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nlike areas such as computer vision and speech

recognition, where convolutional and recurrent neu-

ral network (NN)-based approaches have proven

effective due to the nature of the respective areas
of application, deep learning (DL) still lacks a general
approach suitable for the unique nature and challenges of
radiofrequency (RF) systems such as radar, signals intel-
ligence, electronic warfare, and communications. Existing
approaches face problems in robustness, consistency, effi-
ciency, repeatability, and scalability. Some of the main chal-
lenges in radiofrequency (RF) sensing such as radar target
identification are the difficulty and cost of obtaining data.
Hundreds to thousands of samples per class are typically
used when training for classifying signals into 2-12 classes
with reported accuracy ranging from 87% to 99%, where
accuracy generally decreases with more classes added. In
this article, we present a new DL approach based on mul-
tistage training (MST) and demonstrate it on RF sensing
signal classification. We consistently achieve more than 99%
accuracy for up to 17 diverse classes using only 11 samples
per class for training, a substantial improvement over stan-
dard DL approaches.

With applications in defense, retail, health care, and

tomography [1], [2], [3], [4], [5], RF-based sensor systems Examples include ground-based and aircraft-mounted radars

that can detect, locate, and identify targets at long distances for the correct identification of targets in the battlefield [6].

and under different weather conditions are being developed. Another example is ground-penetrating radar, which has
important applications in mineral resources evaluation [7].

Digital Object Identifier 10.1109/MAP2022.5208513 Other examples include advanced personnel screening imagers

Date of current version: 31 October 2022 [8]; concealed weapon detection [9]; through-the-wall imaging
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[10]; and vehicular access control using RFID [11]. The signal
received, which is a result of electromagnetic scattering [12], is
difficult to interpret and model using hand-engineered meth-
ods, and this is where black box-type approaches such as DL
can be useful.

In our previous work [13], we presented a new MST
approach to DL for RF transmitter (Tx) identification. MST
is a highly distributable structure-parallel DL approach that
comprises multiple stages of NN ensembles, each consist-
ing of several small networks, which allows the efficient
utilization of Newton-based second-order optimization and
provides highly effective data-driven regularization. It was
originally designed for the high-fidelity denoising of magnetic
resonance images with nonadditive noise [14], [15]. The mul-
tistage approach allows very early stopping at each individual
stage, where a target error is assigned as a stopping criterion
in the first stage and is gradually decreased at successive
stages. By systematically assigning specific stopping criteria
to each stage, we can control the speed of convergence in the
system as a whole to optimize the overall performance and
generalization, where a minimal error is reached in the final
stage without overfitting. Our second-order MST has proven

superior to standard gradient descent-based first-order convo-

lutional and deep NNs (DNNs), including MST trained using
first-order optimization [13] .

Given that MST has proven superior to other DL methods
in RF signal classification [13], we investigated an extension of
MST employing a convolutional front end as a feature extrac-
tion stage for a fully automated end-to-end implementation.

We refer to the new implementation as convolutional MST
(C-MST), and we refer to the network architecture as the
convolutional multistage network (C-MSN). We demonstrate
our method on the classification of radar-like signals, where a
linearly polarized electromagnetic wave illuminates an object,
which in turn creates a scattered field detected by another
antenna. In this experiment, we consistently obtain more than
99% accuracy for 17 classes using only 11 samples per class
for training as well as consistency, robustness, wall clock time,
and scalability.

The dataset, which contains many acquisitions of scattered
electromagnetic waves acquired in the frequency domain using
a network analyzer and measuring the S-parameter for all 17
object classes, will be made publicly available. The environ-
ment mimics the radar-like detection of objects under ideal
conditions, i.e., without any clutter or motion. Our contribution
in this article is threefold: 1) providing an overview of existing
techniques; 2) extending our method to include a convolutional
front end, thereby enabling us to increase the input size while
maintaining the excellent generalization properties of MST;
and 3) providing a new benchmark dataset to help standardize
the comparison between different algorithms for RF classifi-
cation. Our algorithm is computationally efficient and allows
incremental learning where only part of
the network needs to be trained when
new targets are added. It can be run on
modest computers and may be a good
candidate for deployment in the field, for
real-time low-shotnumber learning,

Target recognition algorithms operate on
measured target signature data for com-
parison with the previously derived com-
puter representations of the targets to
provide an estimate of the targets iden-
tity. The recognition process is limited by
noise in the radar measurements; errors
in the generation of signature reference
data; and the use of classifiers, which
usually involves design compromises.
A conventional algorithm is template
matching using cross-correlation analy-
sis [16], [17], [18], [19], [20], [21]. The
accuracy of template matching can be

IMAGE LICENSED BY INGRAM PUBLISHING

improved by using statistical pattern rec-
ognition techniques designed to deter-
mine the class or identity of a measured
object by means of the features extracted
from the measured pattern or signature [22], [23], [24], [25],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36].
Features can be hand engineered, including polarization
enhancement; resonant-frequency poles; multipath reflection
signatures; target structure-induced modulations; microphone
effects; jet-engine modulations; or features derived from a
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transform domain representation of the signal [37]. Features can
also be learned from the data using techniques such as k,-near-
est-neighbor estimation or Fisher linear discriminant analysis
[38]. The use of features for recognition provides advantages
by reducing the requirements on the size of reference databas-
es. The extracted features are then compared to a database’s
content to maximize the target recognition performance using
rule-based Euclidean distance or Bayesian techniques [39],
[40], [41], [42], [43], [44], [45], [46]. Distance-based methods
invoke the sum of all the distance measures for all features,
and the minimum distance measure is the best assessment of
the target’s identity. Unlike end-to-end approaches that would
ideally extract optimal features directly from the raw data,
manual feature selection can be limited by rough approxima-
tions and subjectivity.

Thanks to the great success of DL methods in recent years in
areas such as computer vision and speech recognition, there has
been a growing interest in using DL for RF applications. How-
ever, unlike computer vision and speech recognition, where
standard convolutional and recurrent NN methods have proven
to be very effective due to the nature of these applications,
DL still lacks a standardized approach suitable to the unique
nature and challenges of RF. While an ideal target identifica-
tion method should be able to operate directly on raw data in
an end-to-end fashion, fully connected NN (FCN) implemen-
tations trained using standard algorithms are limited by the
number of inputs and the number of training samples they
need to achieve proper generalization and avoid overfitting.
In general, as the input size increases, the number of required
training samples increases [47].

Typically, the number of samples becomes impractical after
the input size exceeds only a few hundred inputs. However,
digitized and demodulated RF signals are complex-valued and
may be thousands of samples long. Standard regularization tech-
niques such as Ly-regularization help remedy the problem but
only to a certain extent [48]. For this reason, feature extraction
remains a crucial step for an FCN to work, and the shortcom-
ings of feature engineering, which can be limited by subjectivity
and crude approximations, inherently remain.

The introduction of convolutional NNs (CNNs) delivered
a tremendous advantage to overcoming this DL problem by
limiting the number of connections from the inputs to the net-
work [47], [49]. Convolutional neurons scan through the entire
input but are connected to only a few inputs at a time. This, in
addition to the introduction of DL-specific regularization tech-
niques such as dropout layers [50], revolutionized the field of
computer vision. CNNs have the ability to automatically extract
features from raw inputs, which is a crucial step toward end-to-
end implementations. However, due to the immense computa-
tional requirements, CNN training algorithms available today
are largely based on first-order gradient descent optimization.
While the recent successes of DNNs would be nonexistent if not
for first-order methods, it poses limitations on the performance
and capabilities of CNNs and DL in general. For example, it

is not uncommon for an effective computer vision application
to require tens or hundreds of thousands of training samples,
though it is possible for humans to distinguish between different
objects after only few encounters [51], [52].

A recent study on using CNNs for RF identification shows
that several thousand samples per class are needed to achieve
high accuracy [53]. While customized approaches have been
proposed for specific applications, performance is very sensitive
to hyperparameters, and these approaches require considerable
expert effort to tune for proper parameter selection. This makes
DL implementations narrowly applicable, mainly limited to the
exact application and dataset at hand, which poses significant
limitations on repeatability. Furthermore, even with suitable
hyperparameters, training with different initial conditions, e.g.,
initial neuron weights and biases, can cause large variations in
performance. A typical approach to address this problem is to
train one or more network models several times with different
initial conditions and use the average output or vote of a com-
mittee of networks as the final result [54], [55], [56], which can
help improve performance but is ultimately limited by the suc-
cess rate of the individual networks.

Second-order Newton-based optimization methods offer
several advantages in robustness to hyperparameters, efficiency,
accuracy, and convergence speed and require lower network
complexity where they can achieve results that are superior to
first-order methods with fewer neurons [57], [58], [59], [60],
[61], [62], [63]. However, second-order optimization is gener-
ally deemed unfeasible for training large networks due to the
intractable computational requirements of traditional second-
order methods.

Provided a large number of training samples is available,
most shortcomings of first-order-based DL approaches are
usually manageable. Unfortunately, obtaining data in large
quantities is not trivial in RF problems and can be a difficult,
time-consuming, and expensive process. Synthetically generated
data are often used to compensate for the lack of real data, but
they can only approximate the fine details in the signals, which
poses a limitation on accuracy and scalability. Generative adver-
sarial networks (GANs) have also been used to generate new
training data [64], but GANs can face similar issues depending
on their application. Recent work [65] studying the use of GANs
for synthetic aperture radar showed promise at improving the
quality of synthetically generated data. The study also showed
that GANs were difficult to train and were not a perfect substi-
tute for real data [65].

Artificial NNs [66], support vector machines [67], and Mar-
kov [68], [69] models have been studied to perform feature
extraction and classifier functions [70], [71]. Several attempts
have been made to adapt standard DL approaches to radar
classification with varying degrees of success [72], [73], [74],
[75], [76], [77], [78], [79]. Hundreds to thousands of samples
per class were used for training to classify 2-12 classes with
reported accuracy ranging from 87 to 99% where accuracy
generally decreases with more classes. Existing DL approaches
face problems in robustness, consistency, efficiency, repeatabil-
ity, and scalability.

38 thorized licensed use limited to: UCLA Library. Downloaded on May 23,2025 at 23:1AZ5RUFC2Rob3 IEEE XplBFE ARIENMNR&ERAPAGATION MAGAZINE



EXPERIMENTAL DETAILS, ARCHITECTURE, AND HYPERPARAMETERS

PHOTOS OF THE OBJECTS AND CHAMBER
Seventeen objects were collected from engineering and chemistry

laboratories at the University of California, Los Angeles for use as
radar targets. The objects were selected to present a diversity of sizes,
shapes, and material composition. The 47.0 by 30.5-cm cardboard
platform seen in the pictures provides a scale for each object’s size.
All 17 targets were placed in the radar’s path and rotated through
three different angles (0°, 45°, and 90°). Photos of all 17 rotated
objects are shown in Figure 5, as seen from the perspective of the
radar. Photos of the anechoic setup are shown in Figure S1.

SIGNAL STRENGTH

Twelve traces were recorded for each of the 17 objects and each
of the three orientations per object. Additionally, 112 traces of the
empty anechoic chamber were recorded under otherwise equal
conditions. Each trace (S21 parameter) was recorded as a string
of complex numbers (real, imaginary) representing the complex-
valued signal amplitude as a function of the sweep frequency.
Signal-to-noise ratios (SNRs) and relative radar cross-sections
(rRCSs) were calculated for each of the 17 objects and their three
orientations using these data and tabulated later (Table S1).
RCSs are provided as dimensionless numbers between zero and
one rRCS. The SNR values reflect the maximum amplitude in the
frequency domain of the S21 parameter, whereas rRCS values
reflect the total signal over the same domain. This is analogous
to the pulse radar echo amplitude. Uncertainties in the values
represent sample standard deviations, which were calculated
using the 12 traces for each object (and orientation).

From each complex-valued trace for each object (and orientation),
the magnitude of the complex data was computed and stored in
vectors of length 1,600, corresponding to linearly spaced frequency
values in the range 675 MHz-8.5 GHz. For the empty anechoic

' Chamber Outside
) o

Chamber Inside

The anech0|c chamber and experimental
setup. The photo outlined in green shows the two Vivaldi
antennas in the lower left and right corners, both oriented
vertically, as used during the experimental data collection.
The photo outlined in red shows the VNA used for all
S21 readouts (Agilent model E5071C 9 kHz; 8.5-GHz ENA
series). The photo outlined in blue shows the radar’s
position relative to the cardboard platform.

chamber data, all 112 traces were averaged to provide a clean
(low noise) trace. This low-noise trace was used to subtract the
background signal for each object (and orientation) to produce
traces whose features reflect only the characteristics of an object.

From the background-subtracted traces, the SNR was calculated
as follows. The location of the maximum signal was identified, and
100 nearby points were averaged to reduce noise. For each trace,
a flat region was identified to estimate the noise as the standard
deviation of 100 points taken in the flat region. The SNR was
computed as the previously mentioned signal strength divided by
the standard deviation of the flat region. The resulting value was
inserted into (S1)

(SN

SNR |dB =20 |Og 10( 521 target removed )

S21 with target

to yield a value in dB. rRCS values were estimated from the
background-subtracted traces by taking the area under each
curve, which represents the total radar signal (integrated across
all frequencies). The integral was computed in MATLAB using
the trapezoidal rule. This area represents the pulse amplitude in
a pulsed radar echo experiment. These pulse amplitudes were
then averaged for each object-orientation combination and

TABLE S1. SNR AND RRCS VALUES
FOR EACH OBJECT (1-17) AND THEIR
THREE ORIENTATIONS. THE STANDARD
DEVIATION OF EACH SIGNAL IS SHOWN IN
PARENTHESES. THE SNR VALUES ARE IN DB.

Obj. SNR,0° SNR,45° SNR,90° rRCS,0° rRCS,45° rRCS,90°
1 20(100 13(8) 19(9) 09(3) 012 14

2 14(7) 14(@7) 8(7) 0.34(5) 01(2 04(1)
3 13(7) 14(8) 12(7) 01(2) 01(2) 0.14(2
4 12(7) 14(7) 11(6) 0.22(6) 0.09(3) 0.17 (3)
5 14(8) 3(7) 14 01(2) 01(2) 0174
6 12(8) 3(7) 10(6) 0.23(3) 01(3) 017(2)
7 13(8) 3(8) 14(9 01(3) 012 0.5(2
8 12(7) 14 13(8 01(3) 01(3) 0203
9 12(6) 4(7) 1006) 01(3) 01(3) 0113
10 10(6) 13(7) 12(7) 0.42(3) 0.09(3) 0.09(3)
1 1006 1408 116 0.12(2) 0.09(3) 0.1(3)
12 106) 13(7) 10(6) 0.14(3) 0.09(3) 0.11 (3)
13 11(7) 12(7) 10(6) 0.23(2) 01(3) 0.11(3)
14 11(6) 13(7) 12(7) 011(3) 0.09(3) 0.1(3)
15 8 11(6) 11(7) 044(5 01(3) 0.14(2)
16 11(7) 13(7) 116 013) 01(3) 0103
17 12(7) 13(7) 13(7) 01(3) 01(33) 0.1(3)

(Continued)
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EXPERIMENTAL DETAILS, ARCHITECTURE, AND HYPERPARAMETERS (CONTINUED)
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FIGURE 52. The CNN architecture and hyperparameters. ReLU: rectified linear unit.

normalized to the largest object-orientation average to yield a
number between zero and one (relative RCS).

CNN ARCHITECTURE AND HYPERPARAMETERS

The detailed CNN architecture and hyperparameters are shown
in Figure S2. The hyperparameters used for Adam and Levenberg-
Marquardt are provided in Table S2.

WALL CLOCK TIME

Figure S3 shows the wall clock time speedup relative to one CPU
core. Measurements were obtained by activating a different
number of CPU cores and measuring the training time.
DEMONSTRATION OF ADDITIONAL

REGRESSION APPLICATION
An artificial dataset for RCS versus frequency was created in

MATLAB R2021b (MathWorks, Natick, MA) for sphere and disk
geometries using the commands rcssphere and rcsdisc,

respectively. The command rcssphere takes as inputs the
sphere radius (m); signal propagation speed [(m/s), set to ¢, the
speed of light]; frequency range (set to 100-10,000 MHz in steps
of 10 MHz); and azimuthal and elevation angles. The azimuthal
and elevation angles were uniformly randomly sampled from —45°
to 45°. The sphere radius was uniformly randomly sampled from
0.2 to 1.0 m. The command outputs RCS (m?) versus frequency,
to which was added uncorrelated normally distributed random
noise in absolute value with a standard deviation of 0.1 m? i.e.,
(0.1-| X |, X ~ NV(0, 1)). The signal was then converted to power
(dBsm) and used for training the NN. Likewise, the command
rcsdisc takes as input the disk radius (m); signal propagation
speed; frequency; and azimuthal and elevation angles. The
radius, speed, frequency, and angles were set as in the case of

(Continued)
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EXPERIMENTAL DETAILS, ARCHITECTURE, AND HYPERPARAMETERS (CONTINUED)

TABLE S2. THE LEARNING PARAMETERS
AND OPTIONS OF EACH ALGORITHM.
OPTIONS THAT ARE NOT LISTED HERE WERE
KEPT AT THE DEFAULT SETTING IN MATLAB.

Levenberg-Marquardt

Performance goal 0

Maximum validation failures 6

Minimum performance gradient 1E-07

Initial & 0.001

M decrease factor 0.1

M increase factor 10

Maximum u 1E+10

Adam (CNN)

Minimum batch size 12

Initial learning rate 1E-03

Learn rate schedule piecewise

Learn rate drop factor 0.1

Learn rate drop period 5

Shuffle Every epoch
SGDM (SqueezeNet)

Minimum batch size 10

Initial learning rate 3E-04

Maximum epochs 100

Shuffle Every epoch

SGDM: stochastic gradient descent with momentum.
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The wall clock acceleration.

the sphere. Noise was added, which had the same distribution
as for the sphere except for lower magnitude to compensate
for the smaller RCS of the disk compared to the sphere, i.e.,
(0.001-| X |, X ~ N(0,1)). Here, 3,000 samples with random

Radius Length Correlation

- Observed Values
|| — Regression Line
95% C.1.
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0.2 0.4 0.6 0.8 1
Target
(b)

Correlation plots for the (a) C-MSN and (b) the
CNN committee outputs versus target (object size). These
graphs correspond to the testing dataset, which contains
both disks and spheres. C.l.: confidence interval.

parameters were generated for training, and 1,000 samples were
generated for testing. Training and testing datasets each consist of
50% disks and 50% spheres.

Vectors of object (disk or sphere) RCS versus frequency were
used for training the NN to estimate the radius of the object. A
C-MSN similar to the one described in the article was used here,
with the exception of the softmax and classification layers, which
were replaced with regression layers. A committee of regression
CNNs was trained for comparison, where the mean value of all
CNNs in the committee is used as the final output. The correlation
results are shown in Figure S4.
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THE IMPLEMENTATION OF DL BY C-MST

This article presents a new variation of MST with a convolution-
al front end and its application in the classification of radar-like
signals. Given the inherent regularization properties of CNNs
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FIGURE 1. The C-MSN architecture for 17 object classes. A
representative vector of the output of each stage in response
to one sample is shown for further illustration. Actual stage
outputs in response to all samples are shown in Figure 2.

for large inputs [47], [49] and their robustness to translational
variance, which has been demonstrated in radar antitransmit
receive [80], we have developed C-MST to further improve the
performance and applicability of our original MST method.
The addition of CNNs not only helps with translational invari-
ance but also helps in situations where training data availability
is scarce. Unlike our previous work, where only part of the RF
signal is used (the onset) by the MST, the convolutional front
end allows using the entire RF signal for a fully automated end-
to-end implementation.

We tested the new method’s generalization ability when
trained with an undersized dataset (11 samples per class) for 17
classes. We term the new method C-MST. Here we describe
the implementation of our method as well as conventional
DL methods used for benchmarking purposes. The C-MST
method and its implementation are described in the “C-MST”
section later. The C-MST method is validated against two types
of CNN committees. The first comparison is with the CNN
committee constituting the C-MST front end. The second
comparison is against a committee of SqueezeNets [81] that
are pretrained on the 1,000-class ImageNet Large Scale Visual
Recognition Challenge; these are then trained on our data using
state-of-the-art transfer learning. In the “Radar Experiments”
section, we describe the experimental methods for acquiring
the radar data.

All networks were implemented in MATLAB® R2020a
using the Deep Learning Toolbox (MathWorks, Natick, MA)
on a CentOS 7-based server featuring two Xeon processors,
each with 10 cores, and 128 GB of RAM. Hyperparameters
for all methods were selected to maximize generalization.
Architecture details and hyperparameter values are provided
in “Experimental Details, Architecture, and Hyperparameters.”
The dataset will be made available for download at https:/
dx.doi.org/10.21227/842w-xk80.

C-MST

Thirty CNNs constitute the first stage of the C-MSN illustrated

in Figure 1. Each CNN consists of four inner blocks and one

outer block. Each inner block contains a convolutional layer

followed by a batch normalization layer, a rectified linear unit
(ReLLU) layer, and a pooling layer. The
outer block consists of a dropout layer,
followed by three fully connected lay-

?tage 1 Stage 2 Stage 3 Stage 4 Output ers, a softmax layer, and a classifica-
= 5 = & tion layer. The architecture details are
EL 2 illustrated in Figure S2 in “Additional
100 == 10 Architecture Details and Values of
150 |- £8 Hyperparameters,” and the hyperpa-
o == 5 e | 15 rameters for each layer are listed in
5 10 1 5 10 15 5 10 15 5 10 15 Table S2 in “Additional Architecture

0 e 1

FIGURE 2. An example of outputs from different C-MSN stages. The y-axis is the
stacked stage output number, and the x-axis is the sample ID. In this example, stage
1 has 204 outputs. Stages 2-4 each have 68 outputs. The final output represents a
confusion matrix. This figure illustrates the successive evolution of the output, where
accuracy gradually improves and noise decreases with each stage.

Details and Values of Hyperparam-
eters.” The second fully connected
layer in the CNN is a bottleneck layer
consisting of five neurons to perform
feature dimensionality reduction. Each
CNN is trained for 20 epochs, and the
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outputs from the bottleneck layer are the features that are
passed on to stage 2.

The remaining C-MSN stages are similar to [13], where
the original MST approach is described in detail. Multiple
identical FCNs are stacked together at each stage, where
each FCN is randomly assigned different initial conditions.
Herein, each FCN consists of two fully connected layers
with 10 neurons in each layer. The FCNs in each stage are
separately trained for three epochs using the second-order
Levenberg-Marquardt algorithm; hyperparameters are listed
in Table S2 in “Additional Architecture Details and Values of
Hyperparameters.” Each FCN has one output and is trained
to fire in response to one of the object classes only, where
20 FCNs in each stage are assigned to each object class. In
the case of classifying 17 objects, the number of FCNs in
each stage is equal to 20 x 17, which yields 340 FCNs per
stage. The FCNs are independently trained as regression
models, and the concatenated outputs of all FCNs in each
stage are passed on as the input to the next stage. In the final
stage, the outputs from each group of 20 FCNs correspond-
ing to an object class are averaged together to obtain the final
response to that object class. Figure 2 shows an example that
demonstrates the gradual improvement in the outputs of sub-
sequent C-MSN stages.

THE CNN COMMITTEE

The classification layer outputs of the 30 CNNs in the C-MSN
front end are collected. The final output is the majority vote of
all CNNs.

THE SqueezeNet COMMITTEE

SqueezeNets pretrained on the 1,000-class ImageN-
et Large Scale Visual Recognition Challenge were adjusted
to accommodate two classes and trained on our data using
state-of-the-art transfer learning. To accommodate the input
format of SqueezeNets, we transformed our 1D input signals
into 2D time-frequency images. Transfer learning was per-
formed through the following steps:

1) adjusting the pretrained SqueezeNet input layer size from
the original 227 x 227 x 3 red, green, blue format into 227 x
227, i.e., the size of our 2D wavelet transformed image

2) modifying the last learnable layer in SqueezeNet (layer 64) to
have the same number of convolutions as our new number of
classes instead of the original 1,000 classes

3) modifying the output classification layer in SqueezeNet
(layer 68) to our new number of classes instead of the original
1,000 classes

4) tuning the adjusted SqueezeNet.

Learning parameters are listed in Table S2 in “Additional Archi-
tecture Details and Values of Hyperparameters.”

RADAR EXPERIMENTS

DATA COLLECTION
Radar data were collected inside an anechoic chamber
(band rejection 1 MHz-10 GHz) using a pair of TSA900

900-MHz-12-GHz printed circuit board (PCB) Vivaldi anten-
nas (RFSPACE Inc., Atlanta, GA) connected to a vector net-
work analyzer (VNA) model E5071C 9 kHz-8.5 GHz ENA
Series (Agilent, Santa Clara, CA) (Figures 3 and 4). The VNA
was operated in S21 parameter mode with ports 1 [transmit-
ter (Tx)] and 2 [receiver (Rx)] connected to antennas 1 and 2.
Frequency sweeping was performed in the range 675 MHz-
8.5 GHz (corresponding to wavelengths in free space:
0.44 m-3.5 cm) with IF bandwidth 70 kHz, 1,600 points/trace,

Feed Point

CST Simulation

CST Simulation

(a)

-40 = Simulated

Experimental

Frequency (MHz)
(b)

FIGURE 3. (a) A Vivaldi antenna model as used in the CST
Studio Suite simulation of the empty chamber. (b) The
experimental and simulated empty room S21 parameters
for the empty chamber. This plot compares simulated versus
experimental data. The experimental S21 parameter trace
shown was collected on the first day of data collection.
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and 512 averages/trace. Both Vivaldi antennas were mounted
vertically to make the readout from the Rx antenna sensitive to
waves of the same polarization as the Tx antenna. The experi-
mental setup is shown in Figure 4. Each trace (S21 param-
eter) was saved as a file with 1,600 real/imaginary (complex)
data points versus frequency on a linear amplitude scale
from the Smith Chart mode of the VNA.

Next, 17 objects were placed approximately 10 ft from the
pair of antennas, which were themselves 5 ft apart. The trian-
gular configuration was kept fixed, the objects were rotated
through three angles (0, 4, 5, and 90°), and the experiments
were repeated 12 times (for each object and angle) on dif-
ferent days over a total period of three months. All targets
in subsequent trials and angle rotations were placed at the
same locations with intentional positioning errors of up to
10 cm in-plane and 5° for the angles. Other uncertainties in
the measurements are due to the limited signal-to-noise ratio
(SNR) and possible drifts in the VNA S21 parameter calibra-
tion over the three-month span as the VNA was calibrated
only once on the first day of experiments. Photos of the 17
objects and their positioning from the antennas’ perspective
are shown in Figure 5.

DATA PROCESSING

Since the purpose of these data is to assess end-to-end
performance, minimal preprocessing was conducted. Fin-
gerprints used for training the NNs were created directly
from the raw data. Each fingerprint consisted of traces
from three angles (0°, 45°, and 90°), with each trace con-
sisting of 1,600 real and imaginary values, for a total of 9,600
data points/fingerprint. Real and imaginary components

of each trace were normalized separately by subtracting
the mean and dividing by the standard deviation. The
dataset consisted of 204 fingerprints: 17 object classes
with 12 fingerprints per class. Different augmentation and
preprocessing strategies can improve the results for all
approaches. We omit such strategies herein to more accu-
rately assess the role of the DL approaches in the perfor-
mance comparison.

ANALYSIS
Manual identification of targets from raw data proved dif-
ficult, as shown in Figures 6(b) and 7(b). Figure 6 shows the
log-magnitude plots of the S21 parameter for all 17 objects in
the 0° orientation. (The objects and our definition of orienta-
tion are shown in Figure 5.) In the low-frequency limit of
the S21 parameter, most objects were indistinguishable. Sev-
eral targets whose S21 parameters are shown in Figure 6(a)
displayed traces that can be manually distinguished over the
medium-to-high frequency range. Each of these objects was
metallic with large cross-sectional areas. This is expected
from objects with high conductivity and a large enough area
to create conditions for high reflectivity and scattering. On
the other hand, several objects, shown in Figure 6(b), have
no readily identifiable characteristics in the S21 parameter
that allow us to manually distinguish and identify them. We
note that the high-frequency limit (6—-8 GHz) of our experi-
ment was unreliable for manual target identification due to
the high variance between experiments in the cases of low
radar cross-sections (RCSs).

Figure 7 examines the angle dependence of the S21 pa-
rameter for each object. Certain objects, such as object 1 in

Anechoic Chamber: Top View
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A schematic of the experimental setup. The top view of the anechoic chamber is shown. The “target” indicated in
the figure represents any of the 17 different objects studied in this project; the 17 objects are shown in Figure 5. Relative
proportions are drawn to scale. Scale bar: 1 ft. PCB: printed circuit board.
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Figure 7(a), reflect the radio waves in different ways depend-
ing on orientation. Therefore, once an object is identified, its
orientation can be determined from the log-magnitude plot
of the S21 parameter. This was the case for relatively large

The 17 targets are shown on the platform. Object
size can be gauged by the 47-cm-wide and 30.5-cm-deep
cardboard platform.The 0°, 45°, and 90° orientations are
shown in (ii), (iii), and (iv), respectively. The red arrows (i)
depict the orientations on the cardboard. Unless otherwise
noted, the photos are taken from the radar’s perspective at
a 45° orientation. The objects vary in size and composition,
affecting the rRCS. (0) Platform: Roughly 60° from the radar’s
perspective. (1) Object 1: An empty metal (copper) box with
a hole on the top face. (2) Object 2: A metal box (closed
cover) with a home-built circuit. (3a) Object 3: A plastic
toolbox (closed). (3b) Object 3: Open. Data were collected
with the toolbox closed. (4) Object 4: A metal box (open
cover) with a custom circuit. (5a) Object 5: A plastic box
(closed). (5b) Object 5: Open. Data were collected with the
box closed. (6) Object 6: A dc power supply (metal cover). (7)
Object 7: The front cover of a power amplifier (metal) at 90°
orientation. (8) Object 8: Rogers duroid laminate (copper)
at 90° orientation. (9) Object 9: A data transfer switch box
(with a plastic cover). (10) Object 10: A variable capacitor box
(with a metal cover). (11) Object 11: A data transfer switch
box (with a metal cover). (12) Object 12: A port converter
(metallic). (13) Object 13: A data transfer switch box (with a
plastic and metal cover). (14) Object 14: A vise (metal) at 0°
orientation. (15) Object 15: A metal box. (16) Object 16: A
chemistry hotplate stirrer. (17) Object 17: A Black & Decker
drill at 0° orientation.

metallic objects that possess low symmetry and present a
unique RCS at each orientation. An exception was object 1,
whose 0° and 90° orientations have similar cross-sections
while exhibiting unique traces (S21 parameters in log-magni-
tude mode). A possible explanation for this exception is that a
crimped copper seam was present on the right and left sides
of the object for the 0° and 90° orientations, respectively.
This seam likely reflects and scatters radio waves differently
depending on its orientation, allowing each orientation’s trace
to be manually distinguished.

However, other objects displayed few or no clear differences
between orientations in the low-frequency low-noise region,

-30
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-0 — Object 1 — Object 6
-100 — Object 2 — Object 13
-110 Object 4 — Object 15
-120
0 \960 q}@ {59@ @QQ 039@ @906 ,\9@ %9@ &00
Frequency (MHz)
(a)

Object 3 Object5 — Object 7

Object 8
Object 9 — Object 10 — Object 11 — Object 12

— Object 14 — Object 16 — Object 17

Frequency (MHz)
(b)

S21 parameters in log-magnetic mode for all

17 objects at their respective 0° orientations. Traces show
the raw data as acquired without any postprocessing or
averaging. (a) Several of the targets (objects 1, 2,4, 6, 13, and
15) have S21 parameters with obvious differences in the log-
magnitude plot. (b) Other targets (objects 3, 5,7, 8,9, 10, 11,
12,14, 16, and 17) exhibit S21 parameters with no obvious
visual differences.
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as shown in Figure 7(b). In our experiment, objects with the
least-distinguishable orientations tended to be those present-
ing small RCS areas, regardless of material composition. Small
RCSs imply weak scattering intensity and overshadowing of
the object’s characteristics in the log-magnitude plot. Such
objects with traces that cannot be manually identified present
a unique challenge to radar target identification. This is gener-
ally the case for targets that present small RCSs due to their
sizes, reflective properties, or range of the measurement. This
apparent difficulty drives the need to develop DL algorithms
for radar target identification.

0 S O O O & & & & O
N O N O O N S O
S F S TS
Frequency (MHz)
(a)

0 S P PP DD PP DS S >
S EE LSS
Frequency (MHz)

(b)

45 Degrees — 90 Degrees

— 0 Degrees

FIGURE 7. S21 parameters for two targets (objects 1 and 17)
at three different orientations (the objects and a definition
of orientation are indicated in Figure 5). No noise removal
or averaging was performed on the traces shown. (a) Object
1is shown at 0°, 45°, and 90° orientations, each of which is
easily identifiable. Objects 2, 4, 6, and 13 (not shown here)
also demonstrate easily distinguishable orientations. (b)
Object 17 is shown at 0°, 45°, and 90° orientations, each

of which is indistinguishable. Orientations of objects 9,

10, 11, 14, and 16 (not shown here) were also visually
indistinguishable from their log-magnitude plots.

RESULTS

Experiments were designed to test the aspects of accuracy,
consistency, robustness, and wall clock time of the different DL
approaches. C-MSN demonstrated substantial improvement in
all aspects over other approaches, with accuracy exceeding the
SqueezeNet committee by 9% and the CNN committee by 20%.

ACCURACY

Leave-one-out cross-validation (LOOCV) was used for testing
the accuracy of each approach. LOOCYV is a special case of
K-fold cross-validation where one sample is left out at a time,
and K is equal to the number of samples [82]. This is not to be
confused with the validation data partition used during train-
ing. We performed 12 combinations of 11 samples per object
for training/one sample per object for testing. The process was
repeated five times for each combination for a total of 60 trials
per accuracy measurement. The average accuracy of the 60 tri-
als is presented in Table 1. The confusion matrices for C-MSN,
the CNN Committee, and the SqueezeNet Committee are
shown in Figure 8.

CONSISTENCY

The standard deviation of the individual accuracies from the 60
trials was calculated to assess the consistency of each approach,
and the values are presented in Table 1. The C-MSN standard
deviation is more than threefold lower compared to the other
methods. Consistency is a highly desirable feature that reduces
the number of times a model must be trained to achieve desir-
able performance, which increases implementation efficiency.
C-MST clearly excels in this aspect, outperforming the other
approaches by a large margin.

TABLE 1. ACCURACY AND STANDARD
DEVIATION COMPARISONS FOR ALL
APPROACHES. EACH VALUE IS CALCULATED
FROM 60 TRIALS. THE LOWEST AND HIGHEST
PERFORMANCE RESULTS ARE HIGHLIGHTED
IN RED AND GREEN COLORS, RESPECTIVELY.

Accuracy C-MSN  CNN-Com SqueezeNet-com
Average 99.02% 79.9%  90.29%
Standard deviation  2.21%  7.45% 7.25%
C-MSN CNN-Com SqueezeNet-Com
" ‘ : =
© ‘ "
g s
(@)
N~ =
~ -,
S TTE——
0% 100%

FIGURE 8. Confusion matrices for C-MSN, the CNN
committee, and the SqueezeNet committee. Com:
committee.
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ROBUSTNESS TO
HYPERPARAMETERS

While second-order optimizers are
robust to hyperparameter settings,
their computational complexity is
prohibitive for DL. Common DL
algorithms instead rely on first-
order (gradient descent)-based
optimization, which is sensitive to
the settings of hyperparameters
such as the learning rate and the
number of layers and neurons in the network [83]. As a distribu-
tive training algorithm, C-MST allows the efficient utilization
of second-order optimization, making it inherently robust to
hyperparameter settings.

WALL CLOCK TIME

Despite the seeming complexity of C-MST, which involves
hundreds of individual FCNs and CNNs, and although sec-
ond-order training—which is typically associated with high
computational complexity—is used, the approach is highly
computationally efficient. The computational time in C-MST
accelerates virtually linearly with the number of computational
cores in a processor, as shown in Figure S3 in “Additional
Architecture Details and Values of Hyperparameters.” Given
enough cores, C-MST can run in much less wall clock time
than the SqueezeNet committee approach despite the fact that
transfer learning is used with a pretrained SqueezeNet. This is
due to the highly distributable nature of C-MST, where indi-
vidual networks in each stage can be trained independently
and in parallel. This is also due to the gradual multistage
convergence in C-MST, as demonstrated in Figure 2, where
individual networks require a very small number of training
epochs relative to standard approaches. Furthermore, the
partial connectivity in C-MST typically results in a relatively
small number of parameters for each individual network in
inner stages.

Herein we presented a new DL approach for RF classifica-
tion and collected a new benchmarking dataset for proof-of-
concept radar applications. The experiments conducted in
this study confirm that while standard CNN approaches can
work sufficiently well in some scenarios, their performance
drops dramatically as the classification complexity increases.
Since classification complexity increases with the number of
classes, it is clear that standard DL approaches do not scale
effectively in such RF classification applications. In con-
trast, C-MST is more stable and demonstrates significantly
higher performance across all experiments. Most notably,
C-MST achieves a 99% accuracy, representing a substantial
advantage over the other approaches. Additionally, C-MST
is robust, computationally efficient, and highly distribut-
able. Therefore, C-MST effectively scales with computa-
tional complexity and training time as the number of classes
increases. We propose C-MST as a scalable end-to-end

When simple noise
augmentation is
applied, G-MSN is
capable of achieving
100% accuracy.

approach suitable to the nature
and challenges of RF data.

We note that while the main
purpose of this study is to com-
pare the accuracy and general-
ization ability of DL approaches
when trained with an under-
sized training dataset, C-MST
is equally applicable to prepro-
cessed data and to other radar
modalities, including 2D modal-
ities such as synthetic aperture radar, where the input
dimensions of the front-end CNN stage can be adjusted
accordingly. An additional demonstration applying our
approach to a regression problem where the RCS of an
object is estimated from a synthetic (simulated) radar
dataset has been included in “Additional Architecture
Details and Values of Hyperparameters.” Hyperparame-
ters such as the number of stages and number of networks
per stage can also be further adjusted according to the
problem complexity.

We also note that additional preprocessing and augmen-
tation techniques can improve the performance of all
approaches discussed herein. When simple noise augmen-
tation is applied, C-MSN is capable of achieving 100%
accuracy. Such techniques were intentionally omitted in this
study to isolate the model performance. (The comparison
of models whose performance approaches 100% efficiency
would be meaningless.)

Furthermore, our newly collected benchmarking dataset
will be made publicly available to enable other groups to
validate their work independently when applying our meth-
od to other challenging radar classification problems. Data
collected from pulsed radar in the field generally include
additional factors such as polarization; background clutter;
time-domain acquisition; variable target-to-radar distance
(range); moving targets; additional sources of noise; and
interference and radar jamming. The effects of radar clutter
were not included here as the main point of the study was
to compare the classification accuracy of the new algorithm
(C-MSN) to existing state-of-the-art algorithms under iden-
tical conditions. The numerous advantages offered by our
approach will help improve RF-based signal classification
performance under these challenging scenarios.

This work was partially supported by NSF E!_ E
Grants CHE-2002313 and 1936375. The
dataset is available at https:/doi.org/10.1109/
MAP.2022.3208813.
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