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ABSTRACT

Supramolecular polymer networks exhibit unique and tunable thermodynamic and dynamic properties that are attractive for a wide array
of applications, such as adhesives, rheology modifiers, and compatibilizers. Coherent states (CS) field theories have emerged as a powerful
approach for describing the possibly infinite reaction products that result from associating polymers. Up to this point, CS theories have focused
on relatively simple polymer architectures. In this work, we develop an extension of the CS framework to study polymers with reversible bonds
distributed along the polymer backbone, opening a broad array of new materials that can be studied with theoretical methods. We use this
framework to discern the role of reactive site placement on sol-gel phase behavior, including the prediction of a microstructured gel phase
that has not been reported for neutral polymer gels. Our results highlight the subtleties of thermodynamics in supramolecular polymers and

the necessity for theories that capture them.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0218748

I. INTRODUCTION

Supramolecular polymers reversibly bond to other polymer
chains via non-covalent linkages, such as hydrogen bonding, -7
interactions, or electrostatic interactions.' ~ The reversible nature of
the interactions enables a variety of stimuli responsiveness and self-
assembly behavior, leading to their use as flow modifiers, self-healing
polymers, and compatibilizers, among other applications.”

Gelation is a fundamental phenomenon in supramolecular
polymer materials. Network formation connects molecular-level
linkages to macroscopic viscoelastic properties. Theoretical descrip-
tions of gelation in polymer systems go back to the 1940s with
Flory and Stockmayer,”'” who first quantified the gel point and cre-
ated a connection between the molecular weight distribution and
macroscopic gel properties. In the time since, molecularly informed
theories of polymer systems have been successful in describing
gel swelling,' " deformation,'* ' and thermodynamics.'”"* How-
ever, a persistent challenge in the theory of reacting polymer sys-
tems is enumerating all (possibly infinite) distributions of reaction
products.

Efforts to overcome this challenge typically make assump-
tions about the reaction product structure. Using a combinatoric
argument of N, “stickers” on each chain reacting with probability

p»> Semenov and Rubinstein developed the first quantitative model
for the phase behavior of thermoreversible gels,'” establishing that
the formation of a reversible network is always associated with
phase separation. Formulated at the mean-field level, their theory
does not take into account the position of stickers on the polymer
chains or the correlations that arise from the positions of stickers.
Recently, Danielsen augmented the Semenov and Rubinstein theory
by approximating linkages between chains as effective 4-arm poly-
mer stars, omitting the effect of higher-order branched species and
loops, to study the role of reactive site spacing, among other factors,
in the phase behavior in hetero-associating polymer blends.”’ In
an auxiliary-field framework, Mohan, Elliot, and Fredrickson devel-
oped an inhomogeneous theory of gelation for a system consisting
of purely tree-like structures, which allowed them to enumerate
infinite isomers.”"** Their theory is consistent with Flory and Stock-
mayer formalism as well as the other mean-field approaches in the
homogeneous limit. Rabin and Panyukov derived a comprehensive
theory of gelation using a framework known as replica field theory
that utilizes the so-called “n — 0” trick,”’ and their theory has been
instrumental in understanding and quantifying inhomogeneities
in gels. Each of the works above has been successful in its own
right, but the necessary simplification of reaction products or the
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theoretical approach limits the applicability of the theories beyond
the mean-field.

The coherent states (CSs) polymer field theory framework is
a theoretical method that avoids the central issue of describing
reaction products.”’”® Instead of enumerating possible products,
polymer chains are built from stochastically evaluated chain prop-
agators that inherently generate all possible reaction species.”
Importantly, the resulting field theory can be numerically evalu-
ated using well-established complex Langevin schemes to sample
fluctuations beyond mean-field. So far, the CS framework has been
used to study relatively simple supramolecular architectures, such
as end-functionalized polymers with equivalent reaction sites.”"~
CS theories currently lack the flexibility to explore systems with
arbitrary reactive site positions, a factor that molecular dynamics
simulations demonstrate plays a key role in phase behavior.”"'
Moreover, precise synthesis techniques now allow for nearly arbi-
trary placement of reaction sites along a polymer backbone or on
side chains.”” " A predictive theory that accounts for the diversity of
supramolecular polymers is necessary to navigate such a large design
space.

To that end, the focus of this work is to extend the coher-
ent states framework to describe arbitrarily placed reaction sites
in supramolecular polymers. Our resulting theory can be used to
study multiple reaction types and multi-component and, since it
is formulated in the CS framework, is amenable to direct numeri-
cal simulation. As we will show, the theoretical approach elegantly
imbues reactivity along a polymer chain by effectively tagging reac-
tive sites with a local field y*. The tagging process naturally connects
abstract field variables to physically relevant thermodynamic quan-
tities, such as reaction conversion. We introduce and demonstrate
the theory in the context of reversible network gelation in a good
solvent. The mean-field limit of our theory is compared to previous
theories of gelation. At the level of the random phase approxima-
tion, we study the effect of reactive site placement on gelation and, in
doing so, demonstrate novel phase behavior in neutral gels. Namely,
amicrostructured gel region appears within the typical sol-gel phase
diagram. The physical origin of the microstructured gel is sequence-
induced correlations that manifest as clustering of bonds between
polymer chains. These results indicate that there is rich phase behav-
ior related to the coupling between monomer type (differing by
reactivity, chemical composition, etc.) and their arrangement on the
polymer backbone.

Il. THEORETICAL MODEL

The central goal of the current work is to account for non-
equivalent reaction sites in polymer coherent states models. As men-
tioned earlier, previous coherent states approaches have utilized the
symmetry in polymer architecture to simplify the theoretical form.
For an arbitrary number of reactive sites and placements, the num-
ber of pairwise reactions of M functional groups is M!/[2(M - 2)!].
While it is possible to enumerate each pairwise term, accessing ther-
modynamic information such as the reaction conversion is tedious
with many individual reaction terms. An elegant and transferable
approach is to tag each segment-level reactive site with a local field
that encompasses all reactive groups distributed along the polymer
chain. We will derive this approach for discrete Gaussian chains in a
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FIG. 1. Graphic of bead-spring polymer with N beads and M reactive sites.
Reactive sites are denoted by their index along the polymer backbone
{ar, 00, ., am-1, am}-

so-called hybrid coherent states theory, and then we take the contin-
uous Gaussian chain limit to arrive at a pure coherent states theory
for non-equivalent reaction sites.

Consider a bead-spring model for linear polymers in an implicit
solvent, each with N total beads and M functional groups dis-
tributed along the backbone at contour positions {a1,az,...,anm}
(Fig. 1). To focus on backbone functionalization, we will assume
the reactive groups are not at the ends of the chain. Incorporating
end-functionalization is a straight-forward extension. In a hybrid
auxiliary-field and coherent states framework,”® the canonical
partition function is

Y/
Z(n MV, T) = - ;)

Wf D(¢p*,¢) e O (1)

where Zy = V" /n!is the ideal partition function for 1 polymer chains
in a reduced volume V = V/Rgo and D,, and Dy are normalizing

Gaussian integrals.”® Ry, = (N /6)/2b is the unperturbed radius of
gyration with segment length b. The effective Hamiltonian is

s [ w @y + 2, fdr i)
-, [ @O0 «gr (1)
- fdr o7 (r)e_iw(r) -n ln(% fdr ¢N(l‘)) + Hixn, (2)

where u is the excluded volume interaction parameter between
monomers, * represents a spatial convolution, and ®(r) is a
normalized linking function that embeds the backbone bonding
potential between successive polymer beads.

The first term in H accounts for the non-bonded interactions
with g > 0 corresponding to a good solvent, the second and third
terms serve to propagate polymer chains, and the fourth and fifth
terms are source and sink terms that initiate polymers at index 1 and
terminate n polymer chains at index N, respectively. The final term
in the Hamiltonian is responsible for building all of the products of
reversible reactions. With M reactive sites of the same type, the form
is

Hixn = %% fdr [dr ¢r (1)e P o(r) « ¢am-1(l‘)>

m=1 n=1
x R(r,t') (90, (¢)e "D 1 60,1 (1)), 3)

where A is the bond strength and is related to the equilibrium
constant for the pairing reaction, and R(r, ") is a bonding or reac-

tion kernel. The ¢ ()™ O D(r) % ¢, 1 (r) terms in Eq. (3) are
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the statistical weights of a bead at index a,, being connected to
the previous bead a,, — 1 at position r. Pairing two such sites via
the reaction kernel encodes bonding. R(r,r') can take the form
of any bonding potential, but the simplest choice is a Dirac delta
function.

The non-local and bilinear form of Eq. (3) is not con-
venient for further analytical manipulation or for efficient
computation—all of the reaction information is spread out across
the chain. Instead, we can tag all of the fields by wrapping
them into a single field y(r) through an identity transformation,

Dy 8(y(x) = Ty 9%, (1) O D(x) 5 ¢u,,-1(r)) = 1. Using the
Fourier representation of the delta function to introduce another
local field ™ results in the following partition function:

Znm v,y = e [Dw [D(4%9)

x f D(y*,y) e o7 ov vl ()

where Dy is a normalizing Gaussian integral. The effective Hamilto-
nian becomes

H= 2—;) fdr w(r)2+j§=1: fdf ¢; (1);(r)
N
-y [dr¢i(x O D(r) g (r
j:z/ ¢J() (04110

=3 [ (6 - 0w gm0

- /dr o7 (r)e_iw(') -nln (% /dr ¢N(r))
+ iy @vw - v - Ju) [arEwe)] ©

Comparing Eq. (5) to Eq. (2), we can see that propagation terms
for reactive sites include a factor of y*, which serves to functionalize
beads. The final line of Eq. (5) encompasses all of the reactions with
y*y linking the relevant fields and y and %w(r) [ar'R(x,x" )y (r")
either leaving a site unreacted or bonded to another reactive site,
respectively. The key advantages of this framework are that the fields
y and y* are local, and one can assign reactivity by simply placing
a factor of ¥ on reactive monomers. Furthermore, important ther-
modynamic properties are now connected to the y and y* fields. For
instance, the average density of bonds”’ is given by

10lnz A / ’ ’
prni = 3 31y = 2 [ (v [ RO ©

where the angled brackets denote the ensemble average with statisti-

2Pbond

it where

cal weight e 711"4"$¥"¥] The average conversion is 7 =
C = n/V is the reduced chain density.

The theory presented earlier becomes more compact for con-
tinuous Gaussian chains. Instead of discrete beads referenced by an
integer index j, the chain is represented as a line contour, and both
fields vary continuously over a chain contour variable s. Reactive

sites are represented as points along the chain contour. Upon taking
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the limit of continuous Gaussian chains, we can convert the theory
to a pure coherent states theory.”® The resulting partition function is

Z

0 * * —H[¢".$.y".y]
DeDy fD(¢> ) fD(w e - ()

Z(n,M,V,T) =

The effective Hamiltonian is
=2 far [ pwyute)pce)
N
+f0 ds/dr¢> (r,s+) Lo(x,5)
M
-3 /dr 8" (1,53)p(x,5,) (y* (1) = 1)

- /dr ¢ (r,0) —n 1n(% fdr (p(r,N))

v [ [y v v - Ju) [ R )],
®)

where £ =08/ds— (b/6)V* is the chain diffusion operator,
p(r) = fON ds¢* (r,s+)¢(r,s) is the density operator, and u(r,r’) is
the nonbonded pair interaction potential in units of kgT between
polymer segments. The argument of s+ indicates that ¢* fields are
evaluated at an infinitesimally larger argument in order to generate
the correct causal response.”® In the continuous chain theory, the
reactive sites essentially appear as source/sink terms paired with a
factor y* — 1.

The CS framework is flexible in that there are several ways
to represent the canonical ensemble.”® Without derivation, we can
equivalently represent the source/sink terms in the continuous chain
theory as

Hs= n 1n(%1‘_[1 [ar ¢*<r,s;)¢<r,s;)w*(r>)
+ Z:l /dr ¢ (1, 53) (1, 571)

—/dr (/f(r,O)—nln(%fdr (/)(r,N)). 9)

The partition function in Eq. (7) must be multiplied by M more fac-
tors of Zy in this alternative canonical ensemble. For continuous
Gaussian chains, this representation is better suited for analytical
analysis, as we will show.

The general theory outlined above exactly enumerates all of the
reaction products, including both tree-like and looped networks. A
Taylor series representation of the partition function Z in the fields
¢, ¢*, v, and y* generates terms corresponding to all possible sets
of molecules, which can be conveniently represented by standard
Feynman diagrams.”* Both the discrete chain and continuous chain
models can be numerically simulated without approximation using
a complex Langevin scheme, where field configurations are evolved
stochastically over fictitious time. Numerical methods for complex
Langevin simulations can be found in Refs. 28 and 38. An approxi-
mate treatment of the field theory at the mean-field level does not
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account for any looped structures, generating only tree-like net-
works. In the following section, we will explore the thermodynamic
implications of the mean-field treatment of our theory.

Ill. RESULTS AND DISCUSSION

For the rest of the work, we will use the continuous chain
theory in the alternative canonical ensemble described in the pre-
vious section and simplify the theory by considering contact inter-
actions and bonding, such that u(r,r’) = uod(r —r') and R(r,r")
=8(r - 1’). Note that all of the main results can also be obtained
with the discrete chain theory.

A. Mean-field theory

A natural place to start is the mean-field limit of the the-
ory, corresponding to saddle-point configurations of the fields that

satisfy
6H  6H _ SH _ 6H _
0¢™(r;s)  O¢(r.s) Sy (r)  y(r)

The functional derivatives in Eq. (10) yield configurations that in
unbound space are homogeneous in the spatial dimension but inho-
mogeneous in the contour variable. The point-like description of
reactive sites along with the causal response in ¢* and ¢ require care-
ful mathematical treatment when taking variations of the Hamil-
tonian. Full expressions for the saddle-point configurations can be
found in the Appendix. The mean-field analysis shows the v and y*
fields are connected to meaningful quantities. Their product gives
the density of functional groups, y*y = MC, the number density of
bonds is p,, 4 = Ay’ /2 as follows from Eq. (6), and the conversion is
given by

0. (10)

_ Ay 1420MC-V1+4MC

T MC 2AMC an

The conversion scales as 7 ~ AMC and 7 ~ 1 — (AMC)™** for small
and large AMC, respectively.

The mean-field Helmholtz free energy of the system can be
found through substitution of the mean-field conditions into the
effective Hamiltonian in the partition function,

F/V=CIn(C)-C+ %BCZ + %MCn +MCIn(1-7), (12)

where we have introduced the scaled parameter B = 1oN* /Rgo. The
fourth and fifth terms account for the reversible reactions. For
M =0, the free energy reduces to that of a polymer solution with
excluded volume interactions. Equation (12) is equivalent to the
free energy derived by Semenov and Rubinstein in Ref. 19 and the
mean-field free energy of M-arm stars with reactive ends.”” At the
mean-field level, chain structure is neglected, so one would expect
the same result for different architectures. Accordingly, the discrete
chain theory in Eq. (5) results in the same mean-field free energy.
The osmotic pressure also contains an explicit term related to the
conversion,

1 1
O=C+ EBc2 - S MCn. (13)
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FIG. 2. Sol-gel phase diagram for M = 3. The colorbar indicates conversion, #.

The gel point corresponds to the Flory gel point, 7c = ﬁ

By chemical potential and osmotic pressure equivalence,
the mean-field phase behavior is fully described by three
parameters—BC, A/B, and M. The spinodal corresponds to the
condition

l+n M BC
n  1+BC

(14)

Figure 2 shows the sol-gel phase diagram for M = 3. Phase
separation only occurs for sufficiently high 1/B, which represents
the competition between the attraction of the reactive sites and
repulsion from the excluded volume. The gel point indicated in
the diagram represents the critical conversion from Flory,” 5, = 1/
(M -1). The binodal envelope provides the locus of coexisting
dilute (sol) and concentrated (gel) phases for each value of A/B in the
two phase region. The macrophase spinodal approaches the gel point
at low values of BC, indicating that the sol-gel transition coincides
with gel formation. For higher solvent quality or higher concentra-
tion, a disordered homogeneous gel may form above the gel point
but outside of the spinodal region. While not shown, increasing M
lowers the energy necessary to form a gel, broadening the overall
2-phase region.

B. Disordered phase structure and stability

Mean-field theory neglects correlations so that any effect of
reactive site sequence or position does not affect the thermody-
namics. The RPA provides further information on the disordered
structure and stability of the disordered phase under the mean-
field approximation. The RPA amounts to a weak inhomogeneity
expansion around the saddle-point configurations and serves to
capture linear response behavior. Using the procedure outlined
in Ref. 27, we apply a weak perturbative field J(r) that is cou-
pled to the polymer density to obtain the perturbed Hamiltonian,
Hj = H + [dr](r)p(r). Expanding each of the fields to first order in
J allows us to calculate the response function,

8p(k) = -S(k)j(k), (15)
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where 8p(k) is the Fourier transform of the first-order density
response, S(k) is the static structure factor, and f(k) is the Fourier
transform of the weak perturbative field. The static structure factor
is typically represented as

poNG(k; {a}, N)

) = S oo NG (o, N) (16)

where p, = NC is the reduced monomer density and G(k; {a},N)
is the scattering function for a single polymer chain. For an ideal
Gaussian chain with no reactions, G is simply the Debye scattering
function, gp(x) = x%(e*x +x—1) with x = KR, and k* = [k|*. The
general expression is

G(k {a},N) = gn(x) + P(x; {a}, 7), (17)

where the second term accounts for the correlations contributed
by the larger polymer species created by the reversible bonding
reactions,

%(Z?’il [r(x,N,s;) + (x5, 0)])2

o , (18)
1- %Z]]Vil( Zl e smsnl/N l)
e

P(x; {a},n) =

with r(x;5,5") = i(l - efx(sfsr)/N). An important feature of Eq. (17)
is that the conversion # appears explicitly in the additive term
P(x; {a},n), allowing us to directly analyze the effects of reversible
bonding on the structure factor. Practically speaking, such a compact
analytical form for the static structure factor stems from the conve-
nience that all reactivity information is embedded in the y and y*
fields. The structure factor for discrete chains can be found with the
same approach and is given in the Appendix, yielding a similarly
compact expression. Finally, we note that Eq. (18) enumerates only
tree-like reaction products, which is a consequence of the mean-field
approximation. The full theory accounts for additional ring and loop
structures among the sol and gel components.

The limit of $7'(0) gives a measure of the average molecular
weight, Ny,

1

S(0) ~ poNu

+ Uop, (19)

yielding

1+9

NW/N = G(O, {(X},N) = m

(20)
The average molecular weight diverges for a critical conversion of
1, = 1/(M - 1), which is consistent with classical gelation theory
that includes only tree-like polymer structures. As expected, N,, does
not depend on the specific placement of reactive sites.

With a large design space for supramolecular polymers, Eq. (17)
can be used to probe the structure of disordered systems. We will
consider a few specific cases below. For a single reactive group at
position s;, we obtain

G(Kk;51,N) = gp(x) + 7(r(%,51,0) + r(x, N, s1))>. (21)

In the limit of # — 1 when s; = N/2, the scattering function is
equivalent to that of a 4-arm star with each arm having degree of
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FIG. 3. Structure factor as a function of conversion for simple architectures with
M =1 and BC = upp,N = 1. The functional group is placed (a) in the center and
(b) at the end of the chain. See Ref. 40 for the structure factor of a star polymer.

polymerization N/2. Likewise, full conversion with s; = 0 (ors; = N)
gives the scattering function for a linear polymer of length 2N. We
show these comparisons numerically in Fig. 3.

For M =2, in the telechelic limit (s; — 0 and s; — N), the
scattering function is

GOk {0,N},N) = go(x) + (N, 0)* -
e

(22)

The result mentioned above is in agreement with Ref. 27; however,
the expression here is notably easier to interpret since # naturally
arises in the RPA.

A final case we will consider is that of a linear polymer with
a multi-functional end group, where M reactive sites reside at the
same contour position. The scattering function reduces to

My

Glks {03, N) = go(x) + r(xN,0)"

(23)

C. Microstructured gels

From the response function, we can determine the stability
of the disordered phase. The onset of a divergence in the static
structure factor [S™'(k*) = 0] indicates the stability limit of the
homogeneous disordered phase. When k* = 0, the system under-
goes macrophase separation, while k* > 0 indicates phase separa-
tion into a microstructured phase with characteristic length scale
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FIG. 4. (a) Sol-gel phase diagram with microphase region for M = 3. DG = Disordered Gel, MG = Microstructured Gel. Reactive sites are at positions s./N
€ {9/20,1/2,11/20}. The green dashed line is a continuation of the macrophase stability boundary from the Lifshitz point (purple circle). (b) Instability in the structure

factor along the arrow path in (a).

D* =2x/k*|. An advantage of our current theory is that we can
explore arbitrary numbers and sequences of reactive sites. Interest-
ingly, we observe a sequence-dependent microstructured gel phase
that, to the best of our knowledge, has not been previously reported
for neutral gels. Figure 4(a) shows a representative phase diagram
for M = 3 with a reactive site sequence of so/N € {9/20,1/2,11/20}.
This sequence corresponds to placing a reactive site in the cen-
ter of the polymer chain with reactive sites spaced As = N/20 on
each side. Figure 4(b) shows the divergence in the structure fac-
tor at k* Ry, ~ 2.2 upon approaching the spinodal. The boundary of
the microphase region terminates at a Lifshitz point (purple circle),
where the microphase spinodal intersects the macrophase spinodal
and D* diverges.

The microstructured region of the phase diagram is sequence-
dependent since spacing between reactive sites significantly affects

the width of the microphase region. Figure 5 shows the phase

104 3
103 4
102 4
S E
~< 4
10" 4
] == Gel Point
] == Spinodal
100 4 =— As = N/100
] =—— As=N/20
m— As = N/10
10_1 Ty T T T M
0= 1073 1072 107! 10°

BC

FIG. 5. Effect of reactive site spacing on the extent of the microphase
region for M = 3. Values of As correspond to the placement of s,/N € {1/2
—As/N,1/2,1/2 + As/N}.

diagram for different reactive site spacing. Increasing As narrows
the microphase region. For the smallest spacing (As= N/100),
the microphase boundary approaches the gel point. That is, the
microphase is stabilized as soon as the system forms a gel. We
can understand the effect of spacing by using the Lifshitz point.
The value of BC at the Lifshitz point, denoted (BC);, indicates
the prevalence of the microphase in the phase diagram. Lower
values of (BC). correspond to a wider microphase region, as evi-
dent in Fig. 5. D* decreases away from the Lifshitz point. For the
same value of BC in Fig. 5, the characteristic length scale of the
microphase region decreases with decreasing As. Larger values of
As require sections of the chain between reactive sites to organize
into a polymer-rich phase, whereas smaller values of As presumably
allow longer sections of the chain to remain extended in solvent.
Later in this section, we will further explore the physical origin of the
microphase.

Due to the pliability of the structure factor in our theory, we
can analytically obtain the Lifshitz point for M = 3. Notably, the
microphase is only present for M > 2. In principle, one can obtain
the Lifshitz point for any value of M > 2; however, for concise-
ness, we only present M = 3. (BC), = y is the physical root of the
quadratic equation

2(y+1)((y = 2)s1/N + 3ys2(1 = s2/N) + (59 + 2)s3/N
=3y(s1/N)” = 3y(s3/N)*) = 3y(2y +3) = 0. (24)

The placement of reactive sites influences the prevalence of the
microphase region, but what is the physical origin of a microstruc-
tured gel? The microphase corresponds to heterogeneity in the gel
structure caused by local clustering of bonds. Using the RPA, we
can evaluate bond-bond correlations from the response to a weak
perturbation Jyonq (1),

6/3bond(k) = _Sbond(k)fbond(k)a (25)

where 8ppond (k) is the first order bond density fluctuation. Figure 8
shows that the length scale of the instability aligns with that of the
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instability in Fig. 4, suggesting ordering of bonds drives finite wave-
length instabilities in segment density. Since the microstructured
region of the phase diagram lies above the gel point, the clusters of
bonds are not isolated but likely manifest as reactive-site-rich, glob-
ular regions within the gel alongside pockets of solvent. Such a phys-
ical picture is similar to that of a gel with spatial inhomogeneities
discussed elsewhere in polymer gel literature.""**

Gels with heterogeneous structure are usually associated with
charged gels."”” Bonding between reactive sites tends to cause
macrophase separation since the favorable bond energy produces
attractive interactions similar to the effect of lowering the solvent
quality, as seen in the negative contribution to the osmotic pres-
sure [Eq. (13)]. In weakly charged gels with marginal to poor solvent
conditions, the solvent-induced tendency for macrophase separa-
tion competes with segment-level electrostatic repulsion, leading
to phase separation at finite k. Rabin and Panyukov'*" showed
that electrostatic correlation at the Debye-Hiickel level naturally
renormalizes the excluded volume parameter, enabling prediction
of microphase separation. Similarly, the static structure factor in
Eq. (17) can be written as

poNgp(x)
S(k)y= ——=—~2 | 26
8 = T PN () 26)
@
0 -
\/
Q
= 2]
a \/B
—4 4 — () — 10
“ — ] m—19.55
\ — 5
_6 T T

FIG. 6. Renormalized excluded volume parameter B(x) = N?{i(x) /Rg0 for (a)
constant spacing of As = N/20 and varying 1/B and (b) constant A/B = 3 with
varying spacing. The bare excluded volume is BC = 1. Values of As correspond
to the placement of s, /N € {1/2 — As/N,1/2,1/2 + As/N}. The dashed line is

—gp(x), where the intersection of B(x)C = —gp () corresponds to S~' (k) = 0.
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where i@1(x) is a renormalized excluded volume parameter of the
form

1 P(x; {a}, n)/gn(x)
poNgn(x) 1+ P(x; {a},n)/gn(x)

The perturbation to up is strictly negative so that the reversible
bonding effectively decreases solvent quality.

Of interest is how this effective solvent quality is dependent on
the placement of reactive sites. Because P(x; {a},#) includes corre-
lations between reactive sites, the position/sequence of reactive sites
will influence the solvent quality. Figure 6 quantifies the effect of
sequence on the parameter B(x) = Nzit(x)/R;O. Figure 6(a) shows
for a fixed sequence of s/N € {9/20,1/2,11/20} that increasing
the bond energy (increasing conversion) lowers the effective sol-
vent quality non-uniformly with the wavevector. Approaching the
microphase spinodal (A/B » 19.55), the solvent quality intersects the
dashed black line, indicating phase separation [B(x)C = —1/gp(x)].
Clearly, the effective solvent quality is non-uniform over k, and
phase separation requires a sufficiently poor solvent. For a con-
stant value of A/B = 3, Fig. 6(b) highlights the effect of sequence.
The foremost observation is that small spacing between monomers
significantly decreases B(x)C. More subtly, the wavevector of min-
imum B(x)C depends on the spacing. Closer spacing of reactive
sites induces stronger segment-level attraction through correlations
between sites. When the induced attraction is sufficiently large,
microphase separation occurs.

From the discussion earlier, the characteristic length scale of the
domains formed by microphase formation is a non-trivial balance
between the total correlation function of the segments composing
the polymer network and the correlations between reactive sites. We
can further probe this balance by numerically evaluating the domain
spacing over different values of BC, M and reactive site spacing As
(Fig. 7). Note that A/B for the microphase is determined by the sta-
bility boundary and is not independent of the other parameters.

i(x) =up — (27)

= Centered
*  End

3
:l: == Analytical
4
1

0.1 T 1 T ™
1078 1076 107* 1072 109
MAs/(N BC)

FIG. 7. Characteristic length scale (D* = 27/|k*|) of microstructured gel phase
vs a combined variable %. “Centered” and “End” correspond to reactive-site
positions centered in the middle of the chain or originating from the end of the
chain with spacing As, respectively. The ranges of the parameters to gener-
ate the points in the plot are BC € [107#,2], M € [3,100], MAs/N € [10~°,1].
Analytical results are from Eq. (28) for each sequence type.
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Analytically, we approximate the domain size from an asymp-
totic analysis of the structure factor obtained from the RPA. For
|k|* > 1 and As/N « 1, corresponding to small domain sizes
and small reactive site spacing, we find that the domain size is
approximately

M -1 As MAs \'/6
) - gu( ) @)

*

b N“Rg”( M NBC N BC
where « = 2°°7/3% and 2'?7/3" for end and center sequences,
respectively. “End” and “centered” sequences correspond to
reactive-site positions centered in the middle of the chain or orig-
inating from the end of the chain with precise spacing As. From
Fig. 7, we see that the scaling relationship is valid until MTACf <1,
above which the domain size begins to diverge approaching the Lif-
shitz point. Comparing the two types of sequences considered, the
domain spacing is larger when the reactive sites are placed at the end
of the chain compared to the center. This implies that the length of
the long, unreactive portion of the chain plays a role in the domain
scale of the microphase that forms. Increasing BC reduces domain
size since the attraction from reactive sites cannot compensate addi-
tional repulsion from excluded volume interactions, which break
associations in the microdomain in favor of a disordered network.
The scaling relationship uncovers this balance and points to design
variables that can be used to tune the domain size.

IV. CONCLUSION

Supramolecular polymers are an attractive class of materials
for their tunability and reversible interactions; however, their abil-
ity to form associations requires a unique theoretical treatment.
The coherent states framework allows us to construct field theo-
ries that capture the complexity of reaction products that arise from
supramolecular interactions in a way that can be analyzed with both
analytical methods and direct numerical simulation.

The current work extends coherent states theories for
supramolecular polymers to a wider array of architectures. The most
compelling aspect of our approach is the realization that, irrespective
of architecture, reactive sites can be tagged with a field marker y*
that enables complex macromolecular reaction products to be read-
ily and exactly enumerated. Because of its simplicity, this approach
can trivially be extended to multi-component and multi-reaction
systems with the addition of y* fields for each type of reacting
component. Since y and y” are connected to each of the react-
ing beads/species, accessing thermodynamic quantities related to
the extent of the various reactions is straightforward. Moreover, the
modified coherent states framework enables ready access to ana-
lytical mean-field solutions and RPA structure factors and stability
limits.

As demonstrated in the results, our theory unearths novel
thermodynamics, even in a well-studied one-component system. In
particular, the presence of a microstructured gel was found to be
dependent on the spacing and placement of reactive sites. Suffi-
ciently close spacing of reactive sites along the backbone pushes the
microphase spinodal toward the gel point. For many years, authors
have noted there is no thermodynamic transition at the gel point for
a neutral polymer in a good solvent, whereas our results show that
gelation can be accompanied by microphase separation for chains

ARTICLE pubs.aip.org/aipl/jcp

with closely clustered stickers. The microstructured gel results from
the attractive polymer—polymer correlations arising from nonuni-
form sticker placement. The appearance of a microphase in a
one-component system suggests multi-component supramolecular
systems may possess similar microphases, even for chemically simi-
lar polymers (y = 0). For hetero-associating polymers, microstruc-
tured gels have been reported, but only for chemically dissimilar
polymers.””** While our results are shown for continuous Gaussian
chains, the general theory presented for discrete Gaussian chains can
be used to construct polymers with varying monomer types, akin
to sequenced-based biological polymers. There are undoubtedly
rich thermodynamic phenomena yet to be found in supramolecu-
lar polymers, and the coherent states framework will likely play an
important role in uncovering them.
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APPENDIX A: VARIATIONS FOR CONTINUOUS CHAIN
THEORY

The variations of the effective Hamiltonian with respect to each
field in the alternative canonical ensemble with source/sink terms in
Eq. (9) are given below. For ¢ and ¢,

0H

36 (5.5) = L¢(r,5) + (1,5) fdr' u(r,r)p(r")

_ni/[: O s)¥™ (£)8(s = sm)
24 T 3 (s )o sy ()

-0(s) + ; O(r,5,)0(s = sm), (A1)
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= LT¢"(1,5) + ¢* (r,5) fdr u(r, v )p(r")

i’[: ¢* (1,5,) ¥ (£)3(s = sm)
i Jar' 7 (Fss5) (x5, v (1)

fdf ¢(j\]]2]) Z " (1,55)0(s —sm),  (A2)

where £ =-9/ds - (b/6)V? is the adjoint of the chain diffusion
operator. For y* and v,

5¢(r s)

oH LM (5805030 - s)

o O T (e ) AY
SH
OR

Note that the ¢* and ¢ fields are evaluated with arguments ahead and
behind the contour points s, respectively, in the variations. This
has implications when integrating the variations above with respect
to the contour variable, as is performed in obtaining mean-field
configurations. Specifically, integration with respect to the contour
variable introduces Heaviside functions whose argument depends
on whether the integration direction comes from above or below a
particular reactive site position s»,.

v(r)-1-1 f dr’ R(r,t )y (). (Ad)

1. Mean-field configurations

The mean-field approximation is implemented by equating the
variational derivatives in Eqs. (A1)-(A4) to zero. In unbound space,
the ¢ and ¢™ fields are functions of the contour variable, while y and
y* are uniform. Integrating the equations obtained from Egs. (A1)
and (A2) produces the mean-field configurations of ¢ and ¢*,

_BC,

ho) = e gy O, (49)
Ce B

4(6) = O =), (A6)

where the “0” subscript indicates that the mean-field configuration
of the field and ®(x) is the Heaviside step function. An impor-
tant relation is that ¢q (s)@o(s) = ¢g (si)Po(sy,) = C, where s, is
the position of a reactive site. Setting Eqs. (A3) and (A4) to zero
produces a quadratic equation with a physical solution for the fields,

- VAAMC +1+1

0 — 2 > (A7)
VAAMC +1-1
Vo = TJr (A8)

APPENDIX B: STRUCTURE FACTOR FOR DISCRETE
CHAINS

For discrete chains, the structure factor is

S - PG {a),N)

1+ uopoNG(k; {a},N)’ (BD)
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FIG. 8. Structure factor related to bond-bond correlation for the same conditions
as that of Fig. 4. Note that the structure factor diverges at the same value of kRg,
as that of Fig. 4.

The corresponding scattering function is
Gl {a}.N) = gon (ks N) + Po(k {ahy),  (B2)
with
R 2
LRz it o)

1= Ly (T el - 1) o

Po(k, {a} ) =

where gop(k;N) = N(l_(D(kb);zfi((t))()?(k)u) is the discrete Debye

scattering function and ® (k) is the Fourier transform of the discrete
chain bonding potential.

APPENDIX C: BOND CORRELATION

Figure 8 shows the structure factor related to bond-bond
correlation for the same conditions as that of Fig. 4.
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