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Abstract
Hardware faults in AI accelerators, particularly in accelerator mem-
ory, can alter pre-trained deep neural network parameters, leading
to errors that compromise performance. To address this, just-in-
time (JIT) fault detection and mitigation are crucial. However, exist-
ing fault detection/mitigation approaches, either interrupt continu-
ous execution or introduce significant latency, making them less
ideal for JIT implementation. To circumvent this issue, this paper
explores uncertainty quantification in deep neural networks as a
means of facilitating an efficient and novel fault detection approach
in AI accelerators. Furthermore, in order to mitigate the impact
of such faults, we propose MENDNet, which leverages the prop-
erties of multi-exit neural networks, coupled with the proposed
uncertainty quantification framework. By tuning the confidence
threshold for inference in each exit and leveraging the energy-based
uncertainty quantification metric, MENDNet can make accurate
predictions even in the presence of faults in the accelerator. When
evaluated on state-of-the-art network-dataset configurations and
with multiple fault rate-fault position combinations, our proposed
approach furnishes up to 80.42% improvement in accuracy over a
traditional DNN implementation, thereby instilling the reliability
of the AI accelerator in mission mode.

Keywords: Deep Neural Network Accelerator, Fault Tolerance, Un-
certainty Quantification, Multi-exit Networks.
1 Introduction
The popularity of Deep Neural Networks (DNN) has grown, partic-
ularly for IoT edge devices. Specialized energy-efficient hardware,
such as AI accelerators, have been developed for DNN applications
in mission-critical scenarios, e.g., smart healthcare, autonomous
vehicles, and military operations. Malfunctions in the hardware
caused by manufacturing variation, voltage noise, and temperature
fluctuations introduce faults in the AI accelerators during inference
at the edge [3]. Hence, it is important to develop just-in-time (JIT)
techniques to detect and mitigate these faults. A proper JIT strategy
needs to address two concerns to ensure the safety and reliability
of the AI hardware: (1) The execution of the system ideally should
not be halted/hindered.(2) The latency overhead for the detection
and mitigation schemes should be negligible.

For detection, while existing research to detect faults in AI ac-
celerators primarily focuses on functional testing strategies; these
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techniques can not incorporate JIT constraints. In these approaches,
the functional test patterns are executed periodically, in tandem
with the target application to detect run-time fault manifestation in
the accelerator [9]. However, these approaches require additional
ground truth of the test inputs, and they are unable to identify
faults that manifest after the execution of the patterns have been
completed, thus, failing to comply being JIT. Other methods to
detect faults in non-AI systems like Built-in-self-test (BIST) and
error correction codes (ECCs) furnish even higher overhead issues,
when compared to the aforementioned functional testing strategy
[1]. Furthermore, methods like ATPG, typically used for manufac-
turing testing, cannot seamlessly detect faults during mission mode,
since they require shift from functional to scan clocks for operation.
Hence, it is imperative to develop a JIT fault detection technique,
catering to mission-critical AI systems.

Existing research to address fault mitigation in AI accelerators
based on the re-mapping and retraining the application DNN pre-
vents continuous execution and furnishes significant overhead in
terms of latency [14]. Moreover, it is important to note that the
process necessitates access to training data, which may not always
be practically feasible or readily available. Another common ap-
proach is redundancy-based fault tolerance, where multiple copies
of critical units are used to perform redundant computations [6].
However, redundancy comes at the cost of increased area, power
consumption, and complexity; hence, the technique might not be
feasible for low overhead edge applications.

In this paper, we introduce an innovative and efficient data-free
framework for JIT fault detection in AI accelerators at the edge. Our
method, designed for mission-critical environments, eliminates the
need for test patterns during routine AI hardware tasks. Central to
our approach is an energy-based uncertainty quantification metric,
measuring AI system deviations without relying on groundtruth.
We demonstrate the metric’s adaptability in detecting manifested
faults, where in-distribution samples in faulty hardware are misclas-
sified as out-of-distribution. Importantly, the energy-based metric
incurs no additional training cost, making it well-suited for practical
deployment in accelerators at the edge.

Furthermore, in order to mitigate the impact of such faults, we
propose MENDNet, that enables on-line fault mitigation, entirely
eliminating the need for expensive traditional fault detection, di-
agnosis, mapping, retraining and redundancy-based schemes. The
proposed MENDNet framework facilitates a proactive approach,
that ensures uninterrupted operation and reduces downtime in
AI hardware in mission mode. MENDNet leverages the properties
of multi-exit networks to address faults in AI accelerators. In sys-
tems with limited ECC capabilities that incorporate AI accelerators,
MENDNet acts as a secondary defense against in-field faults at the
edge. The key contributions of this paper are as follows:

• We, propose a JIT fault detection technique in AI accelerators at
the edge in mission critical environments, by adapting energy-
based uncertainty quantification in DNNs.
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• We propose MENDNet, a JIT framework based on multi-exit
neural networks, to mitigate the impact of faults on inference
classification accuracy. Utilizing multiple exits in MENDNet, we
decide the final prediction based on confidence thresholds and
uncertainty quantification, thereby circumventing the need for
costly remapping, retraining or redundancy approaches.

• We evaluate MENDNet on three metrics: effectiveness, efficiency
and sensitivity. When evaluated on three popular DNN models
and two popular datasets, our proposed MENDNet framework
furnishes up to 80.42% improvement in classification accuracy,
over a conventional DNN implementation, with and without
multi-exit, in the AI accelerator.

2 Background
Uncertainty Quantification. Uncertainty quantification in deep
neural networks (DNNs) is a burgeoning research area focused
on estimating and characterizing the uncertainty associated with
model predictions. This plays a critical role in Out-of-Distribution
(OOD) detection, where the aim is to identify samples differing from
the trained data distribution (e.g., unexpected inputs, corrupted
input data, or adversarial examples). Bayesian Neural Networks [4],
Monte Carlo Dropout [8], and an energy-based method [11] have
been proposed for OOD detection.

The energy score, introduced by the energy-basedmethod, gauges
how well a given DNN handles data and serves as a widely adopted
metric for discriminating between observed and unobserved inputs
[11]. Generally, the energy score tends to be higher for unobserved
data and lower for observed data. We propose employing the energy
score for uncertainty quantification in DNNs due to its minimal
computational overhead compared to techniques like Monte Carlo
Dropout or ensemble methods [12], crucial for JIT fault detection
and mitigation. Importantly, calculating energy score requires no
additional retraining, as it is based on an Energy-basedModel (EBM)
mapping each input point 𝑥 to a non-probabilistic scalar energy
score. Let’s assume 𝑓 is a DNN, and 𝐸 represents the energy score
given 𝑓 and specific input 𝑥 . Then, 𝐸 can be defined as follows,

𝐸 (𝑥 ; 𝑓 ) = −𝑇 · 𝑙𝑜𝑔
𝐾∑︁
𝑖=1

𝑒 𝑓𝑖 (𝑥 )/𝑇

Here, 𝐾 represents the number of labels, 𝑓𝑖 represents the logit
score of the 𝑖𝑡ℎ label (logit score is the final intermediate value of
the DNN calculated before the softmax layer), and 𝑇 is called the
temperature parameter. For experiments, we put the value of 𝑇 as
1, following existing research [11].

Multi-exit Neural Networks.Multi-exit neural networks [7]
are a class of deep learning architectures that have gained attention
for their ability to efficiently process inputs with varying levels
of complexity. Multi-exit networks incorporate multiple paths or
exits within the network, allowing for early termination of the
computation based on the input’s complexity.

Next, we discuss the working mechanism of traditional multi-
exit networks. Let’s assume, F is a multi-exit network with 𝑁 exits.
Each exit has a classifier that can provide a prediction given an
input 𝑥 . For each ulti-exit network, a confidence score threshold
𝛾 is predetermined. For any exit 𝑖 , if 𝑚𝑎𝑥 (F 𝑖 (𝑥)) > 𝛾 , then the
inference is stopped and final prediction is provided. In this paper,
we leverage multi-exit networks to improve fault resilience in AI
accelerators. The redundant nature of such networks, with multiple
exits producing predictions, offers built-in fault tolerance. In the

presence of faults, multi-exit networks can rely on alternative exits
that have not been affected, ensuring reliable predictions.

3 Fault Detection by Uncertainty Quantification
3.1 Intuition for Fault Detection
Our approach to fault detection relies on identifying changes in
weight values induced by permanent hardware faults in deep neural
networks (DNNs). We consider faults as static noise (𝛿) modifying
weight values (𝑤 ) for the inference of all inputs. Since DNNoutput is
determined by arithmetic operations involving weights and inputs,
faults impact the hidden states of the DNN. Our goal is to identify
a technique capable of detecting these alterations in hidden states
caused by such faults.

Changes in DNN hidden states can also occur with the intro-
duction of static noise to the input, where natural corruptions are
regarded as static noise (𝛿 ′) added to input 𝑥 [5]. Epistemic un-
certainty quantification techniques, commonly used for detecting
naturally corrupted inputs, characterize uncertainty as low for ob-
served inputs (belonging to the training data distribution) and high
for unobserved inputs. Natural corruption introduces variability to
inputs, disrupting their distribution. In turn, the process of quanti-
fying epistemic uncertainty can pinpoint these altered inputs by
identifying shifts in hidden state outputs. Since faults in weights
induce similar alterations in DNN hidden states, our intuition is
that epistemic uncertainty quantification techniques can effectively
detect changes in hidden state outputs caused by faults.

3.2 Study Setup
Fault Model: In this paper, we focus on permanent faults in ac-
celerator memory (which stores the model weights), particularly
relevant to DNNs, arising from factors like manufacturing variation,
voltage noise, and temperature fluctuations causing unpredictable
circuit delays [9]. Our fault injection framework introduces perma-
nent bit-flips in the Most Significant Bit (MSB) of randomly selected
weights distributed across the memory to illustrate a worst-case
scenario, aligning with existing research [9, 10]. We consider three
fault rates (FR) — 10%, 30%, and 50% — to showcase varying scenar-
ios. FR represents the percentage of erroneous weight parameters
among all parameters in a given DNN layer. It’s important to note
that higher fault rates significantly degrade accuracy, posing relia-
bility challenges for AI accelerators. Our proposed approach aims
to mitigate this accuracy drop, regardless of the specific fault rate,
addressing reliability issues in AI accelerators.
Networks: For the experiments, we use three popular DNNmodels
VGG16, Wideresnet32, and MobileNet.
Datasets: For the datasets we choose two image datasets CIFAR-10
and CIFAR-100, which consist of 32 × 32 RGB images of 10 and 100
classes respectively.
Methodology: We propose identifying patterns in uncertainty
scores when a model exhibits faults. Our investigation centers on
determining a threshold in uncertainty, specifically the negative
energy score, to detect misclassified inputs resulting from faults.
To achieve this, we compare the negative energy scores of correctly
classified inputs on non-faulty models with those of incorrectly
classified inputs on the faulty model. If these sets of values exhibit
distinct ranges, we can establish a negative energy score threshold
for identifying misclassified inputs due to faults.

3.3 Summary of Findings
Figure 1 depicts our research findings on the negative energy score
threshold for misclassified inputs due to faults, specifically at a
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(c) Model: MobileNet, 30% FR

Figure 1. Density plots of negative energy scores of correctly classified inputs in the non-faulty model (green) and mis-classified inputs (red)
from faulty model on training dataset.
fault rate of 30%, with an end classifier fault position and using
CIFAR-100 data. The green curve represents scores from correctly
classified inputs using the non-faulty model, while the red curve
corresponds to scores from incorrectly classified inputs using the
faulty model. Notably, the green curve consistently shows a higher
negative energy score range than the red curve, suggesting the
potential for identifying misclassified inputs due to faults. Similar
outcomes have been observed for fault rates 10% and 50%, as well as
for other network-dataset configurations in different fault positions.
However, due to brevity of space, we could not include them
in the paper. These results can be found at our website1.

4 Proposed MENDNet Framework
In this work, we present MENDNet, a novel approach that employs
an energy score-driven uncertainty estimation metric in multi-
exit networks to mitigate the errors caused by hardware faults.
As described in Section 3, the negative energy score effectively
detects misclassified inputs in faulty models. Leveraging this in-
sight, MENDNet incorporates a novel exit strategy for multi-exit
networks. Subsequently, any multi-exit network employing the
MENDNet strategy is referred to as a MENDNet model through-
out the paper.

4.1 Problem Formulation
The primary aim of our study is to develop a robust framework
utilizing the structure of multi-exit networks to effectively mitigate
the faults. Multi-exit networks exhibit a redundant nature charac-
terized by the presence of multiple exits that generate predictions.
We leverage this inherent redundancy to build a fault tolerance
mechanism. Based on our study, illustrated in Section 3, we propose
the incorporation of uncertainty quantification mechanisms within
each exit of the multi-exit network.

Let’s assume F is a multi-exit network that has 𝑁 exits and 𝐾
classes. Generally, for a given exit 𝑖 and input 𝑥 , if𝑚𝑎𝑥 (F 𝑖 (𝑥)) > 𝛾 ,
the network takes the exit (𝛾 is the predefined confidence score
threshold). We propose to involve an additional uncertainty score
threshold for each exit of the classification task. This exit strategy
would help to ascertain if the network is faulty or not. As a result,
we can discern whether the inference predictions can be deemed
reliable from the AI hardware.

In accordance with the aforementioned concept, we engage in a
comprehensive analysis of four distinct fault positions within multi-
exit networks, as depicted in Figure 2. We then proceed to explore
the potential of our newly devised exit strategy in mitigating these

1https://sites.google.com/view/mendnet/home
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Figure 2. Different fault positions in a multi-exit network. 𝐶 repre-
sents different classifiers, where the cross sign signifies different
fault positions.

faults. Subsequently, we delve into the details of our algorithm,
which encapsulates the findings and insights from this discussion.
Fault Positions: The first fault position, denoted as fault position
#1 (FP#1), is positioned at the final classifier exit. In a traditional
DNN, such a fault would significantly impair the model’s accuracy.
Fault position #2 (FP#2) is located at an internal classifier exit, and
notably, it does not affect the preceding or subsequent classifiers.
Fault position #3 (FP#3) is situated at an intermediate convolutional
layer, and in a standard DNN, its impact could propagate to the final
output, potentially compromising accuracy. Lastly, fault position
#4 (FP#4) is at the first convolutional layer, resulting in an impact
on every exit within the network.

4.2 Proposed Algorithm
Based on the previously mentioned four case scenarios, we develop
our mitigation approach. The goal of the mitigation approach is
to alleviate the faults in FP#1, FP#2 and FP#3, while localizing the
fault while the fault position is FP#4. The mitigation algorithm takes
following inputs: a multi-exit neural network F , a pre-defined
confidence threshold 𝛾 , a pre-defined negative energy threshold 𝜏 ,
an input 𝑥 ; while producing two outputs: output prediction label and
a boolean value to inform if the fault position is before the first exit.

Algorithm 1 delineates our proposed MENDNet framework for
exiting multi-exit network. For each input 𝑥 , the network F would
calculate output on various exits. If, for a specific exit, confidence
score is higher than threshold 𝛾 and negative energy score is higher
than threshold 𝜏 , the network takes the exit (Lines 4-10). If the
negative energy score is higher than threshold 𝜏 , it ensures that
the decision is not impacted by the fault. If the confidence score for
an exit does not cross the threshold 𝛾 , but negative energy score is
higher than threshold 𝜏 , the output label is added to a predefined
list(or array) (Lines 11-12). This list would be helpful specifically to
mitigate faults at FP#1 and FP#3. If the negative energy score is less
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Algorithm 1 Proposed MENDNet Framework
Require:

A multi-exit neural network F ;
A pre-defined confidence threshold 𝛾 ;
A pre-defined negative energy threshold 𝜏 ;
An input 𝑥 ;

1: list=emptyList() //Used for storing different exit predictions
2: lowest_unc_label=-1 //To store prediction with lowest unc
3: min_unc=-inf //To store highest −𝑣𝑒 energy or lowest unc
4: for i=1.....N do
5: if −𝐸𝑛𝑔(F 𝑖 (𝑥)) > 𝑚𝑖𝑛_𝑢𝑛𝑐 then
6: 𝑚𝑖𝑛_𝑢𝑛𝑐 = −𝐸𝑛𝑔(F 𝑖 (𝑥))
7: lowest_unc_label = argmax(F 𝑖 (𝑥))
8: end if
9: if 𝑚𝑎𝑥 (F 𝑖 (𝑥)) > 𝛾 and − 𝐸𝑛𝑔(F 𝑖 (𝑥)) > 𝜏 then
10: return argmax(F 𝑖 (𝑥)), False //Exiting
11: else if −𝐸𝑛𝑔(F 𝑖 (𝑥)) > 𝜏 then
12: list.add(argmax(F 𝑖 (𝑥))) // Prediction added to the list

(For FP#1 and FP#3)
13: else if −𝐸𝑛𝑔(F 𝑖 (𝑥)) <= 𝜏 then
14: if list.isempty() or i<=2 then
15: continue
16: else
17: return list.pop(), False
18: end if
19: end if
20: if i==N then
21: if list.isempty() then
22: return lowest_unc_label, True // Fault location FP#4
23: else
24: return list.pop(), False // latest pred with low unc
25: end if
26: end if
27: end for

than threshold 𝜏 and if the exit is after the second exit, the output
of the final classifier is returned (Lines 13-18).

If the input reaches the final exit (Line 20), and both confidence
and negative energy scores haven’t surpassed their thresholds, the
list length is examined. If the list is empty (Line 21), indicating no
exit has a negative energy score beyond the threshold, the algo-
rithm identifies the fault to be located before the first exit. In this
case, the output prediction with the lowest uncertainty is returned,
accompanied by a𝑇𝑟𝑢𝑒 fault boolean value, indicating the detection
of the fault. Otherwise, the last list elements is returned (Line 24),
representing the prediction from the latest exit with a high negative
energy score (low uncertainty).

5 Evaluation
Through the evaluation, we focus on three research questions about
MENDNet approach: Effectiveness, Efficiency, and Sensitivity.

Table 1. Different 𝜏 and 𝛾 selected for all models for CIFAR-10 and
CIFAR-100 datasets

Threshold
CIFAR-10 CIFAR-100

VGG-16 WideRN MobileNet VGG-16 WideRN MobileNet
𝛾 0.5 0.7 0.6 0.5 0.6 0.7
𝜏 8 10 15 15 10 8

RQ1 (Effectiveness) : What is the effectiveness of the MEND-
Net w.r.t mitigating faults in hardware? In this RQ, we discuss
the fault mitigation effectiveness through measuring the accuracy
of the model against different fault rates and fault positions.
RQ2 (Efficiency) : What is the efficiency of MENDNet com-
pared to the baseline? In this RQ, we discuss the latency of MEND-
Net model against baseline approaches during inference.
RQ3 (Sensitivity) :What is the effect ofMENDNet conditional
threshold values on the model-accuracy? Here, we measure
the MENDNet model accuracy on different values of 𝜏 and 𝛾 .

5.1 Experimental Setup
Networks and Datasets: We use Shallow-deep Network (SDN)
architecture, a popular multi-exit network. As the backbone of
SDN [7], we use the same DNN-dataset configurations, mentioned
in Section 3. Due to space constraints, we could not include all the
results in the paper. However, they are available on our website1.
Baseline:As a baseline we use the following two: (1) the traditional
DNN mechanism, where the model has a single exit after all layers,
(2) the SDN mechanism [7] (using only confidence score) as the
second baseline mechanism. Both SDN and MENDNet models use
the same model architecture, but the exit strategies of the models are
different. The existing strategies that require remapping, retraining
schemes are not considered as baseline, since they do not facilitate
JIT mitigation, and require halting the application to address the
manifested fault. Instead, we compared our proposed technique
with two state-of-the-art approaches, that do not require remap-
ping or retraining, yet facilitates online fault management in AI
accelerators to boost the classification accuracy [2, 13]. However,
they do not offer JIT mitigation, as demonstrated in our MEND-
Net framework. The method proposed in [13] employs median
feature selection to mitigate bit errors before each layer’s execu-
tion, whereas ERDNN introduces an Error Correction Layer (ECL)
in each convolution layer and a Piece-wise Rectified Linear Unit
(PwReLU) to selectively suppress errors [2]. We compare MEND-
Net with these approaches to highlight its efficacy in enhancing AI
hardware robustness.
Metric: We compare the classification accuracy of models on held-
out test sets to evaluate the effectiveness of MENDNet against faults.
For efficiency evaluation, we measure the inference latency.
Threshold Values. We select the threshold values 𝜏 and 𝛾 by
evaluating MENDNet models’ accuracy after faults and we use the
thresholds for a given model-dataset pair based on the best average
accuracy generated by using specific thresholds, as demonstrated
in Table 1. For SDNs, we only use the best accuracy threshold 𝛾 .

5.2 RQ1 (Effectiveness)
Table 2 presents the evaluation results, demonstrating that, on aver-
age, MENDNet outperforms DNN and SDN across all FP and FR for
each model-dataset pair. Except for FP#4, the accuracy of MEND-
Net models remains consistently high across different FPs and FRs.
Notably, the average accuracy of the SDN model improves for the
CIFAR-100 dataset. However, for the CIFAR-10 dataset, the average
accuracy of the SDNmodel is notably lower compared to that of the
MENDNet model. Although the accuracy of the MENDNet model is
affected by faults for FP#4, the fault position can be localized based
on the uncertainty scores across different exits.

Additionally, we observe that utilizing MENDNet with faults can
result in higher accuracy compared to non-faulty DNNs. For the
VGG16-CIFAR-100, WideRN-CIFAR-10, MobileNet-CIFAR-10, and
MobileNet-CIFAR-100 pairs, MENDNet achieves higher accuracies
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Table 2. Accuracy(%) of DNN, SDN and MENDNet for three model-backbones and two datasets through various FPs and FRs

Models Dataset Techniques
FP#1 FP#2 FP#3 FP#4 Avg

FR:10% FR:30% FR:50% FR:10% FR:30% FR:50% FR:10% FR:30% FR:50% FR:10% FR:30% FR:50%

VGG16 cifar-10
DNN 92.6 92.5 22.5 92.6 92.6 92.6 92.6 90.3 11.5 85 40.4 11.5 68.05
SDN 85.43 85.42 85.42 85.41 85.42 85.43 85.43 85.4 85.3 72.68 31.79 17.41 74.2
MENDNet 92.3 92.26 92.26 92.3 92.25 92.28 92.26 92.04 91.99 89.25 36.17 17.27 81.13

cifar-100
DNN 69.92 65.83 3.36 70.47 70.47 70.47 66.86 43.89 11.51 56.34 10.04 7.11 45.52
SDN 70.08 70.09 70.08 69.8 69.74 69.92 69.5 67.6 66.9 56.89 12.02 6.68 58.27
MENDNet 72.1 72.13 72.13 71.92 71.8 71.83 71.46 70.28 70.14 51.03 9.79 6.24 59.23

WideRN
cifar-10 DNN 91.35 75.62 38.25 93.95 93.95 93.95 93.91 93.36 92.72 80.57 71.01 37.72 79.69

SDN 84.1 84.07 84.07 83.97 83.73 83.06 83.95 83.62 83.13 74.77 30.2 15.68 72.86
MENDNet 93.97 93.97 93.96 93.8 94.1 94.14 94.04 95.6 90.43 70.17 52.74 13.43 81.67

cifar-100
DNN 65.97 38.83 14.91 75.68 75.68 75.68 75.37 74.33 72.77 56.74 3.24 6.9 53.01
SDN 69.9 69.75 69.68 68.87 68.25 68.93 69.75 68.75 68.25 54.69 16.88 6.56 58.35
MENDNet 74.34 74.28 74.28 74.21 74.97 74.99 74.22 72.52 69.48 52.34 6.35 6.56 60.71

MobileNet
cifar-10 DNN 90.57 89.67 15.63 90.75 90.75 90.75 89.44 75.08 30.08 86.41 60.55 27.06 69.72

SDN 86.27 86.26 86.26 86.19 86.12 86.12 86.22 85.75 85.04 70.67 23.71 11.08 73.3
MENDNet 91.11 91.11 91.11 91.16 91.15 91.15 90.37 87.94 85.13 84.87 40.81 31.31 80.60

cifar-100
DNN 61.53 41.92 4.59 65.1 65.1 65.1 63.35 43.51 8.47 44.44 18.04 13.5 41.22
SDN 68.4 68.32 68.46 68.25 67.6 68.05 67.54 62.36 57.41 34.32 28.38 11.62 55.89
MENDNet 68.33 68.43 68.43 67.77 67.48 67.81 66.82 62.86 59.65 51.93 15.67 10.86 56.33

than non-faulty DNNs. There are two possible reasons for this
phenomenon: 1) By increasing negative energy score threshold
during the exit decision-making process, MENDNet ensures that
the model produces decisions with high certainty, thus reducing
mis-classifications. 2) Early exits in MENDNet model can correctly
predict labels for a number of inputs, while the final exit fails to
do so. These findings provide strong support for the usage of the
MENDNet model over traditional DNNs.

Finding 1: With respect to average accuracy, MENDNet
outperforms baselines for all model-dataset pairs across
all fault positions and fault rates.
Finding 2: For all model-dataset pairs, MENDNet with
fault can improve the accuracy of non-faulty DNNs.

Comparisonwith existing approaches. In Figure 3, we showcase
MENDNet’s superior robustness against fault manifestations using
the VGG16 model trained on the CIFAR-10 and CIFAR-100 dataset.
The results reveal a significant accuracy decline with increasing
fault rates formedian feature selection and ERDNN, dropping to 10%
and 30%, respectively, at 50% fault rate on CIFAR-10. In contrast,
MENDNet maintains accuracy, only dropping to 81% under the
same conditions, demonstrating its superiority.
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Figure 3. Comparing the efficiency of our proposed framework
with existing approaches: VGG16 model trained and evaluated on
(a) CIFAR10 and (b) CIFAR100.

5.3 RQ2 (Efficiency)
We evaluate the efficiency of the MENDNet model against base-
lines by feeding held-out test data to the faulty models with the
combination of different fault rates (FR) and fault positions (FP) and
measure the latency of the models. To measure efficiency, we feed
each input thrice to the models and calculate the median latency to
remove unwanted noise in the measurement.

Figure 4 shows efficiency evaluation results for VGG16 model
trained with CIFAR-10 data. Results for other model-dataset combi-
nations can be found on our website1. From the results, we observe
that MENDNet is more efficient than DNN across different FP-FR
combinations. SDN shows higher efficiency than MENDNet as SDN
exits if the confidence threshold is exceeded; however, MENDNet
also considers the uncertainty threshold. Therefore, to ensure high
accuracy during faults, MENDNet incurs a minimal increase in
latency compared to SDNs.

Finding 3: MENDNet’s efficiency is higher than DNN,
but SDN is more efficient than both MENDNet and DNN.

5.4 RQ3 (Sensitivity)
We aim to assess the impact of varying thresholds on the accuracy
of MENDNet models by conducting sensitivity evaluations. During
the sensitivity evaluation, while adjusting one threshold (such as
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Figure 4. Latency for VGG16 model on CIFAR-10 dataset.
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Figure 5. Accuracy with varying confidence threshold 𝛾 and nega-
tive energy score threshold 𝜏 for different models for CIFAR-10.

confidence threshold𝛾 ), wemaintain the other one (negative energy
score threshold 𝜏) at a constant level.

The sensitivity evaluation results are depicted in Figure 5. Fig-
ure 5a illustrates the evaluation conducted by varying 𝜏 , while
Figure 5b displays the evaluation conducted by varying 𝛾 . It is evi-
dent that, for FP#1–FP#3 across all fault rates, the model’s accuracy
scores exhibit minimal changes when either threshold is varied.
The selection of the optimal threshold pairs is primarily based on
the model’s accuracy after faults are induced in FP#4. When in-
ducing faults at FP#4, we did not identify any specific pattern in
the model’s accuracy while varying 𝛾 . However, by varying 𝜏 , we
discovered that 𝜏 values ranging from 8 to 10 yield improved model
accuracy for faults at FP#4. Evaluation results for CIFAR-100 data
can be found on the website1.

Finding 4: Best 𝜏 and𝛾 values are selected majorly based
on the model-accuracy after faults are induced at FP#4.

6 Discussion
Fault-localization for first layer faults. In this section, we dis-
cuss if the MENDNet models can localize faults induced at earlier
layers. Previously, we observed that MENDNet is able to mitigate
faults induced at FP#1-FP#3. However, for faults induced at FP#4,
the accuracy of MENDNet model is similar to the accuracy of tradi-
tional DNN. Although traditional DNN can not localize the faults
at FP#4, where we provide evidence that MENDNet model is able
to do so. If faults are induced at FP#4, the negative energy score at
all the exits will be in the lower range, showing high uncertainty.
Thus, we can ensure that the faults are induced before the first exit.
This fault localization feature in evaluated by utilizing a metric, Un-
certainty Violation Rate (UVR). UVR is calculated by the percentage of
test inputs for which negative energy score is lower than a predefined
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Figure 6. Model accuracy with varying 𝜏 .

threshold 𝜏 . Upon experimentation with varying model-dataset con-
figurations and fault rates, the proposed framework showcases its
effectiveness in localizing faults in the MENDNet architecture. The
experimental results for fault localization using UVR is presented in
our website1. It is noticed that for all three models and for all exits,
UVR is higher than 50% for the faulty model, while for non-faulty
model, the UVR is lower for at least one exit. The results provide
evidence that MENDNet can localize faults at early layers.
Improving non-faulty SDN’s accuracy with MENDNet. We
demonstrate that employing the MENDNet exit strategy can signif-
icantly enhance the accuracy of multi-exit networks compared to
using a confidence threshold as the exit strategy. While we have
previously shown that for some model-dataset pairs, faulty MEND-
Net models can outperform non-faulty DNNs, the improvement
was not substantial. Figure 6 illustrates that for all model-dataset
pairs, the accuracy of SDN is improved by up to 10% when utilizing
the MENDNet model. Here, we set the confidence threshold 𝛾 to 0.5
and vary the negative score threshold 𝜏 . A value of 𝜏 = 0 represents
the SDN exit strategy. By increasing the value of 𝜏 , we observe
an improvement in accuracy. This is because a higher 𝜏 rejects
uncertain predictions from exits, leading to enhanced accuracy.

7 Conclusion
In this work, we propose a JIT framework to detect and mitigate
faults in the AI hardware accelerators. First, we use uncertainty
quantification techniques to detect faults. Next, we propose MEND-
Net framework to use both uncertainty quantification and multi-
exit networks to mitigate the faults. Based on the evaluation on
popular model-dataset pairs, we find that MENDNet can improve
the accuracy of DNN against faults at different fault positions and
fault rates. We have open-sourced the code and it is available at
https://github.com/isnadnr/MENDNet.
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