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Abstract. We present a formula for the signed area of a spherical polygon via prequantization. In contrast to
the traditional formula based on the Gauss—Bonnet theorem that requires measuring angles, the new
formula mimics Green’s theorem and is applicable to a wider range of degenerate spherical curves
and polygons.
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1. Introduction. A spherical polygon is a finite number of ordered points on S? connected
by geodesics. Computing the solid angle of the region enclosed by a spherical polygon is
important in many subjects, which we briefly summarize at the end of this section.

For a given polygon I = (po, ..., pn—1), its surface area is often computed using the formula

(1.1) Area(l) =2 — ) " ¥;,

derived from the Gauss—Bonnet theorem. This area formula involves the evaluation of the
exterior angle ¥; at each vertex

Pi—1 X Pi  Pi X Pit1 )
pi-1 X pil |pi X pit1l)’
which is a function of three points. However, this formula requires nondegeneracy assumptions
about these points that render it unavailable or numerically unstable in certain situations.
For example, two consecutive points of the polygon cannot lie on the same location as the
exterior angle is undefined. We may consider removing such points from the polygon, but
judging precisely whether two points are at the same location or just nearby locations is not
always possible in numerical computation, especially when the points are obtained after some
computational operations.

On the other hand, an area formula for polygons in R? does not have such limitations.
For a polygon I're = ((20,%0)- - - -, (Tn—-1,Yn—1)), the area is

(1.2) 9¥; = sign (det(p;—1, pi, pi+1)) arccos (
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SPHERICAL AREA VIA PREQUANTIZATION 783

Figure 1. A planimeter measures the area of a planar region by tracing and accumulating quantities along
its perimeter.

(1.3) Area(Tge) = Z %(miﬂyi — TiYit1)-
(2

Unlike the classical formula for spherical polygons (1.1), (1.2), this planar area formula
involves adding numerically stable edge quantities. This formula can be derived by converting
the area integral over the region into a line integral along the polygon curve using Green’s
formula. This is the same technique that enables planimeters (Figure 1). The key that allows
Green’s formula is that the area form of R? is an exact differential form. Unfortunately, this
strategy does not work directly for spherical polygons as the area form of S? is not exact.

We circumvent this issue in this work via so-called prequantization, which is a preliminary
setup to transform a classical mechanical system into a quantum mechanical system [4]. We
lift the area form of the sphere onto a space where the resulting 2-form is exact. More precisely,
we utilize a prequantum bundle, which is a principal circle bundle where the lifted 2-form is
exact. This gives rise to a version of Green’s theorem that translates the area integral on the
base manifold into a line integral along a lifted perimeter in the bundle.

By choosing a specific prequantum bundle over S?, we can obtain an explicit expression of
the line integral. We use the Hopf fibration 7 :S* — S? with a specific connection 1-form and
derive a formula for the area of a spherical polygon. Unlike the classical formula (1.1), the
new formula does not involve numerically unstable evaluation of angles of three consecutive
vertices. Instead, it only involves a sum of edgewise measurement resembling (1.3). We also
recover the classical formula (1.1) by choosing SO(3) as the prequantum bundle with a specific
lift of the polygon. Finally, we present numerical examples comparing our formula and the
classical formula.

Relation to quantum mechanics. Our formula for the spherical area via prequantization is
similar to evaluating the Berry phase for a quantum mechanical system. In this analogy, the
points on S? (or any prequantum circle bundle) represent the possible quantum states of a
spinor (or two qubits), while their projections on S? are their classical representations on the
Bloch sphere [5].

Applications and computations of solid angles. Computing the area, or solid angle, of a
spherical region occurs in multiple disciplines. They are either analytically computed by the
angle-based formula (1.1), (1.2) [6], or approximated by point counting [11, 13] and Monte-
Carlo methods [3]. A standard routine in geological survey is to find the area of an irregularly
shaped region on the nearly-spherical earth [6, 13]. In quantum mechanics, the solid angle of a
spherical curve generated by a Brownian motion of a particle describes the phase of two-state
quantum systems undergoing random evolution [23, 19]. The so-called Majorana representa-
tion of polarized light also involves the solid angle of certain spherical quadrilaterals [14].
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Solid angles give rise to another geometric concept, the solid angle field of a space curve.
Given a space curve in R3, the solid angle field is an S'-valued function over R? whose value
at each point x € R3 is half of the solid angle subtended by the closed curve at x. In contact
geometry, a so-called open-book decomposition can be constructed by the solid angle field,
with the level sets of the S'-valued solid angle field being the pages and the space curve being
the binder [12]. Each page can also serve as a Seifert surface, an oriented surface bordered
by a given knot [10, 7]. Solid angle fields also play important roles in fluid dynamics and
electrodynamics, as the gradients of the solid angle fields are the Biot-Savart fields of space
curves [24, pp. 118], which represent the magnetic fields induced by electric currents, and
the velocity fields corresponding to given vortex filaments. In addition, solid angle fields
are applied to constructing implicit representations for space curves for simulating vortex
dynamics [15], visualization of nematic dislinations in electromagnetism [7]|, and radiosity
illumination in rendering [25].

2. Area of a spherical polygon. We begin with the problem of seeking a line integral
formula for the areas of spherical polygons. Next, we introduce the notion of prequantum
bundles. While we only use the essential properties of this notion in a self-contained manner,
the readers may find backgrounds in principal bundles [21, 17] and geometric quantization
[4, 18] useful. Finally, we derive a line integral formula for spherical areas via prequantization
and apply it to spherical polygons.

An oriented spherical polygon I' is a finite cyclic ordered list of spherical points I' =
(Po,--+sPn1), pi €S?, i € Zy, = 7./ (nZ). Each edge, i.e., each pair of adjacent points (p;,pi+1),
i € Zy, (including (pnp—1,po) using the modulo arithmetic of i € Z,,), is joined by the shortest
connecting path on S?2. This edge path is a constant point when p; = p; 41, and is otherwise
a part of the great circle containing p;, p;+1. To ensure uniqueness of the shortest edge path,
we assume that p;+1 # —p; for each i € Z,,, which does not take away generality as one may
add intermediate points if the polygon contains any antipodal edge.

By concatenating all the edge paths, the spherical polygon I' is naturally associated with
a continuous closed path Cr : S' — S2. Let Sr : D> — S? be any smooth extension' of
Cr : S' = 0D? — S? to the unit disk D?. We call St the enclosed region of the spherical
polygon I', which is unique up to an integer number of full wrappings around the entire
sphere. Define the signed area of I' as the total signed area of Sr, which is well-defined
modulo 47

(2.1) Area(T") := //SFUZ/DZ Sto € R/(4nZ).

Here S} denotes the pullback via Sr, and o € Q2(S?) is the standard area form of the unit
sphere S? C R? induced by the Euclidean metric. The area form ¢ can be explicitly written
as 0 =sinfdf A d¢ using a spherical coordinate chart, or as o = (xdy A dz + ydz A dz + zdx A
dy)/(x? + y? + 22)%/? |g» using the Cartesian coordinates in R®. This definition is valid for
self-intersecting polygons (see Figure 2) and degenerate polygons which may contain edges of
zero lengths or consecutive edges that fold back onto each other.

LA smooth extension St : D? — S? exists for any smoothly parameterized path Cr : S! — S?. A smooth path
Cr can be constructed by concatenating smooth parameterizations of the great circular edges with vanishing
derivatives 0 = 9;Cr = Bpr = ... at the vertices.
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Figure 2. Examples of spherical polygons. Left: the two regions with different colors contribute positively
or negatively to the signed area. Right: the darker region contributes to the signed area twice.

2.1. Areas as line integrals. Our goal is to find a numerically robust formula for (2.1) in
terms of the vertex positions I' = (po, ..., pn—1). More precisely, an ideal area formula we look
for is a line integral “Area(I") = fCr o” for some smooth differential 1-form «, analogous to
Green’s theorem in the plane. The reason for this desire goes as follows. Once (2.1) becomes
a line integral along the polygonal curve, we can derive the formula for Area(I") by summing
the explicit integrals of a along the great circular arc of each edge. Such a line-integral-based
formula would be applicable to degenerate cases: The angles between consecutive edges would
never appear in the formula; the line integral of a smooth 1-form along an edge shrinks to
zero gracefully if the edge length shrinks to zero.

Such a line integral formula “Area(T") = §Cr «” appears to rely on the exactness of o,
which is the existence of a smooth 1-form « so that da = 0. If o exists, then by Stokes’
theorem Area(I") = ffSr o= ffSr do = fCr «a. However, the spherical area form o is not exact.
Fortunately, and perhaps surprisingly, a line integral formula does not require the exactness
of o as described below.

Definition 2.1 (prequantum bundle). Let B € Q*(X) be a closed 2-form on a manifold .
A prequantum bundle over (X,0) is a principal circle bundle m : Q — ¥ equipped with an
equivariant 1-form a € QY (Q) with da = 7* 3.

Intuitively, a principal circle bundle @ over the base manifold ¥ is a (dim(X) + 1)-
dimensional space where a circle is attached to each point of ¥. The equivariance of a € Q!(Q)
means that « is invariant under a uniform rotation in the circle dimension.

Remark 2.2. In a classical definition for a prequantum bundle, « is a connection 1-form,
which has an additional requirement that a(V) =1 where V is the generator of the rotation
action. In general, every compact symplectic manifold (X, 5) admits a principal circle bundle
(Q,a) with a connection 1-form « satisfying da = 7*3 upon a rescaling of 8 so that /2w €
Hy(3,Z) [8, Theorem 3], [16, Proposition 9].

Proposition 2.3 (lifted Green's theorem). Let 7: (Q,a) — (X,5) be a prequantum bundle.
For each surface S:D? = %, consider an arbitrary lift S:D? - @, 10S=S. Then

//sﬂ:féga'

Proof. $yza= [[gda= [[smf=[[58=[]s5- =
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The lifted Green’s theorem enables line integral formula for the area of a spherical curve.
Suppose we have a prequantum bundle 7 : (Q, a) — ($2,0) over the sphere S2. For each closed
curve Cr on S?, construct an arbitrary lift Cr:S' — @, 7o Cr = Cr. Then

(2.2) Area(I) :7{ a  mod 4.
Cr

Remark 2.4. While all the examples we provide in this article are prequantum bundles,
for Proposition 2.3 we need only any smooth map 7: @ — ¥ and o € Q1(Q) that satisfies
da = 7" and has a general liftability of a topological disk S to S. In particular, we do not
need 7 to be a circle bundle or « to be equivariant.

2.2. The Hopf fibration. The Hopf fibration 7 : S* — S? is a prequntum bundle over
S2. We provide its explicit expressions in the quaternion coordinate H = {zi + yj + zk +
w| (z,y,z,w) € R*}. Using the quaternion coordiantes ¢ :S® < H=R* and p:S? « ImH =
R3, Hopf’s bundle projection is given by

(2.3) 82 =8 () :=1g

Note that 7 is a principal circle bundle with action <: St x 83— S3, (Qe_w)q :=e 19 For g
and ¢’ := 1% on a same fiber, we write arg(¢'q) = 6.
The 1-form a € Q(S3) for the prequantization is expressed as

(2.4) a=2Re(igdq) = —2Re(dgql) = 2Re(dqig) = —2Re(qidg).

The 1-form /2 is a connection form as it is equivariant under S! actions: (<e!?)*a = a and
30(lo=o(<e7)q) = 1.

Proposition 2.5. The 1-form a € Q1(S?) defined in (2.4) and the map 7:S® — S? defined in
(2.3) satisfy da = *o, where o € Q%(S?) is the standard area form on the unit sphere. That
is, (S, a) is a prequantum bundle over (S?,c).

This result is known (see [5], [9, Theorem 1]), but we give a proof in Appendix A for

completeness. With this setting, Proposition 2.3 is now written more concretely for a spherical
polygon.

Corollary 2.6. The area Area(T") of a spherical polygon T'={p;}; can be evaluated by a line
integral

(2.5) Area(T") = /~ a mod 4,
zi: Cr([ti;tit1])

where o is given by (2.4) and CN'[‘ is an arbitrary lift ér : St — S3 of the polygon curve
Cr=moCr:S' = S? with Cr(t;) = p; for each i.

3. The area formula via the Hopf fibration. In this section, we obtain an explicit formula
by evaluating each piece of the line integral in (2.5) along a great circular arc lifted onto S3.
We first define dihedral for a pair of spherical points.
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Definition 3.1. For each p,p’ € S?, p# —p/, define

1+ (p,p/ x
(pp>Jr pXp

eS? CH,
2 2+2(p,p')

(3.1) Dihedral(p,p') :=

which is the unit quaternion that represents the minimal rotation that rotates p to p’, i.e.,
rpr =p', r = Dihedral(p,p’).

There is a unique (unnormalized) rotation azis v € T1S?*(=ImH) for the minimal rotation
for nonantipodal p,p’ € S?. This axis v is parallel to p x p’ and Dihedral(p,p’) = ez by the
exponential map on S3. We also note that any ¢ € 7~ 'p, the point Dihedral(p,p’)q, is on
Ty,

We will see that each summand in (2.5) can be explicitly expressed in terms of the dihedral
after recognizing how the dihedral represents the horizontal lift over a great circular arc.

Proposition 3.2 (horizontal lift on (S®, «)). Consider the Hopf fibration 7 : (S, a) — (S?, o)
described in section 2.2. Let po,py be two arbitrary nonantipodal points on S?, let v :[0,1] — S?
be the great circular arc joining po and p1, and let v € TyS? be the imaginary quaternion such
that ez = Dihedral(pg,p1). Then for each given point q € ™ 1pg, the horizontal lift ¥y of v
with i (0) = q is given by

vt

Yu(t)=e€z2q.

Proof. Tt follows from ~(t) = e poe_v?t that 4z is a lift over v with respect to . We now
show that 7 is horizontal. At each ¢ € S?, the tangent space and the horizontal subspace with
respect to the connection 1-form /2 are T,S® = Span(qi, ¢J, ¢k) and H,S* = Span(q], ¢k),
respectively. We have for each ¢ that

@3t = e
dt’}/H —26 vq.

Here we note that the conjugation h — ghgq is an isometry in Im(H), from which it follows
that v € ¢(H,S?)q as

0= (v,p) =(q(qvq)q, ¢iq).

Therefore, e vq is horizontal. |

Lemma 3.3. Assume 7: (S®,a) — (S2,0), po,p1 €S?, and v:[0,1] = S? as in Proposition
3.2. Then for any lift 7:[0,1] — S* of , the line integral fﬁa s explicitly given by

(3.2) [ a = 2arg(qy Dihedral(po, p1)qo),
5y

where qo:=5(0), q1 :=7(1).
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Proof. Proposition 3.2 asserts that gy € 7~ 'pg and qp := Dihedral(pg, p1)qo € 7 'p; are
connected by the unique horizontal lift 7z. Let us consider a parametric surface A C S3 given
by

A=q{Fn(t)e? eS|t e 0,1],0 € [0,0] },

where 6, for each t is the angular difference 6, := arg(5(¢)yx(t))). We first obtain that

| o= [ da= [ xa=o
as 7(A) = ([0, 1)),

Note that the boundary OA is a closed path consisting of three segments: (I). the lifted
path 4 from qo to ¢i; (II). the vertical path {qie!’ | § € [0,61]} from ¢ to qg; (III). the
horizontal lift 47 from gz to qg. Since the integral of o along the third path makes no
contribution, we have

0
/a =— « :/ Q :/ «a (d(Qe_w)m) dé
5 {qei? | 0€[0,60:]} {gre=1¢ | 0€[-0,,0]} —o, \d¢
0

_ / 2d0 =2 arg (q1qn)
791

which concludes the proof. |
As a direct result of Corollary 2.6 and Lemma 3.3, we obtain our main theorem.

Theorem 3.4 (area formula via the Hopf fibration). Let ' = (po, ..., pn_1),p: € S?,i € Z,, be
a spherical polygon. For each i € Zy,, pick an arbitrary lift q; €S, i.e., w(q;) = p;. Then,

n—1

(3.3) Area(I') =2 Z arg(q;+1 Dihedral(p;, pi+1)g;) mod 4.
=0

The formula requires an arbitrary lift ¢; € S* of the vertex positions p; € S? for i € Z,. An
example is

Dihedral(i, p; i, 1) >0,
(3.4) Qi:{ ihedral(i,p;), — (pi,1) >

Dihedral(—1,p;)§, (ps,1) <0,

which is uniquely defined globally.
As a special case of Theorem 3.4, choosing the horizontal lift results in no contribution of
« except for the endpoint of the polygon.

Corollary 3.5 (area formula by the horizontal lift). Let qo be a point in the fiber 7 1pg, and
let us inductively define g;t+1 := Dihedral(p;, pi+1)q; for i=0,...,n—1. Then we have

(3.5) Area(T) =2 arg(qogn)-
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At the end of the section, we make a remark regarding the numerical stability of the formula
(3.3).

Remark 3.6. The branching discontinuities in the “arg” function in (3.3) and the “if”
statement in (3.4) are smooth in the mod- 47 arithmetic of (3.3). The only calculation that
can be numerically unstable is the evaluation of the Dihedral function when the two arguments
are close to antipodal. This antipodal dihedral evaluation is avoided by the choice (3.4). The
entire evaluation of our area formula (3.3) with (3.4) is numerically stable as long as we do
not have antipodal edges where (p;,p;+1) &~ —1, which is easily preventable by inserting a
midpoint to any close-to-antipodal edge.

4. Derivation of the classical formula by SO (3) as a prequantum bundle. The Hopf
fibration structure can also be seen in the group SO(3) of three-dimensional (3D) rotations.
In fact, the classical formula (1.1) can be interpreted as a special case of the lifted Green’s
theorem on SO(3) using a specific lift not as numerically stable as our formula (Theorem 3.4)
using either the lift (3.4) or the horizontal lift (Corollary 3.5). We see that SO(3) as the unit
tangent bundle over S? is also a prequantum bundle with a specific connection form. As S? is
a double cover of SO(3), the Hopf fibration 7 :S? — S? has a decomposition 7 = 75 0 71 given
by

(4.1) w1 S* = S0(3)

q— (q¢iq,qiq, qkq),
and
(4.2) 79 :S0(3) — S?

(p1,p2,p3) = D1,

where each element of SO(3) is represented by three column vectors.
The tangent space TpSO(3) at each P € SO(3) is dLpso(3) = {PW|WT=-W}. We

0 —W3 ()
identify each W = | ws 0" —w; | € s0(3) with w = (w1, wa,w3) € R3. We define a
—wW2 w1
1-form n by
(4.3) nlp(PW):= —wy.

Then (ma,n) is a principal circle bundle with S! action <i:S! x SO(3) — SO(3), by (<el?)P =
1 0 0
Pl 0 cosf —sinf |.
0 sinf cosé
Proposition 4.1. The 1-form n € QY(SO(3)) defined in (4.3) and the map ma: SO(3) — S?
defined in (4.2) satisfy dn = wio, where o € Q2(S?) is the standard area form on the unit
sphere. That is, (SO(3),n) is a prequantum bundle over (S%, o).

We give a proof in Appendix A. To recover the classical formula via 72 : (SO(3),n) —
(S?,0), we define a lift as follows. We take for each p; the forward velocity from p; to p; 41 on
S2. Tt is given at p; =:y(t;) by

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/23/25 to 75.83.25.91 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

790 ALBERT CHERN AND SADASHIGE ISHIDA

(pi) = lim v(ti +h) —v(t:)

eT,S?
h—+0 h pi=

which is a positive multiple of —p; x (p; X pi+1). Then

5(L) = <pi, v(pi) v(pi) )

o)l To(po)]

defines a lift 7 :S! — SO(3) of 7. For 7, we have

(4.4) / 1=-30

with the exterior angles 9; given in (1.2). One has to be cautious when drawing conclusion from
(4.4) about the area formula using Proposition 2.3. In fact, Area(I") =27 + f& n=2m—Y Y
noting the extra term of 27 (cf. (1.1)). This is because ¥ is a noncontractible loop in SO(3)
which is not the boundary of a disk. To obtain the classical formula (1.1), lift 5 : S' — SO(3) to
4:St — S3 by the universal cover 7 : S* — SO(3). Note that o = 7}n, and that 4(0) = 4(2~)
and lim; »o- 4(t) has an angle difference of 7 in the fiber 71(+(0)).

The classical formula has a variant that locates a pole Z € S? and sums up the signed area
of triangles (p;, pi+1,Z). This formula is given as

(4.5) Area(T") = Z sign (det(p;, pi+1, Z)) UnsignedArea(p;, pi+1,Z),

1

where the unsigned area of each spherical triangle (zg,x1,z2) is computed as

(4.6) UnsignedArea(xg, z1,22) = —7 + Z arccos (

Ti—1 X Ty  Tj X Tip1 )
i€Zs

|[Zi—1 X i ' |z; X Tit1]

This formula can also be recovered by the Hopf fibration. Setting the lift ¢; := Dihedral(Z, p;)
for each p;, we obtain (4.5). Numerically, this formula is unstable if any of the vertices is close

to Z or —Z, which is explained by the numerical sensitivity of Dihedral(Z,p;) and %.

5. Numerical examples. In this section, we present numerical examples of area compu-
tation for spherical polygons using our formula (3.3). Moreover, we demonstrate how this
formula can also be utilized to determine the total torsion of a space curve, which differs from
27 exactly by the enclosed area of the spherical curve traced out by the tangents of the curve.
By comparing the results obtained using both our formula and the classical formula (1.1), we
show that our formula produces consistent and converging solutions, even for singular curves.
This improved numerical robustness allows for more accurate measurements of spherical areas
and total torsion.

We employ the horizontal lift approach (Corollary 3.5) for computation in all of our
examples. For a given closed spherical curve v : [0,27) — S?, we use a uniform division

2riyn—1 n

i — ———1._n O € 1mterva. , 4T O Speciry € vertices i) fi—n WI some positive
t miyn- 1 of the interval [0,27) t ify the vertices {v(t;)}1"y with iti

integer n. This process turns the spherical curve into a spherical polygon.
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Figure 3. Cardioid (left) stereographically projected on the sphere (right).

5.1. Spherical cardioid. We compute the area of a spherical curve - given by the stereo-
graphic projection image v = Po~g: of a planar cardioid yg= (Figure 3). Explicitly, the planar
cardioid is parametrically given by

yr2(t) = (2(1 — cos(t)) cos(t),2(1 — cos(t)) sin(t)) ,

and the stereographic projection from the plane to the sphere is

P:(z,y)— (2x,2y,x2+y2—1).

1
2+y?+1
We compute the area with various numbers n of vertices using our formula and the classical
formula (1.1), (1.2). Figure 4 (left) shows their numerical results. Note that this spherical
cardioid has a cusp, i.e., 9yy changes sign at t =0. As the polygon refines (n — o0), the edge
lengths adjacent to y(ty) decrease to zero superlinearly, and ggiz:gizg%' . ngﬁgizg& — —1.
These conditions make the classical formula numerically unstable as observed in Figure 4

(left). In contrast, our formula is numerically stable despite the presence of the cusp.

5.2. Total torsions of space curves. Our next examples are about total torsions of closed
space curves. For a space curve v : S! — R3 the total torsion [22, Chap. 1, sect. 5.1]
(equivalently, the total writhe up to a minus sign and a multiple of 27) can be evaluated as

(5.1) Torsion(y) = 27 — Area(y') mod 2,

where Area(y’) is the signed area of the unit velocity map given by 7' = 9;y/|0yy|. This notion
of total torsion also works for a space polygon {~(¢;)};. For a space polygon, the unit velocity
~" is given by the normalized edge vector

oy YEir1) = y(t)
(t:)) = ;
[y (tit1) — (8]
which forms a spherical polygon, whose signed area can be evaluated by our formula. We
compute the total torsions of the figure-eight knot (Figure 5)

v(t) = ((2 + cos(2t)) cos(3t), (2 + cos(2t)) sin(3t), sin(4t)),
and the trefoil knot (Figure 6),
~(t) = (sin(t) 4 2sin(2t), cos(t) — 2 cos(2t), —sin(3t)) .

With sufficiently many vertices, our results converge to numbers that agree with the results
in a previous study [20]: —0.5423 of the figure-eight knot and 2.2250 of the trefoil.
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Cardioid Non-Frenet curve
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Figure 4. Numerical values of the signed areas of spherical curves discretized into spherical polygons with
increasing number of vertices, computed using the classical formula (Gauss—Bonnet) and our formula (Hopf).
Both formulae give consistent values when the number of vertices is small, but the classical formula becomes
unstable as the number of vertices increases. Left: The area enclosed by a spherical cardioid (section 5.1).
Right: The total torsion (2m — Area(v’)) of a non-Frenet space curve (section 5.3).

Figure 6. Trefoil (left) and its unit velocity map (right).

5.3. Total torsion of a non-Frenet curve. In this example we compute the total torsion
of a regular closed space curve with a singular (infinitely oscillatory) Frenet—Serret frame.
Note that the mod-27 total torsion (5.1) and the writhe only require the curve to be regular,
i.e., Oyy(t) # 0. In particular, the curve does not need to possess a regular Frenet torsion.
A smooth regular curve without a regular Frenet—Serret frame is called a non-Frenet curve
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Figure 7. A curve with a spiral Frenet-Serre frame (left), its unit velocity map (middle), and the close-up
view of the spiral (right).

Figure 8. Austria plotted on the sphere.

(see [22, Chap. 1, sect. 5.6] for a detailed discussion). Consider the following example of a
smooth non-Frenet closed space curve

1
N —
’Y(U-m

(e_t/2 cos(e!), e

sin(etl), t’) )

where ¢’ € [—00,00) is a reparametrization of ¢ € [0,27) by ¢’ = tan (!5T). The spherical curve
~" traced out by the unit velocity displays an exponential spiral about ¢ = 7 with an infinite
turning number and an unbounded geodesic curvature (Figure 7). Note that the total Frenet
torsion of « is the total turning angle of the spherical curve ~/, which is divergent. Despite
the divergence of the total Frenet torsion, the mod-27 torsion is well-defined since the area
enclosed by 7/ is bounded.

In this example, it is crucial to avoid the classical angle-based formula (1.1)—(1.2) for
evaluating Area(y’) due to the divergent turning angle in +’. In fact, evaluating the total
torsion using the classical formula is equivalent to sampling and summing the Frenet torsion
(exterior angle of the spherical polygon «'). The process produces a result that diverges as
the number of sample points n — oo (Figure 4 (right)). In contrast, our formula (3.3) is able

to robustly evaluate the total torsion of this non-Frenet curve.

5.4. Area of a region on the earth. The next example applies to geography. We compute
an approximate area of Austria using the data from the Database of Global Administrative
Areas (GADM) [2]. The data contains a sequence of latitudes and longitudes (Figure 8)
forming a spherical polygon. We treat the earth as a round sphere while acknowledging that
we neglect its slight ellipsoidal figure and terrains.

The solid angle value we computed via our formula was 2.06206 x 1072 on the unit sphere.
By multiplying the square of the arithmetic mean radius R:= (2Rg + Rp)/3 ~6,371km [1],
where Rp, Rp are the equatorial and polar radii, we obtain 83,882km?, which is a descent
approximation of the official area 83,871 km? with 0.013% relative error.
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Figure 9. The solid angle field of the Borromean rings visualized on the z =0 plane (left) where each color
corresponds to a value in S*. A levelset of the solid angle field in R® is a Seifert surface (right).

5.5. Solid angle fields and Seifert surfaces. Our last example demonstrates the con-
struction of the solid angle fields of given space curves (section 1). We consider three rec-
tangular loops linked into the topological configuration of Borromean rings (Figure 9). Let
A |_|3 S' — R3 denote this triplet of space polygons. For each point x € R?\ 7, we let
Q(x) be half the solid angle subtended by 4 at x. Explicitly, consider the spherical curves
¥ |_|3 S! — S? given by projecting 7 on the unit sphere centered at x:

X L :Y(S)_X S 3 1
(5.2) ~ (s).——:y — el |'s"

The solid angle field Q:R3\ ¥ — R/(277Z) is defined by

(5.3) Qx) = %Area(’yx).

Note that the projected spherical curve +v* is degenerate for x on any extended tangent
line of 4. Despite this unavoidable degeneracy, our formula robustly handle the solid angle
computation for all x (Figure 9 (left)). By extracting a levelset of the solid angle field, we
construct a smooth Seifert surface (Figure 9 (right)).

Concluding remark and outlook. In this paper, we derived area formulae using Green’s
theorem on prequantum bundles S? and SO(3) over S2. These formulae avoid relying on angle
calculation, unlike the classical formula that fails on degenerate cases. As the prequantum
version of Green’s theorem is available for any compact symplectic manifold (Remrak 2.2), one
may investigate area formulae or integral of symplectic form of polygons in other manifolds.

For example, in quantum information; the complex projective space CP?"~! is regarded
as the space of possible states of n-qubits [5] and a closed path is a periodic orbit. We hope
that finding an explicit expression of its enclosed area (geometric phase) may lead to practical
applications in quantum computation.
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Appendix A. Prequantum bundles S* and SO(3) over SZ.

Proof of Proposition 2.5. In terms of the quaternion coordinate, the area form of S? is
written as

1
o=—3 Re(pIm(dp A dp)).

On the other hand, the differential of m = ¢iq is dm = dqig + ¢idg. Hence, the pullback area
form is computed as

o = —% Re(mIm(dr A dr)) = —% Re(qigIm(dm A drr))
= —% Re(igIm(dm A dm)q) = —% Re(1 Im(gdm A dmq))
= —% Re (i Im((gdqig + 1dq) A (dgi + ¢idgq)))
— _% Re(igdqi A gdgi + idg A dg — idg A dq — dgqi A dgq),
which agrees with
do= —2Re(dg A 1dg).

Here, we have applied dgq = d|q|?> — gdg = —gdq, which holds on S? where |¢|?> = 1. [ |

Proof of Proposition 4.1. Let VW € s0(3), and let w = (w1, w2, ws), v = (v1,v2,3) be their
coefficients with respect to the standard basis of s0(3) as in section 4. For PV, PW € Tp SO(3)
on each P € SO(3), we have,

dn|p(PV, PW) = —n|p([PV, PW]) = —n|1([V, W]) = vaws — wavs,

due to the left-invariance of the vector fields PV, PW under SO(3). Here [-,:] denotes the Lie
bracket. Now we compute ;0. Let us write W, V', and P columnwise as W = (wjwows),V =
(vivavs), and P = (p1p2ps). We have
wo0|p(PV, PW) = 0|y, (dma(PV),dny(PW)) = olp, (Pv1, Pwy)
=oli(vi,w1) = dy A dz(v1,w1) = vow3 — wavs,
where we used the invariance of o under SO(3) and the expression of ¢ using the Cartesian
coordinates. ]
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