2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

Projected Push-Pull For Distributed Constrained Optimization Over
Time-Varying Directed Graphs

Orhan Eren Akgiin*, Arif Kerem Day1*, Stephanie Gil, and Angelia Nedié

Abstract— We introduce the Projected Push-Pull algorithm
that enables multiple agents to solve a distributed constrained
optimization problem with private cost functions and global
constraints, in a collaborative manner. Our algorithm employs
projected gradient method to deal with constraints and a lazy
update rule to control the trade-off between the consensus
and optimization steps in the protocol. We prove that our
algorithm achieves geometric convergence over time-varying
directed graphs while ensuring that decision variables always
stay within the constraint set. We derive explicit bounds for
step sizes that guarantee geometric convergence based on the
strong-convexity and smoothness properties of cost functions,
and graph properties. Moreover, we provide additional theo-
retical results on the usefulness of lazy updates, revealing the
challenges in the analysis of any gradient tracking method
that uses projection operators in a distributed constrained
optimization setting. We validate our theoretical results with
numerical studies over different graph types, showing that our
algorithm achieves geometric convergence empirically.

I. INTRODUCTION

In this paper, we are concerned with a class of distributed
optimization problems where a set of n agents are trying to
solve a problem with the structure:

zeX

min f(r), where [()2 - fi(a), (D
=1

where x 1is the decision variable, each cost function
fi : R4 — R is known by agent 4 only and is strongly convex
with Lipschitz continuous gradients, and the constraint set
X C RY is closed and convex. We are interested in the
case where agents communicate over a possibly time-varying
directed graph G, = (V,&;) where V with |[V| = n
represents the set of agents and the set & represents the
directed communication links at time k. This setup has
various applications in control [1], robotics [2], and sensor
networks [3].

Many distributed optimization applications demand fast
algorithms due to time and computational constraints, which
makes the convergence rate of the used algorithm criti-
cal. However, a simple extension of gradient descent to
distributed optimization does not achieve geometric con-
vergence even with strongly convex cost functions [4],
[5]. Therefore, gradient tracking was introduced to achieve

(*Co-primary authors). O. E. Akgiin, A. K. Day1, and S. Gil are with
the School of Engineering and Applied Sciences, Harvard University,
USA: erenakgun@g.harvard.edu, keremdayi@college.harvard.edu,
sgil@seas.harvard.edu. A. Nedi¢ is with the School of Electrical,
Computer and Energy Engineering, Arizona State University, USA: An-
gelia.Nedich@asu.edu.

The authors gratefully acknowledge partial support through NSF CNS
2147641 and 2147694.

979-8-3503-8265-5/$31.00 ©2024 AACC

geometric convergence in undirected [4], [6], [7] and di-
rected graphs [7]-[10]. In gradient tracking methods, agents
maintain a decision variable and an estimate of the global
gradient. At each step, agents first perform a consensus step
and an optimization step on the decision variable using the
estimated global gradient. Then, they update their estimate
of their global gradient using their neighbors’ estimates and
their local gradient. In particular, the Push-Pull algorithm
introduced in [9], [10] achieves geometric convergence in di-
rected, time-varying graphs [11], [12]. Unlike other gradient
tracking methods, Push-Pull uses row and column stochastic
mixing matrices for averaging decision and gradient tracking
variables, respectively. Therefore, it does not require estimat-
ing the non-one Perron vector of the mixing matrix, which
would introduce additional communication and computation
costs. However, it does not handle constrained optimization
problems. Indeed, despite great progress in distributed un-
constrained optimization algorithms, their counterparts in the
constrained optimization space still remain underexplored.
Our goal in this work is to develop a projected gradient de-
scent based Push-Pull algorithm variant to achieve geometric
convergence in constrained optimization problems over time-
varying directed graphs.

Extending gradient tracking methods, including Push-Pull,
to handle constrained optimization is a non-trivial task.
Projection based algorithms for constrained optimization
have some fundamental differences from their counterparts
for unconstrained optimization. First, the non-linearity of
the projection operator limits our ability to manipulate the
mixing matrices in the analysis, which is an essential part
of the analysis in the unconstrained case. Second, in the un-
constrained case, the global gradient vanishes at the optimal
point, which is heavily used in existing analyses. However,
the gradient does not necessarily vanish at the optimum in the
constrained setting. Since the gradient at the optimal point
can be non-zero, the step size in the constrained case does not
give fine-grained control over the tradeoff between different
errors, such as the optimality error, consensus error, and the
gradient tracking error, which are standard in the analysis of
all gradient tracking methods.

The works in [13] and [14] propose gradient tracking
based methods for the constrained optimization problems
over static directed graphs. However, both algorithms require
multiple consensus steps per optimization step which in-
creases communication costs. Recent work in [15] eliminates
the need for multiple consensus steps. Yet their results are
limited to static undirected graphs, and the decision variables
are not guaranteed to stay in the constraint set at every time

2082

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

step. Conversely, the SONATA algorithm proposed in [16]
is later on shown to have a geometric convergence rate for
time-varying directed graphs in [17]. However, the SONATA
and algorithms proposed in [13] and [14] all use only row
stochastic mixing matrices and, therefore, require estimating
the non-one Perron vector of the mixing matrix, increasing
computation and communication costs.

Ideally, we want a distributed constrained optimization
algorithm that 1) achieves a geometric convergence rate,
2) works for directed graphs and time-varying graphs, 3) has
low communication cost (i.e., does not require multiple
consensus steps or estimation of additional system param-
eters), 4) minimizes the number of costly operations such
as projection, and 5) keeps the decision variable in the
constraint set at all time steps. With this motivation, we
introduce the Projected Push-Pull algorithm that satisfies
all the aforementioned requirements. Similar to Push-Pull,
we employ row and column stochastic mixing matrices.
This allows our algorithm to work in directed time-varying
graphs without needing to estimate the non-one Perron vector
of the mixing matrices. To handle the constrained case,
we use projection to keep the decision variables in the
constraint set and an extra step size to control the tradeoff
between consensus and optimization. We prove the geometric
convergence rate of the algorithm for time-varying directed
graphs. Our contributions can be summarized as follows

o We introduce a novel distributed projected gradient
algorithm based on the Push-Pull to solve distributed
constrained optimization problems with structure as
in Equation (1) over time-varying directed graphs.

« We prove that with a small enough step size, our algo-
rithm has a geometric convergence rate for time-varying
directed graphs. We characterize the valid range for the
step size based on various problem-based parameters,
such as the smoothness and strong convexity of the cost
functions and properties of the communication graph.

o We provide impossibility results that show some funda-
mental limitations of distributed gradient methods using
projection in constrained optimization settings.

o We empirically show that our algorithm attains geo-
metric convergence via numerical studies with different

graph types.
II. NOTATION & TERMINOLOGY

All vectors are column vectors by default unless stated
otherwise. The i-th entry of a vector u is denoted by w;; it is
[ug]; if uy is time varying where k& > 0 is the time step. For
a vector u, min u and max u denote the smallest and largest
entries of w, respectively. For any matrix A, we denote its
ij-th entry by A;;. If it is a time-varying matrix, we denote
it by [Ax];;. We denote the smallest positive element of a
non-negative matrix A by min{A"}. A non-negative matrix
is row stochastic if all of its row sums are equal to 1, and it

norm of x € R? x --- x R? (n copies of R?) as |x||, =

S wg ||zl where z; € RY.

A directed graph G (V,€) is said to be strongly
connected if there is a directed path between any pair of the
nodes in the graph. Finally, we define a projection operator
as follows:

Definition 1 (Projection onto X): Let X C R be closed
and convex. Then, we define the projection operator Iy (-) :
R? — R? as follows

Iy (z) = argmin ||z — z|| .
zeX
I1I. PROBLEM SETUP

We consider a distributed multi-agent system of n agents
where agents need to solve a distributed optimization task
in a collaborative manner. The agents’ goal is to solve the
following constrained minimization problem

min f(x), where f(Zf,)

where each cost function f; : R — R is known by agent i
only and the constraint set X C R? is closed and convex. We
make the following assumptions about the cost functions:
Assumption 1 (Strongly Convex Objective): For all agents
i, fi(x) is p-strongly convex, i.e, for some p > 0, we have
(Vfi(x) = Vi(y),z —y) >)z — y|>, for all z,y € R%.
Assumption 2 (Lipschitz Continuity of Gradients): For
all agents 4, V f;(x) is L-Lipschitz continuous, i.e, for some
L >0, |Vfi(z) = Vfi(y)| < Lllz —yl. for all 2,y € R
We assume that at each time step k£ € N, agents commu-
nicate over a directed graph, denoted by Gi = (V,). The
set V with |V| = n represents the set of agents and the set &,
represents the directed communication links at time k. An
edge (i,j) € & indicates that agent ¢ can send information
to agent j at time k. Moreover, if (i, j) € &, we say that i is
an in-neighbor of j and j is an out-neighbor of . We make
the following assumption on the communication graphs Gg.
Assumption 3 (Strong Connectivity): Gy, is strongly con-
nected for all k.

IV. ALGORITHM

In this section, we introduce the Projected Push-Pull
algorithm. In the algorithm, all agents maintain two decision
variables z;[k] and z;[k], and a gradient tracking variable
y;[k]. Agents initialize x;[0] = z;[0] € X arbitrarily, and
yi[0] = V fi(2;]0]). At each communication round k, agents
get z;[k] and the scaled gradient tracking variable [C];,y; k]
from their in-neighbors and perform the following updates:
> [Relijzilk),

j=1

k+1 :ch zgyj ‘val(‘rl[k+ Divfl(xl[k])’
j=1

zilk +1] = (3a)

is column stochastic if all of its column sums are equal to 1. (3b)
We use (a,b) to denote the Eucllde?an inner product and Ak +1] = (1= Nl + 1] (o)
|z| = \/(z,z) to denote the Euclidean norm. For any
vector u € R™ with u; > 0 Vi, we define the u-weighted + MLy (2ilk + 1] = nylk + 1),
2083

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

where 17 > 0, A € (0,1] are two different step sizes. We will
refer to Equation (3c) as the lazy update rule. We formally
describe how agent ¢ € V runs the protocol in Algorithm 1.

Algorithm 1 Projected Push-Pull
Input: Choose parameters 7, A according to Theorem 1.
1: Each agent ¢ simultaneously does the following:
2: Initialize x;[0] = 2][0] € A& arbitrarily, and set
yi[0] =V fi(x;[0]).
3: while £ =0,1,... do
4: Determine coefficients [Rg];;, [Cilj for j € V
according to Assumption 4 and Assumption 5.
5. Send z;[k], [Ckljiyi[k] to out-neighbors.
. Receive z;[k], [Ck)ijy;[k] from in-neighbors.
7. Perform the consensus update using Equation (3a):

j=1
8: Perform the gradient tracking update using Equa-
tion (3b):

yilk +1] <Y _[Chlijy;[¥]
j=1
+ Vfi(xi[k +1]) = V fi(x;[k]).
9: Perform the lazy optimization update using Equa-
tion (3c¢):
zilk + 1] (1 — XNz [k + 1]
+ My (zi[k + 1] — nyi[k + 1)) .

10: end while

Coefficients [Ry];; and [Cy];; constitute the elements of
mixing matrices Ry and Cjy, respectively. We make the
following assumptions on these matrices, which also show
how agents can choose their coefficients [Ry];; and [Cyl;;:

Assumption 4 (Graph Compatibility of Ry): For all k >
0, the matrix Ry, is row stochastic and it is compatible with
the graph Gy, ie., [Ryl;; > O if and only if (j,7) € &
or i = j and [Ry];; = O otherwise. Moreover, for some
Ruin > 0 we have min{R}} > Ry, for all k > 0.

Assumption 5 (Graph Compatibility of Cy): For all k >
0, the matrix C} is column stochastic and it is compatible
with the graph Gy, i.e., [Cyl;; > 0 if and only if (j,7) € &
or i = j and [Cy];; = 0. Moreover, for some Cyin, > 0 we
have min{C,j} > Chin for all & > 0.

Under Assumption 5, the algorithm satisfies the gradient
tracking property, that is > . y;[k] = >, Vfi(wi[k]),
at each time step k.

The key differences between this algorithm and the
AB/Push-Pull algorithm [12] are as follows: 1) agents com-
pute the gradients at x;[k], which is after the consensus step
Equation (3a), 2) we introduce a projection operator in the
calculation of z;[k], and 3) we use an additional step size A
to give agents more control over the trade-off between the
consensus and optimization.

V. MAIN RESULTS

In this section, we state the main results concerning the
convergence of our algorithm to the optimal point. First,
will provide some core results about the behavior of graph
compatible row stochastic and column stochastic matrices,
and their contraction behavior. Then, we provide our main
theorem showing the geometric convergence of our algo-
rithm. The analysis accompanying these results is given in
Section VI.

A. Preliminaries

We use the following lemmas to define stochastic vectors
that will be used in our analysis.

Lemma 1 ([18], Lemma 5.4 and [12], Lemma 3.3): Let
Assumption 3 hold and {Ry} be a row stochastic matrix
sequence satisfying Assumption 4. Then, there exists a
sequence of positive stochastic vectors {¢x} such that
b1 Re = ¢, where the entries of each ¢ are positive

7(1{“““) for all

and have the uniform lower bound [¢x]; >
i€ Vand k> 0.

Lemma 2 ([12], Lemma 3.4): Let Assumption 3 hold
and {C},} be a matrix sequence satisfying Assumption 5. Set
Ty = + -1 and define the sequence 711 = Ckmg. Then, each
Vector in {m} is stochastic, and we have [mt]; > (C‘“‘“)
Now, we will define two lemmas about contractlons of
matrices Ry and C}, which allow the consensus of z;[k] and
yi[k] values.

Lemma 3 ([18], Lemma 6.1): Let G = (V,€) be a
strongly connected graph, and the row stochastic matrix R be
compatible with the graph. Let ¢ be a stochastic vector and
@' be a non-negative vector such that ¢'TR = ¢T. Consider
the vectors 21, 22,...,2, € R? and z; = Z;”:l R;;z; for
all i € V. Also define 2, = Y7 | ¢;2;. Then, we have

n n
2 2
3ol — < Zasj Iz —ul

mln(¢) min(-
s 12
Z@ Il = 2l

where D(G) and K(G) are the diameter and the maximum
edge utility of G, respectively, as in [18, Lemma 6.1]. Define
Ty £ 30, @ Then, we get

n n

A 2 A 112
Yo llw =y <oy | D dillz— 7
=1 =1

max?(¢

where o = \/1 — % (0,1).

Lemma 4 ([12], Lemma 4.5): Let G = (V,€) be a
strongly-connected graph and C' be a column stochastic
matrix compatible with G. Assume y1,%s, . ..,y, € R? and
v; = >0, Cijy; for all i € V. Let m € R™ be a positive
stochastic vector and 7’ = C'w. Then, we have

n n 2
Zﬂ Zw <t dom||E =Yy
i=1 =1

b

2084

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

min? (7) (min C+)?2
where 7 = /1 — max? () I(nzz)(c(‘/r’)g(g))l((g) < (0’ 1)

Lastly, we introduce a lemma showing the contraction
properties of the projected gradient method. This lemma is
an adaptation of a standard result in optimization for the
projected gradient method (see [5, Lemma 10]).

Lemma 5 (Projected Gradient Contraction): Let X C R¢
be closed and convex set, and let f : R? — R be u-strongly
convex and L-smooth. Define 7, (x) = ILx (x —nV f(z)).
For 0 < n < MJ%L, we have

1T () = Tyl < a(n) [z — |
where ¢(n) =1 —nu < 1.

B. Convergence Results

The convergence of Algorithm 1 will be determined
entirely by 3 critical error terms, or distances: 1) agents’
decision variables’ distances to the optimal point, 2) the con-
sensus error of the decision variables, and 3) the convergence
of gradient tracking variables. We define these respective
error terms mathematically as follows:

n

Y bulillzilk] = 2*)?, @

<[k] — x|, =

i=1
where x[k] = (z1]k], ..., zn[k]), x* = (2*,...,2*), and the
vectors ¢y, satisfy Lemma 1.
D(x[K), éx) 2 (| D> [onlilel; k] — 2, [K]|1°, (5)
j=1i=1

yi[k]_ -y yi[k]

2
.6

Skl m) 2 4| Sl

i=1

where y[k] = (y1[k], . . ., yn[k]) and 7y, satisfy Lemma 2. We
call the term ||x[k] — x*||, the optimality gap, D(x[k], ¢x)
the consensus error, and S(y[k], 7;) the gradient tracking
error. Now, we combine the errors in a single vector as
elk] = (Ix[k] = x*|,, , D(x[K], 6x). S(y[k], 72))T. We aim
to show that limy,_,, €[k] = 0 with a geometric rate. Hence,
we want to find some matrix M (n, A) with spectral radius
p(M(n,A)) < 1 such that e[k + 1] < M (n, A)e[k]. This will
give us the desired geometric rate. With this motivation, we
now give the composite relation between the error terms at
step k£ + 1 and error terms at step k. First, define

\/1 min(¢y41)(min R})2

1>

ok € (0,1),

B max?(¢r)D(Gr)K(Gr)

o \/1 B min? (7,) (min C’,j‘)2
k max? (7,) max(mx41)D(Gr)K(Gk)

which are the coefficents of contraction due to R, and C}
respectively (as defined in Lemma 3 and Lemma 4), at
time k. Notice that oy, 7 are uniformly bounded above by

>

€ (0,1),

constants less than 1 due to Assumption 4 and Assumption 5,
and Lemma 1 and Lemma 2. Then, also define

1 /1
min 7, min ¢

Notice that since the entries of 75 and ¢;, are bounded above
and below uniformly across time, the min and max elements
are also bounded uniformly over time. Therefore, we can de-
fine r £ SUPL>(Tk, ¥ £ SUPL>0 Pk, ¥ £ infy>o min m;, >
0,0 £ supy~oor < 1,7 £ supyso7s < 1. Then, we
have the following proposition describing the evolution of
the errors.

Proposition 1 (Composite Relation): Let Assumptions 1—
5 hold and let n < 2. Then, we have

L

Tk

elk + 1] < M(n, Ne[k], 7

where the inequality is elementwise and M (7, A) is equal to

1 —nAnyp Ap AL!
2o o+ 2\ op 200 Lt
2A\Lry Lro(1+0) + ALrp? 7+ Arg

Theorem 1 (Convergence): Let Assumptions 1-5 hold.
Let 0 <n < i and

1—0 1—7 myu(l —o)(1—7)
20/’ 1o’ K } ’
where, K = 2(1 + mnypp)po[(1 —7) + (1 + o) + (2 +
nmyu)re(l — o). Then,

lim ||x;[k] —z*|| =0 forallieV,
k—oo

()</\<min{

where x* is the solution to problem (2). Moreover, the
convergence rate is geometric with rate p(M(n, \)) < 1,
where p(-) denotes the spectral radius of a matrix.

The proof of Theorem 1 is given in our extended technical
report [19]. The proof shows that by choosing A in the
specified range, we can make the diagonals of M less than
1 and det(M(n,) — I) < 0, which are sufficient to show
p(M(n, A)) < 1.

VI. ANALYSIS

In this section, at first, we provide all the necessary
results for the proof of Theorem 1. Then, we provide two
impossibility results providing insights into our algorithm
design and the analysis. Due to space limitations, we provide
some of the proofs in this section in our extended technical
report [19].

A. Bounding Optimality Gap

We start the analysis of the optimality gap under our
algorithm. First, notice that we have [|x[k + 1] —x*[|, , <
|z[k] —x*||,, from Lemma 3 with u = z*. Hence, we
will focus on the analysis of ||z[k] — x[|, . Our strategy
is to split the error into two cases: the error we would have

if agents had the perfect gradient knowledge and the error

2085

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

coming from the gradient tracking. To represent the case
where agents have the perfect gradient knowledge, we define

wilk] = (1= Nai[k] = MLy (2 — nn[me]iV f(2:[k])) ,

for each agent ¢ where V f(z;[k]) £ L 37" | V fi(;[k]) and
stack these vectors in the matrix w[k]. With this definition,
we have [[2[k] —x"|,, < |2lk] — wlklll,, +|Iwlk] - x|,
by the triangular inequality. We establish a bound on the first
term with the following lemma.

Proposition 2 (Bounding Error from Imperfect Gradients):

Let Assumptions 2-5 hold. Then, we have for all £ > 0,

z[k] — wk]ll5, <nALopvnD(x([k],)
+ UAS(Y[/CL 7Tk)'
Next, we define the following terms to capture the contrac-
tion due to the lazy update rule Equation (3c):

q(n,A) =1 =X+ Ag(n), and ®)
g (0, A) = max q(nn[meli, A),)

where ¢(n) is the contraction we have in the projected
gradient method as defined in Lemma 5. Now, we can derive
our main result of the optimality gap:

Lemma 6 (Optimality Gap Bound): Let Assumptions 1-5
hold. Let n < T%L and A € (0, 1]. Then, we have for all & > 0,

%[k + 1] = x"[| 5., < ax(n,) [Ix[E] — x|,
This lemma shows that we can control the error contributions

coming from the consensus and gradient tracking errors by
choosing smaller step sizes A or 7.

B. Bounding Consensus Error

Similar to the analysis of the optimality error in the
previous section, we want to isolate the gradient tracking
error. Let u €¢ R x -« x R? (n copies of R9) and ¢ € R”
be a positive stochastic vector. Then, similar to the consensus
error D(x[k], @), we can define

n n
2
DO iy s —ugl

i=1j=1

D(u,a) = (10)

Hence, in light of Lemma 3, notice that D(x[k+1], ¢r11) <
o D(z[k], ¢1). Then, we isolate the gradient tracking error
contained in D(z[k], 1) with the following proposition:
Proposition 3 (Isolating Gradient Tracking Error): Let
Assumptions 3—4 hold. Then, we have for all £ > 0,

D(z[k], ¢x) < 2||z[k] — w(k][|,, + D(W[K], ér).

We already have a bound on the term ||z[k] — wi[k]||; from
Proposition 2. Therefore, we can complete the consensus
error analysis by analyzing consensus under global gradient
knowledge, which is captured by the term D(w[k], ¢).

Proposition 4: Let Assumptions 1-5 hold. Let n < -

Now, we can combine Propositions 2—4 to obtain the final
bound for D(x[k + 1], dg41)-

Lemma 7 (Consensus Error Bound): Let Assumptions 1—
5 hold. Let n < -1- and A € (0, 1]. Then, we have for k > 0,

D(x[k 41}, ¢r41) < 2A0qr(n, 1) [|x[k] — x"|[,,

+(orgr(n, A) + 20 ok Loy/n) D(x[K], dr)
+2nhorS(ylk], m).
The error contribution from the optimality gap and gradient
tracking error can be made small by choosing a small step
size A. Moreover, the contribution from the consensus error
in previous step comes with a contraction coefficient oy, and
some additional error which can be made small with .

C. Bounding Gradient Tracking Error

In this section, we analyze the gradient tracking error
S(y[k + 1], mg+1). Recall that

n

vilk + 1 =Y [Chligys (k] + V filwilk + 1]) = V fi(as (k).

j=1

Here, the mixing term Z?zl[Ck]ijyj [k] helps the agents
agree on the direction of y-variables, while the V f;(x;[k +
1]) — Vfi(z;]k]) steer the y-variables towards the gradient
direction. Therefore, we start by isolating the contraction in
S(y[k],) coming from the mixing and the error introduced
by the gradient update V f;(x;[k + 1]) — V fi(z;:[k]):

Proposition 5: Let Assumptions 2-3 and Assumption 5
hold. Then, we have for all k > 0,

S(ylk + 1, mhy1)
< TeS(y[k], mk) + Ly [[x[k + 1] — x[K]]]; ,

where 1 denotes the all ones vector.
Now, we have established that the agreement in the
y-variables (i.e., S(y[k],m%x)) can be distorted by
||x[k + 1] — x[k]||;. This is because as the z-variables
change, the gradient evaluated at the previous location
becomes less relevant. Hence, we now bound the error
coming from this term:

Proposition 6: Let Assumptions 1-5 hold. Let n < ﬁ
and X € (0,1]. Then, we have for all & > 0,

%[k + 1] = x[k][l; < Apr41(1+ qr(n, 1)) [Ix[k] — x4,
+ % (ok + oxPrr1) + NALoRor1vn| D(X[K],)

+nApr+1S(y[k], m).-
Finally, we combine the results in Proposition 5 and Propo-
sition 6 to get the bound for S(y[k + 1], mk+1).
Lemma 8 (Gradient Tracking Error Bound):
Let Assumptions 1-5 hold. Let n < -= and A € (0,1].

Then, we have for all £ > 0,

S(ylk + 1], m41)

nL
and A € (0,1]. Then, we have for all & > 0, < ALrigpir (1 + ai(n, 1) [Ix[k] — <",
D(wlk], ¢x) < qi(n, \)D(x[k], ¢ + Ly [(r + okr+1) + DALk prs1v/n) D(x[K], 1)
+ 2Aqr(n, 1) Ix[k] —x*|,, - + (6 + A Lrepry1) S(y (K], mr).-
2086

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

Similar to the consensus error, we get contraction in the
gradient tracking error with coefficient 7. All the other
errors can be made small by choosing a smaller step size .
This completes all the necessary results needed to establish
Proposition 1. Using Lemma 6, Lemma 7, and Lemma 8,
and the upper bounds on 7, g, etc. (see the paragraph
preceding Proposition 1), we obtain the composite relation
matrix M (n, A).

D. Impossibility Results

In this section, we give some theoretical results highlight-
ing the need for including an extra step size A. Consider the
case where we set A = 1 in Equation (3c), thus removing
the lazy update, so that

zilk + 1] = Iy (z;[k + 1] — ny; [k +1]) .

We will establish that with this update rule, it is not
possible to bound the term ||x[k + 1] — x[k]|| such that

[x[k + 1] — x[k]|| < e1(n) [Ix[k] — x|,
+ ca(n) D(x[K], ¢r) + c3(n)S(y[k], 7x),

where lim, ,oci(n) = 0 for every configuration of the
problem. The term x[k + 1] — x[k] is essential for the
analysis of the gradient tracking error since it is directly
related to the term V f;(z;[k + 1]) — V f;(x;[k]) by both
the L-smoothness and strong convexity. The following result
shows that we cannot control the error contribution coming
from this term by the optimality error by simply decreasing
the step size. This problem persist even when the system
consists of a single agent with perfect gradient knowledge,
as in centralized projected gradient method.

Lemma 9: Assume that the function f(z) : R? — R is
u-strongly convex and its gradient V f(z) is L-Lipschitz
continuous. Moreover, assume that the constraint set X C R
is convex and closed. Consider the sequence {z[k]}°,
generated by the centralized projected gradient method:

zlk 4+ 1] =y (z[k + 1] — nV f(x[k])), (11)
for some x[0] € R?. Suppose that there exist a coefficient
¢(n) that depends on 7 such that for all £ > 0 we have

[k +1] — z[k]|| < c(n) lz[k] — 27, (12)
where x* is the unique minimizer of f(x) over the set X.
Then, there exists a function f and a constraint set X where
¢(n) > b where b > 0 for any z[0] € X'\ {z*} and any ¢(n)
with n > 0.
Proof: We prove this result by constructing an example.
Let f(z) = £z? and X = {z € R | 2 > 1}. Then, the
function f is strongly convex with L-Lipschitz continuous
gradients and the set X is closed and convex. Notice that the
update rule in this example is 2[k+1] = Iy ((1 — nL)z[k])
since Vf(x) = Lx. Let ¢(n) satisfy Equation (12). Let the
initial point z[0] € X \ {z*}. We split the proof into two

cases. First, assume that n > % Hence, we have z[1] =

Iy ((1 —nL)z[0]) = 1 = a™*. Then,

[(1) = [0][| < e(n) [|2[0] — =]
l* = z[0]]] < e(n) [|«[0] — 2™ -

Hence, we have 1 < ¢(n). Since Equation (13) should hold
for any k£ > 0, it must be that ¢(n) > 1 for any c(n).

Next, we consider the case where 0 < n < % Define the
set Cy = {z € R |1 < < y= 7} Forany z[k] € Cy,
we have (1 —nL)z[k] < 1 since x[k] < =7. Therefore,
x[k + 1] = 2*. Then, using similar steps to the proof with
n> % we have ¢(n) > 1. The only remaining part is to show
that for any z[0] € X\ {z*}, there exists an z[k] € C,. When
z[0] € C,, this is true trivially. Assume that z[0] ¢ C,), i.e.,
x[k] > ﬁ First, notice that for any z[k] ¢ C,, z[k+1] >
1. We know that x[k] should converge to «* = 1 since the
iterates follow the projected gradient update rule with n < %
[20, Chapter 7.2]. Then, there must be an z[k| € C,,, which
completes the proof. []

Remark 1: Let Assumptions 1-5 hold. Let there be a
single agent in the system, i.e., n = 1. Then, if A = 1, the
Projected Push-Pull algorithm in Equation (3) is equivalent to
the centralized projected gradient descent given in Lemma 9.
Therefore, the impossibility results that we have shown for
the projected gradient method also apply to the Projected
Push-Pull algorithm.

Corollary 1: Let Assumptions 1-5 hold true. Assume that
the agents follow the Projected Push-Pull algorithm given in
Equation (3) with A =1 and n > 0. Suppose that there exist
coefficients ¢1(n), c2(n), and c3(n) that depend on 71 such
that for all £ > 0 we have

|2k + 1] — z[K]|| < c1(n) [[x[k] — x4, (13)
+ ca(n) D(x[k], ¢r) + c3(n)S(y[k], 7k)-

Then, there exist functions f;, a constraint set X', and initial
points z;[0] where ¢1(n) > b where b > 0 for any ¢1 ().
Proof: Choose f;(z) = f;(x) for all i, j € V. Consider

a fully connected graph with [Ri];; = [Cyli; = + for
all ,7 € V and for all £ > 0. Let each agent initialize
the algorithm from the same point, ie., z;[0] = x;[0]

for all 4,7 € V. Then, the Projected Push-Pull algorithm
is equivalent to following a centralized projected gradient
descent for all agents. Moreover, we have D(x[k], ¢r) = 0
and S(y[k],7r) = 0. Then, by Lemma 9, we know that
there exist a function f;(z) and a constraint set X such that
c1(n) > b where b > 0 for any c¢;(n) with n > 0. [|
Hence, we have established that we cannot fully control the
bound on the term ||x[k + 1] — x[k]|| by simply changing
the step size 1. This term has to arise in our analysis due to
the definition of gradient tracking, which poses an important
challenge to analyzing gradient tracking algorithms using
projections. However, this problem does not happen when
X =R, ie., when the problem is unconstrained. The main
challenge in the constrained case is that the gradient at z*
is typically non-zero, and therefore, we reach a pathological
case where the agents do not slow down as they reach the

2087

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

optimal point. In the unconstrained case, as the agents reach
the optimum, gradient also slows down since it vanishes.

In a similar fashion to Corollary 1, we have a fundamental
limitation in the analysis of the consensus error when A = 1
in the algorithm. The following result shows this limitation.

Lemma 10: Let Assumptions 1-5 hold true. Assume that
n = 2, i.e. there are two agents in the system. Let the
agents follow the Projected Push-Pull algorithm given in
Equation (3) with A = 1 and 1 > 0. Suppose that there
exist coefficients c¢;1(n), ca(n), and c3(n) that depend on 7
such that for all £ > 0 we have

Dxlk+ 1], éx) < ex(n) [x[K] — %7, (14)
+ o (m)D(x[K], é1) + ea(n) S(y[k], 7).

Then, there exist functions f;, fo, a constraint set X, and
initial points x1[0], z2[0] such that lim,_ .o ¢1(n) # 0 for any
c1(n).

Proof: Let f(z) = La? = Y2 fi(zx) where
filz) = mL2? and fo(z) = mLa? Let X = {z € R|
x > 1} be the closed and convex constraint set. Without
loss of generality, assume Ry = R and Cj = C for all
k. Furthermore, assume that R is doubly stochastic and C
is a column stochastic matrix with the right eigenvector
7w such that Cm = w with m; > mo. Let n € R with
0 < n < L+r2 be arbitrary. Also, construct the initial
conditions as z1[0] = xz2[0] = Wle Then, clearly,
D(x[0],¢) = S(y[0],) = 0. So, it must be that

D(x[1], ¢) < cx(n) [Ix[0] — x|, -

By construction, we have that ||x[0] — x*|| 6 = nLmy

1—-nL
D(x[1],¢) = % 122L (w1 — 7). Then, we must have

and

0< \%nL(ﬂ'l —79) < ¢1(n)nLm
1 uw)
0< 5172 < ealo)

which means that lim, ,oci() # 0 as the relation above
holds for any 7 in the range 0 < n < L%Tz []
Essentially, Corollary 1 and Lemma 10 show that no matter
how we bound the error terms, we cannot gain full control
over the non-diagonal entries of the composite relation
matrix M(n, \), with A = 1. These entries are essential in
controlling the spectral radius of M (7, 1), and guaranteeing
convergence. However, being able to choose a A in range
(0, 1] gives us more flexibility.

VII. NUMERICAL STUDIES

In this section, we empirically demonstrate the conver-
gence of our algorithm on a sample optimization problem
and also investigate the effect of the graph properties and
mixing times of matrices Ry and Cj on convergence.

A. Convergence of Protocol on Time Varying Communica-
tion Networks

Optimization Problem: We have n = 50 agents. Agent ¢
has objective function (z; — z$)T P;(z; — z$) where z¢ € RY

is the center of the quadratic and the matrix P; € R?*9 is
positive definite with u/ < P; = LI for some u and L.
Hence, the global objective is > . (x; —)T P;(z; — z§).

For this experiment, we set d = 2 and sample the
coordinates of z§ from the uniform distribution U[—2, 8] in-
dependently for each ¢. Similarly, we set P; to be diagonal for
each 7, and sample each entry in the diagonal independently
from U[0, 1]. Notice that the objectives are strongly convex
and smooth. We set X = B((6,6), 2), the closed ball around
(6,6) with radius 2. This setup is likely to result in a optimal
point z* in the boundary of X, which helps us demonstrate
the effectiveness of our algorithm when V f(z*) # 0, in
contrast with the unconstrained setting.

Communication graphs: We construct the time-varying
graphs by iterating over the sequence of graphs {G1,...,Gr}
where T' = 5. That is, Gr, = G(x—1 mod 7)+1- We generate
G; independently for each i € [T as follows. For all j,1 € V
we add the edge (j,1) to & with probability p = 0.1. We
regenerate the graph if it is not strongly connected.

Mixing matrices R; and Cj: Let N/"[k] and N?PUt[K]
denote the in/out neighborhoods of agent ¢ at time k respec-
tively. That is, j € Ni"[k] if and only if (j,i) € & and
J € N2t k] if and only if (i,7) € &. Agent i sets the i’th
row of Ry and the 7’th column of C}, as follows:

if j € NI"k] or j =i

1
[Ry)i; = { W 7
0 otherwise

), { TSNP R or =i
" 0 otherwise

Optimization parameters: We set n = 0.5, A = 0.7. We
initialize x;[0] by sampling each coordinate from 0, 10]
and projecting onto X.

We plot the error terms' in Figure 1. As we can see in
Figure 1, all of the error goes to 0 with geometric (linear)
rate. The convergence rates (slopes) of all the terms are
similar, which highlights the interdependence of these errors.

B. Effect of Graph Type on Convergence

Because the contraction of matrices Ry, and C}, are related
to the communication graph as given in Lemma 3 and
Lemma 4, graph type will affect the convergence rate of
our algorithm. Therefore, we investigate the effect of graph
type on the convergence rate. In this section, we set n = 15
and T = 1 (static graphs) but otherwise use the same setup
for the objective function and constraint set as the previous
section. We generate three different graph types as follows:
1) Random: Same as described in the previous section. 2)
Cyclic: We have (i,i +1) € £ fori = 1,...,n — 1 and
(n,1) € £. 3) Unbalanced: Graph where certain nodes have
very high in-degrees and low out-degrees and vice versa.

We set Ry, and Cj to be compatible for each graph as
described in the previous section. We fix n = 0.5 for all

'One minor difference between these error terms and the ones used in
the analysis is that we cannot compute the sequence {¢x} as used in the
analysis. Therefore, we choose ¢ = %1 for all k. We initialize mg = -1
and let mp 1 = Cimg.

2088

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

2 —— Optimality Error: lIx[k] - x"ll,
Consensus Error: D(x[K]. ¢)

0+ —— Gradient Tracking Error: S(y[k], =)
v
©
3
o
o
T -4
o
.
.
wo_g

_8 4

0 10 20 30 40 50
Number of Iterations
Fig. 1. Optimality, consensus, and gradient tracking errors vs. number of

iterations on a log-scale. The errors converge to 0 as geometric (linear) rate
with similar convergence rates.

0 —— Random
Cyclic
—— Unbalanced

Optimality error (log-scale)
|
B

-8 -

0 20 40 60 80 100
Number of Iterations

Fig. 2. Optimality error ||x[k] — x*[|, vs. number of iterations k on
a log-scale for different graph types. Even though the error converges
to 0 geometrically for all graphs, unbalanced and random graphs have a
much higher convergence rate compared to cyclic graphs, which are slowly
mixing.

graphs, and for each graph, we choose A to be the largest
value that allows convergence. Specifically, the random graph
requires A = 0.15, the unbalanced graph requires A = 0.3,
and the cyclic graph requires A = 0.6 to have convergence.
The comparison of the convergence rate between these
graphs is shown in Figure 2. We see that the random and
unbalanced graphs have a faster convergence due to having
higher-connectivity.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce the Projected Push-Pull algo-
rithm, which combines gradient tracking and projected gra-
dient method to address distributed constrained optimization
problems on time-varying directed graphs. We prove that our
algorithm achieves geometric convergence with sufficiently
small step sizes. We derive explicit bounds for the step
sizes based on the characteristics of the cost functions and
the communication graph. Moreover, we provide additional
theoretical results showing that having a non-zero gradient
at the optimal point in constrained problems poses additional
challenges in the analysis of gradient tracking methods

employing projection. Finally, we demonstrate the geometric
convergence of our algorithm via numerical studies over
various graph types. An interesting direction for future work
is the incorporation of random and adversarial noise.

REFERENCES

[1] A. Nedi¢ and J. Liu, “Distributed optimization for control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1,
pp. 77-103, 2018.

[2] G. Carnevale, A. Camisa, and G. Notarstefano, “Distributed online
aggregative optimization for dynamic multirobot coordination,” IEEE
Transactions on Automatic Control, vol. 68, no. 6, pp. 3736-3743,
2023.

[3] S. S. Ram, V. V. Veeravalli, and A. Nedi¢, “Distributed and recursive
parameter estimation in parametrized linear state-space models,” IEEE
Transactions on Automatic Control, vol. 55, no. 2, pp. 488—492, 2010.

[4] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” in 2016 IEEE 55th Conference on Decision and Control
(CDC), 2016, pp. 159-166.

[5] ——, “Harnessing smoothness to accelerate distributed optimization,”
IEEE Transactions on Control of Network Systems, vol. 5, no. 3, pp.
1245-1260, 2018.

[6] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient

methods for multi-agent optimization under uncoordinated constant

stepsizes,” in 2015 54th IEEE Conference on Decision and Control

(CDC). IEEE, 2015, pp. 2055-2060.

A. Nedi¢, A. Olshevsky, and W. Shi, “Achieving geometric conver-

gence for distributed optimization over time-varying graphs,” SIAM

Journal on Optimization, vol. 27, no. 4, pp. 2597-2633, 2017.

[8] C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, “Linear
convergence in optimization over directed graphs with row-stochastic
matrices,” IEEE Transactions on Automatic Control, vol. 63, no. 10,
pp. 3558-3565, 2018.

[9]1 R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Systems
Letters, vol. 2, no. 3, pp. 315-320, 2018.

[10] S. Pu, W. Shi, J. Xu, and A. Nedi¢, “Push—pull gradient methods for
distributed optimization in networks,” IEEE Transactions on Automatic
Control, vol. 66, no. 1, pp. 1-16, 2021.

[11] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization
over time-varying directed graphs with row and column-stochastic
matrices,” IEEE Transactions on Automatic Control, vol. 65, no. 11,
pp. 4769-4780, 2020.

[12] A. Nedi¢, D. T. A. Nguyen, and D. T. Nguyen, “AB/push-pull method
for distributed optimization in time-varying directed networks,” arXiv
preprint arXiv:2209.06974, 2022.

[13] H. Liu, W. Yu, and G. Chen, “Discrete-time algorithms for distributed
constrained convex optimization with linear convergence rates,” IEEE
Transactions on Cybernetics, vol. 52, no. 6, pp. 4874-4885, 2020.

[14] M. Luan, G. Wen, H. Liu, T. Huang, G. Chen, and W. Yu, “Distributed
discrete-time convex optimization with closed convex set constraints:
Linearly convergent algorithm design,” IEEE Transactions on Cyber-
netics, pp. 1-13, 2023.

[15] X. Meng, Q. Liu, and J. Xiong, “An accelerated gradient tracking
algorithm with projection error for distributed optimization,” in 2023
15th International Conference on Advanced Computational Intelli-
gence (ICACI), 2023, pp. 1-6.

[16] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimiza-
tion over time-varying digraphs,” Mathematical Programming, vol.
176, pp. 497-544, 2019.

[17] Y. Sun, G. Scutari, and A. Daneshmand, “Distributed optimization
based on gradient tracking revisited: Enhancing convergence rate via
surrogation,” SIAM Journal on Optimization, vol. 32, no. 2, pp. 354—
385, 2022.

[18] D.T. A. Nguyen, D. T. Nguyen, and A. Nedi¢, “Distributed nash equi-
librium seeking over time-varying directed communication networks,”
arXiv preprint arXiv:2201.02323, 2022.

[19] O. E. Akgiin, A. K. Dayi, S. Gil, and A. Nedi¢, “Projected push-
pull for distributed constrained optimization over time-varying directed
graphs (extended version),” arXiv preprint arXiv:2310.06223, 2023.

[20] B. T. Polyak, Introduction to optimization. New York, Optimization
Software,, 1987.

[7

—

2089

Authorized licensed use limited to: Arizona State University. Downloaded on May 24,2025 at 02:05:28 UTC from IEEE Xplore. Restrictions apply.

