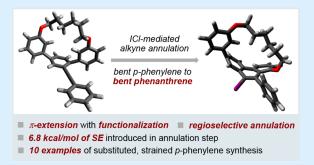


pubs.acs.org/OrgLett Letter

Synthesis of a Bent, Twisted, and Chiral Phenanthrene via an Iodine Monochloride-Mediated, Strain-Inducing π -Extension Reaction

Nirob K. Saha, Timothy H. Barnes, Laura J. Wilson, and Bradley L. Merner*

Cite This: Org. Lett. 2022, 24, 1038-1042

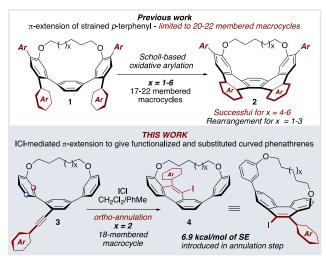

ACCESS

Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: A strategy for the synthesis of substituted and strained p-phenylene units is reported. An oxidative allylic alcohol rearrangement, followed by organometallic addition to the resulting α -ketol and subsequent dehydrative aromatization, affords p-terphenyl-containing macrocycles in which the central p-phenylene has been selectively substituted. Ten 18-membered macrocycles have been synthesized, eight of which contain substituents that could enable π -extension. Only alkynylated derivatives were amenable to π -extension via an ICl-mediated reaction, affording a highly bent, twisted, and chiral phenanthrene.



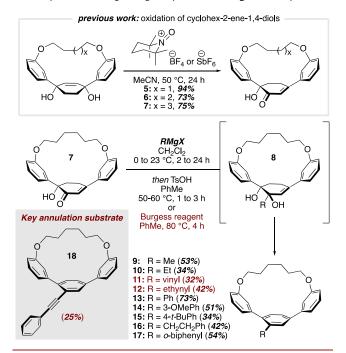
The development of synthetic strategies that enable the preparation of atomically precise, carbon rich materials has been an important area of investigation for decades. In particular, the synthesis of such materials that are curved, twisted, or bent has taken center stage in the field of nonplanar aromatic hydrocarbon synthesis.² Fascinating structures such as warped nanographenes,3 twisted graphene nanoribbons (GNRs), π -extended helicenes, and carbon nanobelts (CNBs) have succumbed to chemical synthesis in recent years. In the case of the CNBs, approaches to their synthesis have been ongoing for more than 50 years, with their bottom up chemical syntheses being conquered by the groups of Itami and Miao independently in 2017 and 2019, respectively. The Itami approach to CNBs involved the synthesis of a macrocyclic precursor that contained strategically placed aryl bromides that would undergo a late stage Yamamoto reaction to furnish a fully conjugated, polycyclic aromatic hydrocarbon (PAH)-based CNB.6 Miao and co-workers could capitalize on using cycloparaphenylene units as a diameter-defining templates for the synthesis of an armchair-based CNBs using a Scholl reaction to convert the benzenoid macrocycle to a PAH-based macrocycle. In the case of the latter, π -extension of the carbon nanohoop was computed to be only slightly strain-inducing, and in some instances strain-relieving, which contributed to the success of the oxidative arylation-based approach.

Our group has been interested in developing synthetic strategies for enabling π -extension of strained benzenoid macrocycles to increasingly strained PAH-containing macrocycles, and in 2018, we reported an investigation of oxidative arylation reactions on a homlogous series of p-terphenyl-containing macrocycles. These studies demonstrated that the Scholl reaction can be employed in strain-induced π -extension

reactons of curved macrocyclic templates, and ≤ 28 kcal/mol of strain energy (SE) could be imposed in the macrocyclic structure of 2 [i.e., 1 to 2; x = 4 (Scheme 1A)]. While a considerable amount of SE can be induced during the Scholl

Scheme 1. π -Extension of p-Terphenyl-Containing Macrocycles via the Scholl Reaction (previous) and an ICl-Mediated Annulation (this work)

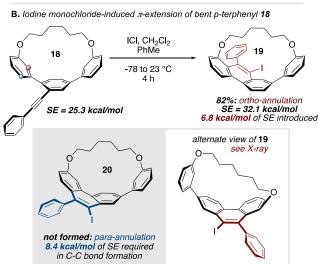
Received: December 15, 2021 Published: January 26, 2022



reaction, the amount of SE present in the benzenoid unit that is undergoing annulation is also an important consideration. Due to the acidic nature of the (Scholl) reaction conditions, strained benzenoid units, which comprise the p-terphenyl unit, are susceptible to 1,2-aryl migration reactions, which ultimately lead to strain relief (i.e., p-phenylene to m-phenylene migration).8 Thus, only macrocycles that contained p-phenylene units with <4 kcal/mol of SE successfully underwent π extension without rearrangements. To address this shortcoming of the Scholl reaction and to continue our program in the development of robust annulation methods that enable π extension to increasingly strained aromatic systems, we report here the application of an iodine monochloride-mediated alkyne annulation reaction to furnish a bent, twisted, and chiral phenanthrene unit. This reaction not only leads to π -extension of a strained benzenoid/biphenyl fragment but also provides access to an arylated, functionalized, and curved PAH, from which subsequent skeletal building reactions can take place.

In 2020, we reported that macrocyclic cyclohex-2-ene-1,4-diols undergo oxidation upon treatment with oxoammonium salts derived from TEMPO to furnish α -ketol derivatives such as 5–7 (Scheme 2). These substrates were viewed as

Scheme 2. Synthesis of Alkylated, Alkenylated, Alkynylated, and Arylated Bent p-Terphenyl-Containing Macrocycles


important building blocks for the synthesis of functionalized and substituted, strained p-phenylene units. Indeed, treatment of 7 with Grignard reagents afforded 1,2-diols, which were subsequently aromatized via dehydration with TsOH or the Burgess reagent¹⁰ to afford alkylated (9, 10, and 16), alkenylated (11), alkynylated (12 and 18), and arylated (13–15 and 17) bent p-terphenyl-containing macrocycles in 25–73% overall yield (Scheme 2). The most interesting were the alkynylated and arylated derivatives, as these substrates could be subjected directly to π -extension reactions.

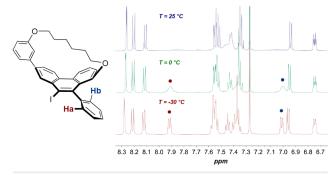
In the case of arylated derivatives 13–15 and 17, subjecting these substrates to Scholl reaction conditions led to rapid decomposition of the macrocycles (Scheme 3A). While it was

Scheme 3. (A) Attempted π-Extension of 13–16 and (B) ICl-Mediated Strain-Induced, π-Extension of 18

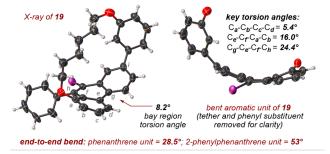
A. Attempted π -extension of 13, 14, 15, and 16 via oxidative arylation

anticipated that the desired π -extension reaction would be challenging using an oxidative arylation reaction, we were surprised to find that no tractable materials, either π -extended or rearranged, were afforded. Similarly, treatment of homobenzylically substituted derivative 16 with FeCl₃ led to decomposition of the starting material. At this stage, the π extension of the strained p-terphenyl unit of alkynylated macrocycle 18 was investigated. Several groups have reported on alkyne annulation reactions that lead to π -extension of planar benzene rings and PAHs. 11 Chalifoux and co-workers have developed a powerful strategy for the synthesis of pyrenebased helicenes¹² and related warped nanographene-type materials.¹³ While alkyne-based annulation reactions have been used to induce curvature in planar aromatic compounds, to the best of our knowledge, the application of such reactions has not been employed in the π -extension of preexisting curved and strained aromatic systems. Thus, when alkynylated macrocycle 18 was subjected to iodine monochloride in dichloromethane/toluene at -78 °C, we were delighted to find that π -extension of the strained p-terphenyl unit takes place to afford 19 in 82% yield (Scheme 3B).

π-Extended macrocycle **19** is the product of annulation at the carbon *ortho* to the alkyloxy bridging unit (colored red in Scheme 3B). DFT calculations indicate that an increase of 6.8 kcal in SE accompanies the formation of **19** and that annulation at the *para* carbon of **18** (colored blue in Scheme 3B) to afford **20** would result in an 8.4 kcal/mol increase (in SE). The latter was not observed or isolated in the reaction of **18** with ICl. To investigate whether electronic effects play a role in the regiochemical outcome of this reaction, a model, nonmacrocyclic *p*-terphenyl derivative was synthesized. Subjecting alkynylated *p*-terphenyl **21** (see the Supporting Information for details) to the same reaction conditions that


produced 19 gave a mixture of 22 and 23 (r.r. 1:1.9) in 98% yield (Scheme 4). Formation of 23 is favored when

Scheme 4. ICl-Mediated Annulation of p-Terphenyl 21


unperturbed dimethoxy-p-terphenyl 21 is subjected to ICl on the basis of steric hindrance, with annulation taking place via the least congested (para) mode of cyclization. In the case of 19, the more congested (ortho) mode of cyclization takes place. This is likely due to conformational constraints imposed by the alkyloxy bridging group, resulting in preferential attack of the intermediate iodoniumm ion by the ortho carbon, furnishing the less strained phenanthrene-containing macrocycle (cf., 19 to 20)

Initial assignment of the structure for the newly formed PAH-containing macrocycle was complicated by the appearance of only 13 (of 15) aromatic signals in its ¹H NMR spectrum at 25 °C. Variable-temperature NMR studies confirmed that the room-temperature spectrum of 19 is near the coalescence temperature of Ha and Hb, and at -30 °C, these signals are well resolved (Figure 1A). Fortunately, recrystallization of 19 from ethyl acetate and hexanes produced crystals suitable for X-ray analysis (Figure 1B). The solid-state structure of 19 corroborates the regiochemical outcome of the ICl-mediated annulation of the strained p-terphenyl unit of 18. It also shows that the phenanthrene unit formed in this reaction is both bent and twisted. The end-to-end bend of the phenanthrene system in **19** (i.e., from C_b to C_i) is 28.5°, while the end-to-end bend of the entire aromatic unit of the cyclophane (i.e., the 2-phenylphenathrene system) is 53° (see the simplified subunit in Figure 1B). The high degree of twist about the PAH backbone is exemplified by the $C_a-C_b-C_c C_d$, $C_e - C_f - C_a - C_b$, and $C_g - C_e - C_f - C_h$ dihedral angles, which measure 5.4°, 16.0°, and 24.4°, respectively. The bay region of 19 is twisted by 8.2°. A comparison of the photophysical properties of 19 to the unperturbed 9-iodo-1,6-dimethoxy-10phenylphenathrene (22) shows that there is a slight red shift in both the UV-vis and emission spectra of 19 relative to those of 22. These results are consistent with reports on related twisted PAH systems, such as pero- and teropyrenes, albeit with much smaller bathochromic shifts.¹⁴ Time-dependent DFT calculations (TD-DFT, B3LYP/6-31G* level theory) also predict a red shift in the electronic absorption spectra of 19 relative to those of 22.15 The UV-vis spectrum of 19 shows two major absorption bands with a λ_{max1} of 363 nm and a λ_{max2} of 380 nm, which are significantly broadened relative to those of 22 ($\lambda_{\text{max}1} = 357$ nm, and $\lambda_{\text{max}2} = 375$ nm). A similar result was observed for a constrained, π -extended helicene that we synthesized in 2018.9 The broadening of these absorption bands may be do to "ring breathing" within the PAH of the constrained system. A temperature-dependent UV-vis study of 19 showed sharpening of these absorption bands at lower temperatures, 15 which supports this assertion. Finally, 19 was

A. VT-NMR spectra (500 MHz) of 19: -30 to 25 °C in CDCl3

B. X-ray crystal structure of 19 with thermal ellipsoids shown at 50% probability

C. UV-vis absorption (solid lines) and emission spectra (broken lines) of 19 (red) and 22 (blue) at 1.0 x 10⁻³M in dichloromethane. Emission spectra were mesaued with 380 nm excitation.

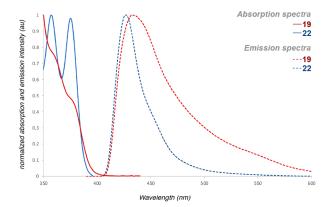


Figure 1. (A) Variable-temperature NMR spectra of 19. (B) X-ray crystal structure of 19. (C) UV-vis and fluorescence spectra of 19 and 21.

produced as a pair of enantiomers, which were separated by preparative chiral HPLC, and their optical rotations were found to be -1.37° and $1.11^{\circ}.^{15}$

In conclusion, a strategy for the synthesis of substituted, strained p-phenylenes, derived from an α -ketol arene surrogate, has been developed. In the case of the 18-membered, strained p-terphenyl-containing macrocycle investigated here, arylated derivatives proved to be poor substrates for π -extension to PAH-containing macrocycles; however, π -extension of an alkynylated derivative via an ICl-mediated reaction was accomplished. The latter affords a highly bent and twisted phenanthrene unit, which contains vicinal iodide and phenyl substituents. The installation of these functional groups should enable future skeletal building reactions and subsequent π -extension to convert related macrocycles into wider PAH segments of CNBs. This ICl-mediated π -extension reaction enabled the introduction of 6.8 kcal/mol of SE into a preexisting strained arene unit (SE = 25.3 kcal/mol) and

represents a rare example in which annulation can be achieved while increasing the SE of a macrocyclic benzenoid system. The application of this reaction to other strained p-terphenyl-containing macrocycles and subsequent π -extension of the functionalized strained phenanthrene units is currently under investigation in our laboratory. The results of these studies will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c04233.

¹H and ¹³C NMR spectra for all new compounds, crystallographic data, and DFT for compounds 18–20 (PDF)

Accession Codes

CCDC 2128704 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Bradley L. Merner — Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36830, United States; oorcid.org/0000-0002-0543-3708; Email: blm0022@auburn.edu

Authors

Nirob K. Saha — Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36830, United States Timothy H. Barnes — Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36830, United States

Laura J. Wilson – Lotus Separations, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c04233

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant CHE-1654691. The authors are also grateful to Dr. Raj Pkkuluri of Auburn University for his assistance with X-ray crystallography.

REFERENCES

(1) (a) Hirsch, A. The Era of Carbon Allotropes. *Nat. Mater.* **2010**, *9*, 868–871. (b) Segawa, Y.; Yagi, A.; Matsui, K.; Itami, K. Design and Synthesis of Carbon Nanotube Segments. *Angew. Chem., Int. Ed.* **2016**, 55, 5136–5158. (c) Kong, D.; Gao, Y.; Xiao, Z.; Xu, X.; Li, X.; Zhi, L. Rotational Design of Carbon-Rich Materials for energy Storage and conversion. *Adv. Mater.* **2019**, *31*, 1804973. (d) Zhu, Z.-Z.; Chen, Z.-C.; Yao, Y.-R.; Cui, C.-H.; Li, S.-H.; Zhao, X.-J.; Zhang, Q.; Tian, H.-R.; Xu, P.-Y.; Xie, F.-F.; Xie, X.-M.; Tan, Y.-Z.; Deng, S.-L.; Quimby, J. M.; Scott, L. T.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S.

Rotational synthesis of an atomically carboncone under mild conditions. Sci. Adv. 2019, 5, aaw0982.

- (2) (a) Petrukhina, M. A.; Scott, L. T. Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, 1st ed.; John Wiley & Sons, 2011. (b) Segawa, Y.; Ito, H.; Itami, K. Structurally Uniform and Atomically Precise Carbon Nanostructures. Nat. Rev. Mater. 2016, 1, 15002. (c) Scott, L. T.; Jackson, E. A.; Zhang, Q.; Steinberg, B. D.; Bancu, M.; Li, B. A Short, Rigid, Structurally Pure Carbon Nanotube by Stepwise Chemical Synthesis. J. Am. Chem. Soc. 2012, 134, 107–110. (d) Majewski, M. A.; Stępień, M. Bowls, Hoops, and Saddles: Synthetic Approaches to Curved Aromatic Molecules. Angew. Chem., Int. Ed. 2019, 58, 86–116.
- (3) (a) kawasumi, K.; Zhang, Q.; Segawa, Y.; Scott, L. T.; Itami, K. A grossly warped nanographene and the consequences of multiple oddmembered-ring defects. Nature Chem. 2013, 5, 739-744. (b) Lin, H.-A.; Sato, Y.; Segawa, Y.; Nishihara, T.; Sugimoto, N.; Scott, L. T.; Higashiyama, T.; Itami, K. A Water-Soluble Warped Nanographene: Synthesis and Applications for Photoinduced Cell Death. Angew. Chem., Int. Ed. 2018, 57, 2874-2878. (c) Kato, K.; Lin, H.-A.; Kuwayama, M.; Nagase, M.; Segawa, Y.; Scott, L. T.; Itami, K. Twostep synthesis of a red-emissive warped nanographene derivative via a ten-fold C-H borylation. Chem. Sci. 2019, 10, 9038-9041. (d) Cheung, K. Y.; Chan, C. K.; Liu, Z.; Miao, Q. A Twisted Nanographene Consisting of 96 Carbon Atoms. Angew. Chem., Int. Ed. 2017, 56, 9003-9007. (e) Gonzalez-Rodriguez, E.; Abdo, M. A.; dos Passos Gomes, G.; Ayad, S.; White, F. D.; Tsvetkov, N. P.; Hanson, K.; Alabugin, I. V. Twofold π -Extension of Polyarenes via Double and Triple Radical Alkyne Peri-Annulations: Radical Cascades Converging on the Same Aromatic Core. J. Am. Chem. Soc. 2020, 142, 8352-
- (4) (a) Yang, W.; Longhi, G.; Abbate, S.; Lucotti, A.; Tommasini, M.; Villani, C.; Catalano, V. J.; Lykhin, A. O.; Varganov, S. A.; Chalifoux, W. A. Chiral Peropyrene: Synthesis, Structure, and Properties. *J. Am. Chem. Soc.* **2017**, *139*, 13102–13109. (c) Magiera, K. M.; Aryal, V.; Chalifoux, W. A. Alkyne benzannulation in the preparation of contorted nanographenes. *Org. Biomol. Chem.* **2020**, *18*, 2372–2386.
- (5) (a) Pradhan, A.; Dechambenoit, P.; Bock, H.; Durola, F. Highly Twisted Arenes by Scholl Cyclizations with Unexpected Regioselectivity. Angew. Chem., Int. Ed. 2011, 50, 12582-12585. (b) Pati, K.; dos Passos Gomes, G.; Harris, T.; Hughes, A.; Phan, H.; Banerjee, T.; Hanson, K.; Alabugin, I. V. Traceless Directing Groups in Radical Cascades: From Oligoalkynes to Fused Helicenes without Tethered Initiators. J. Am. Chem. Soc. 2015, 137, 1165-1180. (c) Mohamed, R. K.; Mondal, S.; Guerrera, J. V.; Eaton, T. M.; Albrecht-Schmitt, T. E.; Shatruk, M.; Alabugin, I. V. Alkynes as Linchpins for the Additive Annulation of Biphenyls: Convergent Construction of Functionalized Fused Helicenes. Angew. Chem., Int. Ed. 2016, 55, 12054-12058. (d) Zhou, Z.; Kawade, R. K.; Wei, Z.; Kuriakose, F.; Ungor, O.; Jo, M.; Shatruk, M.; Gershoni-Poranne, R.; Petrukhina, M. A.; Alabugin, I. V. Helicene strain accumulated during alkyne cyclizations has been also quantified and used for subsequent transformations that form new C-C bonds. Angew. Chem., Int. Ed. 2020, 59, 1256-1262. (e) Qiu, Z.; Ju, C.-W.; Frédéric, L.; Hu, Y.; Schollmeyer, D.; Pieters, G.; Müllen, K.; Narita, A. Amplification of Dissymmetry Factiors in π -Extended [7]- and [9] Helicenes. J. Am. Chem. Soc. 2021, 143, 4661-
- (6) (a) Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a Carbon Nanobelt. *Science* **2017**, 356, 172–175. (b) Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis and Size-Dependent Properties of [12], [16], and [24] Carbon Nanobelts. *J. Am. Chem. Soc.* **2018**, 140, 10054–10059.
- (7) Cheung, K. Y.; Gui, S.; Deng, C.; Liang, H.; Xia, Z.; Liu, Z.; Chi, L.; Miao, Q. Synthesis of Armchair and Chiral Carbon Nanobelts. *Chem.* **2019**, *5*, 838–847.
- (8) Saha, N. K.; Mitra, N. K.; Johnson, K. F.; Merner, B. L. π-Extension of Strained Benzenoid Macrocycles Using the Scholl Reaction. *Org. Lett.* **2018**, *20*, 6855–6858.

- (9) Jackson, S. N.; Caskey, A. L.; Narayanan, N. K.; Merner, B. L. Carbamoyl Functionalized Bent Para-Phenylenes via an Unexpected Reaction of the Burgess Reagent with α -Ketols. *J. Org. Chem.* **2021**, *86*, 3667–3673.
- (10) See the Supporting Information for details on how the aromatization strategy was employed.
- (11) (a) Fürstner, A.; Mamane, V. Flexible Synthesis of Phenanthrenes by a PtCl₂-Catalyzed Cycloisomerization Reaction. *J. Org. Chem.* **2002**, *67*, 6264–6267. (b) Donovan, P. M.; Scott, L. T. Elaboration of Diaryl Ketones into Naphthalenes Fused on Two or Four Sides: A Naphthoannulation Procedure. *J. Am. Chem. Soc.* **2004**, *126*, 3108–3112. (c) Feng, X.; Pisula, W.; Müllen, K. From Helical to Staggered Stacking of Zigzag Nanographenes. *J. Am. Chem. Soc.* **2007**, *129*, 14116–14117.
- (12) Bam, R.; Yang, W.; Longhi, G.; Abbate, S.; Lucotti, A.; Tommasini, M.; Franzini, R.; Villani, C.; Catalano, V. J.; Olmstead, M. M.; Chalifoux, W. A. Four-Fold Alkyne Benzannulation: Synthesis, Properties, and Structure of Pyreno[a]pyrene-Based Helicene Hybrids. Org. Lett. 2019, 21, 8652–8656.
- (13) (a) Yang, W.; Lucotti, A.; Tommasini, M.; Chalifoux, W. A. Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. *J. Am. Chem. Soc.* **2016**, *138*, 9137–9144. (b) Yang, W.; Bam, R.; Catalano, V. J.; Chalifoux, W. A. Highly Regioselective Domino Benzannulation Reaction of Buta-1,3-diynes To Construct Irregular Nanographenes. *Angew. Chem., Int. Ed.* **2018**, *57*, 14773–14777. (c) Senese, A. D.; Chalifoux, W. A. Nanographene and Graphene Nanoribbon Synthesis via Alkyne Bezannulations. *Molecules* **2019**, *24*, 118–139.
- (14) (a) Yang, W.; Monteiro, J. H. S. K.; de Bettencourt-Dias, A.; Catalano, V. J.; Chalifoux, W. A. Pyrenes, Peropyrenes, and Teropyrenes: Synthesis, Structures, and Photophysical Properties. *Angew. Chem., Int. Ed.* **2016**, 55, 10427–10430. (b) Yang, W.; Kazemi, R. R.; Karunathilake, N.; Catalano, V. J.; Alpuche-Aviles, M. A.; Chalifoux, W. A. Expanding the scope of peropyreses and teropyrenes through a facile InCl₃-catalyzed multifold alkyne benzannulation. *Org. Chem. Front.* **2018**, *5*, 2288–2295.
- (15) See the Supporting Information for details.
- (16) For examples of annulation reactions involving high-energy alkynes, see: Alabugin, I. V.; Gonzalez-Rodriguez, E. Alkyne Origami: Folding Oligoalkynes into Polyaromatics. *Acc. Chem. Res.* **2018**, *51*, 1206–1219.