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Catalytic asymmetric dearomatization represents a powerful means to
convert flat aromatic compounds into stereochemically well-defined

three-dimensional molecular scaffolds. Using new-to-nature metalloredox
biocatalysis, we describe an enzymatic strategy for catalytic asymmetric
dearomatization via a challenging radical mechanism that has eluded
small-molecule catalysts. Enabled by directed evolution, new-to-nature
radical dearomatases P450,,4,,-P450,,4s facilitated asymmetric
dearomatization of abroad spectrum of aromatic substrates, including
indoles, pyrroles and phenols, allowing both enantioconvergent and
enantiodivergent radical dearomatization reactions to be accomplished
with excellent enzymatic control. Computational studies revealed the
importance of additional hydrogen bonding interactions between the
engineered metalloenzyme and the reactive intermediate in enhancing
enzymatic activity and enantiocontrol. Furthermore, designer non-ionic
surfactants were found to significantly accelerate this biotransformation,
providing an alternative means to promote otherwise sluggish
new-to-nature biotransformations. Together, this evolvable metalloenzyme
platform opens up new avenues to advance challenging catalytic
asymmetric dearomatization processes involving free radical intermediates.

Aromaticity represents afundamental concept with broad implications
spanning all disciplines of chemistry'. The disruption of aromaticity is
thermodynamically unfavourable and therefore oftentimes challenging.
Nevertheless, catalyticasymmetric dearomatization of flat aromatics can
lead to the stereoselective construction of valuable three-dimensional
molecular complexities, thus holdingimportant potential to streamline
the preparation of stereochemically complex bioactive agents®. Over
the pasttwo decades, pioneering research on transition metal catalysis
and organocatalysis has afforded powerful methods for asymmetric
dearomatization using two-electron mechanisms® . By contrast, despite
notable recent progress based on stoichiometric chiral radical initiat-
ing reagents™, catalytic asymmetric dearomatization viaa free radical
mechanism has remained a daunting task, mainly due to the challenges
in exerting stereocontrol over highly reactive radical intermediates’ .

Duetothe numerous potentially cooperativeinteractions between
the enzyme scaffold and the reactive intermediate that can be readily
exploited by directed evolution', biocatalysis has been recognized
as a promising alternative to tackle challenging problems in asym-
metric synthesis™"“. Previous elegant studies have established Rieske
dioxygenases™™, flavin-dependent monooxygenases' and SAM/
cobalamin-dependent systems for oestrogen methylation' as valu-
able stereoselective biocatalysts for the oxidative dearomatization
of aromatic compounds (Fig. 1a). To further expand the repertoire
of biocatalytic dearomatization, we sought to leverage enzymatic
mechanisms**toaddress key challenges in asymmetric radical dearo-
matization under non-oxidative conditions.

Recently, we questioned whether we could advance aunifying enzy-
matic strategy for the asymmetric radical dearomatization of a wide

'Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA. ?Department of Chemistry, University of Pittsburgh,
Pittsburgh, PA, USA. ®Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, USA. “These authors

contributed equally: Yue Fu, Yunlong Zhao.

e-mail: pengliu@pitt.edu; yang@chem.ucsb.edu

Nature Chemistry | Volume 16 | December 2024 | 1999-2008

1999


http://www.nature.com/naturechemistry
https://doi.org/10.1038/s41557-024-01608-8
http://orcid.org/0000-0002-8454-4720
http://orcid.org/0000-0003-3085-7817
http://orcid.org/0009-0009-0330-6885
http://orcid.org/0000-0002-8188-632X
http://orcid.org/0000-0002-4956-2034
http://crossmark.crossref.org/dialog/?doi=10.1038/s41557-024-01608-8&domain=pdf
mailto:pengliu@pitt.edu
mailto:yang@chem.ucsb.edu

https://doi.org/10.1038/s41557-024-01608-8

a
OH
OH
HO
0, OH
b e
Br —— >
P450rad1 (]
Qv H
C
Radical-polar
N crossover
°R
HI\II\{ P450raq2/3
~Q
d (0]
R N ) Br
Q’ | P450,444
X
HO

(rac)-l

Metalloenzyme-controlled stereoselective
radical dearomatization

Enzyme-controlled
radical initiation

Stereoselective radical dearomatization |

(—)-Horsfiline
analgesis agent

Rhynchophylline
neuroprotective agent
Fig.1| Catalytic asymmetric radical dearomatization using metalloredox
biocatalysis. a, Biocatalytic dearomatization under oxidative conditions:
natural enzymatic activities. b, New-to-nature biocatalytic asymmetric radical
dearomatization of indoles. ¢, New-to-nature biocatalytic asymmetric radical
dearomatization of pyrroles. d, New-to-nature biocatalytic asymmetric radical

Peptidomimetics of somatostatin

Contiguous quaternary—quaternary carbons

Didymeline Carijodienone
dearomatization of phenols. e, Proposed catalytic cycle with new-to-nature P450
radical dearomatases. f, Selected bioactive compounds with a chiral spirocyclic
backbone. L, Fe-binding amino acid residue; in this work, Lis serine. Red, blue
and purple spheres are generic substituents of the molecule. The spirocyclic
backbones are highlighted in magentainf.

range of aromatic and heteroaromatic compounds using metalloredox
biocatalysis (Fig. 1b-d). Inspired by related studies in synthetic organic
chemistry*, the overall catalytic cycle of this metalloenzyme-catalysed
unnatural radical dearomatizationis describedin Fig.1e. Similar to our
recently reported radical cyclases®®”"?, first, the ferrous haem protein
catalyst reduces the a-bromocarbonyl substrate I via a halogen atom
or electron transfer mechanism, providing a highly reactive radical
species Ilalong with the ferrichaem enzyme. This nascent electrophilic
radical Il subsequently undergoes cyclization with the electron-rich
arene or heteroarene, giving rise to a dearomatized radical interme-
diate III. Finally, oxidative radical-polar crossover of Ill and proton
transfer furnishes the final dearomatized product IV. Meanwhile, this
step also regenerates the ferrous protein catalyst and completes the
catalytic cycle. If successfully implemented, this biocatalytic radical
dearomatization would afford stereochemical dyads featuring contigu-
ous quaternary—-quaternary stereocentres®>*, a challenging process
for catalyticasymmetric dearomatization. Furthermore, the selective
assembly of such vicinal quaternary-quaternary stereocentres has
long been regarded as a demanding task in asymmetric catalysis***°,
for which free radical chemistry has rarely been explored. Due to the
outstanding tunability of cytochrome P450 enzymes***, we posited

that through directed evolution, we could engineer P450 radical dearo-
matases (P450,,,) toimpose stereocontrol over the formation of either
quaternary centre (Fig. 1e). Moreover, we envisioned that a panel of cus-
tomized P450 radical dearomatases could be evolved, accommodating
awiderange of electron-richaromatic and heteroaromatic substrates,
thereby providing an enzymatic platform for the asymmetric synthesis
of spirocyclic compounds widely incorporated into bioactive natural
products and medicinal agents (Fig. 1f)**,

Results

Discovery and engineering of indole dearomatase P450,,,,

At the outset of this study, we focused our efforts on biocatalytic
radical dearomatization of indoles, an essential class of nitrogen
heterocycles with broad utility in pharmaceuticals, agrochemicals
and functional materials (Fig. 2)*". Using a-bromoamide-appended
indole 1a as the model substrate, we evaluated a panel of previously
engineered CYP102A1 (cytochrome P450g,,,;) variants, including our
recently engineered P450 radical cyclases®**. This initial biocatalyst
evaluation was performed usingintact Escherichia coli cells harbour-
ing the specific P450 variant in 96-well plates in a high-throughput
format (Fig. 2a). The desired spirocyclic dearomatized product 2a
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Fig.2|Discovery, directed evolution and substrate scope of P450,,,,, P450, .4,
and P450,.4;. a, Evaluation of P450 biocatalysts for enantioselective radical
dearomatization of indole 1a. b, Directed evolution of indole radical dearomatase
P450,,4;. Active-site illustration (left) was made on the basis of the crystal
structure of a closely related P450 variant (Protein Data Bank (PDB) no. SUCW).

¢, Substrate scope of P450,,,-catalysed enantioselective radical dearomatization
ofindoles. Conditions were as follows: 1 (5.0 mM), sodium ascorbate (5.0 mM)
and P450,,¢, (1 mol%) as cell-free lysates in M9-N buffer (total volume, 400 pl).

For 2g, P450,,,, A437F was used in lieu of P450 4. Enantioselectivitiesinband ¢
are fromreactions with cell-free lysates (Supplementary Sections Ill and VI for

details). 5-Clindicates the chloride substituent in the C5 position of theindole
ring. d, Biocatalytic enantiodivergent radical dearomatization of pyrroles
using engineered pyrrole radical dearomatases P450,,4, and P450,,4;. TTN, total
turnover number. Conditions were as follows: 3a (10.0 mM), sodium ascorbate
(10.0 mM) and cell-free lysates with OD¢,, = 30 in M9-N buffer (total volume,
400 pl; Supplementary Tables 15 and 16 for details). r.t., room temperature.

All the biocatalytic reactions were performed as technical triplicates. For X-ray
crystal structures, thermal ellipsoids were set at 50% probability; hydrogen
atoms are omitted for clarity. Supplementary Section VIl contains details.

featuring adjacent quaternary-quaternary carbons formed with
many variants that we screened, mostly in a racemic form (Supple-
mentary Table 1for details). For example, our recently evolved P450
radical cyclases P450 ypcase; (ref. 20) and P450,,, (ref. 23) afforded
2ain 35% and 38% yields, respectively, both in 49:51 enantiomeric
ratio (e.r.). However, to our delight, P411-CIS1263G L437F V87L P248T

(‘P1’), aclosely related variant of a previously engineered carbene
transferase P411-VAC,,,, (ref. 48), furnished product 2a in 34% yield
and 53:47 e.r. (Supplementary Table 1). Additionally, biotransforma-
tions with cell-free lysates in the presence of supplemented sodium
ascorbate were found to provide similar yields and enhanced enan-
tioselectivity (83:17 e.r.).
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cell-free lysates in M9-N buffer (total volume, 400 pl). For 6f and 6g, P2 was used
inlieu of P450,,4,. All the biocatalytic reactions were performed as technical
triplicates. For X-ray crystal structures, thermal ellipsoids were set at 50%
probability; hydrogen atoms are omitted for clarity. Supplementary Section VIII
contains details.

With P1as the parent, we embarked onadirected evolution cam-
paign to improve the enantioselectivity and activity of this P450
radical dearomatase (Fig. 2b). Aided by molecular docking studies
using AutoDock (Supplementary Section Il for details), key active-site
residues were targeted and subjected to iterative site-saturated
mutagenesis and screening. In each round of directed evolution,
four enzyme libraries were expressed and evaluated in 96-well
plates. For each site-saturated mutagenesis library, 88 clones were
selected and screened (Supplementary Table 5). Three beneficial
mutations, including L181V, A78C and F437A, were identified, lead-
ingto P411-CISA78C V87L L181V P248T1263G F437A, which we called
P450,,4, (rad =radical dearomatase). In the form of whole-cell bio-
catalyst, P450,,4, provided a twofold improvement in activity and
significantly higher enantioselectivity (82% yield and 91:9 e.r.; Sup-
plementary Table 7 for further details). When the cell-free lysate of
P450,,4, was employed, 2a was obtained in 90% yield and 97:3 e.r.
(Fig.2b,c; Supplementary Table 8 for further details). The 6-endo-trig

radical cyclization to the indole C-2 position was not observed under
these conditions.

With this newly evolved indole dearomatase P450,,4,, We next
surveyed the substrate scope of biocatalytic enantioselective radical
dearomatization ofindoles to prepare spirocyclic products 2 bearing
vicinal quaternary-quaternary carbons (Fig. 2c). Indoles possessing
an electron-donating group at the 5 position, such as a methoxy (2a)
and a methyl (2b), were excellent substrates, providing the desired
dearomatized product in excellent yields and enantioselectivities.
Electron-withdrawing functional groups such as a fluorine (2d), a
chlorine (2e) and a bromine (2f) were also compatible. Furthermore,
without further engineering, indoles bearing substituents at the 2, 4,
5, 6 and 7 positions could all be transformed smoothly by the dearo-
matases we engineered (2g-2j). Indoles with a 4-methyl (2g) and
7-methyl group were transformed with excellent enantioselectivity,
although with slightly lower yields presumably due to the increased
steric hindrance. For 4-methylindole (2g), an intermediate variant P1
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A78CL181V (P450,,4, A437F) provided slightly higher enantioselectiv-
ity (95:5 e.r.) than P450,,,. Finally, the absolute stereochemistry of 2e
was ascertained by single-crystal X-ray diffraction analysis (Cambridge
Crystallographic Data Centre (CCDC) no. 2245164).

Enantiodivergent pyrrole dearomatases P450,,4, and P450,,,,
Inaddition, we found that this metalloenzyme platform could be readily
applied to the radical dearomatization of other N-heterocycles, such
as pyrroles (Fig. 2d). Notably, upon the evaluation of a small panel
of P450 variants, a set of enantiodivergent dearomatases could be
identified to afford either (R)-4a or (§)-4a. Specifically, P411-CISL75A
L181A furnished (R)-4ain 93% yield and 85:15 e.r., whereas the use of
P411p,,,., W2631 G268A P327T V328A resulted in (§)-4a in 93% yield
and 10:90 e.r. (Supplementary Tables 11 and 14). In only one round
of engineering through site-saturation mutagenesis and screening,
P450,,4,and P450,,4; could be developed to provide further enhanced
enantioselectivity in the biocatalytic radical dearomatization of 3a
(Supplementary Tables 9-16 for details). With P450,,4, (P411-CIS L75A
L181A A82V), (R)-4a was produced in 94% yield, 91:9 e.r. and with a
total turnover number of 2,320 + 30 (Supplementary Table 15). On
the other hand, (§)-4aformedin 76% yield, 8:92 e.r. and with a total
turnover number of 3,230 + 10 using P450,,4; (P411;;,,., W2631 G268A
P327T V328AE267L; Supplementary Table 16). Additionally, the abso-
lute stereochemistry of (R)-4a was determined by X-ray diffraction
analysis (CCDC no. 2245162). Together with enantioselective indole
dearomatization, these results demonstrate the power of the current
biocatalytic platform in enabling enantioselective radical dearoma-
tization of valuable heterocycles in an enzyme-controlled fashion.
Additional examples of unsuccessful transformations are availablein
the Supplementary Information (Supplementary Fig. 8).

Enantioconvergent phenol dearomatase P450,,,,
Furthermore, we successfully extended this biocatalytic radical dearo-
matization platformto the conversion of other electron-richaromatic
substrates, such as phenols (Fig. 3). We were particularly interested in
the radical dearomatization of racemic 2-bromo-1,3-dicarbonyl sub-
strates (5), as these biocatalytic processes would give rise to spirocyclic
products possessing contiguous quaternary—-quaternary stereocentres
in an enantioconvergent fashion. In this effort, P450,,, L266H G438T
L78C (‘P2’), anintermediate aromatic radical cyclase variant we previ-
ously engineered, was identified as a promising hit, providing dearoma-
tized productin 28% yield and 71:29 e.r. (Supplementary Tables 3 and
19). With 5a as the model substrate, by targeting active-site residues,
four rounds of site-saturation mutagenesis and screening provided
P450,,4, bearing four beneficial mutations, including F437P, L436A,
L75F and G268P (Fig. 3a). With this final variant P450,,,,, biocatalytic
conversion of racemic 5aled to enantio-enriched dearomatized prod-
uct 6ain 98% yield, 100% conversion and 94:6 e.r., furnishing a rare
example of an enantioconvergent radical dearomatization protocol
(Supplementary Table 19). The 6-endo-trig radical cyclization to phe-
nol’s meta position was not observed under these conditions.
Withphenol dearomatase P450,,4,, this enantioconvergent radical
dearomatization was found to be compatible with a range of phenolic
substrates (Fig. 3b). Unsubstituted phenol (5b) and 2,6-disubstituted
phenols (5a and 5¢) underwent enantioconvergent radical dearoma-
tization with excellent yields and enantioselectivities. Ester groups
with varying sizes, including ethyl (6a-6c), propyl (6d) and butyl
(6e) esters, were all compatible with this radical biotransformation.
Using the starting variant P2, highly sterically congested product 6f
bearing adjacent quaternary-quaternary carbons and 3,5-dimethyl
substituents could be obtained in 45% yield and 78:22 e.r. Finally,
when unsymmetric phenol 5g was applied, the same P2 variant pro-
vided 6g featuring a quaternary-quaternary stereochemical dyad
in a diastereo- and enantioselective manner (55% yield, 81:19 d.r. and
84:16 e.r.). For biocatalytic reactions providing modest yields, the

reduced and uncyclized compound was found to be the major side
product. The relative stereochemistry of the major diastereomer of
6g was determined by two-dimensional (2D) nuclear Overhauser effect
spectroscopy (NOESY) analysis (Supplementary Section VIfor details).
Additionally, the absolute stereochemistry of dearomatized product 6a
was also determined by X-ray diffraction analysis (CCDC no.2245161).

Nanomicelle-accelerated biocatalytic radical
dearomatization

During our investigation on biocatalytic dearomatization of phenol
derivatives, we discovered a notable micelle effect in accelerating
the biotransformation of naphthol substrates with a very low solu-
bility in water. In our early studies on the dearomatization of naph-
thol 7a, we found that a previously engineered P450 variant P411-CIS
T438S (P450,,s; ref. 49) exhibited promising levels of enantiocontrol
(89:11 e.r.), albeit with low yield (9%; Supplementary Table 4 for details).
The exceedingly low levels of solubility and dispersivity of substrate
7ainwater led us to hypothesize that the low effective concentration
of the substrate, and not the enzyme activity, represented the bottle-
neck for the further optimization of this biotransformation. Consist-
ent with this hypothesis, subsequent studies revealed an important
co-solvent effect, and higher yields and slightly better enantioselectivi-
ties were achieved by changing the co-solvent from ethanol (9% yield
and 89:11 e.r.) to dimethyl sulfoxide (DMSO; 21% yield and 91:9 e.r.).
Furtherincreasing the volume percentage of the co-solvent from4%to
40%did not resultin furtherimprovements (Supplementary Table 21).
Thus, alternative strategies are required to further enhance the effi-
ciency of these biotransformations.

We envisioned that micellar catalysis could afford ageneral solu-
tion to this solubility problem, as the hydrophobic core of nanomicelles
composed of amphiphiles would provide an excellent environment
to house hydrophobic substrates, thus significantly increasing their
effective concentration. Meanwhile, the judicious selection of sur-
factants will allow for the maintenance of metalloenzyme integrity
and catalytic activity. Previous studies revealed that in contrast to
widely used ionic surfactants, non-ionic surfactants do not lead to
protein denaturation and are therefore excellent candidates for the
proposed nanomicelle-accelerated biocatalysis®. To this end, six
designer non-ionic surfactants, including those recently developed
by the Lipshutz group®*, were evaluated (Table 1). The inclusion of
non-ionic surfactants (2 wt%) resulted in improved yield of 8a, con-
firming the nanomicelle effect on this radical biotransformation.
The use of Brij 30 and Brij 35 furnished 83% and 85% 8a, respectively,
although with reduced enantioselectivities (62:38 e.r. and 68:32 e.r.;
Tablel, entries 2and 3). The addition of 2 wt% MC-1(ref. 51), a previously
developed non-ionic surfactant with a sulfoxide functional group,
provided a similar activity with a slightly reduced enantioselectivity
(entry 4). Additionally, TPGS-750-M (ref. 52) and Nok (ref. 53) displayed
similar effects in enhancing the efficiency of biocatalysis (57% and 58%
yield, respectively; entries Sand 6). Furthermore, tocopherol-derived
designer surfactant TPGS-1000 was found to be the most efficient in
facilitating this biocatalytic dearomatization, affording 8ain 71% yield
and 92:8 e.r. (entry 7).In general, the use of surfactants with aterminal
hydroxy group (Brij 30, Brij 35 and TPGS-1000) allowed for higher
conversions andyields to be achieved relative to those with aterminal
methoxy group (Nok and TPGS-750-M). Moreover, this beneficial sur-
factanteffect can be translated into biotransformations with cell-free
lysates, providing further improved yields and enantioselectivities
(84% yield and 97:3 e.r.; entry 8 and entry 9). Taken together, these
results provided arare demonstration of substantial micelle accelera-
tioninboth whole-cell biocatalysis and lysate biocatalysis, underscor-
ing theimportance of the judicious choice of surfactants to facilitate
biotransformations. We expect this strategy to find applications in
other new-to-nature biocatalytic processes involving substrates with
alowaqueous solubility.
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Table 1| Evaluation of P411-CIS T438S as the catalyst for enantioselective radical dearomatization of 7a with surfactants

Entry® Surfactant e.r. Yield (%) Total turnover number
1 - 91:9 21+3 650180
2 Brij 30 62:38 83+2 1,890+40
3 Brij 35 68:32 85+1 1,930+30
4 MC-1 84:16 211 470+20
5 Nok 91:9 57+4 1,300+90
6 TPGS-750-M 89:11 58+4 1,330+90
7 TPGS-1000 92:8 75 1,630+120
8° TPGS-1000 97:3 84:4 1,510+80
9¢ - 97:3 333 60060
Br e E. coli cells
Me>|YO harbouring P450,445 FPr O

non-ionic surfactant

N (2 wt%)
Pr” >
M9-N buffer,
— o D-glucose,
rt.20 h
NS
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Me\/\/\/\/\/\/{o\/]\o/ H
n
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Brij 35: n=23

(0]
(0} (0]
Me” {/\OM
13
(0}

Nok

8a X-ray structure of 8a
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23
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’ oM (0] M
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Me

TPGS-750-M: R = Me, n=17
TPGS-1000: R=H, n=23

®All reactions using P450,,4s Were run in triplicate using whole E. coli cells (ODgo,=30) with substrate 7a (5mM, 2pmol), b-glucose (50 mM) and surfactant (2wt%) in M9-N buffer (total volume,
400pl). ODgy, is the optical density of a cell sample measured at a wavelength of 600 nm in 1cm light path. "Reactions using P450,,4s were run in triplicate using whole E. coli cells (ODgo,=30)
without any surfactants. °Reactions using P450,.45 were run in triplicate using cell-free lysate (ODg,,=30) with 7a (5.0 mM), sodium ascorbate (5.0 mM) and surfactant (2 wt%) in M9-N buffer
(total volume, 400 pl). Bold indicates the best result from these optimizations. “Reactions using P450,,4s were run in triplicate using cell-free lysate (ODgoo=30) with 7a (5.0 mM) and sodium
ascorbate (5.0 mM) without any surfactant. For X-ray crystal structures, thermal ellipsoids were set at 50% probability; hydrogen atoms are omitted for clarity. All the biocatalytic reactions were

performed as technical triplicates.

Computational insights into enzymatic enantiocontrol

To gain insights into the enantiocontrol in this biocatalytic radical
dearomatization, we carried out molecular dynamics (MD) simula-
tions to model the enzyme-substrate interactions of P450,,4, with
both enantiomers of the dearomatized intermediate 10a formed
after theradical addition and single electron transfer. As this cyclized
product resembles the enantioselectivity-determining transition
state®, we reasoned that these MD simulations would reveal key
active-site residues responsible for ensuring excellent enantioselec-
tivity in radical dearomatization. Our MD simulations indicate that
the two enantiomers (S)-10a and (R)-10a exhibit contrasting bind-
ing poses within the active site. While the N-i-Pr group of (§)-10a and
(R)-10a prefers to point towards the hydrophobic pocket next to A82
and A264, the polar N-H moiety of the indole is placed at different

orientations. In the enzyme complex with (§)-10a, which leads to the
major enantiomeric product (S)-2a, the N-H bond forms a strong
hydrogen bond with the hydroxyl group on T438, as evidenced by a
short most-populated N-H*"*...0™® distance of 3.3 A (Fig. 4a shows
the distributions of H*°...0™3® distance along the MD trajectories;
sub, substrate), as well as molecular mechanics with generalized Born
andsurface areasolvation (MM-GBSA) substrate-residue interaction
energy calculations (Supplementary Fig.17). This hydrogen bonding
interaction further anchors the reactive intermediate in the active
site, resulting in enhanced enantiocontrol with radical dearomatase
P450,,4. In the enzyme-(R)-10a complex, such a hydrogen bond is
absent because the N-H moiety points towards the non-polar resi-
due L75. This reveals the inability of P450,,4, to stabilize this particu-
lar enantiomeric intermediate via hydrogen bonding, which agrees
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Fig. 4| Computational and experimental studies to shed light on the high

levels of enantioselectivity observed with radical dearomatase P450, ;.

a, MD simulations with P450,4,. Three replicas of independent 500 ns MD

simulations were performed to model enzyme-substrate interactions with both
enantiomers of the dearomatized intermediate 10a. Top: Possible intermediates

for the formation of both enantiomers of product 3a. Left: Frequencies of the
dvalue observed in MD simulations. Right: The most populated structure from

MD simulations. The d value is the distance (H**>--O™*® distance) as shown in the
figure. b, Experimental studies to validate the key role of T438 of P450,,,. All the
biocatalytic reactions were performed as technical triplicates, with conditions
as follows: 1a (5.0 mM), sodium ascorbate (5.0 mM) and cell-free lysates with
0Dy =120in M9-N buffer (total volume, 400 pl). Supplementary Table 23
contains details.
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Fig. 5| Preparative-scale biocatalytic radical dearomatization and
derivatization of dearomatized products. a, Preparative-scale biocatalytic
radical dearomatization of 7aand transformation of dearomatized product 8a.

b, Preparative-scale biocatalytic radical dearomatization of 1e and transformation
of dearomatized product 2e. Conditions were as follows: i,10 wt% Pd/C, H,

(1atm), EtOAc, r.t.and 24 h; ii, NaBH, (1.2 equiv.), MeOH, r.t.and 6 h; iii, NaCIO,

(5.0 equiv.), NaH,PO, (1.5 equiv.), 2-methyl-2-butene (10 equiv.), THF/H,O, r.t.and

4 h;and v, CuCl (2.5 mol%), PhMgBr (5.0 equiv.), toluene, reflux and 18 h. THF,
tetrahydrofuran.Ina, the 98:2 e.r. of 8awas obtained after asingle recrystallization.

with the experimentally observed enantioselectivity favouring the
(S)-enantiomer of the cyclized product.

To experimentally validate the proposed role of T438, we gen-
erated P450,,,; T438X mutants (X = serine (S) and alanine (A)) by
site-directed mutagenesis and evaluated their activity and enantiose-
lectivity (Fig. 4b). S438 with a hydroxyl group can potentially serve
as a hydrogen bond donor akin to T438, while A438 lacks a hydrogen
donor. When T438 was replaced by S438, lower levels of activity and
enantioselectivity were observed (41% yield, 85:15 e.r.; Fig. 4b, entry
2).Furthermore, P450,,,, T438A afforded further reduced activity and
enantioselectivity (27% yield, 73:27 e.r.; entry 3). These experimental
results supported the key role of the hydroxyl group of T438in engag-
ing the substrate through a hydrogen bonding interaction, leading to
further enhanced enzymatic activity and enantiocontroliin the radical
dearomatization of 1a. Thus, together with our previous studies on
our P450 atomtransfer radical cyclase P450 yrpcaee (ref. 21), the present

computational study suggested bifunctional enzyme catalysis as a
general mechanismto further enhance enzyme efficiency and stereo-
control in new-to-nature biocatalytic transformations.

Transformation of radical dearomatization products

To further demonstrate the synthetic utility of our newly developed
biocatalyticasymmetric radical dearomatization, we performed these
biotransformations on a 0.5-1.0 mmol scale and carried out down-
stream derivatizationreactions (Fig. 5). Using cell-free lysates, inthese
preparative-scale biocatalytic processes, (R)-8a was isolated in 98%
yieldand 96:4 e.r., while (§)-2e was isolated in 44% yield and 90:10 e.r.
Furthermore, starting from (R)-8a, C=C double bond hydrogenation
with Pd/C afforded ketone 11in 99% yield and 98:2 e.r. with excellent
chemoselectivity®. Additionally, selective carbonyl reduction of this
«,B-unsaturated ketone with NaBH, (ref. 56) generated stereochemi-
cally well-defined alcohol 12 in quantitative yield, >95:5 d.r.and 982 e.r.
Starting from (8)-2e, Pinnick oxidation®” afforded oxindole (§)-13 in
quantitative yield and 90:10 e.r. Finally, copper(l)-catalysed addition
of phenylmagnesium to imine 2e (ref. 58) proceeded in a highly dias-
tereoselective manner, giving rise to (25,35)-14 in 75% yield, >95:5d.r.
and 90:10 e.r. Therelative stereochemistry of 14 was ascertained by 2D
NOESY analysis (Supplementary Section VI for details).

Discussion

In this study, P450 radical dearomatases were evolved to allow the
asymmetricradical dearomatization of indoles, pyrroles and phenols
bearing a pendant a-halocarbonyl radical precursor. Together with
our prior work on P450 atom transfer radical cyclases®®* and aromatic
radical cyclases?, these results showed that a unifying haem-enabled
radical initiation and cyclization mechanism could allow for multiple
synthetically valuable asymmetric transformations to be developed,
thus demonstrating the synthetic utility of this evolvable biocatalyst
platform.

Insummary, we developed abiocatalytic strategy forasymmetric
radical dearomatization using a new-to-nature metalloredox mech-
anism. Directed evolution of radical dearomatases allowed a wide
range of aromatic and heteroaromatic compounds, including phenols,
indoles and pyrroles, to be transformed with excellent stereocontrol,
giving rise todearomatized products featuring adjacent quaternary-
quaternary stereocentres. Notably, the excellent tunability of these
P450 radical dearomatases allowed both enantiodivergent and enan-
tioconvergentradical transformations to be conveniently developed,
further demonstrating the adaptable nature of this metalloenzyme
platform. Combined computational and experimental studies unveiled
theimportance of additional hydrogen bondinginteractions between
the engineered enzyme and the reactive intermediate, indicating
bifunctional biocatalysis as a useful strategy to enhance the activity
and enantioselectivity of metalloenzyme catalysts. Furthermore, a
surprising nanomicelle acceleration effect was discovered, providing
an alternative tactic to facilitate otherwise sluggish new-to-nature
biocatalytic processes. Overall, the ability to impose excellent ste-
reocontrol over challenging free-radical-mediated transformations
highlighted the potential of unnatural metalloredox biocatalysis to
solve long-standing problems in asymmetric catalysis.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41557-024-01608-8.
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Methods

Expression of P450,,, variants

Escherichia coli (E. cloni BL21(DE3)) cells carrying P450,,4-encoding
plasmid were grown overnight in 3 ml of Luria-Bertani medium with
0.1mg ml™ampicillin (LB,,). Preculture (1.5 ml) was used to inoculate
28.5 ml of Hyperbroth (AthenakS) with 0.1 mg mI™ ampicillin (HB,,,,)
in a125 ml Erlenmeyer flask. This culture was incubated at 37 °C and
230 rpmfor2 h.Itwas then cooled onice for 20 minand induced with
0.5 mM isopropyl 3-D-1-thiogalactopyranoside (IPTG) and 1.0 mM
5-aminolevulinicacid (final concentrations). Expression was conducted
at22°C and 150 rpm for 20 h. E. coli cells were then transferred to a
50 ml conical tube and pelleted by centrifugation (3,000g, 5 min, 4 °C).
Supernatant was removed and the resulting cell pellet was resuspended
inM9-Nbuffer to ODg, = 5-240 (usually 30-60). An aliquot of this cell
suspension (2 ml) was taken to determine protein concentration using
the haemochrome assay after lysis by sonication.

Asymmetric radical dearomatization using cell-free lysate of
P450,,4

Suspensions of E. coli (E. cloni BL21(DE3)) cells expressing the appro-
priate P450,,4 variant in M9-N buffer (2 ml, typically OD,, = 30-240)
were lysed by sonication using an ultrasonic homogenizer equipped
with a stepped microtip (6 minin total, 1s on, 1s off, 40% amplitude,
two cycles); samples were submerged in wet ice during sonication.
Theresulting lysate was centrifuged (21,130g, 4 °C, 10 min) to remove
the cell debris. The supernatant was separated from the pellet and
keptonice until use.

To a 2 ml sample vial was added the cell-free lysate containing
P450,,4 (typically OD¢y, = 30-240, 345 pl). This 2 ml vial was then
transferred into an anaerobic chamber, where the organic substrate
(15 plof 133 mM stock solutionin EtOH or DMSO) and sodium ascorbate
(40 plof 50 mM stock solutionin M9-N buffer) were added. Final reac-
tion volume was 400 pl; final concentrations were 5.0 mM substrate
and 5.0 mM sodium ascorbate. Then vials were sealed and shaken on
amicroplate shaker at room temperature and 680 rpm for 12-24 h.

After12-24 h,asolution of1mM1,3,5-trimethoxybenzene or mesi-
tylene (internal standard) in EtOAc (600 pl) was added. The mixture
was transferred toal.5 mlcentrifuge tube, vortexed (20 seach of three
times) and centrifuged (21,130g, 5 min) to separate the organic and
aqueous layers. The organic layers (350 pl per well) were transferred
to 500 plvialinserts, whichwere then placed in 2 mlvials and analysed
by normal phase HPLC. CHIRALPAKIC/IB N-5/IG/IH columns were used
for normal phase HPLC analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldataare available in the maintext and the Supplementary Informa-
tion. Crystallographic datafor compounds 2e, 4a, 6aand 8areported
inthis Article have been deposited at the CCDC under deposition num-
bers 2245164 (2e),2245162 (4a), 2245161 (6a) and 2245163 (8a). Copies

of the data can be obtained free of charge via https://www.ccdc.cam.
ac.uk/structures/. The raw data for the docking structures used in the
Supplementary Information are also available from the authors upon
reasonablerequest. Plasmids encoding evolved radical dearomatases
reported in this study are available for research purposes from Y.Y.
under a material transfer agreement with the University of California,
SantaBarbara.
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