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Using convolutional multistage training.

Scalable  
Undersized Dataset  

RF Classification

Khalid Youssef  , Greg Schuette , Yubin Cai, Daisong Zhang  , 
Yikun Huang, Yahya Rahmat-Samii  , and Louis-S. Bouchard

Unlike areas such as computer vision and speech 
recognition, where convolutional and recurrent neu-
ral network (NN)-based approaches have proven 
effective due to the nature of the respective areas 

of application, deep learning (DL) still lacks a general 
approach suitable for the unique nature and challenges of 
radiofrequency (RF) systems such as radar, signals intel-
ligence, electronic warfare, and communications. Existing 
approaches face problems in robustness, consistency, effi-
ciency, repeatability, and scalability. Some of the main chal-
lenges in radiofrequency (RF) sensing such as radar target 
identification are the difficulty and cost of obtaining data. 
Hundreds to thousands of samples per class are typically 
used when training for classifying signals into 2–12 classes 
with reported accuracy ranging from 87% to 99%, where 
accuracy generally decreases with more classes added. In 
this article, we present a new DL approach based on mul-
tistage training (MST) and demonstrate it on RF sensing 
signal classification. We consistently achieve more than 99% 
accuracy for up to 17 diverse classes using only 11 samples 
per class for training, a substantial improvement over stan-
dard DL approaches.

INTRODUCTION
With applications in defense, retail, health care, and 
tomography [1], [2], [3], [4], [5], RF-based sensor systems 
that can detect, locate, and identify targets at long distances 
and under different weather conditions are being developed. 

Examples include ground-based and aircraft-mounted radars 
for the correct identification of targets in the battlefield [6]. 
Another example is ground-penetrating radar, which has 
important applications in mineral resources evaluation [7]. 
Other examples include advanced personnel screening imagers 
[8]; concealed weapon detection [9]; through-the-wall imaging 
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[10]; and vehicular access control using RFID [11]. The signal 
received, which is a result of electromagnetic scattering [12], is 
difficult to interpret and model using hand-engineered meth-
ods, and this is where black box-type approaches such as DL 
can be useful.

In our previous work [13], we presented a new MST 
approach to DL for RF transmitter (Tx) identification. MST 
is a highly distributable structure-parallel DL approach that 
comprises multiple stages of NN ensembles, each consist-
ing of several small networks, which allows the efficient 
utilization of Newton-based second-order optimization and 
provides highly effective data-driven regularization. It was 
originally designed for the high-fidelity denoising of magnetic 
resonance images with nonadditive noise [14], [15]. The mul-
tistage approach allows very early stopping at each individual 
stage, where a target error is assigned as a stopping criterion 
in the first stage and is gradually decreased at successive 
stages. By systematically assigning specific stopping criteria 
to each stage, we can control the speed of convergence in the 
system as a whole to optimize the overall performance and 
generalization, where a minimal error is reached in the final 
stage without overfitting. Our second-order MST has proven 
superior to standard gradient descent-based first-order convo-

lutional and deep NNs (DNNs), including MST trained using 
first-order optimization [13] .

Given that MST has proven superior to other DL methods 
in RF signal classification [13], we investigated an extension of 
MST employing a convolutional front end as a feature extrac-
tion stage for a fully automated end-to-end implementation. 

We refer to the new implementation as convolutional MST 
(C-MST), and we refer to the network architecture as the 
convolutional multistage network (C-MSN). We demonstrate 
our method on the classification of radar-like signals, where a 
linearly polarized electromagnetic wave illuminates an object, 
which in turn creates a scattered field detected by another 
antenna. In this experiment, we consistently obtain more than 
99% accuracy for 17 classes using only 11 samples per class 
for training as well as consistency, robustness, wall clock time,  
and scalability.

The dataset, which contains many acquisitions of scattered 
electromagnetic waves acquired in the frequency domain using 
a network analyzer and measuring the S-parameter for all 17 
object classes, will be made publicly available. The environ-
ment mimics the radar-like detection of objects under ideal 
conditions, i.e., without any clutter or motion. Our contribution 
in this article is threefold: 1) providing an overview of existing 
techniques; 2) extending our method to include a convolutional 
front end, thereby enabling us to increase the input size while 
maintaining the excellent generalization properties of MST; 
and 3) providing a new benchmark dataset to help standardize 
the comparison between different algorithms for RF classifi-
cation. Our algorithm is computationally efficient and allows 

incremental learning where only part of 
the network needs to be trained when 
new targets are added. It can be run on 
modest computers and may be a good 
candidate for deployment in the field, for 
real-time low-shot-number learning.

NON-DL METHODS FOR TARGET 
IDENTIFICATION
Target recognition algorithms operate on 
measured target signature data for com-
parison with the previously derived com-
puter representations of the targets to 
provide an estimate of the target’s iden-
tity. The recognition process is limited by 
noise in the radar measurements; errors 
in the generation of signature reference 
data; and the use of classifiers, which 
usually involves design compromises. 
A conventional algorithm is template 
matching using cross-correlation analy-
sis [16], [17], [18], [19], [20], [21]. The 
accuracy of template matching can be 
improved by using statistical pattern rec-
ognition techniques designed to deter-
mine the class or identity of a measured 
object by means of the features extracted 

from the measured pattern or signature [22], [23], [24], [25], 
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]. 

Features can be hand engineered, including polarization 
enhancement; resonant-frequency poles; multipath reflection 
signatures; target structure-induced modulations; microphone 
effects; jet-engine modulations; or features derived from a 
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transform domain representation of the signal [37]. Features can 
also be learned from the data using techniques such as kn-near-
est-neighbor estimation or Fisher linear discriminant analysis 
[38]. The use of features for recognition provides advantages 
by reducing the requirements on the size of reference databas-
es. The extracted features are then compared to a database’s 
content to maximize the target recognition performance using 
rule-based Euclidean distance or Bayesian techniques [39], 
[40], [41], [42], [43], [44], [45], [46]. Distance-based methods 
invoke the sum of all the distance measures for all features, 
and the minimum distance measure is the best assessment of 
the target’s identity. Unlike end-to-end approaches that would 
ideally extract optimal features directly from the raw data, 
manual feature selection can be limited by rough approxima-
tions and subjectivity.

TARGET IDENTIFICATION BY DL
Thanks to the great success of DL methods in recent years in 
areas such as computer vision and speech recognition, there has 
been a growing interest in using DL for RF applications. How-
ever, unlike computer vision and speech recognition, where 
standard convolutional and recurrent NN methods have proven 
to be very effective due to the nature of these applications, 
DL still lacks a standardized approach suitable to the unique 
nature and challenges of RF. While an ideal target identifica-
tion method should be able to operate directly on raw data in 
an end-to-end fashion, fully connected NN (FCN) implemen-
tations trained using standard algorithms are limited by the 
number of inputs and the number of training samples they 
need to achieve proper generalization and avoid overfitting. 
In general, as the input size increases, the number of required 
training samples increases [47]. 

Typically, the number of samples becomes impractical after 
the input size exceeds only a few hundred inputs. However, 
digitized and demodulated RF signals are complex-valued and 
may be thousands of samples long. Standard regularization tech-
niques such as L2-regularization help remedy the problem but 
only to a certain extent [48]. For this reason, feature extraction 
remains a crucial step for an FCN to work, and the shortcom-
ings of feature engineering, which can be limited by subjectivity 
and crude approximations, inherently remain.

The introduction of convolutional NNs (CNNs) delivered 
a tremendous advantage to overcoming this DL problem by 
limiting the number of connections from the inputs to the net-
work [47], [49]. Convolutional neurons scan through the entire 
input but are connected to only a few inputs at a time. This, in 
addition to the introduction of DL-specific regularization tech-
niques such as dropout layers [50], revolutionized the field of 
computer vision. CNNs have the ability to automatically extract 
features from raw inputs, which is a crucial step toward end-to-
end implementations. However, due to the immense computa-
tional requirements, CNN training algorithms available today 
are largely based on first-order gradient descent optimization. 
While the recent successes of DNNs would be nonexistent if not 
for first-order methods, it poses limitations on the performance 
and capabilities of CNNs and DL in general. For example, it 

is not uncommon for an effective computer vision application 
to require tens or hundreds of thousands of training samples, 
though it is possible for humans to distinguish between different 
objects after only few encounters [51], [52]. 

A recent study on using CNNs for RF identification shows 
that several thousand samples per class are needed to achieve 
high accuracy [53]. While customized approaches have been 
proposed for specific applications, performance is very sensitive 
to hyperparameters, and these approaches require considerable 
expert effort to tune for proper parameter selection. This makes 
DL implementations narrowly applicable, mainly limited to the 
exact application and dataset at hand, which poses significant 
limitations on repeatability. Furthermore, even with suitable 
hyperparameters, training with different initial conditions, e.g., 
initial neuron weights and biases, can cause large variations in 
performance. A typical approach to address this problem is to 
train one or more network models several times with different 
initial conditions and use the average output or vote of a com-
mittee of networks as the final result [54], [55], [56], which can 
help improve performance but is ultimately limited by the suc-
cess rate of the individual networks. 

Second-order Newton-based optimization methods offer 
several advantages in robustness to hyperparameters, efficiency, 
accuracy, and convergence speed and require lower network 
complexity where they can achieve results that are superior to 
first-order methods with fewer neurons [57], [58], [59], [60], 
[61], [62], [63]. However, second-order optimization is gener-
ally deemed unfeasible for training large networks due to the 
intractable computational requirements of traditional second-
order methods.

Provided a large number of training samples is available, 
most shortcomings of first-order-based DL approaches are 
usually manageable. Unfortunately, obtaining data in large 
quantities is not trivial in RF problems and can be a difficult, 
time-consuming, and expensive process. Synthetically generated 
data are often used to compensate for the lack of real data, but 
they can only approximate the fine details in the signals, which 
poses a limitation on accuracy and scalability. Generative adver-
sarial networks (GANs) have also been used to generate new 
training data [64], but GANs can face similar issues depending 
on their application. Recent work [65] studying the use of GANs 
for synthetic aperture radar showed promise at improving the 
quality of synthetically generated data. The study also showed 
that GANs were difficult to train and were not a perfect substi-
tute for real data [65]. 

Artificial NNs [66], support vector machines [67], and Mar-
kov [68], [69] models have been studied to perform feature 
extraction and classifier functions [70], [71]. Several attempts 
have been made to adapt standard DL approaches to radar 
classification with varying degrees of success [72], [73], [74], 
[75], [76], [77], [78], [79]. Hundreds to thousands of samples 
per class were used for training to classify 2–12 classes with 
reported accuracy ranging from 87 to 99% where accuracy 
generally decreases with more classes. Existing DL approaches 
face problems in robustness, consistency, efficiency, repeatabil-
ity, and scalability.
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EXPERIMENTAL DETAILS, ARCHITECTURE, AND HYPERPARAMETERS

PHOTOS OF THE OBJECTS AND CHAMBER
Seventeen objects were collected from engineering and chemistry 
laboratories at the University of California, Los Angeles for use as 
radar targets. The objects were selected to present a diversity of sizes, 
shapes, and material composition. The 47.0 by 30.5-cm cardboard 
platform seen in the pictures provides a scale for each object’s size. 
All 17 targets were placed in the radar’s path and rotated through 
three different angles (0°, 45°, and 90°). Photos of all 17 rotated 
objects are shown in Figure 5, as seen from the perspective of the 
radar. Photos of the anechoic setup are shown in Figure S1.

SIGNAL STRENGTH
Twelve traces were recorded for each of the 17 objects and each 
of the three orientations per object. Additionally, 112 traces of the 
empty anechoic chamber were recorded under otherwise equal 
conditions. Each trace (S21 parameter) was recorded as a string 
of complex numbers (real, imaginary) representing the complex-
valued signal amplitude as a function of the sweep frequency. 
Signal-to-noise ratios (SNRs) and relative radar cross-sections 
(rRCSs) were calculated for each of the 17 objects and their three 
orientations using these data and tabulated later (Table S1). 
RCSs are provided as dimensionless numbers between zero and 
one rRCS. The SNR values reflect the maximum amplitude in the 
frequency domain of the S21 parameter, whereas rRCS values 
reflect the total signal over the same domain. This is analogous 
to the pulse radar echo amplitude. Uncertainties in the values 
represent sample standard deviations, which were calculated 
using the 12 traces for each object (and orientation).

From each complex-valued trace for each object (and orientation), 
the magnitude of the complex data was computed and stored in 
vectors of length 1,600, corresponding to linearly spaced frequency 
values in the range 675 MHz–8.5 GHz. For the empty anechoic 

chamber data, all 112 traces were averaged to provide a clean 
(low noise) trace. This low-noise trace was used to subtract the 
background signal for each object (and orientation) to produce 
traces whose features reflect only the characteristics of an object.

From the background-subtracted traces, the SNR was calculated 
as follows. The location of the maximum signal was identified, and 
100 nearby points were averaged to reduce noise. For each trace, 
a flat region was identified to estimate the noise as the standard 
deviation of 100 points taken in the flat region. The SNR was 
computed as the previously mentioned signal strength divided by 
the standard deviation of the flat region. The resulting value was 
inserted into (S1)

	 log S
S

20 21
21

SNR 10dB
with target

target removed
= c m � (S1)

to yield a value in dB. rRCS values were estimated from the 
background-subtracted traces by taking the area under each 
curve, which represents the total radar signal (integrated across 
all frequencies). The integral was computed in MATLAB using 
the trapezoidal rule. This area represents the pulse amplitude in 
a pulsed radar echo experiment. These pulse amplitudes were 
then averaged for each object-orientation combination and 

Vivaldi Antennas

Chamber Inside

Analyzer

Chamber Outside

FIGURE S1. The anechoic chamber and experimental 
setup. The photo outlined in green shows the two Vivaldi 
antennas in the lower left and right corners, both oriented 
vertically, as used during the experimental data collection. 
The photo outlined in red shows the VNA used for all 
S21 readouts (Agilent model E5071C 9 kHz; 8.5-GHz ENA 
series). The photo outlined in blue shows the radar’s 
position relative to the cardboard platform.

TABLE S1. SNR AND RRCS VALUES 
FOR EACH OBJECT (1–17) AND THEIR 

THREE ORIENTATIONS. THE STANDARD 
DEVIATION OF EACH SIGNAL IS SHOWN IN 

PARENTHESES. THE SNR VALUES ARE IN DB. 

Obj. SNR, 0° SNR, 45° SNR, 90° rRCS, 0° rRCS, 45° rRCS, 90°

1 20 (10) 13 (8) 19 (9) 0.9 (3) 0.1 (2) 1 (4) 

2 14 (7) 14 (7) 8 (7) 0.34 (5) 0.1 (2) 0.4 (1) 

3 13 (7) 14 (8) 12 (7) 0.1 (2) 0.1 (2) 0.14 (2) 

4 12 (7) 14 (7) 11 (6) 0.22 (6) 0.09 (3) 0.17 (3) 

5 14 (8) 13 (7) 14 (8) 0.1 (2) 0.1 (2) 0.17 (4) 

6 12 (8) 13 (7) 10 (6) 0.23 (3) 0.1 (3) 0.17 (2) 

7 13 (8) 13 (8) 14 (9) 0.1 (3) 0.1 (2) 0.5 (2) 

8 12 (7) 14 (8) 13 (8) 0.1 (3) 0.1 (3) 0.2 (3) 

9 12 (6) 14 (7) 10 (6) 0.1 (3) 0.1 (3) 0.11 (3) 

10 10 (6) 13 (7) 12 (7) 0.12 (3) 0.09 (3) 0.09 (3) 

11 10 (6) 14 (8) 11 (6) 0.12 (2) 0.09 (3) 0.1 (3) 

12 10 (6) 13 (7) 10 (6) 0.14 (3) 0.09 (3) 0.11 (3) 

13 11 (7) 12 (7) 10 (6) 0.23 (2) 0.1 (3) 0.11 (3) 

14 11 (6) 13 (7) 12 (7) 0.11 (3) 0.09 (3) 0.1 (3) 

15 14 (8) 11 (6) 11 (7) 0.44 (5) 0.1 (3) 0.14 (2) 

16 11 (7) 13 (7) 11 (6) 0.1 (3) 0.1 (3) 0.1 (3) 

17 12 (7) 13 (7) 13 (7) 0.1 (3) 0.1 (3) 0.1 (3) 

(Continued)
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normalized to the largest object-orientation average to yield a 
number between zero and one (relative RCS).

CNN ARCHITECTURE AND HYPERPARAMETERS
The detailed CNN architecture and hyperparameters are shown 
in Figure S2. The hyperparameters used for Adam and Levenberg-
Marquardt are provided in Table S2.

WALL CLOCK TIME
Figure S3 shows the wall clock time speedup relative to one CPU 
core. Measurements were obtained by activating a different 
number of CPU cores and measuring the training time.

DEMONSTRATION OF ADDITIONAL  
REGRESSION APPLICATION
An artificial dataset for RCS versus frequency was created in 
MATLAB R2021b (MathWorks, Natick, MA) for sphere and disk 
geometries using the commands rcssphere and rcsdisc, 

respectively. The command rcssphere  takes as inputs the 
sphere radius (m); signal propagation speed [(m/s), set to c, the 
speed of light]; frequency range (set to 100–10,000 MHz in steps 
of 10 MHz); and azimuthal and elevation angles. The azimuthal 
and elevation angles were uniformly randomly sampled from −45° 
to 45°. The sphere radius was uniformly randomly sampled from 
0.2 to 1.0 m. The command outputs RCS (m2) versus frequency, 
to which was added uncorrelated normally distributed random 
noise in absolute value with a standard deviation of 0.1 m2, i.e., 

N( . , , )).(X X0 1 0 1$ ; +;  The signal was then converted to power 
(dBsm) and used for training the NN. Likewise, the command 
rcsdisc takes as input the disk radius (m); signal propagation 
speed; frequency; and azimuthal and elevation angles. The 
radius, speed, frequency, and angles were set as in the case of 
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Drop Out: 25%
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Fully Connected
Neurons: 5

Fully Connected
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ReLu

ReLu
ReLu

Batch
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Batch
Normalization

Batch
Normalization
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Normalization

In: 1,600 × 6

Output: 17 × 1

ReLu

Pooling
Kernel: 2 × 1
Stride: 2

Pooling
Kernel: 2 × 1
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Pooling
Kernel: 2 × 1
Stride: 2

Pooling
Kernel: 2 × 1
Stride: 2
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Kernel: 25 × 1
Stride: 1
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Convolution
Kernel: 5 × 1
Stride: 1
Filters: 16
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Kernel: 3 × 1
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Convolution
Kernel: 3 × 1
Stride: 1
Filters: 32

FIGURE S2. The CNN architecture and hyperparameters. ReLU: rectified linear unit.

EXPERIMENTAL DETAILS, ARCHITECTURE, AND HYPERPARAMETERS (CONTINUED) 
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the sphere. Noise was added, which had the same distribution 
as for the sphere except for lower magnitude to compensate 
for the smaller RCS of the disk compared to the sphere, i.e., 

N( . , ( , )).X X0 001 0 1$ ; +;  Here, 3,000 samples with random 

parameters were generated for training, and 1,000 samples were 
generated for testing. Training and testing datasets each consist of 
50% disks and 50% spheres.

Vectors of object (disk or sphere) RCS versus frequency were 
used for training the NN to estimate the radius of the object. A 
C-MSN similar to the one described in the article was used here, 
with the exception of the softmax and classification layers, which 
were replaced with regression layers. A committee of regression 
CNNs was trained for comparison, where the mean value of all 
CNNs in the committee is used as the final output. The correlation 
results are shown in Figure S4.

TABLE S2. THE LEARNING PARAMETERS  
AND OPTIONS OF EACH ALGORITHM. 

OPTIONS THAT ARE NOT LISTED HERE WERE 
KEPT AT THE DEFAULT SETTING IN MATLAB.

Levenberg-Marquardt

Performance goal 0

Maximum validation failures 6

Minimum performance gradient 1E-07

Initial n 0.001

n decrease factor 0.1

n increase factor 10

Maximum n 1E+10

Adam (CNN)

Minimum batch size 12

Initial learning rate 1E-03

Learn rate schedule piecewise

Learn rate drop factor 0.1

Learn rate drop period 5

Shuffle Every epoch

SGDM (SqueezeNet)

Minimum batch size 10

Initial learning rate 3E-04

Maximum epochs 100

Shuffle Every epoch

SGDM: stochastic gradient descent with momentum.
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FIGURE S4. Correlation plots for the (a) C-MSN and (b) the 
CNN committee outputs versus target (object size). These 
graphs correspond to the testing dataset, which contains 
both disks and spheres. C.I.: confidence interval. 
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THE IMPLEMENTATION OF DL BY C-MST
This article presents a new variation of MST with a convolution-
al front end and its application in the classification of radar-like 
signals. Given the inherent regularization properties of CNNs 

for large inputs [47], [49] and their robustness to translational 
variance, which has been demonstrated in radar antitransmit 
receive [80], we have developed C-MST to further improve the 
performance and applicability of our original MST method. 
The addition of CNNs not only helps with translational invari-
ance but also helps in situations where training data availability 
is scarce. Unlike our previous work, where only part of the RF 
signal is used (the onset) by the MST, the convolutional front 
end allows using the entire RF signal for a fully automated end-
to-end implementation.

We tested the new method’s generalization ability when 
trained with an undersized dataset (11 samples per class) for 17 
classes. We term the new method C-MST. Here we describe 
the implementation of our method as well as conventional 
DL methods used for benchmarking purposes. The C-MST 
method and its implementation are described in the “C-MST” 
section later. The C-MST method is validated against two types 
of CNN committees. The first comparison is with the CNN 
committee constituting the C-MST front end. The second 
comparison is against a committee of SqueezeNets [81] that 
are pretrained on the 1,000-class ImageNet Large Scale Visual 
Recognition Challenge; these are then trained on our data using 
state-of-the-art transfer learning. In the “Radar Experiments” 
section, we describe the experimental methods for acquiring 
the radar data.

All networks were implemented in MATLAB® R2020a 
using the Deep Learning Toolbox (MathWorks, Natick, MA) 
on a CentOS 7-based server featuring two Xeon processors, 
each with 10 cores, and 128 GB of RAM. Hyperparameters 
for all methods were selected to maximize generalization. 
Architecture details and hyperparameter values are provided 
in “Experimental Details, Architecture, and Hyperparameters.” 
The dataset will be made available for download at https://
dx.doi.org/10.21227/842w-xk80.

C-MST
Thirty CNNs constitute the first stage of the C-MSN illustrated 
in Figure 1. Each CNN consists of four inner blocks and one 
outer block. Each inner block contains a convolutional layer 
followed by a batch normalization layer, a rectified linear unit 

(ReLU) layer, and a pooling layer. The 
outer block consists of a dropout layer, 
followed by three fully connected lay-
ers, a softmax layer, and a classifica-
tion layer. The architecture details are 
illustrated in Figure S2 in “Additional 
Architecture Details and Values of 
Hyperparameters,” and the hyperpa-
rameters for each layer are listed in 
Table S2 in “Additional Architecture 
Details and Values of Hyperparam-
eters.” The second fully connected 
layer in the CNN is a bottleneck layer 
consisting of five neurons to perform 
feature dimensionality reduction. Each 
CNN is trained for 20 epochs, and the 
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outputs from the bottleneck layer are the features that are 
passed on to stage 2. 

The remaining C-MSN stages are similar to [13], where 
the original MST approach is described in detail. Multiple 
identical FCNs are stacked together at each stage, where 
each FCN is randomly assigned different initial conditions. 
Herein, each FCN consists of two fully connected layers 
with 10 neurons in each layer. The FCNs in each stage are 
separately trained for three epochs using the second-order 
Levenberg-Marquardt algorithm; hyperparameters are listed 
in Table S2 in “Additional Architecture Details and Values of 
Hyperparameters.” Each FCN has one output and is trained 
to fire in response to one of the object classes only, where  
20 FCNs in each stage are assigned to each object class. In 
the case of classifying 17 objects, the number of FCNs in 
each stage is equal to 20 × 17, which yields 340 FCNs per 
stage. The FCNs are independently trained as regression 
models, and the concatenated outputs of all FCNs in each 
stage are passed on as the input to the next stage. In the final 
stage, the outputs from each group of 20 FCNs correspond-
ing to an object class are averaged together to obtain the final 
response to that object class. Figure 2 shows an example that 
demonstrates the gradual improvement in the outputs of sub-
sequent C-MSN stages.

THE CNN COMMITTEE
The classification layer outputs of the 30 CNNs in the C-MSN 
front end are collected. The final output is the majority vote of 
all CNNs.

THE SqueezeNet COMMITTEE
SqueezeNets pretrained on the 1,000-class ImageN-
et Large Scale Visual Recognition Challenge were adjusted 
to accommodate two classes and trained on our data using 
state-of-the-art transfer learning. To accommodate the input 
format of SqueezeNets, we transformed our 1D input signals 
into 2D time-frequency images. Transfer learning was per-
formed through the following steps:
1) � adjusting the pretrained SqueezeNet input layer size from 

the original 227 × 227 × 3 red, green, blue format into 227 × 
227, i.e., the size of our 2D wavelet transformed image

2) � modifying the last learnable layer in SqueezeNet (layer 64) to 
have the same number of convolutions as our new number of 
classes instead of the original 1,000 classes

3)	 modifying the output classification layer in SqueezeNet 
(layer 68) to our new number of classes instead of the original 
1,000 classes

4)	 tuning the adjusted SqueezeNet. 
Learning parameters are listed in Table S2 in “Additional Archi-
tecture Details and Values of Hyperparameters.”

RADAR EXPERIMENTS

DATA COLLECTION
Radar data were collected inside an anechoic chamber 
(band rejection 1 MHz–10 GHz) using a pair of TSA900 

900-MHz–12-GHz printed circuit board (PCB) Vivaldi anten-
nas (RFSPACE Inc., Atlanta, GA) connected to a vector net-
work analyzer (VNA) model E5071C 9 kHz–8.5 GHz ENA 
Series (Agilent, Santa Clara, CA) (Figures 3 and 4). The VNA 
was operated in S21 parameter mode with ports 1 [transmit-
ter (Tx)] and 2 [receiver (Rx)] connected to antennas 1 and 2. 
Frequency sweeping was performed in the range 675 MHz– 
8.5 GHz (corresponding to wavelengths in free space:  
0.44 m–3.5 cm) with IF bandwidth 70 kHz, 1,600 points/trace, 
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FIGURE 3. (a) A Vivaldi antenna model as used in the CST 
Studio Suite simulation of the empty chamber. (b) The 
experimental and simulated empty room S21 parameters 
for the empty chamber. This plot compares simulated versus 
experimental data. The experimental S21 parameter trace 
shown was collected on the first day of data collection. 
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and 512 averages/trace. Both Vivaldi antennas were mounted 
vertically to make the readout from the Rx antenna sensitive to 
waves of the same polarization as the Tx antenna. The experi-
mental setup is shown in Figure 4. Each trace (S21 param-
eter) was saved as a file with 1,600 real/imaginary (complex) 
data points versus frequency on a linear amplitude scale 
from the Smith Chart mode of the VNA.

Next, 17 objects were placed approximately 10 ft from the 
pair of antennas, which were themselves 5 ft apart. The trian-
gular configuration was kept fixed, the objects were rotated 
through three angles (0, 4, 5, and 90°), and the experiments 
were repeated 12 times (for each object and angle) on dif-
ferent days over a total period of three months. All targets 
in subsequent trials and angle rotations were placed at the 
same locations with intentional positioning errors of up to 
10 cm in-plane and 5° for the angles. Other uncertainties in 
the measurements are due to the limited signal-to-noise ratio 
(SNR) and possible drifts in the VNA S21 parameter calibra-
tion over the three-month span as the VNA was calibrated 
only once on the first day of experiments. Photos of the 17 
objects and their positioning from the antennas’ perspective 
are shown in Figure 5.

DATA PROCESSING
Since the purpose of these data is to assess end-to-end 
performance, minimal preprocessing was conducted. Fin-
gerprints used for training the NNs were created directly 
from the raw data. Each fingerprint consisted of traces 
from three angles (0°, 45°, and 90°), with each trace con-
sisting of 1,600 real and imaginary values, for a total of 9,600 
data points/fingerprint. Real and imaginary components 

of each trace were normalized separately by subtracting 
the mean and dividing by the standard deviation. The 
dataset consisted of 204 fingerprints: 17 object classes 
with 12 fingerprints per class. Different augmentation and 
preprocessing strategies can improve the results for all 
approaches. We omit such strategies herein to more accu-
rately assess the role of the DL approaches in the perfor-
mance comparison.

ANALYSIS
Manual identification of targets from raw data proved dif-
ficult, as shown in Figures 6(b) and 7(b). Figure 6 shows the 
log-magnitude plots of the S21 parameter for all 17 objects in 
the 0° orientation. (The objects and our definition of orienta-
tion are shown in Figure 5.) In the low-frequency limit of 
the S21 parameter, most objects were indistinguishable. Sev-
eral targets whose S21 parameters are shown in Figure 6(a)  
displayed traces that can be manually distinguished over the 
medium-to-high frequency range. Each of these objects was 
metallic with large cross-sectional areas. This is expected 
from objects with high conductivity and a large enough area 
to create conditions for high reflectivity and scattering. On 
the other hand, several objects, shown in Figure 6(b), have 
no readily identifiable characteristics in the S21 parameter 
that allow us to manually distinguish and identify them. We 
note that the high-frequency limit (6–8 GHz) of our experi-
ment was unreliable for manual target identification due to 
the high variance between experiments in the cases of low 
radar cross-sections (RCSs).

Figure 7 examines the angle dependence of the S21 pa
rameter for each object. Certain objects, such as object 1 in 

TSA900-12000
Ultra-Wideband PCB
Tapered Slot Antenna

Agilent E5071C
ENA Series

Vector Network
Analyzer

Anechoic Chamber: Top View

Receive

12 in

Two Vivaldi
Antennas

Target

Transmit11 in

11 in
14 in

6.5 in
226 in

109.5 in

52 in
137.5 in

137.5 in

FIGURE 4. A schematic of the experimental setup. The top view of the anechoic chamber is shown. The “target” indicated in 
the figure represents any of the 17 different objects studied in this project; the 17 objects are shown in Figure 5. Relative 
proportions are drawn to scale. Scale bar: 1 ft. PCB: printed circuit board. 
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Figure 7(a), reflect the radio waves in different ways depend-
ing on orientation. Therefore, once an object is identified, its 
orientation can be determined from the log-magnitude plot 
of the S21 parameter. This was the case for relatively large 

metallic objects that possess low symmetry and present a 
unique RCS at each orientation. An exception was object 1, 
whose 0° and 90° orientations have similar cross-sections 
while exhibiting unique traces (S21 parameters in log-magni-
tude mode). A possible explanation for this exception is that a 
crimped copper seam was present on the right and left sides 
of the object for the 0° and 90° orientations, respectively. 
This seam likely reflects and scatters radio waves differently 
depending on its orientation, allowing each orientation’s trace 
to be manually distinguished. 

However, other objects displayed few or no clear differences 
between orientations in the low-frequency low-noise region, 

i

0

3b 4 5a 5b

6 7 8 9

10 11 12 13

14 15 16 17

1 2 3a

ii iii iv

FIGURE 5. The 17 targets are shown on the platform. Object 
size can be gauged by the 47-cm-wide and 30.5-cm-deep 
cardboard platform. The 0°, 45°, and 90° orientations are 
shown in (ii), (iii), and (iv), respectively. The red arrows (i) 
depict the orientations on the cardboard. Unless otherwise 
noted, the photos are taken from the radar’s perspective at 
a 45° orientation. The objects vary in size and composition, 
affecting the rRCS. (0) Platform: Roughly 60° from the radar’s 
perspective. (1) Object 1: An empty metal (copper) box with 
a hole on the top face. (2) Object 2: A metal box (closed 
cover) with a home-built circuit. (3a) Object 3: A plastic 
toolbox (closed). (3b) Object 3: Open. Data were collected 
with the toolbox closed. (4) Object 4: A metal box (open 
cover) with a custom circuit. (5a) Object 5: A plastic box 
(closed). (5b) Object 5: Open. Data were collected with the 
box closed. (6) Object 6: A dc power supply (metal cover). (7) 
Object 7: The front cover of a power amplifier (metal) at 90° 
orientation. (8) Object 8: Rogers duroid laminate (copper) 
at 90° orientation. (9) Object 9: A data transfer switch box 
(with a plastic cover). (10) Object 10: A variable capacitor box 
(with a metal cover). (11) Object 11: A data transfer switch 
box (with a metal cover). (12) Object 12: A port converter 
(metallic). (13) Object 13: A data transfer switch box (with a 
plastic and metal cover). (14) Object 14: A vise (metal) at 0° 
orientation. (15) Object 15: A metal box. (16) Object 16: A 
chemistry hotplate stirrer. (17) Object 17: A Black & Decker 
drill at 0° orientation. 
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FIGURE 6. S21 parameters in log-magnetic mode for all 
17 objects at their respective 0° orientations. Traces show 
the raw data as acquired without any postprocessing or 
averaging. (a) Several of the targets (objects 1, 2, 4, 6, 13, and 
15) have S21 parameters with obvious differences in the log-
magnitude plot. (b) Other targets (objects 3, 5, 7, 8, 9, 10, 11, 
12, 14, 16, and 17) exhibit S21 parameters with no obvious 
visual differences.  

Authorized licensed use limited to: UCLA Library. Downloaded on May 23,2025 at 23:11:26 UTC from IEEE Xplore.  Restrictions apply. 



44 IEEE ANTENNAS & PROPAGATION MAGAZINEA P R I L  2 0 2 3

as shown in Figure 7(b). In our experiment, objects with the 
least-distinguishable orientations tended to be those present-
ing small RCS areas, regardless of material composition. Small 
RCSs imply weak scattering intensity and overshadowing of 
the object’s characteristics in the log-magnitude plot. Such 
objects with traces that cannot be manually identified present 
a unique challenge to radar target identification. This is gener-
ally the case for targets that present small RCSs due to their 
sizes, reflective properties, or range of the measurement. This 
apparent difficulty drives the need to develop DL algorithms 
for radar target identification.

RESULTS
Experiments were designed to test the aspects of accuracy, 
consistency, robustness, and wall clock time of the different DL 
approaches. C-MSN demonstrated substantial improvement in 
all aspects over other approaches, with accuracy exceeding the 
SqueezeNet committee by 9% and the CNN committee by 20%.

ACCURACY
Leave-one-out cross-validation (LOOCV) was used for testing 
the accuracy of each approach. LOOCV is a special case of 
K-fold cross-validation where one sample is left out at a time, 
and K is equal to the number of samples [82]. This is not to be 
confused with the validation data partition used during train-
ing. We performed 12 combinations of 11 samples per object 
for training/one sample per object for testing. The process was 
repeated five times for each combination for a total of 60 trials 
per accuracy measurement. The average accuracy of the 60 tri-
als is presented in Table 1. The confusion matrices for C-MSN, 
the CNN Committee, and the SqueezeNet Committee are 
shown in Figure 8.

CONSISTENCY
The standard deviation of the individual accuracies from the 60 
trials was calculated to assess the consistency of each approach, 
and the values are presented in Table 1. The C-MSN standard 
deviation is more than threefold lower compared to the other 
methods. Consistency is a highly desirable feature that reduces 
the number of times a model must be trained to achieve desir-
able performance, which increases implementation efficiency. 
C-MST clearly excels in this aspect, outperforming the other 
approaches by a large margin.
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FIGURE 7. S21 parameters for two targets (objects 1 and 17) 
at three different orientations (the objects and a definition 
of orientation are indicated in Figure 5). No noise removal 
or averaging was performed on the traces shown. (a) Object 
1 is shown at 0°, 45°, and 90° orientations, each of which is 
easily identifiable. Objects 2, 4, 6, and 13 (not shown here) 
also demonstrate easily distinguishable orientations. (b) 
Object 17 is shown at 0°, 45°, and 90° orientations, each 
of which is indistinguishable. Orientations of objects 9, 
10, 11, 14, and 16 (not shown here) were also visually 
indistinguishable from their log-magnitude plots. 

TABLE 1. ACCURACY AND STANDARD 
DEVIATION COMPARISONS FOR ALL 

APPROACHES. EACH VALUE IS CALCULATED 
FROM 60 TRIALS. THE LOWEST AND HIGHEST 
PERFORMANCE RESULTS ARE HIGHLIGHTED 
IN RED AND GREEN COLORS, RESPECTIVELY. 

Accuracy C-MSN CNN-Com SqueezeNet-com

Average 99.02% 79.9% 90.29%

Standard deviation 2.21% 7.45% 7.25%

17
 O

bj
ec

ts

C-MSN CNN-Com

0% 100%

SqueezeNet-Com

FIGURE 8. Confusion matrices for C-MSN, the CNN 
committee, and the SqueezeNet committee. Com: 
committee. 
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ROBUSTNESS TO 
HYPERPARAMETERS
While second-order optimizers are 
robust to hyperparameter settings, 
their computational complexity is 
prohibitive for DL. Common DL 
algorithms instead rely on first-
order (gradient descent)-based 
optimization, which is sensitive to 
the settings of hyperparameters 
such as the learning rate and the 
number of layers and neurons in the network [83]. As a distribu-
tive training algorithm, C-MST allows the efficient utilization 
of second-order optimization, making it inherently robust to 
hyperparameter settings.

WALL CLOCK TIME
Despite the seeming complexity of C-MST, which involves 
hundreds of individual FCNs and CNNs, and although sec-
ond-order training—which is typically associated with high 
computational complexity—is used, the approach is highly 
computationally efficient. The computational time in C-MST 
accelerates virtually linearly with the number of computational 
cores in a processor, as shown in Figure S3 in “Additional 
Architecture Details and Values of Hyperparameters.” Given 
enough cores, C-MST can run in much less wall clock time 
than the SqueezeNet committee approach despite the fact that 
transfer learning is used with a pretrained SqueezeNet. This is 
due to the highly distributable nature of C-MST, where indi-
vidual networks in each stage can be trained independently 
and in parallel. This is also due to the gradual multistage 
convergence in C-MST, as demonstrated in Figure 2, where 
individual networks require a very small number of training 
epochs relative to standard approaches. Furthermore, the 
partial connectivity in C-MST typically results in a relatively 
small number of parameters for each individual network in 
inner stages.

CONCLUSION
Herein we presented a new DL approach for RF classifica-
tion and collected a new benchmarking dataset for proof-of-
concept radar applications. The experiments conducted in 
this study confirm that while standard CNN approaches can 
work sufficiently well in some scenarios, their performance 
drops dramatically as the classification complexity increases. 
Since classification complexity increases with the number of 
classes, it is clear that standard DL approaches do not scale 
effectively in such RF classification applications. In con-
trast, C-MST is more stable and demonstrates significantly 
higher performance across all experiments. Most notably, 
C-MST achieves a 99% accuracy, representing a substantial 
advantage over the other approaches. Additionally, C-MST 
is robust, computationally efficient, and highly distribut-
able. Therefore, C-MST effectively scales with computa-
tional complexity and training time as the number of classes 
increases. We propose C-MST as a scalable end-to-end 

approach suitable to the nature 
and challenges of RF data.

We note that while the main 
purpose of this study is to com-
pare the accuracy and general-
ization ability of DL approaches 
when trained with an under-
sized training dataset, C-MST 
is equally applicable to prepro-
cessed data and to other radar 
modalities, including 2D modal-

ities such as synthetic aperture radar, where the input 
dimensions of the front-end CNN stage can be adjusted 
accordingly. An additional demonstration applying our 
approach to a regression problem where the RCS of an 
object is estimated from a synthetic (simulated) radar 
dataset has been included in “Additional Architecture 
Details and Values of Hyperparameters.” Hyperparame-
ters such as the number of stages and number of networks 
per stage can also be further adjusted according to the 
problem complexity.

We also note that additional preprocessing and augmen-
tation techniques can improve the performance of all 
approaches discussed herein. When simple noise augmen-
tation is applied, C-MSN is capable of achieving 100% 
accuracy. Such techniques were intentionally omitted in this 
study to isolate the model performance. (The comparison 
of models whose performance approaches 100% efficiency 
would be meaningless.)

Furthermore, our newly collected benchmarking dataset 
will be made publicly available to enable other groups to 
validate their work independently when applying our meth-
od to other challenging radar classification problems. Data 
collected from pulsed radar in the field generally include 
additional factors such as polarization; background clutter; 
time-domain acquisition; variable target-to-radar distance 
(range); moving targets; additional sources of noise; and 
interference and radar jamming. The effects of radar clutter 
were not included here as the main point of the study was 
to compare the classification accuracy of the new algorithm 
(C-MSN) to existing state-of-the-art algorithms under iden-
tical conditions. The numerous advantages offered by our 
approach will help improve RF-based signal classification 
performance under these challenging scenarios.

ACKNOWLEDGMENT
This work was partially supported by NSF 
Grants CHE-2002313 and 1936375. The 
dataset is available at https://doi.org/10.1109/
MAP.2022.3208813.

AUTHOR INFORMATION
Khalid Youssef (kyoussef@ucla.edu) is with the Department 
of Chemistry and Biochemistry, University of California, 
Los Angeles, Los Angeles, CA 90095-1569 USA. He is a mem-
ber of IEEE. 

When simple noise 
augmentation is 
applied, C-MSN is 
capable of achieving 
100% accuracy.

Authorized licensed use limited to: UCLA Library. Downloaded on May 23,2025 at 23:11:26 UTC from IEEE Xplore.  Restrictions apply. 



46 IEEE ANTENNAS & PROPAGATION MAGAZINEA P R I L  2 0 2 3

Greg Schuette (gregschuette32@gmail.com) is with the 
Department of Chemistry and Biochemistry, University of Cali-
fornia, Los Angeles, Los Angeles, CA 90095-1569 USA. 

Yubin Cai (micahcai@g.ucla.edu) is with the Department of 
Electrical and Computer Engineering, University of California, 
Los Angeles, Los Angeles, CA 90095-1594 USA. He is a Mem-
ber of IEEE.

Daisong Zhang (daisong@ucla.edu) is with the Department 
of Electrical and Computer Engineering, University of Califor-
nia, Los Angeles, Los Angeles, CA 90095-1594 USA. He is a 
Member of IEEE.

Yikun Huang (yikunh@gmail.com) is with the Department 
of Electrical and Computer Engineering, University of Califor-
nia, Los Angeles, Los Angeles, CA 90095-1594 USA. She is a 
Member of IEEE. 

Yahya Rahmat-Samii (rahmat@ee.ucla.edu) is with the 
Department of Electrical and Computer Engineering, Universi-
ty of California, Los Angeles, Los Angeles, CA 90095-1594, 
USA. He is a Life Fellow of IEEE.

Louis-S. Bouchard (bouchard@chem.ucla.edu) is with the 
Department of Chemistry and Biochemistry, University of Cali-
fornia, Los Angeles, Los Angeles, CA 90095-1569 USA. 

REFERENCES
[1] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars: A review 
of signal processing techniques,” IEEE Signal Process. Mag., vol. 34, no. 2, pp. 
22–35, Mar. 2017, doi: 10.1109/MSP.2016.2628914.
[2] K. W. O’Haver, C. K. Barker, G. D. Dockery, and J. D. Huffaker, “Radar 
development for air and missile defense,” Johns Hopkins APL Tech. Dig., vol. 
34, no. 2, pp. 140–153, 2018.
[3] J. Muñoz-Ferreras, Z. Peng, R. Gómez-García, and C. Li, “Review on 
advanced short-range multimode continuous-wave radar architectures for 
healthcare applications,” IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 1, 
no. 1, pp. 14–25, Jun. 2017, doi: 10.1109/JERM.2017.2735241.
[4] N. Joshi et al., “A review of the application of optical and radar remote sens-
ing data fusion to land use mapping and monitoring,” Remote Sens., vol. 8, no. 1, 
p. 70, Jan. 2016, doi: 10.3390/rs8010070.
[5] W. W.-L. Lai, X. Derobert, and P. Annan, “A review of ground penetrating 
radar application in civil engineering: A 30-year journey from locating and test-
ing to imaging and diagnosis,” NDT E Int., vol. 96, pp. 58–78, Jun. 2018, doi: 
10.1016/j.ndteint.2017.04.002.
[6] P. Tait, Introduction to Radar Target Recognition, vol. 18. London, U.K.: 
IET, 2005.
[7] J. Francke, “A review of selected ground penetrating radar applications to 
mineral resource evaluations,” J. Appl. Geophys., vol. 81, pp. 29–37, Jun. 2012, 
doi: 10.1016/j.jappgeo.2011.09.020.
[8] S. Ahmed, A. Genghammer, A. Schiessl, and L.-P. Schmidt, “Fully electronic 
e-band personnel imager of 2 m2 aperture based on a multistatic architecture,” 
IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 651–657, Jan. 2013, doi: 
10.1109/TMTT.2012.2228221.
[9] A. Agurto, Y. Li, G. Tian, N. Bowring, and S. Lockwood, “A review of con-
cealed weapon detection and research in perspective,” in Proc. 2007 IEEE 
Int. Conf. Netw., Sens. Control, pp. 443–448, doi: 10.1109/ICNSC.2007. 
372819.
[10] S. Sadeghi, K. Mohammadpour-Aghdam, R. Faraji-Dana, and R. Burkhold-
er, “A DORT-uniform diffraction tomography algorithm for through-the-wall 
imaging,” IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 3176–3183, Apr. 
2020, doi: 10.1109/TAP.2019.2952002.
[11] D. Almanza-Ojeda, A. Hernandez-Gutierrez, and M. Ibarra-Manzano, 
“Design and implementation of a vehicular access control using RFID,” 
in Proc. 2006 Multiconf. Electron. Photon., pp. 223–225, doi: 10.1109/
MEP.2006.335668.
[12] M. Mishchenko, “Measurement and modeling of electromagnetic scatter-
ing by particles and particle groups,” in Polarimetry of Stars and Planetary Sys-
tems, L. Kolokolova, J. Hough, and A.-C. Levasseur-Regourd, Eds. Cambridge, 
U.K.: Cambridge Univ. Press, 2015, pp. 13–34.

[13] K. Youssef, L.-S. Bouchard, K. Haigh, J. Silovsky, B. Thapa, and C. 
Valk, “Machine learning approach to RF transmitter identification,” IEEE 
J. Radio Freq. Identif., vol. 2, no. 4, pp. 197–205, Dec. 2018, doi: 10.1109/
JRFID.2018.2880457.
[14] K. Youssef, N. N. Jarenwattananon, and L. Bouchard, “Feature-preserving 
noise removal,” IEEE Trans. Med. Imag., vol. 34, no. 9, pp. 1822–1829, Sep. 
2015, doi: 10.1109/TMI.2015.2409265.
[15] Feature-preserving noise removal, by K. Youssef and L. Bouchard. (2014). 
U.S. Patent US9953246B2. [Online]. Available: https://patents.google.com/ 
patent/US9953
[16] D. Pearson, “Introduction,” in Image Processing, D. Pearson, Ed. London, 
U.K.: McGraw-Hill, 1991, pp. 1–14.
[17] L. Novak, G. Owirka, and W. Brower, “Performance of 10- and 20-target 
MSE classifiers,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 4, pp. 1279–
1289, Oct. 2000, doi: 10.1109/7.892675.
[18] R. Heiden, “Aircraft recognition with radar range profiles,” Ph.D. disserta-
tion, Doctoral Thesis, Univ. of Amsterdam, Amsterdam, The Netherlands.
[19] R. Heiden and F. Groen, “Distance based range profile classification tech-
niques for aircraft recognition by radar - A comparison on real radar data,” pre-
sented at the Mission Systems Panel 3rd Symp., Advisory Group for Aerospace 
Research and Development (AGARD; NATO), 17/1-17/7, Lisbon, Portugal, 
May 15–18, 1995.
[20] S. Hudson and D. Psaltis, “Correlation filters for aircraft identification from 
radar range profiles,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 
741–748, Jul. 1993, doi: 10.1109/7.220924.
[21] J. Tang and Z. Zhu, “Comparison study on high resolution radar target rec-
ognition,” in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON), May 1996, 
vol. 1, pp. 250–253, doi: 10.1109/NAECON.1996.517652.
[22] R. Boyle and R. Thomas, Computer Vision: A First Course. Oxford, U.K.: 
Blackwell, 1988.
[23] E. Davies, “Machine vision: Theory, algorithms, and practicalities,” 2012. 
[Online]. Available: https://books.google.com/books/about/Computer_and 
_Machine_Vision.html?id=lwl7ZjOwq8gC&source=kp_book_description
[24] L. Roberts, Machine Perception of Three-Dimensional Solids. New York, 
NY, USA: Garland, 1963.
[25] J. Tippett, Optical and Electro-optical Information Processing. Cambridge, 
MA, USA: MIT Press, 1965.
[26] D. Vernon, Machine Vision: Automated Visual Inspection and Robot Vision. 
Hoboken, NJ, USA:  Prentice Hall, 1991.
[27] A. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ, 
USA: Prentice Hall, 1989.
[28] K. Rosenbach and J. Schiller, “Identification of aircraft on the basis of 2-D 
radar images,” in Proc. Int. Radar Conf., May 1995, pp. 405–409.
[29] F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner ver-
besserten form, der phasenkontrastmethode,” Physica, vol. 1, nos. 7–12, pp. 
689–704, May 1934, doi: 10.1016/S0031-8914(34)80259-5.
[30] T. Kohonen, Ed. Self-Organizing Maps. Berlin, Heidelberg: Springer-
Verlag, 1997.
[31] R. Hu and Z. Zhu, “Researches on radar target classification based on high 
resolution range profiles,” in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAE-
CON), Jul. 1997, vol. 2, pp. 951–955, doi: 10.1109/NAECON.1997.622757.
[32] B. Pei and Z. Bao, “Radar target recognition based on peak location of 
HRR profile and HMMs classifiers,” in Proc. IET Conf., Jan. 2002, pp. 414–418, 
doi: 10.1109/RADAR.2002.1174738.
[33] A. Maki, K. Fukui, Y. Kawawada, and M. Kiya, “Automatic ship identifica-
tion in ISAR imagery: An on-line system using CMSM,” in Proc. IEEE Radar 
Conf. (IEEE Cat. No. 02CH37322), Apr. 2002, pp. 206–211, doi: 10.1109/
NRC.2002.999720.
[34] M. Cassabaum, J. Rodriguez, J. Riddle, and D. Waagen, “Feature analysis 
using millimeter-wave real beam and doppler beam sharpening techniques,” in 
Proc. 5th IEEE Southwest Symp. Image Analysis Interpretation, Apr. 2002, pp. 
101–105, doi: 10.1109/IAI.2002.999898.
[35] S. He, W. Zhang, and G. Guo, “High range resolution MMW radar target 
recognition approaches with application,” in Proc. IEEE Nat. Aerosp. Elec-
tron. Conf. (NAECON), May 1996, vol. 1, pp. 192–195, doi: 10.1109/NAE-
CON.1996.517639.
[36] C. Nieuwoudt and E. Botha, “Relative performance of correlation-based 
and feature-based classifiers of aircraft using radar range profiles,” in Proc. 14h 
Int. Conf. Pattern Recognit. (Cat. No. 98EX170), 1998, vol. 2, pp. 1828–1832, 
doi: 10.1109/ICPR.1998.712086.
[37] B. Borden, Radar Imaging of Airborne Targets: A Primer for Applied Math-
ematicians and Physicists. Boca Raton, FL, USA: CRC Press, 1999.
[38] R. Duda, P. Hart, and D. Stork, Pattern Classification. Hoboken, NJ, USA: 
Wiley, 2012.

Authorized licensed use limited to: UCLA Library. Downloaded on May 23,2025 at 23:11:26 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/MSP.2016.2628914
http://dx.doi.org/10.1109/JERM.2017.2735241
http://dx.doi.org/10.3390/rs8010070
http://dx.doi.org/10.1016/j.ndteint.2017.04.002
http://dx.doi.org/10.1016/j.jappgeo.2011.09.020
http://dx.doi.org/10.1109/TMTT.2012.2228221
http://dx.doi.org/10.1109/ICNSC.2007.372819
http://dx.doi.org/10.1109/ICNSC.2007.372819
http://dx.doi.org/10.1109/TAP.2019.2952002
http://dx.doi.org/10.1109/MEP.2006.335668
http://dx.doi.org/10.1109/MEP.2006.335668
http://dx.doi.org/10.1109/JRFID.2018.2880457
http://dx.doi.org/10.1109/JRFID.2018.2880457
http://dx.doi.org/10.1109/TMI.2015.2409265
https://patents.google.com/patent/US9953
https://patents.google.com/patent/US9953
http://dx.doi.org/10.1109/7.892675
http://dx.doi.org/10.1109/7.220924
http://dx.doi.org/10.1016/S0031-8914(34)80259-5
http://dx.doi.org/10.1109/ICPR.1998.712086


47IEEE ANTENNAS & PROPAGATION MAGAZINE A P R I L  2 0 2 3

[39] T. Bayes, “An essay towards solving a problem in the doctrine of chances,” 
Philosophical Trans. Roy. Soc., vol. 53, pp. 370–415, Dec. 31, 1794.
[40] M. DeGroot, Optimal Statistical Decisions, vol. 82. Hoboken, NJ, USA: 
Wiley, 2005.
[41] D. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial. Oxford, U.K.: 
Oxford Univ. Press, 2006.
[42] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin, 
Bayesian Data Analysis. Boca Raton, FL, USA: CRC Press, 2013.
[43] P. Lee, Bayesian Statistics: An Introduction. Hoboken, NJ, USA: Wiley, 
2012.
[44] G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Introduc-
tion. Singapore: World Scientific, 2003.
[45] J. Yan, X. Feng, and P. Huang, “Bayes-optimality based feature trans-
form for high resolution range profile identification,” in Proc. 6th Int. Conf. 
Signal Process., Aug. 2002, vol. 2, pp. 1396–1398, doi: 10.1109/ICOSP.2002. 
1180053.
[46] D. Zhou, L. Wu, and G. Liu, “Bayesian classifier based on discretized 
continuous feature space,” in Proc. 4th Int. Conf. Signal Process. (Cat. 
No. 98TH8344) ICSP ’98, Oct. 1998, vol. 2, pp. 1225–1228, doi: 10.1109/
ICOSP.1998.770839.
[47] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and 
Time-Series. Cambridge, MA, USA: MIT Press, 1995.
[48] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational invari-
ance,” in Proc. 21st Int. Conf. Mach. Learn., New York, NY, USA: Association 
for Computing Machinery, 2004, p. 78, doi: 10.1145/1015330.1015435.
[49] Hierarchical constrained automatic learning network for character recog-
nition, by J. Denker, R. Howard, L. Jackel, and Y. LeCun. (1991, Oct.). U.S. 
Patent US5058179A. [Online]. Available: https://patents.google.com/patent/
US5058179A
[50] System and method for addressing overfitting in a neural network, by 
G. Hinton, A. Krizhevsky, I. Sutskever, and N. Srivastva. (2016, Aug. 2). U.S. 
Patent US9406017B2. [Online]. Available: https://patents.google.com/patent/
US9406017B2
[51] F. Fleuret, T. Li, C. Dubout, E. K. Wampler, S. Yantis, and D. Geman, 
“Comparing machines and humans on a visual categorization test,” Proc. 
Nat. Acad. Sci., vol. 108, no. 43, pp. 17,621–17,625, Oct. 2011, doi: 10.1073/
pnas.1109168108.
[52] S. Dodge and L. Karam, “A study and comparison of human and deep 
learning recognition performance under visual distortions,” in Proc. 2017 IEEE 
26th Int. Conf. Comput. Commun. Netw. (ICCCN), pp. 1–7, doi: 10.1109/
ICCCN.2017.8038465.
[53] T. Oyedare and J.-M. Park, “Estimating the required training data-
set size for transmitter classification using deep learning,” in Proc. IEEE Int. 
Symp. Dyn. Spectr. Access Netw., 2019, pp. 1–10, doi: 10.1109/DySPAN. 
2019.8935823.
[54] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Convo-
lutional neural network committees for handwritten character classification,” in 
Proc. 2011 Int. Conf. Document Anal. Recognit., pp. 1135–1139, doi: 10.1109/
ICDAR.2011.229.
[55] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “A committee of neu-
ral networks for traffic sign classification,” in Proc. 2011 Int. Joint Conf. Neural 
Netw., pp. 1918–1921, doi: 10.1109/IJCNN.2011.6033458.
[56] Z.-Q. Zhao, D.-S. Huang, and B.-Y. Sun, “Human face recognition 
based on multi-features using neural networks committee,” Pattern Recog-
nit. Lett., vol. 25, no. 12, pp. 1351–1358, Sep. 2004, doi: 10.1016/j.patrec. 
2004.05.008.
[57] B. M. Ozyildirim and M. Kiran, “Do optimization methods in deep learning 
applications matter?” Feb. 2020, arXiv:2002.12642.
[58] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On 
optimization methods for deep learning,” in Proc. 28th Int. Conf. Mach. Learn., 
Madison, WI, USA: Omnipress, 2011, p. 265–272.
[59] R. Battiti, “First- and second-order methods for learning: Between steepest 
descent and newton’s method,” Neural Comput., vol. 4, no. 2, pp. 141–166, Mar. 
1992, doi: 10.1162/neco.1992.4.2.141.
[60] H. H. Tan and K. H. Lim, “Review of second-order optimization tech-
niques in artificial neural networks backpropagation,” in Proc. IOP Conf. 
Series, Mater. Sci. Eng., Jun. 2019, vol. 495, p. 012003, doi: 10.1088/1757-
899X/495/1/012003.
[61] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Neural Networks: 
Tricks of the Trade, 2nd ed. Berlin, Heidelberg: Springer-Verlag, 2012, ch. 1,  
pp. 9–48.
[62] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg–Mar-
quardt training,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930–937, Jun. 
2010, doi: 10.1109/TNN.2010.2045657.

[63] H. Yu and B. Wilamowski, “Levenberg–Marquardt training,” in The Indus-
trial Electronics Handbook, vol. 5, 2nd ed. Boca Raton, FL, USA: CRC Press, 
Jan. 2011, ch. 12, pp. 12-1–12-16.
[64] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural Inf. 
Process. Syst., 2014, pp. 2672–2680.
[65] J. Guo, B. Lei, C. Ding, and Y. Zhang, “Synthetic aperture radar image 
synthesis by using generative adversarial nets,” IEEE Geosci. Remote 
Sens. Lett., vol. 14, no. 7, pp. 1111–1115, Jul. 2017, doi: 10.1109/LGRS. 
2017.2699196.
[66] D. Nandagopal, N. Martin, R. Johnson, P. Lozo, and M. Palaniswami, 
“Performance of radar target recognition schemes using neural networks -  
A comparative study” in Proc. IEEE Int. Conf. Acoust., Speech Signal 
Process. (ICASSP ’94), Apr. 1994, vol. 2, pp. II/641–II/644, doi: 10.1109/
ICASSP.1994.389574.
[67] Z. Li, Z. Weida, and J. Licheng, “Radar target recognition based on support 
vector machine,” in Proc. 5th Int. Conf. Signal Process. 16th World Comput. 
Congr. (WCC - ICSP), Aug. 2000, vol. 3, pp. 1453–1456.
[68] P. Bharadwaj, P. Runkle, L. Carin, J. A. Berrie, and J. A. Hughes, “Multiaspect 
classification of airborne targets via physics-based HMMs and matching pursuits,” 
IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 595–606, Apr. 2001, doi: 
10.1109/7.937471.
[69] M. Jahangir, K. Ponting, and J. O’Loghlen, “Correction to ‘Robust Doppler 
classification technique based on hidden Markov models’,” Inst. Electr. Eng. Proc. 
Radar, Sonar Navig., vol. 150, no. 5, p. 387, Oct. 2003, doi: 10.1049/ip-rsn:20030569.
[70] T. Cooke, N. Redding, J. Schroeder, and J. Zhang, “Target discrimination 
in complex synthetic aperture radar imagery,” in Proc. 34th Conf. Rec. Asilo-
mar Conf. Signals, Syst. Comput. (Cat. No. 00CH37154), Oct. 2000, vol. 2, pp. 
1540–1544, doi: 10.1109/ACSSC.2000.911248.
[71] P. Han, R. Wu, Y. Wang, and Z. Wang, “An efficient SAR ATR approach,” in 
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP ’03), Apr. 6–10, 
2003, vol. 2, pp. II–429, doi: 10.1109/ICASSP.2003.1202392.
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