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Area Formula for Spherical Polygons via Prequantization\ast 

Albert Chern\dagger and Sadashige Ishida\ddagger 

Abstract. We present a formula for the signed area of a spherical polygon via prequantization. In contrast to
the traditional formula based on the Gauss--Bonnet theorem that requires measuring angles, the new
formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves
and polygons.
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1. Introduction. A spherical polygon is a finite number of ordered points on S2 connected
by geodesics. Computing the solid angle of the region enclosed by a spherical polygon is
important in many subjects, which we briefly summarize at the end of this section.

For a given polygon \Gamma = (p0, . . . , pn - 1), its surface area is often computed using the formula

Area(\Gamma ) = 2\pi  - 
\sum 
i

\vargamma i,(1.1)

derived from the Gauss--Bonnet theorem. This area formula involves the evaluation of the
exterior angle \vargamma i at each vertex

\vargamma i = sign (det(pi - 1, pi, pi+1)) arccos

\biggl( 
pi - 1 \times pi
| pi - 1 \times pi| 

\cdot pi \times pi+1

| pi \times pi+1| 

\biggr) 
,(1.2)

which is a function of three points. However, this formula requires nondegeneracy assumptions
about these points that render it unavailable or numerically unstable in certain situations.
For example, two consecutive points of the polygon cannot lie on the same location as the
exterior angle is undefined. We may consider removing such points from the polygon, but
judging precisely whether two points are at the same location or just nearby locations is not
always possible in numerical computation, especially when the points are obtained after some
computational operations.

On the other hand, an area formula for polygons in R2 does not have such limitations.
For a polygon \Gamma R2 = ((x0, y0). . . . , (xn - 1, yn - 1)), the area is
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SPHERICAL AREA VIA PREQUANTIZATION 783

Figure 1. A planimeter measures the area of a planar region by tracing and accumulating quantities along
its perimeter.

Area(\Gamma R2) =
\sum 
i

1

2
(xi+1yi  - xiyi+1).(1.3)

Unlike the classical formula for spherical polygons (1.1), (1.2), this planar area formula
involves adding numerically stable edge quantities. This formula can be derived by converting
the area integral over the region into a line integral along the polygon curve using Green's
formula. This is the same technique that enables planimeters (Figure 1). The key that allows
Green's formula is that the area form of R2 is an exact differential form. Unfortunately, this
strategy does not work directly for spherical polygons as the area form of S2 is not exact.

We circumvent this issue in this work via so-called prequantization, which is a preliminary
setup to transform a classical mechanical system into a quantum mechanical system [4]. We
lift the area form of the sphere onto a space where the resulting 2-form is exact. More precisely,
we utilize a prequantum bundle, which is a principal circle bundle where the lifted 2-form is
exact. This gives rise to a version of Green's theorem that translates the area integral on the
base manifold into a line integral along a lifted perimeter in the bundle.

By choosing a specific prequantum bundle over S2, we can obtain an explicit expression of
the line integral. We use the Hopf fibration \pi : S3 \rightarrow S2 with a specific connection 1-form and
derive a formula for the area of a spherical polygon. Unlike the classical formula (1.1), the
new formula does not involve numerically unstable evaluation of angles of three consecutive
vertices. Instead, it only involves a sum of edgewise measurement resembling (1.3). We also
recover the classical formula (1.1) by choosing SO(3) as the prequantum bundle with a specific
lift of the polygon. Finally, we present numerical examples comparing our formula and the
classical formula.

Relation to quantum mechanics. Our formula for the spherical area via prequantization is
similar to evaluating the Berry phase for a quantum mechanical system. In this analogy, the
points on S3 (or any prequantum circle bundle) represent the possible quantum states of a
spinor (or two qubits), while their projections on S2 are their classical representations on the
Bloch sphere [5].

Applications and computations of solid angles. Computing the area, or solid angle, of a
spherical region occurs in multiple disciplines. They are either analytically computed by the
angle-based formula (1.1), (1.2) [6], or approximated by point counting [11, 13] and Monte-
Carlo methods [3]. A standard routine in geological survey is to find the area of an irregularly
shaped region on the nearly-spherical earth [6, 13]. In quantum mechanics, the solid angle of a
spherical curve generated by a Brownian motion of a particle describes the phase of two-state
quantum systems undergoing random evolution [23, 19]. The so-called Majorana representa-
tion of polarized light also involves the solid angle of certain spherical quadrilaterals [14].
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784 ALBERT CHERN AND SADASHIGE ISHIDA

Solid angles give rise to another geometric concept, the solid angle field of a space curve.
Given a space curve in R3, the solid angle field is an S1-valued function over R3 whose value
at each point \bfx \in R3 is half of the solid angle subtended by the closed curve at \bfx . In contact
geometry, a so-called open-book decomposition can be constructed by the solid angle field,
with the level sets of the S1-valued solid angle field being the pages and the space curve being
the binder [12]. Each page can also serve as a Seifert surface, an oriented surface bordered
by a given knot [10, 7]. Solid angle fields also play important roles in fluid dynamics and
electrodynamics, as the gradients of the solid angle fields are the Biot--Savart fields of space
curves [24, pp. 118], which represent the magnetic fields induced by electric currents, and
the velocity fields corresponding to given vortex filaments. In addition, solid angle fields
are applied to constructing implicit representations for space curves for simulating vortex
dynamics [15], visualization of nematic dislinations in electromagnetism [7], and radiosity
illumination in rendering [25].

2. Area of a spherical polygon. We begin with the problem of seeking a line integral
formula for the areas of spherical polygons. Next, we introduce the notion of prequantum
bundles. While we only use the essential properties of this notion in a self-contained manner,
the readers may find backgrounds in principal bundles [21, 17] and geometric quantization
[4, 18] useful. Finally, we derive a line integral formula for spherical areas via prequantization
and apply it to spherical polygons.

An oriented spherical polygon \Gamma is a finite cyclic ordered list of spherical points \Gamma =
(p0, . . . , pn - 1), pi \in S2, i\in Zn =Z/(nZ). Each edge, i.e., each pair of adjacent points (pi, pi+1),
i \in Zn (including (pn - 1, p0) using the modulo arithmetic of i \in Zn), is joined by the shortest
connecting path on S2. This edge path is a constant point when pi = pi+1, and is otherwise
a part of the great circle containing pi, pi+1. To ensure uniqueness of the shortest edge path,
we assume that pi+1 \not =  - pi for each i \in Zn, which does not take away generality as one may
add intermediate points if the polygon contains any antipodal edge.

By concatenating all the edge paths, the spherical polygon \Gamma is naturally associated with
a continuous closed path C\Gamma : S1 \rightarrow S2. Let S\Gamma : D2 \rightarrow S2 be any smooth extension1 of
C\Gamma : S1 = \partial D2 \rightarrow S2 to the unit disk D2. We call S\Gamma the enclosed region of the spherical
polygon \Gamma , which is unique up to an integer number of full wrappings around the entire
sphere. Define the signed area of \Gamma as the total signed area of S\Gamma , which is well-defined
modulo 4\pi :

Area(\Gamma ) :=

\int \int 
S\Gamma 

\sigma =

\int \int 
D2

S\ast 
\Gamma \sigma \in R/(4\pi Z).(2.1)

Here S\ast 
\Gamma denotes the pullback via S\Gamma , and \sigma \in \Omega 2(S2) is the standard area form of the unit

sphere S2 \subset R3 induced by the Euclidean metric. The area form \sigma can be explicitly written
as \sigma = sin \theta d\theta \wedge d\phi using a spherical coordinate chart, or as \sigma = (xdy \wedge dz + ydz \wedge dx+ zdx\wedge 
dy)/(x2 + y2 + z2)3/2 | S2 using the Cartesian coordinates in R3. This definition is valid for
self-intersecting polygons (see Figure 2) and degenerate polygons which may contain edges of
zero lengths or consecutive edges that fold back onto each other.

1A smooth extension S\Gamma :D2 \rightarrow S2 exists for any smoothly parameterized path C\Gamma : S1 \rightarrow S2. A smooth path
C\Gamma can be constructed by concatenating smooth parameterizations of the great circular edges with vanishing
derivatives 0 = \partial tC\Gamma = \partial 2

tC\Gamma = \cdot \cdot \cdot at the vertices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL AREA VIA PREQUANTIZATION 785

Figure 2. Examples of spherical polygons. Left: the two regions with different colors contribute positively
or negatively to the signed area. Right: the darker region contributes to the signed area twice.

2.1. Areas as line integrals. Our goal is to find a numerically robust formula for (2.1) in
terms of the vertex positions \Gamma = (p0, . . . , pn - 1). More precisely, an ideal area formula we look
for is a line integral ``Area(\Gamma ) =

\oint 
C\Gamma 

\alpha "" for some smooth differential 1-form \alpha , analogous to
Green's theorem in the plane. The reason for this desire goes as follows. Once (2.1) becomes
a line integral along the polygonal curve, we can derive the formula for Area(\Gamma ) by summing
the explicit integrals of \alpha along the great circular arc of each edge. Such a line-integral-based
formula would be applicable to degenerate cases: The angles between consecutive edges would
never appear in the formula; the line integral of a smooth 1-form along an edge shrinks to
zero gracefully if the edge length shrinks to zero.

Such a line integral formula ``Area(\Gamma ) =
\oint 
C\Gamma 

\alpha "" appears to rely on the exactness of \sigma ,
which is the existence of a smooth 1-form \alpha so that d\alpha = \sigma . If \alpha exists, then by Stokes'
theorem Area(\Gamma ) =

\int \int 
S\Gamma 

\sigma =
\int \int 

S\Gamma 
d\alpha =

\oint 
C\Gamma 

\alpha . However, the spherical area form \sigma is not exact.
Fortunately, and perhaps surprisingly, a line integral formula does not require the exactness
of \sigma as described below.

Definition 2.1 (prequantum bundle). Let \beta \in \Omega 2(\Sigma ) be a closed 2-form on a manifold \Sigma .
A prequantum bundle over (\Sigma , \beta ) is a principal circle bundle \pi : Q \rightarrow \Sigma equipped with an
equivariant 1-form \alpha \in \Omega 1(Q) with d\alpha = \pi \ast \beta .

Intuitively, a principal circle bundle Q over the base manifold \Sigma is a (dim(\Sigma ) + 1)-
dimensional space where a circle is attached to each point of \Sigma . The equivariance of \alpha \in \Omega 1(Q)
means that \alpha is invariant under a uniform rotation in the circle dimension.

Remark 2.2. In a classical definition for a prequantum bundle, \alpha is a connection 1-form,
which has an additional requirement that \alpha (V ) = 1 where V is the generator of the rotation
action. In general, every compact symplectic manifold (\Sigma , \beta ) admits a principal circle bundle
(Q,\alpha ) with a connection 1-form \alpha satisfying d\alpha = \pi \ast \beta upon a rescaling of \beta so that \beta /2\pi \in 
H2(\Sigma ,Z) [8, Theorem 3], [16, Proposition 9].

Proposition 2.3 (lifted Green's theorem). Let \pi : (Q,\alpha ) \rightarrow (\Sigma , \beta ) be a prequantum bundle.
For each surface S :D2 \rightarrow \Sigma , consider an arbitrary lift \widetilde S :D2 \rightarrow Q, \pi \circ \widetilde S = S. Then\int \int 

S
\beta =

\oint 
\partial \widetilde S \alpha .

Proof.
\oint 
\partial \widetilde S \alpha =

\int \int \widetilde S d\alpha =
\int \int \widetilde S \pi \ast \beta =

\int \int 
\pi \circ \widetilde S \beta =

\int \int 
S \beta .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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786 ALBERT CHERN AND SADASHIGE ISHIDA

The lifted Green's theorem enables line integral formula for the area of a spherical curve.
Suppose we have a prequantum bundle \pi : (Q,\alpha )\rightarrow (S2, \sigma ) over the sphere S2. For each closed
curve C\Gamma on S2, construct an arbitrary lift \widetilde C\Gamma : S1 \rightarrow Q, \pi \circ \widetilde C\Gamma =C\Gamma . Then

Area(\Gamma ) =

\oint 
\widetilde C\Gamma 

\alpha mod 4\pi .(2.2)

Remark 2.4. While all the examples we provide in this article are prequantum bundles,
for Proposition 2.3 we need only any smooth map \pi : Q \rightarrow \Sigma and \alpha \in \Omega 1(Q) that satisfies
d\alpha = \pi \ast \beta and has a general liftability of a topological disk S to \widetilde S. In particular, we do not
need \pi to be a circle bundle or \alpha to be equivariant.

2.2. The Hopf fibration. The Hopf fibration \pi : S3 \rightarrow S2 is a prequntum bundle over
S2. We provide its explicit expressions in the quaternion coordinate H = \{ xi + yj + zk +
w | (x, y, z,w) \in R4\} . Using the quaternion coordiantes q : S3 \lhook \rightarrow H \sim = R4 and p : S2 \lhook \rightarrow ImH \sim =
R3, Hopf's bundle projection is given by

\pi : S3 \rightarrow S2, \pi (q) := iq.(2.3)

Note that \pi is a principal circle bundle with action � : S1 \times S3 \rightarrow S3, (�e - i\theta )q := e - i\theta . For q
and q\prime := e - i\theta on a same fiber, we write arg(q\prime q) = \theta .

The 1-form \alpha \in \Omega 1(S3) for the prequantization is expressed as

\alpha = 2Re(iqdq) = - 2Re(dqqi) = 2Re(dqiq) = - 2Re(qidq).(2.4)

The 1-form \alpha /2 is a connection form as it is equivariant under S1 actions: (�ei\theta )\ast \alpha = \alpha and
1
2\alpha (

d
d\theta | \theta =0(�e - i\theta )q) = 1.

Proposition 2.5. The 1-form \alpha \in \Omega 1(S3) defined in (2.4) and the map \pi : S3 \rightarrow S2 defined in
(2.3) satisfy d\alpha = \pi \ast \sigma , where \sigma \in \Omega 2(S2) is the standard area form on the unit sphere. That
is, (S3, \alpha ) is a prequantum bundle over (S2, \sigma ).

This result is known (see [5], [9, Theorem 1]), but we give a proof in Appendix A for
completeness. With this setting, Proposition 2.3 is now written more concretely for a spherical
polygon.

Corollary 2.6. The area Area(\Gamma ) of a spherical polygon \Gamma = \{ pi\} i can be evaluated by a line
integral

Area(\Gamma ) =
\sum 
i

\int 
\widetilde C\Gamma ([ti,ti+1])

\alpha mod 4\pi ,(2.5)

where \alpha is given by (2.4) and \widetilde C\Gamma is an arbitrary lift \widetilde C\Gamma : S1 \rightarrow S3 of the polygon curve
C\Gamma = \pi \circ \widetilde C\Gamma : S1 \rightarrow S2 with C\Gamma (ti) = pi for each i.

3. The area formula via the Hopf fibration. In this section, we obtain an explicit formula
by evaluating each piece of the line integral in (2.5) along a great circular arc lifted onto S3.
We first define dihedral for a pair of spherical points.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL AREA VIA PREQUANTIZATION 787

Definition 3.1. For each p, p\prime \in S2, p \not = - p\prime , define

Dihedral(p, p\prime ) :=

\sqrt{} 
1 + \langle p, p\prime \rangle 

2
+

p\times p\prime \sqrt{} 
2 + 2\langle p, p\prime \rangle 

\in S3 \subset H,(3.1)

which is the unit quaternion that represents the minimal rotation that rotates p to p\prime , i.e.,
rpr= p\prime , r=Dihedral(p, p\prime ).

There is a unique (unnormalized) rotation axis v \in T1S3(= ImH) for the minimal rotation
for nonantipodal p, p\prime \in S2. This axis v is parallel to p\times p\prime and Dihedral(p, p\prime ) = e

v

2 by the
exponential map on S3. We also note that any q \in \pi  - 1p, the point Dihedral(p, p\prime )q, is on
\pi  - 1p\prime .

We will see that each summand in (2.5) can be explicitly expressed in terms of the dihedral
after recognizing how the dihedral represents the horizontal lift over a great circular arc.

Proposition 3.2 (horizontal lift on (S3, \alpha )). Consider the Hopf fibration \pi : (S3, \alpha )\rightarrow (S2, \sigma )
described in section 2.2. Let p0, p1 be two arbitrary nonantipodal points on S2, let \gamma : [0,1]\rightarrow S2
be the great circular arc joining p0 and p1, and let v \in T1S3 be the imaginary quaternion such
that e

v

2 = Dihedral(p0, p1). Then for each given point q \in \pi  - 1p0, the horizontal lift \~\gamma H of \gamma 
with \~\gamma H(0) = q is given by

\~\gamma H(t) = e
vt

2 q.

Proof. It follows from \gamma (t) = e
vt

2 p0e
 - vt

2 that \~\gamma H is a lift over \gamma with respect to \pi . We now
show that \~\gamma H is horizontal. At each q \in S3, the tangent space and the horizontal subspace with
respect to the connection 1-form \alpha /2 are TqS3 = Span(qi, qj, qk) and HqS3 = Span(qj, qk),
respectively. We have for each t that

d

dt
\~\gamma H(t) =

1

2
e

vt

2 vq.

Here we note that the conjugation h \mapsto \rightarrow qh\=q is an isometry in Im(H), from which it follows
that v \in q(HqS3)\=q as

0 = \langle v, p\rangle = \langle q(\=qvq)\=q, qi\=q\rangle .

Therefore, e
vt

2 vq is horizontal.

Lemma 3.3. Assume \pi : (S3, \alpha )\rightarrow (S2, \sigma ), p0, p1 \in S2, and \gamma : [0,1]\rightarrow S2 as in Proposition
3.2. Then for any lift \~\gamma : [0,1]\rightarrow S3 of \gamma , the line integral

\int 
\~\gamma \alpha is explicitly given by\int 

\~\gamma 
\alpha = 2arg(q1Dihedral(p0, p1)q0),(3.2)

where q0 := \~\gamma (0), q1 := \~\gamma (1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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788 ALBERT CHERN AND SADASHIGE ISHIDA

Proof. Proposition 3.2 asserts that q0 \in \pi  - 1p0 and qH := Dihedral(p0, p1)q0 \in \pi  - 1p1 are
connected by the unique horizontal lift \~\gamma H . Let us consider a parametric surface \Delta \subset S3 given
by

\Delta := q
\Bigl\{ 
\~\gamma H(t)ei\theta \in S3| t\in [0,1], \theta \in [0, \theta t]

\Bigr\} 
,

where \theta t for each t is the angular difference \theta t := arg(\~\gamma (t)\~\gamma H(t))). We first obtain that\int 
\partial \Delta 

\alpha =

\int 
\Delta 
d\alpha =

\int 
\Delta 
\pi \ast \sigma = 0,

as \pi (\Delta ) = \gamma ([0,1]).
Note that the boundary \partial \Delta is a closed path consisting of three segments: (I). the lifted

path \~\gamma from q0 to q1; (II). the vertical path \{ q1ei\theta | \theta \in [0, \theta 1]\} from q1 to qH ; (III). the
horizontal lift \~\gamma H from qH to q0. Since the integral of \alpha along the third path makes no
contribution, we have\int 

\~\gamma 
\alpha = - 

\int 
\{ q1ei\theta | \theta \in [0,\theta 1]\} 

\alpha =

\int 
\{ q1e - i\theta | \theta \in [ - \theta 1,0]\} 

\alpha =

\int 0

 - \theta 1

\alpha 

\biggl( 
d

d\theta 
(�e - i\theta )q1

\biggr) 
d\theta 

=

\int 0

 - \theta 1

2d\theta = 2arg (q1qH) ,

which concludes the proof.

As a direct result of Corollary 2.6 and Lemma 3.3, we obtain our main theorem.

Theorem 3.4 (area formula via the Hopf fibration). Let \Gamma = (p0, . . . , pn - 1), pi \in S2, i\in Zn, be
a spherical polygon. For each i\in Zn, pick an arbitrary lift qi \in S3, i.e., \pi (qi) = pi. Then,

Area(\Gamma ) = 2

n - 1\sum 
i=0

arg(qi+1Dihedral(pi, pi+1)qi) mod 4\pi .(3.3)

The formula requires an arbitrary lift qi \in S3 of the vertex positions pi \in S2 for i\in Zn. An
example is

qi =

\Biggl\{ 
Dihedral(i, pi), \langle pi,i\rangle \geq 0,

Dihedral( - i, pi)j, \langle pi,i\rangle < 0,
(3.4)

which is uniquely defined globally.
As a special case of Theorem 3.4, choosing the horizontal lift results in no contribution of

\alpha except for the endpoint of the polygon.

Corollary 3.5 (area formula by the horizontal lift). Let q0 be a point in the fiber \pi  - 1p0, and
let us inductively define qi+1 := Dihedral(pi, pi+1)qi for i= 0, . . . , n - 1. Then we have

Area(\Gamma ) = 2arg(q0qn).(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL AREA VIA PREQUANTIZATION 789

At the end of the section, we make a remark regarding the numerical stability of the formula
(3.3).

Remark 3.6. The branching discontinuities in the ``arg"" function in (3.3) and the ``if""
statement in (3.4) are smooth in the mod- 4\pi arithmetic of (3.3). The only calculation that
can be numerically unstable is the evaluation of the Dihedral function when the two arguments
are close to antipodal. This antipodal dihedral evaluation is avoided by the choice (3.4). The
entire evaluation of our area formula (3.3) with (3.4) is numerically stable as long as we do
not have antipodal edges where \langle pi, pi+1\rangle \approx  - 1, which is easily preventable by inserting a
midpoint to any close-to-antipodal edge.

4. Derivation of the classical formula by \bfS \bfO (\bfthree ) as a prequantum bundle. The Hopf
fibration structure can also be seen in the group SO(3) of three-dimensional (3D) rotations.
In fact, the classical formula (1.1) can be interpreted as a special case of the lifted Green's
theorem on SO(3) using a specific lift not as numerically stable as our formula (Theorem 3.4)
using either the lift (3.4) or the horizontal lift (Corollary 3.5). We see that SO(3) as the unit
tangent bundle over S2 is also a prequantum bundle with a specific connection form. As S3 is
a double cover of SO(3), the Hopf fibration \pi : S3 \rightarrow S2 has a decomposition \pi = \pi 2 \circ \pi 1 given
by

\pi 1 : S3 \rightarrow SO(3)(4.1)

q \mapsto \rightarrow (qi\=q, qj\=q, qk\=q),

and

\pi 2 : SO(3)\rightarrow S2(4.2)

(p1, p2, p3) \mapsto \rightarrow p1,

where each element of SO(3) is represented by three column vectors.
The tangent space TP SO(3) at each P \in SO(3) is dLP so(3) =

\bigl\{ 
PW | W T = - W

\bigr\} 
. We

identify each W =

\Biggl( 
0  - \omega 3 \omega 2
\omega 3 0  - \omega 1
 - \omega 2 \omega 1 0

\Biggr) 
\in so(3) with \omega = (\omega 1, \omega 2, \omega 3) \in R3. We define a

1-form \eta by

\eta | P (PW ) := - \omega 1.(4.3)

Then (\pi 2, \eta ) is a principal circle bundle with S1 action � : S1\times SO(3)\rightarrow SO(3), by (�ei\theta )P =

P

\Biggl( 
1 0 0
0 cos\theta  - sin\theta 
0 sin\theta cos\theta 

\Biggr) 
.

Proposition 4.1. The 1-form \eta \in \Omega 1(SO(3)) defined in (4.3) and the map \pi 2 : SO(3)\rightarrow S2
defined in (4.2) satisfy d\eta = \pi \ast 

2\sigma , where \sigma \in \Omega 2(S2) is the standard area form on the unit
sphere. That is, (SO(3), \eta ) is a prequantum bundle over (S2, \sigma ).

We give a proof in Appendix A. To recover the classical formula via \pi 2 : (SO(3), \eta ) \rightarrow 
(S2, \sigma ), we define a lift as follows. We take for each pi the forward velocity from pi to pi+1 on
S2. It is given at pi =: \gamma (ti) by
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790 ALBERT CHERN AND SADASHIGE ISHIDA

v(pi) := lim
h\rightarrow +0

\gamma (ti + h) - \gamma (ti)

h
\in Tpi

S2,

which is a positive multiple of  - pi \times (pi \times pi+1). Then

\~\gamma (ti) :=

\biggl( 
pi,

v(pi)

| v(pi)| 
, pi \times 

v(pi)

| v(pi)| 

\biggr) 
defines a lift \~\gamma : S1 \rightarrow SO(3) of \gamma . For \~\gamma , we have\int 

\~\gamma 
\eta = - 

\sum 
i

\vargamma i(4.4)

with the exterior angles \vargamma i given in (1.2). One has to be cautious when drawing conclusion from
(4.4) about the area formula using Proposition 2.3. In fact, Area(\Gamma ) = 2\pi +

\int 
\~\gamma \eta = 2\pi  - 

\sum 
i \vargamma i

noting the extra term of 2\pi (cf. (1.1)). This is because \~\gamma is a noncontractible loop in SO(3)
which is not the boundary of a disk. To obtain the classical formula (1.1), lift \~\gamma : S1 \rightarrow SO(3) to
\^\gamma : S1 \rightarrow S3 by the universal cover \pi 1 : S3 \rightarrow SO(3). Note that \alpha = \pi \ast 

1\eta , and that \^\gamma (0) = \^\gamma (2\pi )
and limt\nearrow 2\pi \^\gamma (t) has an angle difference of \pi in the fiber \pi  - 1(\gamma (0)).

The classical formula has a variant that locates a pole Z \in S2 and sums up the signed area
of triangles (pi, pi+1,Z). This formula is given as

Area(\Gamma ) =
\sum 
i

sign (det(pi, pi+1,Z))UnsignedArea(pi, pi+1,Z),(4.5)

where the unsigned area of each spherical triangle (x0, x1, x2) is computed as

UnsignedArea(x0, x1, x2) = - \pi +
\sum 
i\in Z3

arccos

\biggl( 
xi - 1 \times xi
| xi - 1 \times xi| 

\cdot xi \times xi+1

| xi \times xi+1| 

\biggr) 
.(4.6)

This formula can also be recovered by the Hopf fibration. Setting the lift qi := Dihedral(Z,pi)
for each pi, we obtain (4.5). Numerically, this formula is unstable if any of the vertices is close
to Z or  - Z, which is explained by the numerical sensitivity of Dihedral(Z,pi) and

pi\times Z
\| pi\times Z\| .

5. Numerical examples. In this section, we present numerical examples of area compu-
tation for spherical polygons using our formula (3.3). Moreover, we demonstrate how this
formula can also be utilized to determine the total torsion of a space curve, which differs from
2\pi exactly by the enclosed area of the spherical curve traced out by the tangents of the curve.
By comparing the results obtained using both our formula and the classical formula (1.1), we
show that our formula produces consistent and converging solutions, even for singular curves.
This improved numerical robustness allows for more accurate measurements of spherical areas
and total torsion.

We employ the horizontal lift approach (Corollary 3.5) for computation in all of our
examples. For a given closed spherical curve \gamma : [0,2\pi ) \rightarrow S2, we use a uniform division
\{ ti := 2\pi i

n \} n - 1
i=0 of the interval [0,2\pi ) to specify the vertices \{ \gamma (ti)\} n - 1

i=0 with some positive
integer n. This process turns the spherical curve into a spherical polygon.
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SPHERICAL AREA VIA PREQUANTIZATION 791

Figure 3. Cardioid (left) stereographically projected on the sphere (right).

5.1. Spherical cardioid. We compute the area of a spherical curve \gamma given by the stereo-
graphic projection image \gamma = P \circ \gamma R2 of a planar cardioid \gamma R2 (Figure 3). Explicitly, the planar
cardioid is parametrically given by

\gamma R2(t) = (2(1 - cos(t)) cos(t),2(1 - cos(t)) sin(t)) ,

and the stereographic projection from the plane to the sphere is

P : (x, y) \mapsto \rightarrow 1

x2 + y2 + 1
(2x,2y,x2 + y2  - 1).

We compute the area with various numbers n of vertices using our formula and the classical
formula (1.1), (1.2). Figure 4 (left) shows their numerical results. Note that this spherical
cardioid has a cusp, i.e., \partial t\gamma changes sign at t= 0. As the polygon refines (n\rightarrow \infty ), the edge

lengths adjacent to \gamma (t0) decrease to zero superlinearly, and \gamma (tn - 1)\times \gamma (t0)
| \gamma (tn - 1)\times \gamma (t0)| \cdot 

\gamma (t0)\times \gamma (t1)
| \gamma (t0)\times \gamma (t1)| \rightarrow  - 1.

These conditions make the classical formula numerically unstable as observed in Figure 4
(left). In contrast, our formula is numerically stable despite the presence of the cusp.

5.2. Total torsions of space curves. Our next examples are about total torsions of closed
space curves. For a space curve \gamma : S1 \rightarrow R3, the total torsion [22, Chap. 1, sect. 5.1]
(equivalently, the total writhe up to a minus sign and a multiple of 2\pi ) can be evaluated as

Torsion(\gamma ) = 2\pi  - Area(\gamma \prime ) mod 2\pi ,(5.1)

where Area(\gamma \prime ) is the signed area of the unit velocity map given by \gamma \prime = \partial t\gamma /| \partial t\gamma | . This notion
of total torsion also works for a space polygon \{ \gamma (ti)\} i. For a space polygon, the unit velocity
\gamma \prime is given by the normalized edge vector

\gamma \prime (ti) =
\gamma (ti+1) - \gamma (ti)

| \gamma (ti+1) - \gamma (ti)| 
,

which forms a spherical polygon, whose signed area can be evaluated by our formula. We
compute the total torsions of the figure-eight knot (Figure 5)

\gamma (t) = ((2 + cos(2t)) cos(3t), (2 + cos(2t)) sin(3t), sin(4t)) ,

and the trefoil knot (Figure 6),

\gamma (t) = (sin(t) + 2sin(2t), cos(t) - 2cos(2t), - sin(3t)) .

With sufficiently many vertices, our results converge to numbers that agree with the results
in a previous study [20]:  - 0.5423 of the figure-eight knot and 2.2250 of the trefoil.
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Figure 4. Numerical values of the signed areas of spherical curves discretized into spherical polygons with
increasing number of vertices, computed using the classical formula (Gauss--Bonnet) and our formula (Hopf).
Both formulae give consistent values when the number of vertices is small, but the classical formula becomes
unstable as the number of vertices increases. Left: The area enclosed by a spherical cardioid (section 5.1).
Right: The total torsion (2\pi  - Area(\gamma \prime )) of a non-Frenet space curve (section 5.3).

Figure 5. Figure-eight knot (left) and its unit velocity map (right).

Figure 6. Trefoil (left) and its unit velocity map (right).

5.3. Total torsion of a non-Frenet curve. In this example we compute the total torsion
of a regular closed space curve with a singular (infinitely oscillatory) Frenet--Serret frame.
Note that the mod-2\pi total torsion (5.1) and the writhe only require the curve to be regular,
i.e., \partial t\gamma (t) \not = 0. In particular, the curve does not need to possess a regular Frenet torsion.
A smooth regular curve without a regular Frenet--Serret frame is called a non-Frenet curve
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SPHERICAL AREA VIA PREQUANTIZATION 793

Figure 7. A curve with a spiral Frenet--Serre frame (left), its unit velocity map (middle), and the close-up
view of the spiral (right).

Figure 8. Austria plotted on the sphere.

(see [22, Chap. 1, sect. 5.6] for a detailed discussion). Consider the following example of a
smooth non-Frenet closed space curve

\gamma (t\prime ) =
1

e - 2t\prime 2 + t\prime 2

\Bigl( 
e - t\prime 2 cos(et

\prime 
), e - t\prime 2 sin(et

\prime 
), t\prime 
\Bigr) 
,

where t\prime \in [ - \infty ,\infty ) is a reparametrization of t\in [0,2\pi ) by t\prime = tan
\bigl( 
t - \pi 
2

\bigr) 
. The spherical curve

\gamma \prime traced out by the unit velocity displays an exponential spiral about t= \pi with an infinite
turning number and an unbounded geodesic curvature (Figure 7). Note that the total Frenet
torsion of \gamma is the total turning angle of the spherical curve \gamma \prime , which is divergent. Despite
the divergence of the total Frenet torsion, the mod-2\pi torsion is well-defined since the area
enclosed by \gamma \prime is bounded.

In this example, it is crucial to avoid the classical angle--based formula (1.1)--(1.2) for
evaluating Area(\gamma \prime ) due to the divergent turning angle in \gamma \prime . In fact, evaluating the total
torsion using the classical formula is equivalent to sampling and summing the Frenet torsion
(exterior angle of the spherical polygon \gamma \prime ). The process produces a result that diverges as
the number of sample points n\rightarrow \infty (Figure 4 (right)). In contrast, our formula (3.3) is able
to robustly evaluate the total torsion of this non-Frenet curve.

5.4. Area of a region on the earth. The next example applies to geography. We compute
an approximate area of Austria using the data from the Database of Global Administrative
Areas (GADM) [2]. The data contains a sequence of latitudes and longitudes (Figure 8)
forming a spherical polygon. We treat the earth as a round sphere while acknowledging that
we neglect its slight ellipsoidal figure and terrains.

The solid angle value we computed via our formula was 2.06206\times 10 - 3 on the unit sphere.
By multiplying the square of the arithmetic mean radius R := (2RE +RP )/3\approx 6,371km [1],
where RE ,RP are the equatorial and polar radii, we obtain 83,882km2, which is a descent
approximation of the official area 83, 871km2 with 0.013\% relative error.
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794 ALBERT CHERN AND SADASHIGE ISHIDA

Figure 9. The solid angle field of the Borromean rings visualized on the z = 0 plane (left) where each color
corresponds to a value in S1. A levelset of the solid angle field in R3 is a Seifert surface (right).

5.5. Solid angle fields and Seifert surfaces. Our last example demonstrates the con-
struction of the solid angle fields of given space curves (section 1). We consider three rec-
tangular loops linked into the topological configuration of Borromean rings (Figure 9). Let
\~\gamma :

\bigsqcup 3 S1 \rightarrow R3 denote this triplet of space polygons. For each point \bfx \in R3 \setminus \~\gamma , we let
\Omega (\bfx ) be half the solid angle subtended by \~\gamma at \bfx . Explicitly, consider the spherical curves
\gamma \bfx :

\bigsqcup 3 S1 \rightarrow S2 given by projecting \~\gamma on the unit sphere centered at \bfx :

\gamma \bfx (s) :=
\~\gamma (s) - \bfx 

| \~\gamma (s) - \bfx | 
, s\in 

\bigsqcup 3
S1.(5.2)

The solid angle field \Omega :R3 \setminus \~\gamma \rightarrow R/(2\pi Z) is defined by

\Omega (\bfx ) :=
1

2
Area(\gamma \bfx ).(5.3)

Note that the projected spherical curve \gamma \bfx is degenerate for \bfx on any extended tangent
line of \~\gamma . Despite this unavoidable degeneracy, our formula robustly handle the solid angle
computation for all \bfx (Figure 9 (left)). By extracting a levelset of the solid angle field, we
construct a smooth Seifert surface (Figure 9 (right)).

Concluding remark and outlook. In this paper, we derived area formulae using Green's
theorem on prequantum bundles S3 and SO(3) over S2. These formulae avoid relying on angle
calculation, unlike the classical formula that fails on degenerate cases. As the prequantum
version of Green's theorem is available for any compact symplectic manifold (Remrak 2.2), one
may investigate area formulae or integral of symplectic form of polygons in other manifolds.

For example, in quantum information; the complex projective space CP2n - 1 is regarded
as the space of possible states of n-qubits [5] and a closed path is a periodic orbit. We hope
that finding an explicit expression of its enclosed area (geometric phase) may lead to practical
applications in quantum computation.
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SPHERICAL AREA VIA PREQUANTIZATION 795

Appendix A. Prequantum bundles S3 and SO(3) over S2.

Proof of Proposition 2.5. In terms of the quaternion coordinate, the area form of S2 is
written as

\sigma = - 1

2
Re(p Im(dp\wedge dp)).

On the other hand, the differential of \pi = qiq is d\pi = dqiq + qidq. Hence, the pullback area
form is computed as

\pi \ast \sigma = - 1

2
Re(\pi Im(d\pi \wedge d\pi )) = - 1

2
Re(qiq Im(d\pi \wedge d\pi ))

= - 1

2
Re(iq Im(d\pi \wedge d\pi )q) = - 1

2
Re(i Im(qd\pi \wedge d\pi q))

= - 1

2
Re (i Im((qdqiq+ idq)\wedge (dqi + qidqq)))

= - 1

2
Re(iqdqi \wedge qdqi + idq \wedge dq - idq \wedge dq - dqqi \wedge dqq),

which agrees with

d\alpha = - 2Re(dq \wedge idq).

Here, we have applied dqq= d| q| 2  - qdq= - qdq, which holds on S3 where | q| 2 = 1.

Proof of Proposition 4.1. Let V,W \in so(3), and let \omega = (\omega 1, \omega 2, \omega 3), \nu = (\nu 1, \nu 2, \nu 3) be their
coefficients with respect to the standard basis of so(3) as in section 4. For PV,PW \in TP SO(3)
on each P \in SO(3), we have,

d\eta | P (PV,PW ) = - \eta | P ([PV,PW ]) = - \eta | I([V,W ]) = \nu 2\omega 3  - \omega 2\nu 3,

due to the left-invariance of the vector fields PV,PW under SO(3). Here [\cdot , \cdot ] denotes the Lie
bracket. Now we compute \pi \ast 

2\sigma . Let us write W,V , and P columnwise as W = (w1w2w3), V =
(v1v2v3), and P = (p1p2p3). We have

\pi \ast 
2\sigma | P (PV,PW ) = \sigma | p1

(d\pi 2(PV ), d\pi 2(PW )) = \sigma | p1
(Pv1, Pw1)

= \sigma | i(v1,w1) = dy \wedge dz(v1,w1) = \nu 2\omega 3  - \omega 2\nu 3,

where we used the invariance of \sigma under SO(3) and the expression of \sigma using the Cartesian
coordinates.
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