Remaining battery power of the mobile device after T5 original seed and perturbed sentences.

7 REAL-WORLD STUDY AND POSSIBLE MITIGATION STRATEGY

In this section, we present a real-world case study to discuss how LLMs’ efficiency degradation will
impact real-world devices’ battery power and the computational latency of commercial models.
After that, we show how developers could apply LLMEffiChecker to improve LLMs’ efficiency
robustness and mitigate computational resource waste. Finally, we discuss potential threats that
might threaten the applicability of LLMEffiChecker and how we alleviate them.

7.1 Real-world Case Study on Mobile Devices

Experimental Setup. We select Google T5 as our evaluation LLM in this case study. We first
deploy the model on the Samsung Galaxy S9+, which has 6 GB RAM and a battery capacity of
3,500 mAh. After that, we select one sentence from the dataset ZH19 as our seed input; we then
apply LLMEffiChecker to perturb the seed input with character-level perturbation and obtain
the corresponding test sample. The seed sentence and the corresponding test sample are shown in
Table 11, where the perturbation is colored in red. Notice the test sample inserts only one character
in the seed sentence. This one-character perturbation is very common in the real world due to a
user’s typo. Finally, we feed the seed input and test sample to the deployed LLMs and measure the
mobile device’s battery consumption rate.

Experimental Results. The mobile phone’s battery consumption status is shown in Figure 13.
The red line is for the perturbed input, and the blue one is for the original seed input. The results
show that the perturbed input consumes the mobile’s battery power significantly more quickly
than the seed input. Specifically, after 300 iterations, the perturbed input consumes 30% of the bat-
tery power, while the seed input consumes less than 1%. The results demonstrate the vulnerability
of the efficiency degradation for mobile devices. Recall that the perturbed example used in our
experiment only inserts one character in the seed sentence, which would mimic many practical
scenarios (e.g., typo). Thus, the results suggest the criticality and the necessity of improving LLMs’
efficiency robustness.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:29

7.2 Real-world Case Study on Commercial Model

Experimental Setup. In this case study, we select OpenAI’s GPT-3.5 as the evaluation model. We
randomly choose 500 entries from the test set of the HellaSwag [89] dataset as seed inputs. Given
its status as a commercial model not available in open source, we opt for three types of black-
box test methods from LLMEffiChecker (i.e., LLMEffiChecker-B (C), LLMEffiChecker-B (T), and
LLMEffiChecker-B (S)), with the perturbation level set to 1. For the baseline, we employ all the
black-box methods (i.e., SynError, SIT, and TransRepair) in our research. The evaluation metrics
include I-Loops and I-Latency, as discussed in Section 6.2. Specifically, I-Loops is calculated using
the completion_tokens fromGPT-3.5’s returned JSON, which reflects the number of decoder invoca-
tions, correlating with the computational demands (i.e., required FLOPs). Concurrently, I-Latency
is calculated from another field in the returned JSON, namely, response_ms, which represents the
time required for the model to generate data upon receiving input.

Experimental Results. Table 14 shows the average efficiency reduction results of GPT-3.5 under

various perturbations. The results indicate that the perturbations generated by LLMEffiChecker-B
lead to a notably steeper decline in computational efficiency compared to the baseline methods.
Specifically, perturbations produced by LLMEffiChecker-B can increase GPT-3.5’s I-Loops and
I-Latency by an average of 25.64% to 176.92% and 19.96% to 156.53%, respectively. It is noteworthy
that the perturbations set in this experiment are minimal, at the level of a single character or token.
Furthermore, the test inputs conceived by LLMEffiChecker-B (S) not only replicate the structural
essence of the original sentences without introducing any grammatical or lexical inaccuracies
but also succeed in catalyzing a 66.18% surge in computational latency. Therefore, the results
substantiate LLMEffiChecker’s efficacy and underscore the prevalent issue of computational
efficiency vulnerabilities within real-world LLMs.

7.3 Mitigating Efficiency Degradation with LLMEffiChecker

This section shows how developers leverage LLMEffiChecker to develop runtime abnormal input
detector, which mitigates possible efficiency degradation and computational waste under the
adversary scenario (e.g., DOS attack). In detail, we propose an approach to filter out test inputs that
require abnormal computational resources at runtime. Because the abnormal inputs are forced
to quit at early stage, the computational resources waste is avoided. The idea of applying input
validation to improve DNNs’ correctness robustness has been studied in recent works [77, 78].
However, existing input validation techniques may not be suitable for improving LLMs’ efficiency
robustness due to the high overheads. Our intuition is that although normal inputs and the com-
putational resource heavy inputs look similar in human eyes, the latent representations of these
two categories of inputs are quite different [77]. Thus, we can leverage the latent representations
of these two category inputs to train a light-weighted SVM classifier and apply the classifier to
distinguish abnormal inputs at runtime. Because the classifier should be light-weighted, getting
each input’s latent representations is preferable without additional computations. Specifically,
in LLMs, the hidden layer converts input data into a higher-level abstract representation,
effectively capturing the essential features and patterns of the input sentences. We propose to
use the information in the hidden layer as the latent representation to train a lighted-weighted
SVM classifier.

Experimental Setup. For each LLMs in our evaluation, we randomly choose 1,000 seed inputs
and apply LLMEffiChecker to generate 1,000 abnormal inputs for each perturbation type. We
randomly select 80% of the seed inputs and the abnormal inputs as the training data to train the
SVM classifier and use the rest 20% for testing. We run the trained SVM classifier on the testing
dataset and measure the detectors’ AUC score, extra computation overheads.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:30 X. Feng et al.

Table 12. The Accuracy and Extra Overheads of the LLMEffiChecker Detector

Methods H-NLP AllenAI T5

Acc AUC Overheads Energy Acc AUC Overheads Energy Acc AUC Overheads Energy

LLMEffiChecker(C) 99.98 100.00 0.17 0.09 100.00 100.00 0.17 0.11 99.97 100.00 0.08 0.05

LLMEffiChecker(T) 99.99 100.00 0.32 0.17 100.00 100.00 0.08 0.05 100.00 100.00 0.06 0.04

LLMEffiChecker(S) 99.98 100.00 0.18 0.12 87.00 98.32 0.49 0.30 99.99 100.00 0.03 0.02

Mixed 99.98 100.00 0.74 0.48 98.00 100.00 0.86 0.79 100.00 100.00 0.18 0.11

Methods U-DL FairSeq MarianMT

Acc AUC Overheads Energy Acc AUC Overheads Energy Acc AUC Overheads Energy

LLMEffiChecker(C) 100.00 100.00 0.00 0.19 100.00 100.00 0.02 0.11 100.00 100.00 0.01 0.03

LLMEffiChecker(T) 100.00 100.00 0.00 0.54 100.00 100.00 0.01 0.27 100.00 100.00 0.00 0.06

LLMEffiChecker(S) 100.00 100.00 0.01 0.31 100.00 100.00 0.01 0.16 100.00 100.00 0.03 0.02

Mixed 100.00 100.00 0.03 0.83 100.00 100.00 0.10 0.52 98.50 100.00 0.01 0.15

Methods Flan-T5 LaMini-GPT CodeGen

Acc AUC Overheads Energy Acc AUC Overheads Energy Acc AUC Overheads Energy

LLMEffiChecker(C) 83.65 89.42 0.01 0.02 100.00 100.00 0.00 0.06 100.00 100.00 0.13 0.09

LLMEffiChecker(T) 91.00 91.38 0.04 0.09 100.00 100.00 0.01 0.25 100.00 100.00 0.37 0.43

LLMEffiChecker(S) 90.50 93.98 0.04 0.06 92.50 100.00 0.01 0.14 98.47 100.00 0.27 0.14

Mixed 92.66 97.38 0.24 0.26 99.00 100.00 0.05 0.47 100.00 100.00 0.71 0.79

Table 13. The Accuracy and Extra Overheads of the LLMEffiChecker-B Detector

Methods H-NLP AllenAI T5

Acc AUC Overheads Energy Acc AUC Overheads Energy Acc AUC Overheads Energy

LLMEffiChecker-B (C) 100.00 100.00 0.14 0.07 100.00 100.00 0.14 0.13 100.00 100.00 0.06 0.04

LLMEffiChecker-B (T) 100.00 100.00 0.30 0.16 100.00 100.00 0.12 0.08 100.00 100.00 0.08 0.04

LLMEffiChecker-B (s) 100.00 100.00 0.19 0.09 95.00 100.00 0.52 0.37 97.50 100.00 0.03 0.03

Mixed 100.00 100.00 0.69 0.39 97.50 100.00 0.81 0.67 97.50 100.00 0.17 0.12

Methods U-DL FairSeq MarianMT

Acc AUC Overheads Energy Acc AUC Overheads Energy Acc AUC Overheads Energy

LLMEffiChecker-B (C) 100.00 100.00 0.00 0.21 100.00 100.00 0.03 0.14 100.00 100.00 0.02 0.09

LLMEffiChecker-B (T) 100.00 100.00 0.02 0.58 100.00 100.00 0.02 0.23 100.00 100.00 0.04 0.05

LLMEffiChecker-B (S) 100.00 100.00 0.00 0.42 100.00 100.00 0.00 0.15 100.00 100.00 0.02 0.04

Mixed 97.50 100.00 0.03 0.96 100.00 100.00 0.09 0.56 100.00 100.00 0.07 0.18

Methods Flan-T5 LaMini-GPT CodeGen

Acc AUC Overheads Energy Acc AUC Overheads Energy Acc AUC Overheads Energy

LLMEffiChecker-B (C) 100.00 100.00 0.07 0.07 100.00 100.00 0.03 0.05 100.00 100.00 0.15 0.12

LLMEffiChecker-B (T) 100.00 100.00 0.12 0.09 100.00 100.00 0.06 0.32 100.00 100.00 0.42 0.45

LLMEffiChecker-B (S) 100.00 100.00 0.05 0.04 94.47 98.46 0.05 0.18 99.87 100.00 0.29 0.20

Mixed 100.00 100.00 0.17 0.29 98.34 99.73 0.08 0.53 99.98 100.00 0.84 0.86

Experimental Results.The experimental results inwhite-box and black-box scenarios are shown
in Table 12 and Table 13, respectively. Each column in Table 12 and Table 13 represents the per-
formance in detecting one specific perturbation type, and “Mixed” represents the performance in
detecting a mixed set of three perturbation types. We observe that the proposed detector achieves
almost perfect detection accuracy with a lowest accuracy of 83.65%. Moreover, the proposed de-
tector’s overheads and energy consumption are negligible compared to those incurred under the
LLM. All experimental subjects’ extra overheads and the energy consumption are merely at most
1% of the original LLMs’ overheads in generation normal sentences. The results show that our

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:31

Table 14. The Average Effectiveness Results of LLMEffiChecker on

GPT-3.5

Subject Methods I-Loops I-Latency

GPT3.5

SynError −1.19 −1.46
SIT 6.98 6.64

TransRepair −1.3 −11.21
LLMEffiChecker-B (C) 25.64 19.96
LLMEffiChecker-B (T) 176.92 156.53
LLMEffiChecker-B (S) 90.93 66.18

validation-based approach can effectively filter out the abnormal input sentences with negligible
overheads.

7.4 Threat Analysis

Our selection of the nine LLMs, namely, Google T5, AllenAI WMT14, H-NLP, U-DL, Facebook
FairSeq, MarianMT, Flan-T5, LaMini-GPT, and CodeGen, might threaten the external validity

of our experimental conclusions. We alleviate this threat by the following efforts: (1) the nine
LLMs are very popular and have been widely used among developers (with more than 2,714,275
downloads in November 2023); (2) their underlying DNN models are state-of-the-art models;
(3) these systems differ from each other by diverse topics (e.g., model architecture, language,
training corpus, training process). Therefore, our experimental conclusions should generally
hold, although specific data could be inevitably different for other subjects. Our internal threat
mainly comes from our definition of different perturbation types. Our introduced perturbation
may not always be grammatically correct (e.g., inserting one character may result in an unknown
token). However, as discussed in Section 2, such perturbations may not be typical but exist in
the real-world (e.g., user typos, adversarial manner). Thus, it is meaningful to understand LLMs’
efficiency degradation with such realistic perturbations. Moreover, all three perturbation types
are well studied in related works [20, 21, 30, 33, 34, 64, 69, 88, 91, 95].

8 RELATEDWORK

Adversarial Attacks &DNNRobustness. Recent works [7, 17, 59, 71, 86, 88, 91] show that DNN-
based applications are not robust under adversarial attacks, which generate adversarial examples
to fool the state-of-the-art DNN-based applications. Existing adversarial attacks can be grouped as
white-box, and black-box attacks based on their access to the DNN parameters. To improve DNNs’
robustness and mitigate the threats of adversarial attacks, a series of defense approaches [12, 23,
43, 78, 85] have been proposed. For example, FeatureSqueeze [85] introduces a series of feature
squeeze approaches to mitigate the adversarial perturbations during DNN runtime. NNMutate[78]
identifies that adversarial examples are the data points close to the DNN decision boundary and
thus proposes applying model mutation techniques to detect adversarial samples.

DNN’s Efficiency. Recently, the efficiency of DNNs has raised much concern due to their substan-
tial inference-time costs. To improve DNNs’ inference-time efficiency, many existing works have
been proposed, categorized into two major techniques. The first category [38, 92] of techniques
prune the DNNs offline to identify important neurons and remove unimportant ones. After prun-
ing, the smaller size DNNs could achieve competitive accuracy compared to the original DNNs
while incurring significantly less computational costs. Another category of techniques [24, 25, 79],
called input-adaptive techniques, dynamically skip a certain part of the DNNs to reduce the
number of computations during inference time. By skipping certain parts of the DNNs, the

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

186:32 X. Feng et al.

input-adaptive DNNs can trade off between accuracy and computational costs. However, recent
studies [13, 14, 16, 31, 37] show input-adaptive DNNs are not robust against the adversary attack,
which implies the input-adaptive will not save computational costs under attacks.

9 CONCLUSIONS

In this work, we study the efficiency robustness of LLMs. Specifically, we present LLMEffiChecker,
a comprehensive framework designed to function effectively in both white-box and black-box
scenarios. This innovative framework introduces imperceptible perturbations to seed inputs,
strategically reducing the computational efficiency of LLMs. Evaluation on nine publicly available
LLMs shows that LLMEffiChecker can generate effective test inputs that may significantly
decrease LLMs’ efficiency.

REFERENCES

[1] AllenAI. 2022. Retrieved from https://huggingface.co/allenai/wmt16-en-de-dist-12-1

[2] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph,

Benjamin Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Jackson Kernion, Kamal

Ndousse, Catherine Olsson, Dario Amodei, Tom B. Brown, Jack Clark, SamMcCandlish, Chris Olah, and Jared Kaplan.

2021. A general language assistant as a laboratory for alignment. CoRR abs/2112.00861 (2021).

[3] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,

Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program synthesis with large language models.

CoRR abs/2108.07732 (2021).

[4] Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic and natural noise both break neural machine translation. In 6th

International Conference on Learning Representations (ICLR’18). OpenReview.net. Retrieved from https://openreview.

net/forum?id=BJ8vJebC-

[5] Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and Matthias Bethge. 2019. Ac-

curate, reliable and fast robustness evaluation. In Annual Conference on Neural Information Processing Sys-

tems (NeurIPS’19), Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.

Fox, and Roman Garnett (Eds.). 12841–12851. Retrieved from https://proceedings.neurips.cc/paper/2019/hash/

885fe656777008c335ac96072a45be15-Abstract.html

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom

Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark

Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, SamMcCandlish, Alec

Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Infor-

mation Processing Systems Annual Conference on Neural Information Processing Systems (NeurIPS’20), Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). December 6-12, 2020, virtual,

2020.

[7] Nicholas Carlini and David A. Wagner. 2017. Towards evaluating the robustness of neural networks. In IEEE Sympo-

sium on Security and Privacy (SP’17). IEEE Computer Society, 39–57. DOI:https://doi.org/10.1109/SP.2017.49
[8] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald Pinckney, Ming-Ho

Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha, Michael Greenberg, and Abhinav Jangda.

2023. MultiPL-E: A scalable and polyglot approach to benchmarking neural code generation. IEEE Trans. Softw. Eng.

49, 7 (2023), 3675–3691. DOI:https://doi.org/10.1109/TSE.2023.3267446
[9] Isaac Caswell and Bowen Liang. 2020. Recent Advances in Google Translate. Retrieved from https://ai.googleblog.

com/2020/06/recent-advances-in-google-translate.html

[10] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi, Cunxiang Wang,

Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. 2023. A survey on evaluation of

large language models. CoRR abs/2307.03109 (2023).

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan, Harrison Ed-

wards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy

Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz

Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-

pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas

Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr,

Jan Leike, JoshuaAchiam, VedantMisra, EvanMorikawa, Alec Radford,MatthewKnight,Miles Brundage,MiraMurati,

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/allenai/wmt16-en-de-dist-12-1
https://openreview.net/forum?id=BJ8vJebC-
https://proceedings.neurips.cc/paper/2019/hash/885fe656777008c335ac96072a45be15-Abstract.html
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/TSE.2023.3267446
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:33

Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.

2021. Evaluating large language models trained on code. CoRR abs/2107.03374 (2021).

[12] Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. 2020. DENAS: Automated rule

generation by knowledge extraction from neural networks. In 28th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE’20), Prem Devanbu, Myra B. Cohen, and

Thomas Zimmermann (Eds.). ACM, 813–825. DOI:https://doi.org/10.1145/3368089.3409733
[13] Simin Chen, Hanlin Chen, Mirazul Haque, Cong Liu, and Wei Yang. 2023. The dark side of dynamic routing neural

networks: Towards efficiency backdoor injection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR’23). IEEE, 24585–24594. DOI:https://doi.org/10.1109/CVPR52729.2023.02355
[14] Simin Chen, Mirazul Haque, Cong Liu, and Wei Yang. 2022. DeepPerform: An efficient approach for performance

testing of resource-constrained neural networks. In 37th IEEE/ACM International Conference on Automated Software

Engineering (ASE’22). ACM, 31:1–31:13. DOI:https://doi.org/10.1145/3551349.3561158
[15] Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and Wei Yang. 2022. NMTSloth: Understanding and testing effi-

ciency degradation of neural machine translation systems. In 30th ACM Joint European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022), Abhik Roychoudhury, Cristian

Cadar, and Miryung Kim (Eds.). ACM, 1148–1160. DOI:https://doi.org/10.1145/3540250.3549102
[16] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei Yang. 2022. NICGSlowDown: Evaluating the efficiency

robustness of neural image caption generation models. In IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR’22). IEEE, 15344–15353. DOI:https://doi.org/10.1109/CVPR52688.2022.01493
[17] Yiming Chen, Simin Chen, Zexin Li, Wei Yang, Cong Liu, Robby T. Tan, and Haizhou Li. 2023. Dynamic trans-

formers provide a false sense of efficiency. In 61st Annual Meeting of the Association for Computational Linguistics

(ACL’23), Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguistics,

7164–7180. DOI:https://doi.org/10.18653/V1/2023.ACL-LONG.395
[18] Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. 2020. Seq2Sick: Evaluating the robustness of

sequence-to-sequence models with adversarial examples. In 34th AAAI Conference on Artificial Intelligence (AAAI’20),

32nd Innovative Applications of Artificial Intelligence Conference (IAAI’20), 10th AAAI Symposium on Educational Ad-

vances in Artificial Intelligence (EAAI’20). AAAI Press, 3601–3608. DOI:https://doi.org/10.1609/AAAI.V34I04.5767
[19] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa De-

hghani, Siddhartha Brahma, AlbertWebson, Shixiang ShaneGu, ZhuyunDai,Mirac Suzgun, XinyunChen, Aakanksha

Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun

Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 2022.

Scaling instruction-finetuned language models. CoRR abs/2210.11416 (2022).

[20] Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018. On adversarial examples for character-level neural machine trans-

lation. In 27th International Conference on Computational Linguistics (COLING’18), Emily M. Bender, Leon Derczynski,

and Pierre Isabelle (Eds.). Association for Computational Linguistics, 653–663. Retrieved from https://aclanthology.

org/C18-1055/

[21] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-box adversarial examples for text

classification. In 56th Annual Meeting of the Association for Computational Linguistics (ACL’18), Iryna Gurevych and

Yusuke Miyao (Eds.). Association for Computational Linguistics, 31–36. DOI:https://doi.org/10.18653/V1/P18-2006
[22] Andreas Eisele and Yu Chen. 2010. MultiUN: A multilingual corpus from United Nation documents. In International

Conference on Language Resources and Evaluation (LREC’10), Nicoletta Calzolari, Khalid Choukri, Bente Maegaard,

Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias (Eds.). European Language Resources

Association. Retrieved from http://www.lrec-conf.org/proceedings/lrec2010/summaries/686.html

[23] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. 2017. Detecting adversarial samples from

artifacts. CoRR abs/1703.00410 (2017).

[24] Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry P. Vetrov, and Ruslan Salakhut-

dinov. 2017. Spatially adaptive computation time for residual networks. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR’17). IEEE Computer Society, 1790–1799. DOI:https://doi.org/10.1109/CVPR.2017.194
[25] Daniel Fojo, Víctor Campos, and Xavier Giró-i-Nieto. 2018. Comparing fixed and adaptive computation time for re-

current neural networks. In 6th International Conference on Learning Representations (ICLR’18). OpenReview.net. Re-

trieved from https://openreview.net/forum?id=SkZq3vyDf

[26] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih, Luke Zettle-

moyer, and Mike Lewis. 2023. InCoder: A generative model for code infilling and synthesis. In 11th International Con-

ference on Learning Representations (ICLR’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=hQwb-

lbM6EL

[27] Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. 2024. Inducing high energy-

latency of large vision-language models with verbose images. In 12th International Conference on Learning Represen-

tations. Retrieved from https://openreview.net/forum?id=BteuUysuXX

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://doi.org/10.1145/3368089.3409733
https://doi.org/10.1109/CVPR52729.2023.02355
https://doi.org/10.1145/3551349.3561158
https://doi.org/10.1145/3540250.3549102
https://doi.org/10.1109/CVPR52688.2022.01493
https://doi.org/10.18653/V1/2023.ACL-LONG.395
https://doi.org/10.1609/AAAI.V34I04.5767
https://aclanthology.org/C18-1055/
https://doi.org/10.18653/V1/P18-2006
http://www.lrec-conf.org/proceedings/lrec2010/summaries/686.html
https://doi.org/10.1109/CVPR.2017.194
https://openreview.net/forum?id=SkZq3vyDf
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/forum?id=BteuUysuXX

186:34 X. Feng et al.

[28] A. Shaji George and A. S. Hovan George. 2023. A review of ChatGPT AI’s impact on several business sectors. Partn.

Univ. Int. Innov. J. 1, 1 (2023), 9–23.

[29] Google. 2022. Retrieved from https://huggingface.co/t5-small

[30] Shashij Gupta. 2020. Machine translation testing via pathological invariance. In 42nd International Conference on Soft-

ware Engineering (ICSE’20), Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 107–109. DOI:https://doi.org/10.1145/
3377812.3382162

[31] Mirazul Haque, Anki Chauhan, Cong Liu, and Wei Yang. 2020. ILFO: Adversarial attack on adaptive neural networks.

In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20). Computer Vision Foundation/IEEE,

14252–14261. DOI:https://doi.org/10.1109/CVPR42600.2020.01427
[32] Pinjia He. 2022. RobustNLP Library. Retrieved from https://github.com/RobustNLP/TestTranslation

[33] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-invariant testing for machine translation. In 42nd Inter-

national Conference on Software Engineering (ICSE’20), Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 961–973.

DOI:https://doi.org/10.1145/3377811.3380339
[34] Pinjia He, Clara Meister, and Zhendong Su. 2021. Testing machine translation via referential transparency. In 43rd

IEEE/ACM International Conference on Software Engineering (ICSE’21). IEEE, 410–422. DOI:https://doi.org/10.1109/
ICSE43902.2021.00047

[35] Helsinki-NLP. 2022. Retrieved from https://huggingface.co/Helsinki-NLP/opus-mt-en-de

[36] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de

Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George

van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol

Vinyals, and Laurent Sifre. 2022. Training compute-optimal large language models. CoRR abs/2203.15556 (2022).

[37] SanghyunHong, Yigitcan Kaya, Ionut-VladModoranu, and Tudor Dumitras. 2021. A panda? No, it’s a sloth: Slowdown

attacks on adaptive multi-exit neural network inference. In 9th International Conference on Learning Representations

(ICLR’21). OpenReview.net. Retrieved from https://openreview.net/forum?id=9xC2tWEwBD

[38] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, WeijunWang, TobiasWeyand, Marco Andreetto,

and Hartwig Adam. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. CoRR

abs/1704.04861 (2017).

[39] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning.

Vol. 112. Springer.

[40] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is BERT really robust? A strong baseline for natural

language attack on text classification and entailment. In 34th AAAI Conference on Artificial Intelligence (AAAI’20), 32nd

Innovative Applications of Artificial Intelligence Conference (IAAI’20), 10th AAAI Symposium on Educational Advances

in Artificial Intelligence (EAAI’20). AAAI Press, 8018–8025. DOI:https://doi.org/10.1609/AAAI.V34I05.6311
[41] Mintong Kang, Nezihe Merve Gürel, Ning Yu, Dawn Song, and Bo Li. 2024. C-rag: Certified generation risks for

retrievalaugmented language models. arXiv preprint arXiv:2402.03181.

[42] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-shot testers: Exploring LLM-

based general bug reproduction. In 45th IEEE/ACM International Conference on Software Engineering (ICSE’23). IEEE,

2312–2323. DOI:https://doi.org/10.1109/ICSE48619.2023.00194
[43] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 41st

International Conference on Software Engineering (ICSE’19), Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.).

IEEE/ACM, 1039–1049. DOI:https://doi.org/10.1109/ICSE.2019.00108
[44] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2019. TextBugger: Generating adversarial text against real-

world applications. In 26th Annual Network and Distributed System Security Symposium (NDSS’19). The Internet So-

ciety. Retrieved from https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-

real-world-applications/

[45] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020. BERT-ATTACK: Adversarial attack

against BERT using BERT. In Conference on Empirical Methods in Natural Language Processing (EMNLP’20), Bonnie

Webber, Trevor Cohn, YulanHe, and Yang Liu (Eds.). Association for Computational Linguistics, 6193–6202. DOI:https:
//doi.org/10.18653/V1/2020.EMNLP-MAIN.500

[46] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, R’emi Leblond, Tom Eccles,

James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor

Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel

J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.

2022. Competition-level code generation with alphacode. CoRR, abs/2203.07814.

[47] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-

Zarandi, Tom Sercu, Sal Candido, and Alexander Rives. 2022. Language models of protein sequences at the scale of

evolution enable accurate structure prediction. BioRxiv, 2022:500902, 2022.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://huggingface.co/t5-small
https://doi.org/10.1145/3377812.3382162
https://doi.org/10.1109/CVPR42600.2020.01427
https://github.com/RobustNLP/TestTranslation
https://doi.org/10.1145/3377811.3380339
https://doi.org/10.1109/ICSE43902.2021.00047
https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://openreview.net/forum?id=9xC2tWEwBD
https://doi.org/10.1609/AAAI.V34I05.6311
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE.2019.00108
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.500

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:35

[48] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated by Chat-

GPT really correct? Rigorous evaluation of large language models for code generation. In Annual Confer-

ence on Neural Information Processing Systems (NeurIPS’23), Alice Oh, Tristan Naumann, Amir Globerson, Kate

Saenko, Moritz Hardt, and Sergey Levine (Eds.). Retrieved from http://papers.nips.cc/paper_files/paper/2023/hash/

43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html

[49] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettle-

moyer. 2020. Multilingual denoising pre-training for neural machine translation. Trans. Assoc. Comput. Ling. 8 (2020),

726–742. DOI:https://doi.org/10.1162/TACL_A_00343
[50] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li, Mengshen He,

Zhengliang Liu, Zihao Wu, Lin Zhao, Dajiang Zhu, Xiang Li, Ning Qiang, Dinggang Shen, Tianming Liu, and Bao

Ge. 2023. Summary of chatgpt-related research and perspective towards the future of large language models. Meta-

Radiology, 1, 2 (2023), 100017.

[51] Alexandre Lopes, Rodrigo Frassetto Nogueira, Roberto de Alencar Lotufo, and Hélio Pedrini. 2020. Lite training

strategies for Portuguese-English and English-Portuguese translation. In 5th Conference on Machine Translation

(WMT@EMNLP’20), Loïc Barrault, Ondrej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-Jussà, Christian

Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio

Jimeno-Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa,

andMatteo Negri (Eds.). Association for Computational Linguistics, 833–840. Retrieved from https://aclanthology.org/

2020.wmt-1.90/

[52] MarianMT. 2023. Marianmt: translation_en-zh. https://huggingface.co/DDDSSS/translation_en-zh

[53] Jesse G. Meyer, Ryan J. Urbanowicz, Patrick C. N. Martin, Karen O’Connor, Ruowang Li, Pei-Chen Peng, Tiffani J.

Bright, Nicholas P. Tatonetti, Kyoung-Jae Won, Graciela Gonzalez-Hernandez, and Jason H. Moore. 2023. ChatGPT

and large language models in academia: Opportunities and challenges. BioData Min. 16, 1 (2023). DOI:https://doi.org/
10.1186/S13040-023-00339-9

[54] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu

Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button,

Matthew Knight, Benjamin Chess, and John Schulman. 2021. WebGPT: Browser-assisted question-answering with

human feedback. CoRR abs/2112.09332 (2021).

[55] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey Edunov. 2019. Facebook FAIR’s WMT19

news translation task submission. In 4th Conference on Machine Translation (WMT’19), Ondrej Bojar, Rajen Chatterjee,

Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno-Yepes, Philipp

Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana L. Neves, Matt Post, Marco Turchi,

and Karin Verspoor (Eds.). Association for Computational Linguistics, 314–319. DOI:https://doi.org/10.18653/V1/W19-

5333

[56] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.

2023. CodeGen: An open large language model for code with multi-turn program synthesis. In 11th International

Conference on Learning Representations (ICLR’23). OpenReview.net. Retrieved from https://openreview.net/pdf?id=

iaYcJKpY2B_

[57] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,

Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, LukeMiller, Maddie Simens,

Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models

to follow instructions with human feedback. In Annual Conference on Neural Information Processing Systems 2022

(NeurIPS’22), Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). Retrieved from

http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

[58] Papers with Code. 2024. Code generation on mbpp. https://paperswithcode.com/sota/code-generation-on-mbpp

[59] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore: Automatedwhitebox testing of deep learning

systems. Commun. ACM 62, 11 (2019), 137–145. DOI:https://doi.org/10.1145/3361566
[60] Jeff Pitman. 2021. Google Translate: One billion installs, one billion stories. Retrieved from https://blog.google/

products/translate/one-billion-installs/

[61] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are

unsupervised multitask learners. OpenAI Blog, 1, 8 (2019), 9.

[62] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res.

21 (2020), 140:1–140:67. Retrieved from http://jmlr.org/papers/v21/20-074.html

[63] Partha Pratim Ray. 2023. Chatgpt: A comprehensive review on background, applications, key challenges, bias, ethics,

limitations and future scope. Internet of Things and Cyber-Physical Systems 3 (2023), 121–154.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.1162/TACL_A_00343
https://aclanthology.org/2020.wmt-1.90/
https://huggingface.co/DDDSSS/translation_en-zh
https://doi.org/10.1186/S13040-023-00339-9
https://doi.org/10.18653/V1/W19-5333
https://openreview.net/pdf?id=iaYcJKpY2B_
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://paperswithcode.com/sota/code-generation-on-mbpp
https://doi.org/10.1145/3361566
https://blog.google/products/translate/one-billion-installs/
http://jmlr.org/papers/v21/20-074.html

186:36 X. Feng et al.

[64] Shuhuai Ren, YiheDeng, KunHe, andWanxiangChe. 2019. Generating natural language adversarial examples through

probability weighted word saliency. In 57th Conference of the Association for Computational Linguistics (ACL’19),

Anna Korhonen, David R. Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics, 1085–1097.

DOI:https://doi.org/10.18653/V1/P19-1103
[65] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu,

Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton-Ferrer,

Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin,

Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023. Code Llama: Open foundation models for code. CoRR

abs/2308.12950 (2023).

[66] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin,

Arnaud Stiegler, Arun Raja, Manan Dey, M. Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza

Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,

Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala

Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan, Teven Le Scao,

Stella Biderman, Leo Gao, ThomasWolf, and Alexander M. Rush. 2022. Multitask prompted training enables zero-shot

task generalization. In 10th International Conference on Learning Representations (ICLR’22). OpenReview.net. Retrieved

from https://openreview.net/forum?id=9Vrb9D0WI4

[67] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman Castagné,

Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman,

Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert

Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu

Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien

Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy,

Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong,

Daniel van Strien, David Ifeoluwa Adelani, et al. 2022. BLOOM: A 176B-parameter open-access multilingual language

model. CoRR abs/2211.05100 (2022).

[68] Vesa Siivola and Bryan L. Pellom. 2005. Growing an n-gram language model. In 9th European Conference on

Speech Communication and Technology (INTERSPEECH’05—Eurospeech). ISCA, 1309–1312. DOI:https://doi.org/10.
21437/INTERSPEECH.2005-24

[69] Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020. Automatic testing and improvement of

machine translation. In 42nd International Conference on Software Engineering (ICSE’20), Gregg Rothermel and Doo-

Hwan Bae (Eds.). ACM, 974–985. DOI:https://doi.org/10.1145/3377811.3380420
[70] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Annual

Conference on Neural Information Processing Systems (NeurIPS’14), Zoubin Ghahramani, Max Welling, Corinna Cortes,

Neil D. Lawrence, and Kilian Q. Weinberger (Eds.). 3104–3112. Retrieved from https://proceedings.neurips.cc/paper/

2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

[71] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated testing of deep-neural-network-

driven autonomous cars. In 40th International Conference on Software Engineering (ICSE’18), Michel Chaudron, Ivica

Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 303–314. DOI:https://doi.org/10.1145/3180155.3180220
[72] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste

Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume

Lample. 2023. LLaMA: Open and efficient foundation language models. CoRR abs/2302.13971 (2023).

[73] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,

Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen,

Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,

Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian

Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-

ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,

Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,

Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu,

Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert

Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open foundation and fine-tuned chat models. CoRR

abs/2307.09288 (2023).

[74] Barak Turovsky. 2016. Ten years of Google Translate. Retrieved from https://www.blog.google/products/translate/ten-

years-of-google-translate/

[75] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and

Illia Polosukhin. 2017. Attention is all you need. In Annual Conference on Neural Information Processing Systems

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://doi.org/10.18653/V1/P19-1103
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.21437/INTERSPEECH.2005-24
https://doi.org/10.1145/3377811.3380420
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1145/3180155.3180220
https://www.blog.google/products/translate/ten-years-of-google-translate/

LLMEffiChecker: Understanding and Testing Efficiency Degradation of LLMs 186:37

(NeurIPS’17), Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-

wanathan, and Roman Garnett (Eds.). 5998–6008. Retrieved from https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[76] Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang. 2021. Probabilistic delta debugging. In

29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineer-

ing (ESEC/FSE’21), Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.). ACM,

881–892. DOI:https://doi.org/10.1145/3468264.3468625
[77] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector: Input validation for deep learning

applications by crossing-layer dissection. In 42nd International Conference on Software Engineering (ICSE’20), Gregg

Rothermel and Doo-Hwan Bae (Eds.). ACM, 727–738. DOI:https://doi.org/10.1145/3377811.3380379
[78] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019. Adversarial sample detection for deep

neural network through model mutation testing. In 41st International Conference on Software Engineering (ICSE’19),

Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE/ACM, 1245–1256. DOI:https://doi.org/10.1109/ICSE.2019.
00126

[79] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. 2018. SkipNet: Learning dynamic routing

in convolutional networks. In 15th European Conference on Computer Vision (ECCV’18) (Lecture Notes in Computer

Science, Vol. 11217), Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer, 420–436.

DOI:https://doi.org/10.1007/978-3-030-01261-8_25
[80] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5: Identifier-aware unified pre-trained

encoder-decoder models for code understanding and generation. In Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP’21), Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.).

Association for Computational Linguistics, 8696–8708. DOI:https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685

[81] Elaine J. Weyuker and Filippos I. Vokolos. 2000. Experience with performance testing of software systems: Issues, an

approach, and case study. IEEE Trans. Softw. Eng. 26, 12 (2000), 1147–1156. DOI:https://doi.org/10.1109/32.888628
[82] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim

Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020.

Transformers: State-of-the-art natural language processing. In Conference on Empirical Methods in Natural Language

Processing: System Demonstrations. Association for Computational Linguistics, 38–45.

[83] Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Fikri Aji. 2024. LaMini-LM: A

diverse herd of distilled models from large-scale instructions. In 18th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics (EACL’24), Yvette Graham and Matthew Purver (Eds.). Association for Compu-

tational Linguistics, 944–964. Retrieved from https://aclanthology.org/2024.eacl-long.57

[84] Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. 2023. SmoothQuant: Accurate

and efficient post-training quantization for large language models. In International Conference on Machine Learn-

ing (ICML’23) (Proceedings of Machine Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun

Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 38087–38099. Retrieved from https:

//proceedings.mlr.press/v202/xiao23c.html

[85] Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature squeezing: Detecting adversarial examples in deep neural net-

works. In 25th Annual Network and Distributed System Security Symposium (NDSS’18). The Internet Society. Retrieved

from https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-4_Xu_paper.pdf

[86] Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2018. Generative adversarial training for neural machine translation.

Neurocomputing 321 (2018), 146–155. DOI:https://doi.org/10.1016/J.NEUCOM.2018.09.006

[87] Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong Zhang. 2021. A survey on causal inference. ACM

Trans. Knowl. Discov. Data 15, 5 (2021), 74:1–74:46. DOI:https://doi.org/10.1145/3444944
[88] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun. 2020. Word-level

textual adversarial attacking as combinatorial optimization. In 58th Annual Meeting of the Association for Computa-

tional Linguistics (ACL’20), Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for

Computational Linguistics, 6066–6080. DOI:https://doi.org/10.18653/V1/2020.ACL-MAIN.540

[89] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a machine really finish

your sentence? In 57th Conference of the Association for Computational Linguistics (ACL’19), Anna Korhonen, David R.

Traum, and LluísMàrquez (Eds.). Association for Computational Linguistics, 4791–4800. DOI:https://doi.org/10.18653/
V1/P19-1472

[90] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona T.

Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura,

Anjali Sridhar, TianluWang, and Luke Zettlemoyer. 2022. OPT: Open pre-trained transformer language models. CoRR

abs/2205.01068 (2022).

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.1109/32.888628
https://aclanthology.org/2024.eacl-long.57
https://proceedings.mlr.press/v202/xiao23c.html
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-4_Xu_paper.pdf
https://doi.org/10.1016/J.NEUCOM.2018.09.006
https://doi.org/10.1145/3444944
https://doi.org/10.18653/V1/2020.ACL-MAIN.540
https://doi.org/10.18653/V1/P19-1472

186:38 X. Feng et al.

[91] Xinze Zhang, Junzhe Zhang, Zhenhua Chen, and Kun He. 2021. Crafting adversarial examples for neural machine

translation. In 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (ACL/IJCNLP’21), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli

(Eds.). Association for Computational Linguistics, 1967–1977. DOI:https://doi.org/10.18653/V1/2021.ACL-LONG.153
[92] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. ShuffleNet: An extremely efficient convolutional neu-

ral network for mobile devices. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18). Computer

Vision Foundation/IEEE Computer Society, 6848–6856. DOI:https://doi.org/10.1109/CVPR.2018.00716
[93] Zhengyan Zhang, Yuxian Gu, Xu Han, Shengqi Chen, Chaojun Xiao, Zhenbo Sun, Yuan Yao, Fanchao Qi, Jian Guan,

Pei Ke, Yanzheng Cai, Guoyang Zeng, Zhixing Tan, Zhiyuan Liu, Minlie Huang, Wentao Han, Yang Liu, Xiaoyan Zhu,

and Maosong Sun. 2021. CPM-2: Large-scale cost-effective pre-trained language models. AI Open 2 (2021), 216–224.

DOI:https://doi.org/10.1016/J.AIOPEN.2021.12.003
[94] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang, Yang

Li, Teng Su, Zhilin Yang, and Jie Tang. 2023. CodeGeeX: A pre-trained model for code generation with multilingual

benchmarking on HumanEval-X. In 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’23),

Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping

Ye (Eds.). ACM, 5673–5684. DOI:https://doi.org/10.1145/3580305.3599790
[95] Wei Zou, Shujian Huang, Jun Xie, Xinyu Dai, and Jiajun Chen. 2020. A reinforced generation of adversarial exam-

ples for neural machine translation. In 58th Annual Meeting of the Association for Computational Linguistics (ACL’20),

Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational Linguistics,

3486–3497. DOI:https://doi.org/10.18653/V1/2020.ACL-MAIN.319

Received 9 December 2023; revised 28 April 2024; accepted 2 May 2024

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 7, Article 186. Publication date: August 2024.

https://doi.org/10.18653/V1/2021.ACL-LONG.153
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1016/J.AIOPEN.2021.12.003
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.18653/V1/2020.ACL-MAIN.319

