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Force-Free Fields Are Conformally Geodesic\ast 

Albert Chern\dagger and Oliver Gross\ddagger 

Abstract. In this paper, we establish an equivalence between force-free fields and conformally geodesic fields,
and between harmonic fields and conformally eikonal fields. In contrast to previous work, our
approach and equivalence results generalize to arbitrary dimension n\geq 3. In accordance with three-
dimensional theory, our defining equations emerge as the Euler--Lagrange equations of hierarchies
of variational principles---distinguished by the topological constraints they impose---and retain the
known inclusions of the special cases from each other. Specifically, we relate stationary points of
hierarchies of L2 respectively L1-optimization problems by a conformal change of metric, provide
an explicit construction of the conformal factors relating the relevant metrics and identify the field
lines of physical vector fields fields as conformal geodesics.
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1. Introduction. Geometric structures are key structural motifs in a multitude of natural
systems ranging from molecules and polymers to the field lines of fluid flows or electromagnetic
fields in plasma. Therefore, understanding these structures is an important task in both
mathematics and the natural sciences [9, 23, 43, 42, 29, 30]. In the study of variational
problems for field lines that foliate a space, there are two thoroughly explored yet relatively
disjoint pillars of focuses. The first, arising naturally in plasma physics and hydrodynamics,
concerns force-free fields, while the second, particularly relevant in Riemannian geometry
and optical physics, involves field lines as geodesics. Remarkably, we demonstrate that these
seemingly distinct classes of flux fields share a direct relationship within the framework of
conformal geometry.

In three dimensions, force-free fields, equivalently referred to as Beltrami fields, are vector
fields B satisfying (curlB)\times B = 0 and divB = 0. In plasma physics, these force-free fields
correspond to magnetic fields that produce zero Lorentz-force. They are extensively inves-
tigated in solar physics and controlled fusion since they constitute static plasma states with
negligible pressure [33, 3, 42]. In the realm of fluid dynamics, force-free fields are known as
Beltrami velocity fields and constitute special steady solutions to the incompressible Euler
equations [2]. Force-free fields also include harmonic fields (curlB = 0, divB = 0) as a
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1002 ALBERT CHERN AND OLIVER GROSS

significant subclass that plays central roles in vacuum electromagnetism, hydrodynamics, and
the general theory of vector fields.

On the other hand, geodesic foliations are characterized by vector fields whose integral
curves form geodesics [14]. These foliations describe optical paths according to Fermat's prin-
ciple. A special subclass of geodesic vector fields consists of gradients of distance functions,
termed eikonal fields. These fields correspond to solutions to Beckmann optimal transport
problems [36, 8, 13], untwisted light fields with applications in caustic designs [37], and cali-
brated forms in calibrated geometry [26].

A natural question to ask is: ``Given a vector field on a manifold, does there exists a Rie-
mannian metric such that the field lines form a geodesic foliation?"" Necessary and sufficient
conditions for an affirmative answer have been given in, e.g., [21, 22] or [40]. So-called geode-
sible vector fields have been studied in numerous contexts. For example, they are of interest
in the context of adaptions of the Seifert conjecture or Weinstein conjecture and relate to,
e.g., Reeb vector fields on contact manifolds, stable Hamiltonian structures, or Beltrami fields
[18, 34, 12, 11].

A generalized concept of geodesic fields is the notion of conformally geodesic fields [19, 20,
16], which are fields that become geodesic after some conformal change of metric. Conformal
geodesic fields can depict optical paths in a medium with a nonuniform index of refraction
[37]. We refer to [24] for an in-depth overview over how all of these fields are related.

Remark 1.1. Some authors use the term conformal geodesic for vector fields which sat-
isfy \nabla XX = fX for some scalar function f , i.e., whose integral curves are geodesics up to
reparametrization. However, we follow the notion of conformal geodesic coined by, e.g., Fi-
alkow [19] as fields whose integral curves are geodesic after a conformal change of ambient
metric, rather than merely along the integral curve.

The main results of this paper are equivalence theorems between the two classes.

Theorem 1.2. Force-free fields are conformally geodesic.

Theorem 1.3. Harmonic fields are conformally eikonal.

These theorems can be expressed as statements about field lines on an n-dimensional conformal
manifold. In the absence of a specific metric, field lines are merely represented by a closed
(n - 1)-form \beta (equivalently, a 1-current), referred to as a flux form.

Remark 1.4. We acknowledge that magnetic fields in dimensions other than 3 should
remain as 2-forms instead of (n - 1)-forms, since they arise as the curvature of a connection
in the context of U(1) gauge theory [31, sect. 10.5.1]. However, this paper's primary focus is
on flux forms that describe field lines foliating a space.

Each metric within the conformal class enables a vector field representation of the flux
form, as well as examinations of metric-dependent qualities such as being geodesic or being
force-free. Theorems 1.2 and 1.3 assert that a flux form admits a metric with respect to which
it is force-free (resp., harmonic) if and only if it admits a (possibly different, but conformally
equivalent) metric with respect to which it is geodesic (resp., eikonal). Our findings extend
previous results (see, e.g., [18, 35]) in the sense that we can establish an explicit relation
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1003

Figure 1. Left: Field lines of the ABC-flow (1.1) for A = B = C = 1. Right: Level sets of the squared
magnitude of the flow field which, taken as a conformal factor, makes the field lines geodesic (Corollary 1.5).

between the respective relevant metrics and in contrast to previous approaches (see, e.g., [11])
our definitions and results generalize to higher dimensions.

There are several significant implications from the equivalence theorems.

1.1. Structures in steady Euler flow. Steady Euler flows are governed by \nabla BB+gradp=
0, which can be rewritten as (curlB)\times B+grad b= 0, where B is the divergence-free velocity
field, p is the fluid pressure, and b = p + 1

2 | B| 2 is the Bernoulli pressure. In 1965, V. I.
Arnold [1] provided a sequence of structural theorems that describe the increasing complexity
in a steady Euler flow. When grad b \not = 0, the fluid domain is decomposed into finitely many
cells fibered into invariant tori or annuli given by the level sets of the Bernoulli pressure b.
The flow lines generated by B are either all closed or all dense on each invariant surface.
When grad b = 0, the Bernoulli level sets no longer exist, and we obtain a Beltrami field
(curlB)\times B = 0, implying curlB = \lambda B for some scalar function \lambda . By taking the divergence,
we get (grad\lambda )\bot B, which implies that the flow B can still admit invariant surfaces given by
the level sets of \lambda , provided that grad\lambda \not = 0.

If \lambda is a constant, then the flow lines for B become chaotic. A popular example of such a
Beltrami field with constant \lambda is the Arnold--Beltrami--Childress flow (ABC-flow, Figure 1),
which (on the three-dimensional torus (R/2\pi )3) satisfies\left[  \.x

\.y
\.z

\right]  =

\left[  A sin(z) +C cos(y)
B sin(x) +A cos(z)
C sin(y) +B cos(x)

\right]  (1.1)

for parameters A,B,C \in R and is known to exhibit chaotic streamlines. For a survey of this
topic we refer the reader to [2, Chap. 2.1] and [17, 5].

Corollary 1.5. ABC-flows are conformally geodesic.
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1004 ALBERT CHERN AND OLIVER GROSS

Figure 2. In a static equilibrium and with negligible gas pressure, the magnetic field lines of coronal loops as
observed in the solar corona constitute geodesic foliations. In contrast to the twisted case (right), the untwisted
case (left) additionally realize the Beckmann optimal transportation plan from the source flux density to sink
flux density on the solar surface.

1.2. Solar coronal loops. The solar atmosphere is filled with magnetic fields that form
arches connecting positive and negative surface magnetic fluxes. In more active regions of
the sun's surface, the magnetic fields concentrate into strong and often twisted flux ropes
connecting sunspots. These flux ropes are generally modeled by force-free magnetic fields. In
quiet regions of the solar surface, the magnetic fields are relaxed to harmonic fields. A popular
model for a harmonic magnetic field in the solar atmosphere is known as the potential-field
source surface model. In particular, one observes an absence of twisted magnetic fields in
these quiet regions as the twists have been resolved through dissipative reconnection events
over a longer period of relaxation time [41].

Our Theorems 1.2 and 1.3 allow precise characterizations of the distinction between active
flux ropes and quiet harmonic fields in terms of geodesics and optimal transports. The flux
ropes consist of conformal geodesics connecting pairs of source and sink on the solar surface.
The relaxed harmonic fields, on the other hand, are conformal eikonal fields which not only
comprise geodesics but also form source--sink pairings as the Beckmann (1-Wasserstein, earth-
mover) optimal transportation plan from the source flux density to sink flux density [36].

Corollary 1.6. Potential-field models of the solar corona yield magnetic field lines that
are conformally Beckmann optimal transportation paths between the magnetic sources and
sinks on the sun's surface. The more general force-free magnetic fields are conformally geo-
desic foliations whose topological connectivity between the source and sink ends is constrained
(Figure 2).

One can conversely explore noneikonal geodesic foliations and draw analogies from the
phenomena in solar flux ropes. For example, one can connect a source and destination density
by a bundle of geodesics with an overall twist. The bundle becomes untwisted when the
connectivity is the optimal transport (Figure 3).

2. Flux forms in Riemannian geometry. Let M be a compact and oriented n-dimensional
Riemannian manifold possibly with boundaries and let \beta \in \Omega n - 1(M) be a closed (n - 1)-form,
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1005

Figure 3. Left: Eikonal geodesic foliation realizing a Beckmann optimal transport plan. Right: Twisted
geodesic foliation with constrained connectivity between source and sink endpoints.

i.e., d\beta = 0, which satisfies j\ast \partial M\beta = \beta \partial M for a given boudnary condition \beta \partial M \in \Omega n - 1(\partial M).
We will refer to \beta as a flux form and denote the Riemannian metric of M by g as well as the
induced volume form, Hodge star, and norm by \mu ,  \star , and | \cdot | , respectively. The Riemannian
structure induces a norm on k-forms which, for \omega \in \Lambda kT \ast 

p (M), is defined by

| \omega | 2 :=  \star (\omega \wedge ( \star \omega )).(2.1)

Moreover, from the nondegenerate pairing

\langle \cdot | \cdot \rangle : \Lambda kT \ast 
p (M)\times \Lambda (n - k)T \ast 

p (M) \mapsto \rightarrow R, (\eta ,\omega ) \mapsto \rightarrow  \star (\eta \wedge \omega )

we have an isomorphism \Lambda kT \ast 
p (M)\sim =\Lambda (n - k)T \ast 

p (M).
A flux form together with a metric give rise to a vector field B \in \Gamma TM associated to the

flux form which is defined by

\iota B\mu = \beta ,(2.2)

where \iota denotes the interior product.

2.1. Force-free and (exact) harmonic flux forms. Our investigations focus on fields
whose Lorentz-force (curlB)\times B vanishes. With help of the vector calculus identity (curlB)\times 
B = \nabla BB  - 1

2 grad | B| 2 we can free ourselves from the dimensional restrictions on the curl-
operator and the cross product and express this property in arbitrary dimensions. Moreover,
physical forces are favorably expressed as 1-forms [28], which suggests that we are interested
in fields lines for which the 1-form

(\nabla BB)\flat  - 1

2
d| B| 2 \in \Omega 1(M)

vanishes. Here, (\cdot )\flat denotes the musical isomorphism which turns a vector field X \in \Gamma TM
into a 1-form X\flat (\cdot ) = g(X, \cdot ) \in \Omega 1(M). In the 3-dimensional case, it is interpreted as the
Lorentz-force, while for higher dimensions this physical picture is no longer valid. Nonetheless
we will see that the corresponding fields are always co-linear with their curl (whenever this is
reasonably defined) and therefore indeed capture an essential property of these special fields.
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1006 ALBERT CHERN AND OLIVER GROSS

Lemma 2.1. A vector field X \in \Gamma TM on a Riemannian manifold M satisfies

\iota XdX\flat = (\nabla XX)\flat  - 1

2
d| X| 2.(2.3)

Proof. Denoting the identity vector-valued 1-form I \in \Omega 1(M ;TM), I(X) := X, and by
the torsion-freeness d\nabla I = 0 of the connection \nabla , we have dX\flat = g(\nabla X \wedge I). Therefore,
contracting with X, we find

\iota XdX\flat = g(\nabla XX,I) - g(\nabla X,X) = (\nabla XX)\flat  - 1

2
d| X| 2,

as claimed.

Lemma 2.1 suggests that the Lorentz-force of a vector field can be expressed as \iota BdB
\flat ,

which gives a more concise form of the expression. In particular, with

\beta =  \star B\flat ,  \star \beta = ( - 1)n - 1B\flat ,

it allows us to define a notion of force-free flux forms on manifolds of arbitrary dimensions.

Definition 2.2. A closed flux form \beta \in \Omega n - 1(M) is called force-free if is satisfies

\iota Bd  \star \beta = 0.(2.4)

As curlB = 0 implies (curlB) \times B = 0, harmonic fields constitute an important special
case of force-free fields.

Definition 2.3. Let \beta \in \Omega n - 1(M) be a closed flux form. Then,
(i) \beta is called harmonic if it is co-closed, i.e., d  \star \beta = 0 .
(ii) \beta is called exact harmonic if it is co-exact, i.e., \beta \in im( \star d) .

Note that with these definitions (exact) harmonic flux forms indeed are special cases of
force-free flux forms. Moreover, all exact harmonic forms are harmonic, whereas the converse
does not hold. In the case that \beta is exact harmonic, the associated vector field is the gradient
of some harmonic function, whereas the vector field associated to a merely harmonic flux form
may have components corresponding to the nontrivial generators of the de Rham cohomology
of the domain (Figure 4). As an immediate consequence of (2.4) and Definition 2.3 we conclude
the following.

Proposition 2.4. A closed flux form \beta \in \Omega n - 1(M) which is harmonic is force-free.

2.1.1. Force-free vs. Beltrami forms. In the realm of fluid dynamics, force-free fields
on a 3-dimensional Riemannian manifold M are referred to as Beltrami fields. They are
commonly characterized as those vector fields whose curl is co-linear to the original field, i.e.,
curlB = \lambda B for some smooth function \lambda \in C\infty (M). Generalizing these fields to dimensions
n> 3, a common approach is to use this property as the defining property (see, e.g., [34, 11]).

Definition 2.5. Let M be a Riemannian manifold of odd-dimension 2n+ 1. Then a vector
field B \in \Gamma TM is Beltrami if there is \lambda \in C\infty (M) such that
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1007

Figure 4. A nonexact harmonic vector field (bottom) build from the gradient vector field (top left) of a
harmonic function (inset) and a vector field corresponding to a generator of the de Rham cohomology of the
annulus (top right).

curlB = \lambda B,(2.5)

where the vector field curlB \in \Gamma TM is defined by

\iota \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}B\mu = (dB\flat )n \in \Omega 2n(M).(2.6)

The function \lambda is referred to as the proportionality factor.

Being restricted to odd-dimensional manifolds, this approach is clearly conceptually very
different from Definition 2.2. Nonetheless, the two definitions coincide on a 3-dimensional
Riemannian manifold. In odd dimensions n > 3 there is a subtle difference, which is why in
this paper we carefully distinguish between the two notions of force-free and Beltrami fields.
The following Proposition 2.6 asserts that force-free fields are Beltrami.

Proposition 2.6. Let B \in \Gamma TM be a nowhere vanishing, divergence-free, and force-free
vector field on a Riemannian manifold M of odd-dimension 2n+ 1. Then B is Beltrami.

Proof. By assumption, B is force-free, i.e., \iota BdB
\flat = 0. Thus,

\iota B\iota \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}B\mu = \iota B(dB
\flat )n = 0,

from which we conclude the existence of a function \lambda \in C\infty (M) such that curlB = \lambda B.

However, the converse statement only holds with an additional assumption.

Definition 2.7. The rank of a 2-form \omega \in \Omega 2(M) is the largest power r \in Z\geq 1 such that
\omega r \not = 0 and \omega r+1 = 0. Here, for p \in Z\geq 1, the term \omega p denotes the p-fold wedge product
\omega \wedge \cdot \cdot \cdot \wedge \omega of \omega with itself.

The rank is said to be maximal if r = n on a manifold of even dimension 2n, resp.,
odd-dimension 2n+ 1. We will leave it to the reader (see, e.g., [24]) to verify.
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1008 ALBERT CHERN AND OLIVER GROSS

Lemma 2.8. Let M be a manifold of odd-dimension 2n + 1 and \omega \in \Omega 2(M) of maximal
rank. Then for every vector field X \in \Gamma TM we have that \iota X\omega n = 0 if and only if \iota X\omega = 0.

Following [11] we will refer to the vector field B \in \Gamma TM (resp., B\flat ) on a Riemannian manifold
M as generic if dB\flat has maximal rank almost everywhere.

Proposition 2.9. Let B \in \Gamma TM be a nowhere vanishing and generic Beltrami vector field
on a Riemannian manifold M of odd-dimension 2n+ 1. Then B is force-free.

Proof. Let \lambda \in C\infty (M) such that curlB = \lambda B; then

\lambda \beta = \iota \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}B\mu = (dB\flat )n,

and therefore

0 = \lambda \iota B\beta = \iota B(dB
\flat )n.

By the genericity assumption, \lambda is nonvanishing almost everywhere and by Lemma 2.8 B \in 
ker(dB\flat )n implies B \in kerdB\flat almost everywhere, which yields the claim by continuity.

Unfortunately, a known equivalence between geodesible vector fields and Beltrami fields
does not generalize to dimensions 2n + 1 > 3. A volume preserving Beltrami field which is
not geodesible is constructed in [11, sect. 2.2.2]. However, in return for our slightly stronger
assumptions, our Definition 2.2 preserves this equivalence not only in odd, but arbitrary
dimensions. Moreover, our definition preserves the property that the defining equations for
force-free forms contain (exact) harmonic forms as special cases. Lastly, again in agreement
with the 3-dimensional theory, our defining equations emerge as the Euler--Lagrange equations
of corresponding variational principles (sections 3 and 4).

2.2. Geodesic flux forms.
Definition 2.10. A flux form \beta \in \Omega n - 1(M) is called geodesic if the acceleration of its

associated vector field is always proportional to itself, i.e., there is a \rho \in C\infty (M) such that

\nabla BB = \rho B,(2.7)

where \nabla denotes the Levi-Civita connection of the Riemannian metric g. If \rho \not = 0, the vector
field B is called pregeodesic, while for \rho = 0, B is called geodesic.

The field line associated to a a geodesic flux form trace out geodesics (possibly up to
reparametrization) in the Riemannian manifold. Whenever B is nonvanishing, we may con-
sider the directional vector field H := | B|  - 1B \in \Gamma TM . The corresponding directional covector
field is given by H\flat .

For flux forms \beta with constant length (i.e., the associated vector fields have constant
length), Lemma 2.1 implies

0 = (\nabla BB)\flat = \iota BdB
\flat = \iota Bd  \star \beta ,

from which we conclude the following.
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1009

Lemma 2.11. A flux form \beta \in \Omega n - 1(M) is geodesic if and only if on its support

0 = \iota Bd

\biggl( 
 \star \beta 

|  \star \beta | 

\biggr) 
,(2.8)

where B is the vector field associated to \beta .

Note that from (2.8) alone we can conclude that a vector field B is geodesic if and only if its
directional vector field is force-free.

2.3. Normalizations and eikonal flux forms. The statement of Lemma 2.11 can be re-
formulated to eliminate the restriction to the support of \beta . To this end, we address the
ill-posedness of normalization when  \star \beta becomes zero.

Definition 2.12. Let \alpha \in \Omega k(M). Then a k-form \xi \in \Omega k(M) is called a normalization of
\alpha \in \Omega k(M) if

| \alpha | \xi = \alpha and | \xi | \leq 1.

At every point p\in M , a normalization can be seen as an element of the subdifferential \partial | \beta | 
(cf. section 4). Thus, whenever the flux form \beta is nonvanishing, it is uniquely determined.
In particular, on the support of a flux form, a normalization coincides with the directional
covector field. Therefore, we may more adequately state Lemma 2.11 as follows.

Proposition 2.13. A closed flux form \beta \in \Omega n - 1(M) is geodesic if and only if there exists a
normalization \eta \in \Omega 1(M) of  \star \beta such that

0 = \iota Bd\eta .

As pointed out in section 1, eikonal fields are a special subclass of geodesic vector fields.
They describe gradients of distance functions and therefore have a unit norm. Thus, the
corresponding covector fields are closed normalizations of the corresponding flux forms.

Definition 2.14. A closed flux form \beta \in \Omega n - 1(M) is called eikonal (resp., exact eikonal) if
there exists a closed (resp., exact) normalization \eta \in \Omega 1(M) of  \star \beta .

Proposition 2.15. A closed flux form \beta \in \Omega n - 1(M) which is eikonal is geodesic.

2.4. Flux forms in conformal geometry. A conformal class on an n-dimensional smooth
manifold M is an equivalence class of Riemannian metrics, where two metrics are g and h are
considered conformally equivalent if there exists a smooth function u\in C\infty (M) such that

e2ug= h.(2.9)

A manifold M together with a conformal structure (denoted by [g]) is referred to as conformal
manifold.

While the quantities associated with the flux form, as defined in section 2, rely on the
specific choice of a Riemannian metric, the flux form \beta itself and, consequently, the geometry
of the corresponding field lines are independent of the metric. Hence, it is possible to define
special types of flux forms on a conformal manifold by requiring the existence of a represen-
tative metric within the equivalence class that satisfies the defining equations. Consequently,
we introduce the following definitions.
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1010 ALBERT CHERN AND OLIVER GROSS

Definition 2.16. A closed flux form \beta \in \Omega n - 1(M) on a conformal manifold M is called
(i) conformally force-free if there exists a metric in the conformal class of M such that \beta 

is force-free.
(ii) conformally geodesic if there exists a metric in the conformal class of M such that \beta 

is geodesic.
(iii) conformally harmonic (resp., conformally exact harmonic) if there exists a metric in

the conformal class of M such that \beta is harmonic (resp., exact harmonic).
(iv) conformally eikonal (resp., conformally exact eikonal) if there exists a metric in the

conformal class of M such that \beta is eikonal (resp., exact eikonal).

Note that with the metric independence of \beta , the statements of Proposition 2.4 and
Proposition 2.15 carry over to the conformal setup.

3. A hierarchy of variational principles for the L2-norm. Both force-free and the more
specialized cases of (exact) harmonic flux forms can equivalently be characterized in terms of
variational principles. To this end, one considers the L2-norm of the flux form, which is given
by

\| \beta \| 22 :=
\int 
M

\beta \wedge  \star \beta .(3.1)

The different cases then emerge as stationary points of the L2-norm under different classes of
variations with suitable boundary conditions.

Theorem 3.1. A closed flux form \beta \in \Omega n - 1(M) with j\ast \partial M\beta = \beta \partial M for given boundary data

\beta \partial M \in \Omega n - 1(M) is a stationary point of the L2-norm (d\r \beta = 0 and j\ast \partial M
\r \beta = 0) if and only if \beta 

is exact harmonic.

Proof. The vanishing variation condition of the L2-norm (3.1) is given by

0 =

\int 
M

\r \beta \wedge  \star \beta 

for all \r \beta satisfying d\r \beta = 0 and j\ast \partial M
\r \beta = 0. That is, the stationary condition is equivalent to

\beta \in \{ \r \beta \in \Omega n - 1(M) | d\r \beta = 0, j\ast \partial M
\r \beta = 0\} \bot = im( \star d),

where the last equality is given by the Hodge--Morrey--Friedrichs decomposition [38].

Theorem 3.2. A closed flux form \beta \in \Omega n - 1(M) with j\ast \partial M\beta = \beta \partial M for given boundary
data \beta \partial M \in \Omega n - 1(M) is a stationary point of the L2-norm under homologically constrained
variations, i.e., \r \beta = d\alpha for some \alpha \in \Omega n - 2(M) with j\ast \partial M\alpha = 0, if and only if \beta is harmonic.

Proof. The vanishing variation condition of the L2-norm (3.1) under variations \r \beta = d\alpha ,
j\ast \partial M\alpha , is given by

0 =

\int 
M

d\alpha \wedge  \star \beta = ( - 1)n - 1

\int 
M

\alpha \wedge d  \star \beta 

for all \alpha \in \Omega n - 2(M) with j\ast \partial M\alpha = 0. This condition holds if and only if d  \star \beta = 0.
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1011

Theorem 3.3. A closed flux form \beta \in \Omega n - 1(M) with j\ast \partial M\beta = \beta \partial M for given boundary data
\beta \partial M \in \Omega n - 1(M) is a stationary point of the L2-norm under isotopy constraint variations, i.e.,
\r \beta = - L \xi \beta for some \xi \in \Gamma TM which is compactly supported in the interior of M , if and only
if \beta is force-free.

Proof. By Cartan's formula and d\beta = 0, the isotopic variations take the form \r \beta = - L \xi \beta =
 - d\iota \xi \beta for compactly supported vector fields \xi \in \Gamma TM . The variation of (3.1) under such
variation is given by

1

2
(\| \beta \| 22\r )=

\int 
M

 - d\iota \xi \beta \wedge  \star \beta = ( - 1)n
\int 
M

\iota \xi \beta \wedge d  \star \beta =

\int 
M

 \star (\xi \flat \wedge \beta )\wedge d  \star \beta 

=

\int 
M

\xi \flat \wedge ( \star \beta )\wedge  \star d  \star \beta = ( - 1)n
\int 
M

\xi \flat \wedge  \star (\iota Bd  \star \beta ).

Therefore, the vanishing variation condition for all compactly supported \xi \in \Gamma TM is equivalent
to \iota Bd  \star \beta = 0; i.e., \beta is force-free.

4. A hierarchy of variational principles for the L1-norm. We now derive the stationary
conditions of L1-optimization problems with the same sets of boundary conditions and con-
straints on the variations we have employed for the L2-case. To this end we first note that
the integrand | \beta | of the L1-norm fails to be smooth at vanishing points of \beta . Therefore, when
considering variations of the L1-norm\biggl( \int 

M
| B| \mu 

\r \biggr) 
=

\int 
M

\biggl( \sqrt{} 
 \star (\beta \wedge  \star \beta )

\r \biggr) 
=

\int 
M

\r \beta \wedge \partial | \beta | ,(4.1)

we need to resort to the subdifferential

\partial | \beta | =

\left\{   
 \star \beta 

|  \star \beta | 
if \beta \not = 0,

\{ \alpha \in \Omega 1(M) | | \alpha | \leq 1\} if \beta = 0,
(4.2)

of \beta in order to state the stationary conditions. As pointed out in subsection 2.3, the subdif-
ferential \partial | \beta | consists of the normalizations \xi of  \star \beta .

Lemma 4.1. \partial | \beta | = \{ \xi \in \Omega 1(M) | | \xi | \leq 1, |  \star \beta | \xi =  \star \beta \} .
Proof. Let \eta \in \partial | \beta | . When \beta \not = 0, then \eta =  \star \beta 

|  \star \beta | , and therefore | \eta | = 1. Moreover, when

\beta = 0, then \eta \in \Omega 1(M), which (by definition) satisfies | \eta | \leq 1. Clearly, also 0 \cdot \eta = 0, and
therefore \eta is a normalization.

Conversely let \eta \in \Omega 1(M) be a normalization of  \star \beta , i.e., |  \star \beta | \eta =  \star \beta and | \eta | \leq 1. By
definition, the subdifferential of | \beta | is given by

\partial | \beta | = \{ \alpha \in \Omega 1(M) | | \~\beta | \geq | \beta | + \langle \alpha | \~\beta  - \beta \rangle \forall \~\beta \in \Omega n - 1(M)\} .
Now if \beta = 0, then

| \eta | \leq 1 \leftrightarrow sup
\~\beta \in \Omega n - k(M), | \~\beta | =1

\langle \eta | \~\beta \rangle \leq 1 \leftrightarrow \langle \eta | \~\beta \rangle \leq | \~\beta | \forall \~\beta \in \Omega n - 1(M).

Moreover, if \beta \not = 0, we have that \langle \eta | \beta \rangle = |  \star \beta | = | \beta | , and hence

| \~\beta | \geq | \beta | + \langle \eta | \~\beta  - \beta \rangle = \langle \eta | \~\beta \rangle \forall \~\beta \in \Omega n - 1(M)\} 
holds if an only if | \eta | \leq 1, which is true by assumption.
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1012 ALBERT CHERN AND OLIVER GROSS

Theorem 4.2. A closed flux form \beta \in \Omega n - 1(M) with j\ast \partial M\beta = \beta \partial M for given boundary

conditions \beta \partial M \in \Omega n - 1(M) is a stationary point of the L1-norm (d\r \beta = 0 and j\ast \partial M
\r \beta = 0) if

and only if \beta is exact eikonal.

Proof. Analogous to the proof of Theorem 3.1, we conclude from (4.1) that the stationary
condition

0\in 
\int 
M

\r \beta \wedge \partial | \beta | \forall \r \beta with d\r \beta = 0 and j\ast \partial M
\r \beta = 0

is equivalent to the existence of an exact normalization \eta \in \partial | \beta | of  \star \beta ; i.e., \beta is exact eikonal
(Definition 2.14).

Theorem 4.3. A closed flux form \beta \in \Omega n - 1(M) with j\ast \partial M\beta = \beta \partial M for given boundary con-
ditions \beta \partial M \in \Omega n - 1(M) is a stationary point of the L1-norm under homologically constraint
variations, i.e., \r \beta = d\alpha for some \alpha \in \Omega n - 2(M) with j\ast \partial M\alpha = 0, if and only if \beta is eikonal.

Proof. The stationary condition for the variation of the L1-norm under variations \r \beta = d\alpha ,
j\ast \partial M\alpha = 0 is given by

0\in 
\int 
M

\r \beta \wedge \partial | \beta | = ( - 1)n - 1

\int 
M

\alpha \wedge d(\partial | \beta | )

for all \alpha \in \Omega n - 2(M) with j\ast \partial M\alpha = 0, which is equivalent to the existence of a closed normal-
ization \eta \in \partial | \beta | of  \star \beta , i.e., \beta is eikonal (Definition 2.14).

Theorem 4.4. A closed flux form \beta \in \Omega n - 1(M) with j\ast \partial M\beta = \beta \partial M for given boundary
conditions \beta \partial M \in \Omega n - 1(M) is a stationary point of the L1-norm under isotopy constraint
variations, i.e., \r \beta = - L \xi \beta for some \xi \in \Gamma TM which is compactly supported in the interior of
M , if and only if there exists a normalization \eta \in \partial | \beta | of  \star \beta such that ( \star \beta )\wedge ( \star d\eta ) = 0.

Proof. With analogous arguments as for Theorem 3.3 the vanishing condition for all
compact-support \xi \in \Gamma TM is given by

0\in  - 
\int 
M

\partial | \beta | \wedge d\iota \xi \beta = - 
\int 
M

\xi \flat \wedge (( \star \beta )\wedge ( \star d(\partial | \beta | ))) ,

which is equivalent to 0 \in ( \star \beta ) \wedge ( \star d(\partial | \beta | )), i.e., the existence of a normalization \eta \in \partial | \beta | of
 \star \beta which satisfies 0 = ( \star \beta )\wedge ( \star d\eta ).

The Karush--Kuhn--Tucker (KKT) condition [7] ( \star \beta ) \wedge ( \star d\eta ) = 0 can equivalently be ex-
pressed in terms of the associated vector field B as

\iota Bd\eta = 0.(4.3)

Note that on the support of \beta , the normalization agrees with the directional covector field
(Proposition 2.13), and hence the KKT-condition suggests that the field lines form a geodesic
foliation. We refer to these fields as twisted geodesic foliations as they do not necessarily solve
an optimal transport problem. The corresponding untwisted cases solve a Beckmann optimal
transport problem and correspond to (exact) eikonal fields (Figure 3).

Remark 4.5 (Twisted Minimal Foliations). In the field of calibrated geometry [26, 44], the
directional covector field \eta is referred to as a calibration. More generally, a calibration is a
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1013

closed form \alpha \in \Omega k(M) which, for every oriented k-dimensional subspace V \subset TpM , satisfies
\alpha | V \leq \mu V , where \mu V is the volume form on V induced by the Riemannian metric. The
existence of a calibration gives rise to a foliation of minimal k-dimensional submanifolds---in
our setup a geodesic foliation by field lines. On the basis of the hierarchy of KKT-conditions

\{ \eta = d\alpha \} \subset \{ d\eta = 0\} \subset \{ \iota Bd\eta = 0\} ,(4.4)

we have introduced in this section it is an interesting endeavor to investigate twisted minimal
foliations, generalizations of twisted geodesic foliations for calibrations with k\geq 2.

5. Conformal change of metric. The problem of minimizing the L2-norm of a magnetic
field in R3 can be approached by introducing a conformal change of the form | B| 2g, for a non-
vanishing magnetic field B [44, 32, 25]. This particular (B-dependent) conformal factor has
interesting consequences and explicitly ties together seemingly unrelated fields. More specifi-
cally, it turns out that the KKT-conditions for the L1-optimization problems can equivalently
be derived from the Euler--Lagrange equations for the L2-optimization problems by applying
a conformal change of metric.

Consider a closed flux form \beta and a representative of the conformal class Ûg \in [Ûg]. From
these given objects, we may construct a conformally changed metric g \in [Ûg] on the support of
\beta by defining

g := | \beta | 2Ûg Ûg.(5.1)

This conformal change determines transformation rules for all metric-dependent objects which
we defined in section 2: denoting the volume forms induced by the respective metrics by Û\mu ,
resp., \mu , the vector fields ÙB,B associated to a \beta are determined by

\beta = \iota ÛB Û\mu = \iota B\mu .(5.2)

For n\geq 3 they can be expressed in terms of one another asÙB = | B| 
 - n

n - 2

g B, B = | ÙB|  - nÛg ÙB ,(5.3)

whereas the corresponding volume forms satisfyÛ\mu = | B| 
n

n - 2

g \mu , \mu = | ÙB| nÛg Û\mu ,(5.4)

and therefore

| \beta | Ûg = | ÙB| Ûg = | B| 
 - 1

n - 2

g , | \beta | g = | B| g = | ÙB|  - (n - 2)Ûg .(5.5)

Moreover we have Û \star \beta = | B|  - 1
g  \star \beta ,  \star \beta = | ÙB|  - (n - 2)Ûg Û \star \beta .(5.6)
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1014 ALBERT CHERN AND OLIVER GROSS

5.1. Conformal transformations of stationary conditions. Having established the trans-
formation rules for the individual objects in the Euler--Lagrange equations for n \geq 3, we
may derive the corresponding stationary conditions with respect to the conformally changed
metric.

Let \beta be a closed flux form and exact harmonic with respect to Ûg. Then there exists
\phi \in C\infty (M) such that Û \star \beta = d\phi , and by (5.6), whenever \beta is nonzero, we have

d\phi = Û \star \beta = | B|  - 1
g  \star \beta .(5.7)

Globally, this can be stated by saying that there exists \phi \in C\infty (M) such that d\phi is a normal-
ization of  \star \beta ; i.e., \beta is exact eikonal with respect to g.

Similarly, let \beta be a closed flux form and harmonic with respect to Ûg. Then d Û \star \beta = 0, and
by (5.6), whenever \beta is nonzero, we have

0 = d Û \star \beta = d(| B|  - 1
g  \star \beta ),(5.8)

which can be globally stated by asking for the existence of a closed normalization \eta \in \Omega 1(M)
of  \star \beta ; i.e., \beta is eikonal with respect to g (see also [44]).

Finally, let \beta be a closed flux form which is force-free with respect to Ûg. Then \iota ÛBdÛ \star \beta = 0,
and by (5.6), whenever \beta is nonzero, we have

0 = \iota ÛBd Û \star \beta = | B| 
 - n

n - 2

g \iota Bd(| B|  - 1
g  \star \beta ) .(5.9)

This can be stated globally by asking for the existence of a normalization of \eta \in \Omega 1(M)
of  \star \beta which satisfies 0 = \iota Bd\eta , i.e., the vector field B associated with \beta forms---up to
reparametrization---a geodesic foliation.

5.2. Main theorem. Considering the squared L2-norm of a flux form and apply the con-
formal change of metric, we have

\| \beta \| 2
L2,Ûg = \int 

M
| ÙB| 2Ûg Û\mu =

\int 
M

| B| g \mu = \| \beta \| L1,g.(5.10)

Moreover, we note that the constraints and boundary conditions in Theorems 3.1 to 3.3 were
expressed independent of a metric. Therefore, after fixing the respective metrics, we conclude
the following.

Theorem 5.1. For n\geq 3, after the conformal change of metric g= | \beta | 2Ûg Ûg, stationary points

of the squared L2-norm with respect to Ûg become stationary points of the L1-norm with respect
to g with the same constraints and boundary conditions and vice versa.

Remark 5.2 (Flux-Forms with Nonglobal Support). It is well-known that stationary points
of L1-optimization problems, such as Beckmann optimal transport problems, typically exhibit
sparse support ([36], Fig. 6). Specifically, for points p\in M where \beta vanishes, it is not possible
to define a nondegenerate metric using | \beta | 2 as a conformal factor. However, the integrity of
our theory, which focuses on the geometry of field lines, remains unaffected. The concept of
a field line associated with a flux form inherently assumes that the flux form is nonvanishing.
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1015

Consequently, all the theory and results presented in this paper are only well-defined within
the support of the flux form and whenever one of the integrals in (5.10) is defined.

Taking into account different constraints on the admissible variations we conclude the
following.

Theorem 5.3. Let M be an n-dimensional conformal manifold, n\geq 3, let \beta \in \Omega n - 1(M) be
a closed flux form with j\ast \partial M\beta = \beta \partial M for given boundary conditions \beta \partial M \in \Omega n - 1(M), and letÛg, g \in [Ûg] be related by g= | \beta | 2Ûg Ûg. Then

(i) \beta is force-free with respect to Ûg if and only if it is geodesic with respect to g.
(ii) \beta is harmonic with respect to Ûg if and only if it is eikonal with respect to g.
(iii) \beta is exact harmonic with respect to Ûg if and only if it is exact eikonal with respect

to g.

Note that, contrasting previous work (see, e.g., [10, 11]), Theorem 5.3 holds in arbitrary
dimensions n\geq 3 while still preserving the equivalence results. Moreover, in agreement with
the 3-dimensional theory, our defining equations emerge as the Euler--Lagrange equations of
variational principles and retain the known inclusions of the special cases from each other.

Corollary 5.4. If | \beta | = 1, then \beta is force-free if and only if \beta is geodesic.

Example 1 (Hopf Fibration). A nontrivial example for Corollary 5.4 is given by the Hopf
fibration (Figure 5), which is obtained by stereographic projection of the Hopf field

X\mathrm{H}\mathrm{o}\mathrm{p}\mathrm{f} = ( - x2, x1, - x4, x3)\in \Gamma TS3

on the round 3-sphere S3 = \{ x\in R4 | x21+x22+x23+x24 = 1\} \subset R4 (Figure 5). Since the Hopf field
is divergence-free and has unit length and great circles as its integral curves, by Corollary 5.4,
X is force-free (see also [39]). The Hopf fibration is considered, e.g., when studying so-called
Hopfions in electromagnetism [27] or knotted structures in ideal plasma [39].

Previous work [18, 35, 11] based on results on the geodesibility of vector fields by [21, 40]
already allows us to conclude an equivalence between force-free fields and geodesible vector
fields in the following sense: if there is a Riemannian metric for which a vector field is force-
free, then there is a metric for which the vector field is geodesic. However, the two metrics have
no relation whatsoever. Our Theorem 5.3 provides an explicit relation between the relevant
metrics, thus extending the previous work. In particular, Corollary 5.4 reveals for when the
two metrics even coincide.

These more explicit statements are relevant from a practical point of view. For example,
based on a structure-preserving discretization, [32, 25] have reduced a numerically challenging
[15] volumetric energy minimization with free boundary conditions to a problem of minimizing
the length of curves in a conformally changed metric corresponding to our theory.

5.3. The surface case. In the case that M is a surface, i.e., n = 2, we find that only
one implication of the equivalences in Theorem 5.3 holds (Figure 6). The reason for that is
that the essential tool for the proof of Theorem 5.1 is the transformation of the Hodge stars
under a conformal change of metric. However, the Hodge star on 1-forms on a 2-dimensional
manifold is conformally invariant [6]. Therefore, for a 2-dimensional manifold, harmonicity
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1016 ALBERT CHERN AND OLIVER GROSS

Figure 5. Depicted is the Hopf fibration, i.e., the stereographic projection of the field lines of the Hopf field
onto R3. It is a geodesic and Killing vector field of unit length and therefore force-free, by Lemma 6.6 and
Corollary 5.4.

(d\beta = 0 and d \star \beta = 0) is a conformally invariant notion and cannot be achieved by a conformal
transformation.

It is easy to see that in the 2-dimensional case, force-freeness and harmonicity are equiv-
alent. This only leaves (exact) harmonic fields for our consideration.

Corollary 5.5. Let M be a 2-dimensional conformal manifold, let \beta \in \Omega n - 1(M) be a closed
flux form with j\ast \partial M\beta = \beta \partial M for given boundary conditions \beta \partial M \in \Omega n - 1(M), and let Ûg, g \in [Ûg]
be related by g= | \beta | 2Ûg Ûg. Then, if \beta is (exact) harmonic with respect to Ûg, \beta is (exact) eikonal

with respect to g.

Proof. The proof is analogous to the corresponding direction to proof Theorem 5.3.

Theorem 5.6. Let M be a 2-dimensional conformal manifold, and let \beta \in \Omega n - 1(M) be a
closed and eikonal flux form with j\ast \partial M\beta = \beta \partial M for given boundary conditions \beta \partial M \in \Omega n - 1(M).
Then \beta is harmonic if and only if either of the two conditions hold:

(i) | \beta | g is constant.
(ii) grad | \beta | g and B are parallel.

In particular, if \beta is harmonic it is harmonic with respect to any metric in [g].

Proof. By assumption 0 = d\beta = d  \star B\flat . Thus, harmonicity of \beta is equivalent to dB\flat = 0.
Since \beta is eikonal, we have d( B\flat 

| B| g ) = 0. Therefore,
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1017

Figure 6. Vector fields B \in \Gamma (S2) minimizing the L1-, resp., L2-norm with boundary conditions given by a
source (red) and a sink (blue).

dB\flat = (d| B| g)\wedge 
\biggl( 

B\flat 

| B| g

\biggr) 
.

The right-hand side vanishes if and only if either (i) or (ii) hold, and since  \star is conformally
invariant, this is true for any metric in the conformal class.

6. Applications to special vector fields. In this section we showcase some examples where
our theory provides insights about other special kinds of vector fields.

6.1. Reeb vector fields. On an orientable manifold of odd-dimension 2n+1, \alpha \in \Omega 1(M)
is said to be contact 1-form if

\alpha \wedge (d\alpha )n \not = 0.

Any contact 1-form describes a hyperplane distribution \Xi := ker\alpha and vice versa. The hyper-
plane distribution \Xi is referred to as a contact structure on M and the pair (M,\Xi ) is a contact
manifold. Note that this relationship is not unique, and any other contact 1-form determining
\Xi is of the form f\alpha for a nonvanishing f \in C\infty (M).

The standard example for a contact 1-form on R3 is given by \alpha = dz+y dx (see Figure 7).

Definition 6.1. On an orientable manifold M of odd-dimension 2n+1 with contact 1-form
\alpha \in \Omega 1(M), the vector field X \in \Gamma TM uniquely defined by

\alpha (X) = 1, X \in ker(d\alpha )(6.1)

is called the Reeb vector field of the contact 1-form \alpha .

The Hopf fibration (Example 1) gives an example of a Reeb vector field of a contact
manifold.

The following Theorem 6.2 states that there always exists a metric on a contact manifold
M with respect to which the Reeb vector field of a corresponding contact 1-form is geodesic.
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1018 ALBERT CHERN AND OLIVER GROSS

Figure 7. Field lines of the Reeb vector field corresponding to the contact 1-form \alpha = dz + y dx (left) and
the corresponding contact structure of the contact manifold (R3,ker\alpha ).

Theorem 6.2 ([18]). Let M be an orientable manifold of odd-dimension 2n+ 1 and X \in 
\Gamma TM . Then X is the Reeb vector field of a contact structure \alpha \in \Omega 1(M) if and only if there is
a Riemannian metric g on M such that X force-free with nonvanishing proportionality factor.

In fact, X is of unit length with respect to the relevant metric. Hence, as a consequence of
Corollary 5.4 we conclude the following.

Corollary 6.3. In the setting of Theorem 6.2, the vector field X is moreover geodesic with
respect to said metric g.

6.2. Killing vector fields. Let M be an n-dimensional Riemannian manifold with Rie-
mannian metric g. Then a vector field which generates an isometric flow, i.e., an infinitesimal
isometry of M , is called a Killing vector field (Figure 8). Examples include, e.g., vector fields
associated to rigid body transformations in Rn.

Definition 6.4. A vector field B \in \Gamma TM on a Riemannian manifold M is called a Killing
vector field if

L Bg= 0.

A flux form \beta \in \Omega n - 1(M) is called Killing if the associated vector field is a Killing vector field.

Proposition 6.5. A vector field B \in \Gamma TM on a Riemannian manifold M is a Killing vector
field if and only if for Y,Z \in \Gamma TM ,

g(\nabla Y B,Z) = - g(Y,\nabla ZB).

Note that Corollary 5.4 is true as long as the flux form \beta has constant (not necessarily unit)
norm, which shows that flux forms of constant norm are special. In this section we derive
even more interesting consequences of the constancy of the norm. On Riemannian manifolds,
Killing vector fields of constant length are known to be related to geodesic foliations [4].
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FORCE-FREE FIELDS ARE CONFORMALLY GEODESIC 1019

Figure 8. A Killing field and the associated flow lines on an Enneper surface (left) and on a piece of the
hyperbolic plane in the upper half-plane model (right).

Lemma 6.6. A Killing vector field B \in \Gamma TM on a Riemannian manifold M has constant
length with respect to the metric g if and only if it is geodesic with respect to g.

Proof. By Proposition 6.5,

dg(B,B) = 2g(\nabla B,B) = - 2(\nabla BB)\flat ,(6.2)

from which the claim immediately follows.

Remark 6.7. Conditions on the curvature of the manifold M need to be satisfied for the
converse statement of Lemma 6.6, that is, for when a geodesic vector field of constant length
is Killing, are given in [13].

The Hopf field (Figure 5) also serves as an example for Lemma 6.6. With its unit norm
geodesic field lines, it is not only force-free (Corollary 5.4) but also a Killing vector field on
S3. We can use Lemma 6.6 to show that---even without a constant norm---Killing vector fields
are in fact conformally geodesic vector fields.

Theorem 6.8. Let M be an n-dimensional manifold with Riemannian metric g and let
B \in \Gamma TM be a Killing vector field. Then there is a Riemannian metric h\in [g] such that B is
geodesic and of unit length.

Proof. From Proposition 6.5 we conclude that g(\nabla BB,B) = 0. Define h := e - 2u g for
e2u := g(B,B); then

dBe
 - 2u = - 2g(B,B) - 2g(\nabla BB,B) = 0.

In particular,

L Bh=L B(e
 - 2ug) = dBe

 - 2ug+ e - 2uL Bg= 0.
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1020 ALBERT CHERN AND OLIVER GROSS

Therefore, B is also a Killing vector field with respect to h, and in particular, h(B,B) =
1

g(B,B)g(B,B) = 1. The claim now follows from Lemma 6.6.

Corollary 6.9. Let M be an n-dimensional manifold with Riemannian metric g and let
B \in \Gamma TM be a Killing vector field. Then there is a Riemannian metric h\in [g] such that B is
force-free.

Proof. By Theorem 6.8 there is a conformally equivalent metric h on M with respect to
which B is geodesic and of unit length. We note that, since the flow induced by a Killing field
B preserves h, the same holds true for the induced volume form; i.e., B is volume preserving
with respect to the volume form induced by h. Then, by Corollary 5.4 B is force-free.
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