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Abstract— We introduce the Projected Push-Pull algorithm
that enables multiple agents to solve a distributed constrained
optimization problem with private cost functions and global
constraints, in a collaborative manner. Our algorithm employs
projected gradient method to deal with constraints and a lazy
update rule to control the trade-off between the consensus
and optimization steps in the protocol. We prove that our
algorithm achieves geometric convergence over time-varying
directed graphs while ensuring that decision variables always
stay within the constraint set. We derive explicit bounds for
step sizes that guarantee geometric convergence based on the
strong-convexity and smoothness properties of cost functions,
and graph properties. Moreover, we provide additional theo-
retical results on the usefulness of lazy updates, revealing the
challenges in the analysis of any gradient tracking method
that uses projection operators in a distributed constrained
optimization setting. We validate our theoretical results with
numerical studies over different graph types, showing that our
algorithm achieves geometric convergence empirically.

I. INTRODUCTION

In this paper, we are concerned with a class of distributed
optimization problems where a set of n agents are trying to
solve a problem with the structure:

min
x∈X

f(x), where f(x) ≜
1

n

n∑
i=1

fi(x), (1)

where x is the decision variable, each cost function
fi : Rd → R is known by agent i only and is strongly convex
with Lipschitz continuous gradients, and the constraint set
X ⊆ Rd is closed and convex. We are interested in the
case where agents communicate over a possibly time-varying
directed graph Gk = (V , Ek) where V with |V| = n
represents the set of agents and the set Ek represents the
directed communication links at time k. This setup has
various applications in control [1], robotics [2], and sensor
networks [3].

Many distributed optimization applications demand fast
algorithms due to time and computational constraints, which
makes the convergence rate of the used algorithm criti-
cal. However, a simple extension of gradient descent to
distributed optimization does not achieve geometric con-
vergence even with strongly convex cost functions [4],
[5]. Therefore, gradient tracking was introduced to achieve
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geometric convergence in undirected [4], [6], [7] and di-
rected graphs [7]–[10]. In gradient tracking methods, agents
maintain a decision variable and an estimate of the global
gradient. At each step, agents first perform a consensus step
and an optimization step on the decision variable using the
estimated global gradient. Then, they update their estimate
of their global gradient using their neighbors’ estimates and
their local gradient. In particular, the Push-Pull algorithm
introduced in [9], [10] achieves geometric convergence in di-
rected, time-varying graphs [11], [12]. Unlike other gradient
tracking methods, Push-Pull uses row and column stochastic
mixing matrices for averaging decision and gradient tracking
variables, respectively. Therefore, it does not require estimat-
ing the non-one Perron vector of the mixing matrix, which
would introduce additional communication and computation
costs. However, it does not handle constrained optimization
problems. Indeed, despite great progress in distributed un-
constrained optimization algorithms, their counterparts in the
constrained optimization space still remain underexplored.
Our goal in this work is to develop a projected gradient de-
scent based Push-Pull algorithm variant to achieve geometric
convergence in constrained optimization problems over time-
varying directed graphs.

Extending gradient tracking methods, including Push-Pull,
to handle constrained optimization is a non-trivial task.
Projection based algorithms for constrained optimization
have some fundamental differences from their counterparts
for unconstrained optimization. First, the non-linearity of
the projection operator limits our ability to manipulate the
mixing matrices in the analysis, which is an essential part
of the analysis in the unconstrained case. Second, in the un-
constrained case, the global gradient vanishes at the optimal
point, which is heavily used in existing analyses. However,
the gradient does not necessarily vanish at the optimum in the
constrained setting. Since the gradient at the optimal point
can be non-zero, the step size in the constrained case does not
give fine-grained control over the tradeoff between different
errors, such as the optimality error, consensus error, and the
gradient tracking error, which are standard in the analysis of
all gradient tracking methods.

The works in [13] and [14] propose gradient tracking
based methods for the constrained optimization problems
over static directed graphs. However, both algorithms require
multiple consensus steps per optimization step which in-
creases communication costs. Recent work in [15] eliminates
the need for multiple consensus steps. Yet their results are
limited to static undirected graphs, and the decision variables
are not guaranteed to stay in the constraint set at every time
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step. Conversely, the SONATA algorithm proposed in [16]
is later on shown to have a geometric convergence rate for
time-varying directed graphs in [17]. However, the SONATA
and algorithms proposed in [13] and [14] all use only row
stochastic mixing matrices and, therefore, require estimating
the non-one Perron vector of the mixing matrix, increasing
computation and communication costs.

Ideally, we want a distributed constrained optimization
algorithm that 1) achieves a geometric convergence rate,
2) works for directed graphs and time-varying graphs, 3) has
low communication cost (i.e., does not require multiple
consensus steps or estimation of additional system param-
eters), 4) minimizes the number of costly operations such
as projection, and 5) keeps the decision variable in the
constraint set at all time steps. With this motivation, we
introduce the Projected Push-Pull algorithm that satisfies
all the aforementioned requirements. Similar to Push-Pull,
we employ row and column stochastic mixing matrices.
This allows our algorithm to work in directed time-varying
graphs without needing to estimate the non-one Perron vector
of the mixing matrices. To handle the constrained case,
we use projection to keep the decision variables in the
constraint set and an extra step size to control the tradeoff
between consensus and optimization. We prove the geometric
convergence rate of the algorithm for time-varying directed
graphs. Our contributions can be summarized as follows

• We introduce a novel distributed projected gradient
algorithm based on the Push-Pull to solve distributed
constrained optimization problems with structure as
in Equation (1) over time-varying directed graphs.

• We prove that with a small enough step size, our algo-
rithm has a geometric convergence rate for time-varying
directed graphs. We characterize the valid range for the
step size based on various problem-based parameters,
such as the smoothness and strong convexity of the cost
functions and properties of the communication graph.

• We provide impossibility results that show some funda-
mental limitations of distributed gradient methods using
projection in constrained optimization settings.

• We empirically show that our algorithm attains geo-
metric convergence via numerical studies with different
graph types.

II. NOTATION & TERMINOLOGY

All vectors are column vectors by default unless stated
otherwise. The i-th entry of a vector u is denoted by ui; it is
[uk]i if uk is time varying where k ≥ 0 is the time step. For
a vector u, minu and maxu denote the smallest and largest
entries of u, respectively. For any matrix A, we denote its
ij-th entry by Aij . If it is a time-varying matrix, we denote
it by [Ak]ij . We denote the smallest positive element of a
non-negative matrix A by min{A+}. A non-negative matrix
is row stochastic if all of its row sums are equal to 1, and it
is column stochastic if all of its column sums are equal to 1.

We use ⟨a, b⟩ to denote the Euclidean inner product and
∥x∥ =

√
⟨x, x⟩ to denote the Euclidean norm. For any

vector u ∈ Rn with ui > 0 ∀i, we define the u-weighted

norm of x ∈ Rd × · · · × Rd (n copies of Rd) as ∥x∥u =√∑n
i=1 ui ∥xi∥

2 where xi ∈ Rd.
A directed graph G = (V , E) is said to be strongly

connected if there is a directed path between any pair of the
nodes in the graph. Finally, we define a projection operator
as follows:

Definition 1 (Projection onto X ): Let X ⊆ Rd be closed
and convex. Then, we define the projection operator ΠX (·) :
Rd → Rd as follows

ΠX (x) = argmin
z∈X
∥x− z∥ .

III. PROBLEM SETUP
We consider a distributed multi-agent system of n agents

where agents need to solve a distributed optimization task
in a collaborative manner. The agents’ goal is to solve the
following constrained minimization problem

min
x∈X

f(x), where f(x) ≜
1

n

n∑
i=1

fi(x), (2)

where each cost function fi : Rd → R is known by agent i
only and the constraint set X ⊆ Rd is closed and convex. We
make the following assumptions about the cost functions:

Assumption 1 (Strongly Convex Objective): For all agents
i, fi(x) is µ-strongly convex, i.e, for some µ > 0, we have
⟨∇fi(x)−∇fi(y), x− y⟩ ≥ µ ∥x− y∥2, for all x, y ∈ Rd.

Assumption 2 (Lipschitz Continuity of Gradients): For
all agents i, ∇fi(x) is L-Lipschitz continuous, i.e, for some
L > 0, ∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥, for all x, y ∈ Rd.

We assume that at each time step k ∈ N, agents commu-
nicate over a directed graph, denoted by Gk = (V , Ek). The
set V with |V| = n represents the set of agents and the set Ek
represents the directed communication links at time k. An
edge (i, j) ∈ Ek indicates that agent i can send information
to agent j at time k. Moreover, if (i, j) ∈ Ek, we say that i is
an in-neighbor of j and j is an out-neighbor of i. We make
the following assumption on the communication graphs Gk.

Assumption 3 (Strong Connectivity): Gk is strongly con-
nected for all k.

IV. ALGORITHM
In this section, we introduce the Projected Push-Pull

algorithm. In the algorithm, all agents maintain two decision
variables xi[k] and zi[k], and a gradient tracking variable
yi[k]. Agents initialize xi[0] = zi[0] ∈ X arbitrarily, and
yi[0] = ∇fi(xi[0]). At each communication round k, agents
get zj [k] and the scaled gradient tracking variable [Ck]ijyj [k]
from their in-neighbors and perform the following updates:

xi[k + 1] =
n∑

j=1

[Rk]ijzj [k], (3a)

yi[k + 1] =
n∑

j=1

[Ck]ijyj [k] +∇fi(xi[k + 1])−∇fi(xi[k]),

(3b)
zi[k + 1] = (1− λ)xi[k + 1] (3c)

+ λΠX (xi[k + 1]− ηyi[k + 1]) ,
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where η > 0, λ ∈ (0, 1] are two different step sizes. We will
refer to Equation (3c) as the lazy update rule. We formally
describe how agent i ∈ V runs the protocol in Algorithm 1.

Algorithm 1 Projected Push-Pull
Input: Choose parameters η, λ according to Theorem 1.

1: Each agent i simultaneously does the following:
2: Initialize xi[0] = zi[0] ∈ X arbitrarily, and set
yi[0] = ∇fi(xi[0]).

3: while k = 0, 1, . . . do
4: Determine coefficients [Rk]ij , [Ck]ji for j ∈ V

according to Assumption 4 and Assumption 5.
5: Send zi[k], [Ck]jiyi[k] to out-neighbors.
6: Receive zj [k], [Ck]ijyj [k] from in-neighbors.
7: Perform the consensus update using Equation (3a):

xi[k + 1]←
n∑

j=1

[Rk]ijzj [k].

8: Perform the gradient tracking update using Equa-
tion (3b):

yi[k + 1]←
n∑

j=1

[Ck]ijyj [k]

+∇fi(xi[k + 1])−∇fi(xi[k]).

9: Perform the lazy optimization update using Equa-
tion (3c):

zi[k + 1]←(1− λ)xi[k + 1]

+ λΠX (xi[k + 1]− ηyi[k + 1]) .

10: end while

Coefficients [Rk]ij and [Ck]ij constitute the elements of
mixing matrices Rk and Ck, respectively. We make the
following assumptions on these matrices, which also show
how agents can choose their coefficients [Rk]ij and [Ck]ij :

Assumption 4 (Graph Compatibility of Rk): For all k >
0, the matrix Rk is row stochastic and it is compatible with
the graph Gk, i.e., [Rk]ij > 0 if and only if (j, i) ∈ Ek
or i = j and [Rk]ij = 0 otherwise. Moreover, for some
Rmin > 0 we have min{R+

k } ≥ Rmin for all k > 0.
Assumption 5 (Graph Compatibility of Ck): For all k >

0, the matrix Ck is column stochastic and it is compatible
with the graph Gk, i.e., [Ck]ij > 0 if and only if (j, i) ∈ Ek
or i = j and [Ck]ij = 0. Moreover, for some Cmin > 0 we
have min{C+

k } ≥ Cmin for all k > 0.
Under Assumption 5, the algorithm satisfies the gradient
tracking property, that is

∑n
i=1 yi[k] =

∑n
i=1∇fi(xi[k]),

at each time step k.
The key differences between this algorithm and the

AB/Push-Pull algorithm [12] are as follows: 1) agents com-
pute the gradients at xi[k], which is after the consensus step
Equation (3a), 2) we introduce a projection operator in the
calculation of zi[k], and 3) we use an additional step size λ
to give agents more control over the trade-off between the
consensus and optimization.

V. MAIN RESULTS
In this section, we state the main results concerning the

convergence of our algorithm to the optimal point. First,
will provide some core results about the behavior of graph
compatible row stochastic and column stochastic matrices,
and their contraction behavior. Then, we provide our main
theorem showing the geometric convergence of our algo-
rithm. The analysis accompanying these results is given in
Section VI.

A. Preliminaries

We use the following lemmas to define stochastic vectors
that will be used in our analysis.

Lemma 1 ( [18], Lemma 5.4 and [12], Lemma 3.3): Let
Assumption 3 hold and {Rk} be a row stochastic matrix
sequence satisfying Assumption 4. Then, there exists a
sequence of positive stochastic vectors {ϕk} such that
ϕ⊺k+1Rk = ϕ⊺k , where the entries of each ϕk are positive
and have the uniform lower bound [ϕk]i ≥ (Rmin)

n

n for all
i ∈ V and k ≥ 0.

Lemma 2 ( [12], Lemma 3.4): Let Assumption 3 hold
and {Ck} be a matrix sequence satisfying Assumption 5. Set
π0 = 1

n1 and define the sequence πk+1 = Ckπk. Then, each
vector in {πk} is stochastic, and we have [πk]i ≥ (Cmin)

n

n .
Now, we will define two lemmas about contractions of
matrices Rk and Ck which allow the consensus of xi[k] and
yi[k] values.

Lemma 3 ( [18], Lemma 6.1): Let G = (V, E) be a
strongly connected graph, and the row stochastic matrix R be
compatible with the graph. Let ϕ be a stochastic vector and
ϕ′ be a non-negative vector such that ϕ′⊺R = ϕ⊺. Consider
the vectors z1, z2, . . . , zn ∈ Rd and xi =

∑n
j=1Rijzj for

all i ∈ V . Also define ẑϕ ≜
∑n

i=1 ϕizi. Then, we have
n∑

i=1

ϕ′i ∥xi − u∥
2 ≤

n∑
j=1

ϕj ∥zj − u∥2

−min(ϕ′)(min(R+))2

max2(ϕ)D(G)K(G)

n∑
j=1

ϕj ∥zj − ẑϕ∥2 ,

where D(G) and K(G) are the diameter and the maximum
edge utility of G, respectively, as in [18, Lemma 6.1]. Define
x̂ϕ′ ≜

∑n
j=1 ϕ

′
jxj . Then, we get√√√√ n∑

i=1

ϕ′i ∥xi − x̂ϕ′∥2 ≤ σ

√√√√ n∑
i=1

ϕi ∥zi − ẑϕ∥2,

where σ =
√
1− min(ϕ′)(minR+)2

max2(ϕ)D(G)K(G) ∈ (0, 1).
Lemma 4 ( [12], Lemma 4.5): Let G = (V, E) be a

strongly-connected graph and C be a column stochastic
matrix compatible with G. Assume y1, y2, . . . , yn ∈ Rd and
vi =

∑n
j=1 Cijyj for all i ∈ V . Let π ∈ Rn be a positive

stochastic vector and π′ = Cπ. Then, we have√√√√ n∑
i=1

π′
i

∥∥∥∥∥ viπ′
i

−
n∑

l=1

yl

∥∥∥∥∥
2

≤ τ

√√√√ n∑
i=1

πi

∥∥∥∥∥ yiπi −
n∑

l=1

yl

∥∥∥∥∥
2

,
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where τ =
√
1− min2(π)(minC+)2

max2(π)max(π′)D(G)K(G) ∈ (0, 1).

Lastly, we introduce a lemma showing the contraction
properties of the projected gradient method. This lemma is
an adaptation of a standard result in optimization for the
projected gradient method (see [5, Lemma 10]).

Lemma 5 (Projected Gradient Contraction): Let X ⊆ Rd

be closed and convex set, and let f : Rd → R be µ-strongly
convex and L-smooth. Define Tη(x) = ΠX (x− η∇f(x)).
For 0 < η < 2

µ+L , we have

∥Tη(x)− Tη(y)∥ ≤ q(η) ∥x− y∥

where q(η) = 1− ηµ < 1.

B. Convergence Results

The convergence of Algorithm 1 will be determined
entirely by 3 critical error terms, or distances: 1) agents’
decision variables’ distances to the optimal point, 2) the con-
sensus error of the decision variables, and 3) the convergence
of gradient tracking variables. We define these respective
error terms mathematically as follows:

∥x[k]− x∗∥ϕk
≜

√√√√ n∑
i=1

[ϕk]i ∥xi[k]− x∗∥2, (4)

where x[k] = (x1[k], . . . , xn[k]), x
∗ = (x∗, . . . , x∗), and the

vectors ϕk satisfy Lemma 1.

D(x[k], ϕk) ≜

√√√√ n∑
j=1

n∑
i=1

[ϕk]i[ϕk]j ∥xi[k]− xj [k]∥2, (5)

S(y[k], πk) ≜

√√√√ n∑
i=1

[πk]i

∥∥∥∥∥yi[k][πk]i
−

n∑
l=1

yl[k]

∥∥∥∥∥
2

, (6)

where y[k] = (y1[k], . . . , yn[k]) and πk satisfy Lemma 2. We
call the term ∥x[k]− x∗∥ϕk

the optimality gap, D(x[k], ϕk)
the consensus error, and S(y[k], πk) the gradient tracking
error. Now, we combine the errors in a single vector as
e[k] = (∥x[k]− x∗∥ϕk

, D(x[k], ϕk), S(y[k], πk))
⊺. We aim

to show that limk→∞ e[k] = 0 with a geometric rate. Hence,
we want to find some matrix M(η, λ) with spectral radius
ρ(M(η, λ)) < 1 such that e[k+1] ≤M(η, λ)e[k]. This will
give us the desired geometric rate. With this motivation, we
now give the composite relation between the error terms at
step k + 1 and error terms at step k. First, define

σk ≜

√
1−

min(ϕk+1)(minR+
k )

2

max2(ϕk)D(Gk)K(Gk)
∈ (0, 1),

τk ≜

√
1−

min2(πk)(minC+
k )2

max2(πk)max(πk+1)D(Gk)K(Gk)
∈ (0, 1),

which are the coefficents of contraction due to Rk and Ck

respectively (as defined in Lemma 3 and Lemma 4), at
time k. Notice that σk, τk are uniformly bounded above by

constants less than 1 due to Assumption 4 and Assumption 5,
and Lemma 1 and Lemma 2. Then, also define

rk ≜

√
1

minπk
+
√
n, φk ≜

√
1

minϕk
.

Notice that since the entries of πk and ϕk are bounded above
and below uniformly across time, the min and max elements
are also bounded uniformly over time. Therefore, we can de-
fine r ≜ supk≥0 rk, φ ≜ supk≥0 φk, ψ ≜ infk≥0 minπk >

0, σ ≜ supk≥0 σk < 1, τ ≜ supk≥0 τk < 1. Then, we
have the following proposition describing the evolution of
the errors.

Proposition 1 (Composite Relation): Let Assumptions 1–
5 hold and let η < 1

Ln . Then, we have

e[k + 1] ≤M(η, λ)e[k], (7)

where the inequality is elementwise and M(η, λ) is equal to1− ηλnψµ λφ λL−1

2λσ σ + 2λσφ 2λσL−1

2λLrφ Lrφ(1 + σ) + λLrφ2 τ + λrφ

 .
Theorem 1 (Convergence): Let Assumptions 1–5 hold.

Let 0 < η < 1
nL and

0 < λ < min

{
1− σ
2φ
√
n
,
1− τ
rφ

,
ηnψµ(1− σ)(1− τ)

K

}
,

where, K = 2(1 + ηnψµ)φσ[(1 − τ) + r(1 + σ)] + (2 +
ηnψµ)rφ(1− σ). Then,

lim
k→∞

∥xi[k]− x∗∥ = 0 for all i ∈ V ,

where x∗ is the solution to problem (2). Moreover, the
convergence rate is geometric with rate ρ(M(η, λ)) < 1,
where ρ(·) denotes the spectral radius of a matrix.
The proof of Theorem 1 is given in our extended technical
report [19]. The proof shows that by choosing λ in the
specified range, we can make the diagonals of M less than
1 and det(M(η, λ) − I) < 0, which are sufficient to show
ρ(M(η, λ)) < 1.

VI. ANALYSIS

In this section, at first, we provide all the necessary
results for the proof of Theorem 1. Then, we provide two
impossibility results providing insights into our algorithm
design and the analysis. Due to space limitations, we provide
some of the proofs in this section in our extended technical
report [19].

A. Bounding Optimality Gap

We start the analysis of the optimality gap under our
algorithm. First, notice that we have ∥x[k + 1]− x∗∥ϕk+1

≤
∥z[k]− x∗∥ϕk

from Lemma 3 with u = x∗. Hence, we
will focus on the analysis of ∥z[k]− x∗∥ϕk

. Our strategy
is to split the error into two cases: the error we would have
if agents had the perfect gradient knowledge and the error
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coming from the gradient tracking. To represent the case
where agents have the perfect gradient knowledge, we define

wi[k] = (1− λ)xi[k]− λΠX (xi − ηn[πk]i∇f(xi[k])) ,

for each agent i where ∇f(xi[k]) ≜ 1
n

∑n
l=1∇fl(xi[k]) and

stack these vectors in the matrix w[k]. With this definition,
we have ∥z[k]− x∗∥ϕk

≤ ∥z[k]−w[k]∥ϕk
+∥w[k]− x∗∥ϕk

by the triangular inequality. We establish a bound on the first
term with the following lemma.

Proposition 2 (Bounding Error from Imperfect Gradients):
Let Assumptions 2–5 hold. Then, we have for all k ≥ 0,

∥z[k]−w[k]∥ϕk
≤ ηλLφk

√
nD(x[k], ϕk)

+ ηλS(y[k], πk).
Next, we define the following terms to capture the contrac-
tion due to the lazy update rule Equation (3c):

q(η, λ) = 1− λ+ λq(η), and (8)
qk(η, λ) = max

i
q(ηn[πk]i, λ), (9)

where q(η) is the contraction we have in the projected
gradient method as defined in Lemma 5. Now, we can derive
our main result of the optimality gap:

Lemma 6 (Optimality Gap Bound): Let Assumptions 1–5
hold. Let η < 1

nL and λ ∈ (0, 1]. Then, we have for all k ≥ 0,

∥x[k + 1]− x∗∥ϕk+1
≤ qk(η, λ) ∥x[k]− x∗∥ϕk

+ηλLφk

√
nD(x[k], ϕk) + ηλS(y[k], πk).

This lemma shows that we can control the error contributions
coming from the consensus and gradient tracking errors by
choosing smaller step sizes λ or η.

B. Bounding Consensus Error
Similar to the analysis of the optimality error in the

previous section, we want to isolate the gradient tracking
error. Let u ∈ Rd × · · · × Rd (n copies of Rd) and a ∈ Rn

be a positive stochastic vector. Then, similar to the consensus
error D(x[k], ϕk), we can define

D(u, a) ≜

√√√√ n∑
i=1

n∑
j=1

aiaj ∥ui − uj∥2. (10)

Hence, in light of Lemma 3, notice that D(x[k+1], ϕk+1) ≤
σkD(z[k], ϕk). Then, we isolate the gradient tracking error
contained in D(z[k], ϕk) with the following proposition:

Proposition 3 (Isolating Gradient Tracking Error): Let
Assumptions 3–4 hold. Then, we have for all k ≥ 0,

D(z[k], ϕk) ≤ 2 ∥z[k]−w[k]∥ϕk
+D(w[k], ϕk).

We already have a bound on the term ∥z[k]−w[k]∥ϕk
from

Proposition 2. Therefore, we can complete the consensus
error analysis by analyzing consensus under global gradient
knowledge, which is captured by the term D(w[k], ϕk).

Proposition 4: Let Assumptions 1–5 hold. Let η < 1
nL

and λ ∈ (0, 1]. Then, we have for all k ≥ 0,

D(w[k], ϕk) ≤ qk(η, λ)D(x[k], ϕk)

+ 2λqk(η, 1) ∥x[k]− x∗∥ϕk
.

Now, we can combine Propositions 2–4 to obtain the final
bound for D(x[k + 1], ϕk+1).

Lemma 7 (Consensus Error Bound): Let Assumptions 1–
5 hold. Let η < 1

nL and λ ∈ (0, 1]. Then, we have for k ≥ 0,

D(x[k + 1], ϕk+1) ≤ 2λσkqk(η, 1) ∥x[k]− x∗∥ϕk

+(σkqk(η, λ) + 2ηλσkLφk

√
n)D(x[k], ϕk)

+2ηλσkS(y[k], πk).
The error contribution from the optimality gap and gradient
tracking error can be made small by choosing a small step
size λ. Moreover, the contribution from the consensus error
in previous step comes with a contraction coefficient σk and
some additional error which can be made small with λ.

C. Bounding Gradient Tracking Error

In this section, we analyze the gradient tracking error
S(y[k + 1], πk+1). Recall that

yi[k + 1] =
n∑

j=1

[Ck]ijyj [k] +∇fi(xi[k + 1])−∇fi(xi[k]).

Here, the mixing term
∑n

j=1[Ck]ijyj [k] helps the agents
agree on the direction of y-variables, while the ∇fi(xi[k +
1]) − ∇fi(xi[k]) steer the y-variables towards the gradient
direction. Therefore, we start by isolating the contraction in
S(y[k], πk) coming from the mixing and the error introduced
by the gradient update ∇fi(xi[k + 1])−∇fi(xi[k]):

Proposition 5: Let Assumptions 2–3 and Assumption 5
hold. Then, we have for all k ≥ 0,

S(y[k + 1], πk+1)

≤ τkS(y[k], πk) + Lrk ∥x[k + 1]− x[k]∥1 ,

where 1 denotes the all ones vector.
Now, we have established that the agreement in the
y-variables (i.e., S(y[k], πk)) can be distorted by
∥x[k + 1]− x[k]∥1. This is because as the x-variables
change, the gradient evaluated at the previous location
becomes less relevant. Hence, we now bound the error
coming from this term:

Proposition 6: Let Assumptions 1–5 hold. Let η < 1
nL

and λ ∈ (0, 1]. Then, we have for all k ≥ 0,

∥x[k + 1]− x[k]∥1 ≤ λφk+1(1 + qk(η, 1)) ∥x[k]− x∗∥ϕk

+

[
1√
2
(φk + σkφk+1) + ηλLφkφk+1

√
n

]
D(x[k], ϕk)

+ηλφk+1S(y[k], πk).
Finally, we combine the results in Proposition 5 and Propo-
sition 6 to get the bound for S(y[k + 1], πk+1).

Lemma 8 (Gradient Tracking Error Bound):
Let Assumptions 1–5 hold. Let η < 1

nL and λ ∈ (0, 1].
Then, we have for all k ≥ 0,

S(y[k + 1], πk+1)

≤ λLrkφk+1(1 + qk(η, 1)) ∥x[k]− x∗∥ϕk

+ Lrk
[
(φk + σkφk+1) + ηλLφkφk+1

√
n
]
D(x[k], ϕk)

+ (τk + ηλLrkφk+1)S(y[k], πk).
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Similar to the consensus error, we get contraction in the
gradient tracking error with coefficient τk. All the other
errors can be made small by choosing a smaller step size λ.
This completes all the necessary results needed to establish
Proposition 1. Using Lemma 6, Lemma 7, and Lemma 8,
and the upper bounds on rk, φk, etc. (see the paragraph
preceding Proposition 1), we obtain the composite relation
matrix M(η, λ).

D. Impossibility Results

In this section, we give some theoretical results highlight-
ing the need for including an extra step size λ. Consider the
case where we set λ = 1 in Equation (3c), thus removing
the lazy update, so that

zi[k + 1] = ΠX (xi[k + 1]− ηyi[k + 1]) .

We will establish that with this update rule, it is not
possible to bound the term ∥x[k + 1]− x[k]∥ such that

∥x[k + 1]− x[k]∥ ≤ c1(η) ∥x[k]− x∗∥ϕk

+ c2(η)D(x[k], ϕk) + c3(η)S(y[k], πk),

where limη→0 c1(η) = 0 for every configuration of the
problem. The term x[k + 1] − x[k] is essential for the
analysis of the gradient tracking error since it is directly
related to the term ∇fi(xi[k + 1]) − ∇fi(xi[k]) by both
the L-smoothness and strong convexity. The following result
shows that we cannot control the error contribution coming
from this term by the optimality error by simply decreasing
the step size. This problem persist even when the system
consists of a single agent with perfect gradient knowledge,
as in centralized projected gradient method.

Lemma 9: Assume that the function f(x) : Rd → R is
µ-strongly convex and its gradient ∇f(x) is L-Lipschitz
continuous. Moreover, assume that the constraint set X ⊆ Rd

is convex and closed. Consider the sequence {x[k]}∞k=1

generated by the centralized projected gradient method:

x[k + 1] = ΠX (x[k + 1]− η∇f(x[k])) , (11)

for some x[0] ∈ Rd. Suppose that there exist a coefficient
c(η) that depends on η such that for all k ≥ 0 we have

∥x[k + 1]− x[k]∥ ≤ c(η) ∥x[k]− x∗∥ , (12)

where x∗ is the unique minimizer of f(x) over the set X .
Then, there exists a function f and a constraint set X where
c(η) ≥ b where b > 0 for any x[0] ∈ X \ {x∗} and any c(η)
with η > 0.

Proof: We prove this result by constructing an example.
Let f(x) = L

2 x
2 and X = {x ∈ R | x ≥ 1}. Then, the

function f is strongly convex with L-Lipschitz continuous
gradients and the set X is closed and convex. Notice that the
update rule in this example is x[k+1] = ΠX ((1− ηL)x[k])
since ∇f(x) = Lx. Let c(η) satisfy Equation (12). Let the
initial point x[0] ∈ X \ {x∗}. We split the proof into two

cases. First, assume that η ≥ 1
L . Hence, we have x[1] =

ΠX ((1− ηL)x[0]) = 1 = x∗. Then,

∥x[1]− x[0]∥ ≤ c(η) ∥x[0]− x∗∥
∥x∗ − x[0]∥ ≤ c(η) ∥x[0]− x∗∥ .

Hence, we have 1 ≤ c(η). Since Equation (13) should hold
for any k ≥ 0, it must be that c(η) ≥ 1 for any c(η).

Next, we consider the case where 0 < η < 1
L . Define the

set Cη = {x ∈ R | 1 < x ≤ 1
1−ηL}. For any x[k] ∈ Cη ,

we have (1 − ηL)x[k] ≤ 1 since x[k] ≤ 1
1−ηL . Therefore,

x[k + 1] = x∗. Then, using similar steps to the proof with
η > 1

L we have c(η) ≥ 1. The only remaining part is to show
that for any x[0] ∈ X \{x∗}, there exists an x[k] ∈ Cη . When
x[0] ∈ Cη, this is true trivially. Assume that x[0] /∈ Cη , i.e.,
x[k] > 1

1−ηL . First, notice that for any x[k] /∈ Cη , x[k+1] >
1. We know that x[k] should converge to x∗ = 1 since the
iterates follow the projected gradient update rule with η < 1

L
[20, Chapter 7.2]. Then, there must be an x[k] ∈ Cη , which
completes the proof.

Remark 1: Let Assumptions 1–5 hold. Let there be a
single agent in the system, i.e., n = 1. Then, if λ = 1, the
Projected Push-Pull algorithm in Equation (3) is equivalent to
the centralized projected gradient descent given in Lemma 9.
Therefore, the impossibility results that we have shown for
the projected gradient method also apply to the Projected
Push-Pull algorithm.

Corollary 1: Let Assumptions 1–5 hold true. Assume that
the agents follow the Projected Push-Pull algorithm given in
Equation (3) with λ = 1 and η > 0. Suppose that there exist
coefficients c1(η), c2(η), and c3(η) that depend on η such
that for all k ≥ 0 we have

∥x[k + 1]− x[k]∥ ≤ c1(η) ∥x[k]− x∗∥ϕk
(13)

+ c2(η)D(x[k], ϕk) + c3(η)S(y[k], πk).

Then, there exist functions fi, a constraint set X , and initial
points xi[0] where c1(η) ≥ b where b > 0 for any c1(η).

Proof: Choose fi(x) = fj(x) for all i, j ∈ V . Consider
a fully connected graph with [Rk]ij = [Ck]ij = 1

n for
all i, j ∈ V and for all k ≥ 0. Let each agent initialize
the algorithm from the same point, i.e., xi[0] = xj [0]
for all i, j ∈ V . Then, the Projected Push-Pull algorithm
is equivalent to following a centralized projected gradient
descent for all agents. Moreover, we have D(x[k], ϕk) = 0
and S(y[k], πk) = 0. Then, by Lemma 9, we know that
there exist a function fi(x) and a constraint set X such that
c1(η) ≥ b where b > 0 for any c1(η) with η > 0.
Hence, we have established that we cannot fully control the
bound on the term ∥x[k + 1]− x[k]∥ by simply changing
the step size η. This term has to arise in our analysis due to
the definition of gradient tracking, which poses an important
challenge to analyzing gradient tracking algorithms using
projections. However, this problem does not happen when
X = Rd, i.e., when the problem is unconstrained. The main
challenge in the constrained case is that the gradient at x∗

is typically non-zero, and therefore, we reach a pathological
case where the agents do not slow down as they reach the
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optimal point. In the unconstrained case, as the agents reach
the optimum, gradient also slows down since it vanishes.

In a similar fashion to Corollary 1, we have a fundamental
limitation in the analysis of the consensus error when λ = 1
in the algorithm. The following result shows this limitation.

Lemma 10: Let Assumptions 1–5 hold true. Assume that
n = 2, i.e. there are two agents in the system. Let the
agents follow the Projected Push-Pull algorithm given in
Equation (3) with λ = 1 and η > 0. Suppose that there
exist coefficients c1(η), c2(η), and c3(η) that depend on η
such that for all k ≥ 0 we have

D(x[k + 1], ϕk) ≤ c1(η) ∥x[k]− x∗∥ϕk
(14)

+ c2(η)D(x[k], ϕk) + c3(η)S(y[k], πk).

Then, there exist functions f1, f2, a constraint set X , and
initial points x1[0], x2[0] such that limη→0 c1(η) ̸= 0 for any
c1(η).

Proof: Let f(x) = L
2 x

2 =
∑2

i=1 fi(x) where
f1(x) = π1

L
2 x

2 and f2(x) = π2
L
2 x

2. Let X = {x ∈ R |
x ≥ 1} be the closed and convex constraint set. Without
loss of generality, assume Rk = R and Ck = C for all
k. Furthermore, assume that R is doubly stochastic and C
is a column stochastic matrix with the right eigenvector
π such that Cπ = π with π1 > π2. Let η ∈ R with
0 < η < 1

Lπ2
be arbitrary. Also, construct the initial

conditions as x1[0] = x2[0] = 1
1−ηLπ1

. Then, clearly,
D(x[0], ϕ) = S(y[0], π) = 0. So, it must be that

D(x[1], ϕ) ≤ c1(η) ∥x[0]− x∗∥ϕ .

By construction, we have that ∥x[0]− x∗∥ϕ = ηLπ1

1−ηL and
D(x[1], ϕ) = 1√

2

ηL
1−ηL (π1 − π2). Then, we must have

0 <
1√
2
ηL(π1 − π2) ≤ c1(η)ηLπ1

0 <
1√
2
(1− π2

π1
) ≤ c1(η),

which means that limη→0 c1(η) ̸= 0 as the relation above
holds for any η in the range 0 < η < 1

Lπ2
.

Essentially, Corollary 1 and Lemma 10 show that no matter
how we bound the error terms, we cannot gain full control
over the non-diagonal entries of the composite relation
matrix M(η, λ), with λ = 1. These entries are essential in
controlling the spectral radius of M(η, 1), and guaranteeing
convergence. However, being able to choose a λ in range
(0, 1] gives us more flexibility.

VII. NUMERICAL STUDIES

In this section, we empirically demonstrate the conver-
gence of our algorithm on a sample optimization problem
and also investigate the effect of the graph properties and
mixing times of matrices Rk and Ck on convergence.

A. Convergence of Protocol on Time Varying Communica-
tion Networks

Optimization Problem: We have n = 50 agents. Agent i
has objective function (xi−xci )⊺Pi(xi−xci ) where xci ∈ Rd

is the center of the quadratic and the matrix Pi ∈ Rd×d is
positive definite with µI ⪯ Pi ⪯ LI for some µ and L.
Hence, the global objective is

∑n
i=1(xi − xci )⊺Pi(xi − xci ).

For this experiment, we set d = 2 and sample the
coordinates of xci from the uniform distribution U [−2, 8] in-
dependently for each i. Similarly, we set Pi to be diagonal for
each i, and sample each entry in the diagonal independently
from U [0, 1]. Notice that the objectives are strongly convex
and smooth. We set X = B((6, 6), 2), the closed ball around
(6, 6) with radius 2. This setup is likely to result in a optimal
point x∗ in the boundary of X , which helps us demonstrate
the effectiveness of our algorithm when ∇f(x∗) ̸= 0, in
contrast with the unconstrained setting.

Communication graphs: We construct the time-varying
graphs by iterating over the sequence of graphs {G1, . . . ,GT }
where T = 5. That is, Gk = G(k−1 mod T )+1. We generate
Gi independently for each i ∈ [T ] as follows. For all j, l ∈ V
we add the edge (j, l) to Ei with probability p = 0.1. We
regenerate the graph if it is not strongly connected.

Mixing matrices Rk and Ck: Let N in
i [k] and N out

i [k]
denote the in/out neighborhoods of agent i at time k respec-
tively. That is, j ∈ N in

i [k] if and only if (j, i) ∈ Ek and
j ∈ N out

i [k] if and only if (i, j) ∈ Ek. Agent i sets the i’th
row of Rk and the i’th column of Ck as follows:

[Rk]ij =

{
1

|N in
i [k]|+1

if j ∈ N in
i [k] or j = i

0 otherwise
,

[Ck]ji

{
1

|N out
i [k]|+1 if j ∈ N out

i [k] or j = i

0 otherwise
.

Optimization parameters: We set η = 0.5, λ = 0.7. We
initialize xi[0] by sampling each coordinate from U [0, 10]
and projecting onto X .

We plot the error terms1 in Figure 1. As we can see in
Figure 1, all of the error goes to 0 with geometric (linear)
rate. The convergence rates (slopes) of all the terms are
similar, which highlights the interdependence of these errors.

B. Effect of Graph Type on Convergence

Because the contraction of matrices Rk and Ck are related
to the communication graph as given in Lemma 3 and
Lemma 4, graph type will affect the convergence rate of
our algorithm. Therefore, we investigate the effect of graph
type on the convergence rate. In this section, we set n = 15
and T = 1 (static graphs) but otherwise use the same setup
for the objective function and constraint set as the previous
section. We generate three different graph types as follows:
1) Random: Same as described in the previous section. 2)
Cyclic: We have (i, i + 1) ∈ E for i = 1, . . . , n − 1 and
(n, 1) ∈ E . 3) Unbalanced: Graph where certain nodes have
very high in-degrees and low out-degrees and vice versa.

We set Rk and Ck to be compatible for each graph as
described in the previous section. We fix η = 0.5 for all

1One minor difference between these error terms and the ones used in
the analysis is that we cannot compute the sequence {ϕk} as used in the
analysis. Therefore, we choose ϕk = 1

n
1 for all k. We initialize π0 = 1

n
1

and let πk+1 = Ckπk .
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Fig. 1. Optimality, consensus, and gradient tracking errors vs. number of
iterations on a log-scale. The errors converge to 0 as geometric (linear) rate
with similar convergence rates.

Fig. 2. Optimality error ∥x[k]− x∗∥ϕk
vs. number of iterations k on

a log-scale for different graph types. Even though the error converges
to 0 geometrically for all graphs, unbalanced and random graphs have a
much higher convergence rate compared to cyclic graphs, which are slowly
mixing.

graphs, and for each graph, we choose λ to be the largest
value that allows convergence. Specifically, the random graph
requires λ = 0.15, the unbalanced graph requires λ = 0.3,
and the cyclic graph requires λ = 0.6 to have convergence.
The comparison of the convergence rate between these
graphs is shown in Figure 2. We see that the random and
unbalanced graphs have a faster convergence due to having
higher-connectivity.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce the Projected Push-Pull algo-
rithm, which combines gradient tracking and projected gra-
dient method to address distributed constrained optimization
problems on time-varying directed graphs. We prove that our
algorithm achieves geometric convergence with sufficiently
small step sizes. We derive explicit bounds for the step
sizes based on the characteristics of the cost functions and
the communication graph. Moreover, we provide additional
theoretical results showing that having a non-zero gradient
at the optimal point in constrained problems poses additional
challenges in the analysis of gradient tracking methods

employing projection. Finally, we demonstrate the geometric
convergence of our algorithm via numerical studies over
various graph types. An interesting direction for future work
is the incorporation of random and adversarial noise.
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distributed optimization in networks,” IEEE Transactions on Automatic
Control, vol. 66, no. 1, pp. 1–16, 2021.

[11] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization
over time-varying directed graphs with row and column-stochastic
matrices,” IEEE Transactions on Automatic Control, vol. 65, no. 11,
pp. 4769–4780, 2020.
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pull for distributed constrained optimization over time-varying directed
graphs (extended version),” arXiv preprint arXiv:2310.06223, 2023.

[20] B. T. Polyak, Introduction to optimization. New York, Optimization
Software,, 1987.

2089

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore.  Restrictions apply. 


