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We prove that all 3D steady gradient Ricci solitons are O(2)-symmetric. The O(2)-symmetry is the most
universal symmetry in Ricci flows with any type of symmetries. Our theorem is also the first instance
of symmetry theorem for Ricci flows that are not rotationally symmetric. We also show that the Bryant
soliton is the unique 3D steady gradient Ricci soliton with positive curvature that is asymptotic to a ray.
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1 Introduction

1.1 Statement of the main results

The concept of Ricci solitons was introduced by Hamilton [49]. Ricci solitons generate self-similar
solutions of Hamilton’s Ricci flow [48], and often arise as singularity models of Ricci flows; see also
Hamilton [50; 51], Cao [22] and Chen and Zhu [31]. They can be viewed as the fixed points under the
Ricci flow in the space of Riemannian metrics modulo rescalings and diffeomorphisms. Ricci solitons are
also natural generalizations of the Einstein metrics and constant curvature metrics.
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688 Yi Lai

A complete Riemannian manifold (M, g) is called a Ricci soliton, if there exist a vector field X and a
constant A € R such that
Ric = 1%x g + Ag.

The soliton is called shrinking if A > 0, expanding if A < 0, and steady if A = 0. Moreover, if the vector
field X is the gradient of some smooth function f, then we say it is a gradient Ricci soliton, and f is the
potential function. In particular, a steady gradient Ricci soliton satisfies the equation

Ric = V2.

The goal of this paper is to study steady gradient Ricci solitons with bounded curvature in dimension 3.
We assume they are nonflat.

In dimension 2, the only steady gradient Ricci soliton is Hamilton’s cigar soliton [49], which is rotationally
symmetric. In dimension n > 3, Bryant [19] constructed a steady gradient Ricci soliton which is rotationally
symmetric. See Cao [23], Feldman, Ilmanen and Knopf [47] and Lai [60] for more examples of Ricci
solitons in dimension n > 4.

In dimension 3, we know that all steady gradient Ricci solitons are nonnegatively curved (Chen [30]),
and they are asymptotic to sectors of angle o € [0, z]. In particular, the Bryant soliton is asymptotic to a
ray (a = 0), and the soliton R X cigar is asymptotic to a half-plane (o = 7). If the soliton has positive
curvature, it must be diffeomorphic to R3 (Petersen [67]), and asymptotic to a sector of angle in [0, 77)
(Lai [60]). If the curvature is not strictly positive, then it is a metric quotient of R x cigar (Morgan and
Tian [63]).

Hamilton conjectured that there exists a 3D steady gradient Ricci soliton that is asymptotic to a sector
with angle in (0, i), which is called a 3D flying wing; see Cao [23], Cao and He [26], Catino, Mastrolia
and Monticelli [27], Chow, Chu, Glickenstein, Guenther, Isenberg, Ivey, Knopf, Lu, Luo and Ni [35],
Deng and Zhu [42] and Chow, Lu and Ni [38]. The author [60] confirmed this conjecture by constructing
a family of Z, x O(2)-symmetric 3D flying wings. More recently, the author showed that the asymptotic
cone angles of these flying wings can take arbitrary values in (0, 7). It is then interesting to see whether a
3D steady gradient Ricci soliton with positive curvature must be either a flying wing or the Bryant soliton.
This is equivalent to asking whether the Bryant soliton is the unique 3D steady gradient Ricci soliton with
positive curvature that is asymptotic to a ray. Our first main theorem gives an affirmative answer to this.

Theorem 1.1 (uniqueness theorem) Let (M, g) be a 3D steady gradient Ricci soliton with positive
curvature. If (M, g) is asymptotic to a ray, then it must be isometric to the Bryant soliton up to a scaling.

We mention that there are many other uniqueness results for the 3D Bryant soliton under various additional
assumptions. First, Bryant [19] showed in his construction that the Bryant soliton is the unique rotationally
symmetric steady gradient Ricci solitons. More recently, a well-known theorem by Brendle [12] proved
that the Bryant soliton is the unique steady gradient Ricci soliton that is noncollapsed in dimension 3.
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See also Deng and Zhu [42], Cao and Chen [25], Cao, Catino, Chen, Mantegazza and Mazzieri [24],
Chen and Wang [32], Munteanu, Sung and Wang [65] and Catino, Mastrolia and Monticelli [27] for more
uniqueness theorems for the Bryant soliton and cigar soliton.

Our Theorem 1.1 is the Ricci flow analog of XJ Wang’s well-known theorem [71] in mean curvature
flow, which proves that the bowl soliton is the unique entire convex graphical translator in R3. Note that
the analog of 3D steady Ricci solitons in mean curvature flow are convex translators in R, where the
rotationally symmetric solutions are called bowl solitons. Moreover, a 3D steady Ricci soliton asymptotic
to a ray can be compared to a convex graphical translator whose definition domain is the entire R2.

There have been many exciting symmetry theorems in geometric flows; see for instance Huisken and
Sinestrari [56], Brendle, Huisken and Sinestrari [17], Angenent, Brendle, Daskalopoulos and Sesum 21,
Bamler and Kleiner [8], Brendle [13], Zhu [73; 74], Bourni, Langford and Tinaglia [10; 11], Brendle
and Choi [14; 15], Brendle and Naff [18], Brendle, Daskalopoulos, Naff and Sesum [16] and Du and
Haslhofer [44]. If one views the rotational symmetry as the “strongest” symmetry, then the O (2)-symmetry
is naturally the “weakest”, and the most universal symmetry in all ancient Ricci flow solutions. For
example, in dimension 2, the nonflat ancient Ricci flows are the shrinking sphere, the cigar soliton, and
the sausage solution (see Daskalopoulos, Hamilton and Sesum [40] Daskalopoulos and Sesum [41]),
and they are all rotationally symmetric (ie O(2)-symmetric). In dimension 3, the author’s flying wing
examples and Fateev’s examples [46] (see also Bakas, Kong and Ni [3]) are all O(2)-symmetric but not
rotationally symmetric (ie O(3)-symmetric).

It was conjectured by Hamilton and Cao that the 3D flying wings are O(2)-symmetric. Our second main
theorem confirms this conjecture. In particular, this is the first instance of a symmetry theorem for Ricci

flows that are not rotationally symmetric.
Theorem 1.2 Let (M, g) be a3D flying wing. Then (M, g) is O(2)-symmetric.

Here we say a complete 3D manifold is O(2)-symmetric if it admits an effective isometric O(2)-action,
and the action fixes a complete geodesic I', such that the metric is a warped product metric on M \ T’
with S!-orbits. It is easy to see the Bryant soliton and R x cigar are also O(2)-symmetric. Therefore,
combining Theorems 1.1 and 1.2, we see that all 3D steady gradient Ricci solitons are O(2)-symmetric.

Theorem 1.3 Let (M, g) be a 3D steady gradient Ricci soliton, then (M, g) is O(2)-symmetric.

In mean curvature flow, the “weakest” symmetry is the Z,-symmetry, which are usually obtained using
the standard maximum principle method. More precisely, if we compare 3D steady gradient Ricci solitons
with convex translators in R3, then the O(2)-symmetry is compared with the Z,-symmetry (reflectional
symmetry) there. The convex translators in R3 have been classified to be the tilted Grim Reapers, the
flying wings, and the bowl soliton, all of which are Z,-symmetric; see Hoffman, [lmanen, Martin and
White [55]. However, as its analogy in Ricci flow, the O(2)-symmetry is not “discrete” at all, and no
maximum principle is available.
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We also obtain some geometric properties for the 3D flying wings. First, we show that the scalar
curvature R always attains its maximum at some point, which is also the critical point of f. The analog
of this statement in mean curvature flow is that the graph of the convex translator has a maximum point,
which relies on the well-known convexity theorem by Spruck and Xiao [70].

Theorem 1.4 Let (M, g, ) be a 3D steady gradient Ricci soliton with positive curvature. Then there
exists p € M which is a critical point of the potential function f', and the scalar curvature R achieves the
maximum at p.

We study the asymptotic geometry of 3D flying wings. First, we show that the soliton is Z,-symmetric
at infinity, in the sense that the limits of R at the two ends of I" are equal to a same positive number.
Here T is a complete geodesic fixed by the O(2)-isometry. After a rescaling we may assume this positive
number is 4, then we show that there are two asymptotic limits, one is R x cigar with R(xqp) = 4, and
the other is R? x §1 with the diameter of the S!-factor equal to 7. Note that in a cigar soliton where
R = 4 at the tip, the diameter of the S!-fibers in the warped-product metric converges to 7 at infinity.
See Hamilton [51], Kotschwar and Wang [57], Deruelle [43], Chow, Deng and Ma [37] and Lai [60] for
more discussions on the asymptotic geometry of Ricci solitons.

Theorem 1.5 (Z,-symmetry at infinity) Let (M, g, ) be a3D flying wing. Then, after a rescaling,
lim R(I'(s)) = lim R(I'(s)) =4.
§—>00 §—>—00

For any sequence of points p; — oo, the pointed manifolds (M, g, p;) smoothly converge to either
R x cigar with R(x;p) = 4, or R2 x S, with the diameter of the S!-factor equal to . Moreover, if
pi € I', then the limit is (R x cigar, xp), and if dg (I, p;) — oo, then the limit is R2x St

We also obtain a quantitative relation between the limit of R along I, the asymptotic cone angle, and R(p),
where p is the critical point of f. This is also true in the Bryant soliton, and thus is true for all 3D steady
gradient Ricci solitons with positive curvature.

Theorem 1.6 Let (M, g, f, p) be a 3D steady gradient Ricci soliton with positive curvature. Assume
(M, g) is asymptotic to a sector with angle a. Then we have

Jlim R(N(s)) = lim R(I'(s)) = R(p) sin®(1a).

It has been conjectured that there is a dichotomy of the curvature decay rate of steady gradient solitons,
that is, that the curvature decays either exactly linearly or exponentially; see Munteanu, Sung and
Wang [65], Deng and Zhu [42], Chan and Zhu [29] and Chan [28]. In dimension 3, the curvature of Bryant
soliton decays linearly in the distance to the tip, and the curvature in R X cigar decays exponentially in
distance to the line of cigar tips. In this paper, we prove that in a 3D flying wing, the curvature decays
faster than any polynomial function in r, and slower than an exponential function in r, where r is the
distance function to I'.
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Theorem 1.7 Let (M, g, f, p) be a3D flying wing. Suppose lims—oo R(I'(s)) = 4. Then for any €p > 0
there exists C(eg) > 0, and for any k € N there exists Cj, > 0, such that for all x € M,

C—le—2(1+€0)dg(x,r) < R()C) < Ck dg_k(x,F).

1.2 Outline of difficulties and proofs

In Ricci flow, the “strongest” symmetry, ie the rotational symmetry, was first studied by Brendle [12; 13]
in dimension 3 with many novel ideas that successfully generalize to prove rotational symmetry in higher
dimensions; see also Brendle and Naff [18] and Brendle, Daskalopoulos, Naff and Sesum [16]. In
contrast to the rotational symmetry, one of the major difficulties in studying any weaker symmetries is the
nonuniqueness of asymptotic limits. For the O(2)-symmetry, this requires us to study the two different
asymptotic limits R x cigar and R? x S! separately and combine these estimates in a delicate way. Our
O(2)-symmetry theorem is the first instance of tackling this issue in Ricci flow. Our method may be
generalized to study the O(n—k)-symmetry for k = 1,...,n — 2, which is weaker than the rotational
symmetry, ie O(n)-symmetry. For example, for each dimension n > 4, the author [60] constructed
n-dimensional steady solitons with Rm > 0 that are noncollapsed, O(n—1)-symmetric but not O(n)-
symmetric. It is then interesting to see whether noncollapsed 4D steady solitons with Rm > 0. In mean
curvature flow, Choi, Haslhofer and Hershkovits [34; 33] recently classified all noncollapsed translators
in R*, and in particular showed that they are all O(2)-symmetric.

Therefore, we need to develop new tools and methods to prove the O(2)-symmetry. Some of our methods
are independent of the soliton structure and the dimension, such as the distance distortion estimates,
the curvature estimates, and the symmetry improvement theorem, which may have more applications
in studying ancient Ricci flows. In particular, as a consequence of the nonuniqueness issue of limits,
Brendle’s construction of the Killing field is not applicable in our setting. So we introduce a new stability
method to construct the Killing field; see more in Sections 7 and 8. Our stability method generalizes
Brendle’s method (see [12, Lemma 4.1]) in the sense that it also works on ancient flows but not only on
steady solitons. For example, our method was recently applied by Zhao and Zhu [72] to study the rigidity
of the noncollapsed Bryant soliton in any dimension n > 4.

We now outline the structure of the paper. In the following we assume (M, g, f) is a 3D steady gradient
Ricci soliton that is not the Bryant soliton. Let {¢; };cr be the diffeomorphisms generated by V', ¢ = id,
and let g(¢) = ¢*,g. Then (M, g(t)) with t € (—o0, 00) is the Ricci flow of the soliton.

In Section 2 we give most of the definitions and standard Ricci flow results that will be used in the
following proofs.

In Section 3 we study the asymptotic geometry of the soliton in this section. First, by the splitting theorem
of 3D Ricci flow we can show that for any sequence of points x; € M going to infinity as i — oo, the
rescaled manifolds (M, r~2(x;)g, x;) converge to a smooth limit which splits off a line, where r(x;) > 0
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is some noncollapsing scale at x;. We show that such an asymptotic limit is either isometric to R x cigar
or R? x S1. Moreover, we find two integral curves I'1, ' of V£ tending to infinity at one end, such that
the asymptotic limits are isometric to R x cigar along them, and are R? x S! away from them. The two
integral curves also correspond to the two edge rays in the sector which is the blowdown limit of the
soliton.

Second, we prove the existence of the maximum point of R in Theorem 1.4. This is also the unique
critical point of f. We do this by a contradiction argument. Suppose there does not exist a maximum
of R. Then we can find an integral curve y of Vf which goes to infinity at both ends. We show that R
is nonincreasing along the curve and has a positive limit at one end. Using that the asymptotic limits
along both ends of y are isometric to R x cigar, we can compare the geometry at the two ends, and by a
convexity argument, we can show that R is actually constant along y, so that the soliton is isometric to
R x cigar. This is a contradiction to our positive curvature assumption. So we have a closed subset I',
which is the union of the critical point and two integral curves of V£, such that I' is invariant under the
diffeomorphisms generated by V£, and the soliton converges to (R x cigar, xp) under rescalings along
the two ends of T".

Next, we prove a quadratic curvature decay away from the edge I'. This corresponds to the case when
k =2 in Theorem 1.7. The proof uses Perelman’s curvature estimate, which gives the upper bound
R(x,0) < C/r? on scalar curvature in a nonnegatively curved Ricci flow (M, g(t)) with t € [-r2, 0],
assuming the flow is noncollapsed at x on scale r. In our situation, we will show by methods of metric
comparison geometry that the soliton is not collapsed at x on scale dg (x, I') in a local universal covering.
So we can apply Perelman’s curvature estimates on the local universal covering and obtain the desired
quadratic decay R(x) < C/dgz(x, r).

Lastly, we prove Theorems 1.1 and 1.5. In proving the two theorems, we will work in the backwards
Ricci flow (M, g(—1)) with T > 0, and reduce the change of various geometric quantities to the distortion
of distances and lengths under the flow. More specifically, for a fixed point x € M at which (M, g(—1))
is close to R% x S on scale /(7). Let H(t) be the g(—1)-distance from x to I'. Then we can show

H'(t)>C V.hY(x) and K(x)<C-H2(1)-h(2).

We can then show that /(7) stays bounded, and H(t) grows at least linearly as T — oo. Using this we
can show that R has two positive limits Ry, R, at the two ends of ', and the asymptotic cone angle is
nonzero. To show R; = Rj, first we can find two points x1, x5 at which the soliton (M, g) is €(t)-close
to R% x S, on the scales 2R1_1/2 and 2R2_1/2. Here ¢(t) — 0 as T — o0o. Then we can show that
x1 and x5 stay in a bounded distance to each other as we move backwards long the Ricci flow, and hence
(M, g(—1)) is €(t)-close to R? x S1 at x1, x5 on a uniform scale. So Ry = R, follows by controlling
the scale change at x1, x5 in the flow. Theorem 1.5 is a key ingredient in proving the O(2)-symmetry
theorem.
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In Section 4 we prove Theorem 1.7 of the curvature estimates in this section. It is needed in the proof
of the O(2)-symmetry. First, we derive the exponential curvature lower bound of R, which needs an
improved Harnack inequality for nonnegatively curved Ricci flows. For a Ricci flow solution with
nonnegative curvature operator, the following conventional integrated Harnack inequality can be obtained
by integrating Hamilton’s differential Harnack inequality and using the inequality Ric(v, v) < |v|?R:

R(X2,12) - 1 dgz(tl)(XI,XZ)

——>expl z —m"mm|.

Rt~ N\727 -
See for example Morgan and Tian [63, Theorem 4.40]. We observe that the inequality Ric(v, v) < |v|?>R

. . 1 2
can be improved to Ric(v, v) < 5[v]

2
R(x2.12) _ expf -1 Ay (¥1.X2)
R(x1,t1) — 4 h-n '

Using this improved Harnack inequality and some distance distortion estimates we can prove the expo-

R, using which we can prove the improved Harnack inequality

nential curvature lower bound. Note that this exponential lower bound C ~! (€0)e~@Fe0)dg(-.T) g sharp,
because €q can be arbitrarily small, and in R x cigar where R = 4 at the cigar tip, we have I' = R x {xjp}

and R decays like e 2 dg(-.T)

Next, we derive the polynomial upper bound of R, which states that R decays faster than d- k(.,T) for
any k € N. We prove this by induction. First, the case of k = 2 is proved in Section 3. Now assume by
induction that R < Cy dg_k(- , ") for some k > 2. Since R evolves by 3; R = AR + 2|Ric|?(x, ¢) under
the Ricci flow, for all s < ¢ we have the reproduction formula

t
R(x,t)= /M G(x,t;y,5)R(y,s)dsy + 2[ /M G(x,t;z,7)|Ric|*(z, 1) drz d,
S

where G is the heat kernel of the heat equation d;u = Au. Using a heat kernel estimate on G and the
inductive assumption, we can show the first term goes to zero as we choose s — —oo, and the second
term is bounded by C - d —~(2k-1)

2(1) (x,T). Note that k£ > 2 implies 2k — 1 > k, completing the induction
process.

In Section 5 we prove a local stability theorem, which is another key ingredient of the O(2)-symmetry
theorem. It states that the degree of SO(2)-symmetry improves as we move forward in time along the Ricci
flow of the soliton. Here SO(2)-symmetric means that the manifold admits an isometric SO(2)-action
whose principal orbits are circles.

First, we prove the symmetry improvement theorem in the linear case. For a symmetric 2-tensor / on
an SO(2)-symmetric manifold, it has a decomposition as a sum of a rotationally invariant mode and
an oscillatory mode. We show that if % satisfies the linearized Ricci De Turck flow d;4 = Aph on the
cylindrical plane R? x S, then the oscillatory mode of / decays exponentially in time. By a limiting
argument, we generalize this theorem to the nonlinear case for the Ricci De Turck flow perturbation,
whose background is an SO(2)-symmetric Ricci flow that is sufficiently close to R% x S,
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Moreover, the symmetry improvement theorem also describes the decay of | /] in the case that it is bounded
by an exponential function instead of a constant. More precisely, for xo € M, if |h|(-,0) < e®%s(X0.)
for any o € [0,2.02], then |h|(xo, T) < e~ % T . e22T holds for some 8¢ > 0. Applying the theorem to a

3D flying wing in which R limits to 4 along the edges, the increasing factor e2* T

will be compensated
for by the cigar tip contracting along the edges under the Ricci flow. It is crucial that « can be slightly
greater than 2, using which we can construct an SO(2)-symmetric approximating metric in Section 6, so
that the error decays like e~ (+8)dz(.I) for some small but positive 8. So the error decays faster than
that of R by the exponential lower bound in Theorem 1.7. We will use this fact to construct a Killing

field in Sections 7 and 8.

In Section 6 we construct an approximating SO(2)-symmetric metric g satisfying suitable error estimates.
First, we construct an SO(2)-symmetric metric g1 away from I" which satisfies

(1-1) |81 —glc100 < ¢~ (@+e0)de(-.T)

for some €9 > 0. To show this, we impose the following inductive assumption.

Inductive assumption one There are a constant § € (0,0.01) and an increasing arithmetic sequence
oy > 0, with § < o471 —ay < 0.01, such that if o, < 2.02, then there is an SO(2)-symmetric metric g,
such that

(1-2) 180 — glcr00 < o—nde(-.T)

If this is true for all n € N, then g will satisfy (1-1) for a large enough N € N.

Now assume inductive assumption one holds for n. To show it also holds for n 4+ 1, we want to apply
the symmetry improvement theorem to the Ricci flow of the soliton. After applying the symmetry
improvement theorem i times, the error to a symmetric metric will decay by C ~* for some C > 0. So for
points at larger distance to I', we need to apply the symmetry improvement theorem more times to achieve

—8d,

the error estimate e (1) Therefore, we need a second induction to apply the symmetry improvement

—8dy

theorem infinitely many times, so that eventually the error estimate e 1) holds everywhere.

Inductive assumption two There is a sequence of SO(2)-symmetric metrics {g, x j g ; such that g, x
satisfies (1-2), and for some C > 0 we have

(1-3) 8k — &lcro0 < e @D = on Tyip fori =0,...,k,

where I'sjp ={x € M :dg(x,T") > iD}. If inductive assumption two is true for all k € N, we take 41
to be a subsequential limit of g, x as k — oo, then g, satisfies (1-2) for n + 1.

Inductive Assumption Two clearly holds for k£ = 0 by taking g,.0 = &, and using Inductive Assumption
One for n. Now assume it holds for k > 0, we verify it for k 4 1 by applying the symmetry improvement
theorem. More precisely, we consider the harmonic map heat flow from (M, g(¢)) to the Ricci flow
8n k(t) starting from g, x on [0, T']. Then the error between g(¢) and g,  (¢) is then described by the

Geometry & Topology, Volume 29 (2025)



O(2)-symmetry of 3D steady gradient Ricci solitons 695

Ricci De Turck flow perturbation. Let g, 11 be the final-time metric g, x (7)) modulo the rotationally
invariant part of the error and a diffeomorphism. Since oscillatory part of the error decays exponentially
in time by the symmetry improvement theorem, we can show that g, x4 satisfies (1-3). This completes
the two inductions and hence we obtain an SO(2)-symmetric metric g satisfying (1-1).

Lastly, we modify the metric g; to obtain the desired approximating SO(2)-symmetric metric g, which
satisfies both (1-1) and

(1-4) g —glcioo(x) >0 as x — oo.

Note that g; already satisfies (1-4) as we move away from I', we just need to extend this estimate near I.
Since the soliton converges along the two ends of I" to R x cigar which is SO(2)-symmetric, we can
obtain g by gluing up g; with R x cigar in suitable neighborhoods of the two ends of T".

The goal of Sections 7 and 8 is to construct a nontrivial Killing field of the soliton. We do this by a
global stability argument using a heat kernel method, which is consistent with our curvature estimates
and estimates of approximating metrics.

In this section, we study the solution to the following initial value problem of the linearized Ricci De Turck
flow equation,

dch(t) = Ap g@ryh(?),

1-5
(1) h0) = Ty,

where X is the Killing field of the approximating SO(2)-symmetric metric obtained in Section 6. By
the conditions (1-1) and (1-4), and the exponential lower bound from Theorem 1.7, we can deduce that
|£xg/R|(x) — 0 as x — oco. We show that |h(¢)| — 0 as t — oo.

To prove this, we first observe by Anderson—Chow curvature pinching [1] that || satisfies the inequality

(16 01 = [ Gx,t:3,0)1(3,0) dov.
where G(x,1t;y,s) is the heat kernel to the heat-type equation
2[Ric|?(x, 1
(1-7) dou = Ay 4 2IRICFO0D)
R(x,t)

Our key estimate is to show a vanishing theorem of the heat kernel G(x, ¢; y, s) for any fixed pair (y, 5)
at t = oo. Using this vanishing theorem we can show that the integral in (1-6) in any compact subset is
arbitrarily small when # — oo. For the integral outside the compact subset, by the initial condition it is an
arbitrary small multiple of R integrated against the heat kernel G, which is bounded by the maximum
of R, seeing that R is also a solution to (1-7).

In Section 8 we construct a Killing field of the soliton metric. Let X be the Killing field of the approxi-
mating SO(2)-symmetric metric obtained in Section 6. Let (M, g(¢)) be the Ricci flow of the soliton.
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Let Q(t) = 0¢ P+ (X) — Ag(r)Pex(X) —Ricg (1) (¢r+(X)) and Y (¢) be a time-dependent vector field which
solves

9:Y(t) — AY (1) —Ric(Y (1)) = Q(1),
{nm:o

Moreover, let X(¢) := ¢:+(X) — Y. Then X(¢) solves the initial value problem
{ 0; X(t) — AX(t) —Ric(X(z)) =0,
X0)=X,
and the symmetric 2-tensor field Lx)g(¢) satisfies the equation (1-5). Therefore, by the result from

Section 7, we see that Lx;)g(t) tends to zero as f — oo. So the limit of X(z) as ¢ — oo is a Killing field
of (M, g).

To show that the Killing field is nonzero, we first show that Q(¢) satisfies a polynomial decay away
from I'" as a consequence of (1-1) and the polynomial curvature upper bound from Theorem 1.7. Then by
some heat kernel estimates on |Y(¢)| we show that it also satisfies the polynomial decay away from I,
which guarantees the nonvanishing of the limit of X(¢) as t — oo.

In Section 9 we prove Theorem 1.2 of the O(2)-symmetry. First, let X be the Killing field obtained
in Section 8, and yg for 6 € R be the isometries generated by X. We show that the yg commute with
the diffeomorphisms ¢; generated by Vf. Then we show that yg is an SO(2)-isometry. This uses the
existence of a maximum point of R, which must be fixed by the isometries yg. Since the maximum point
of R is also a critical point of f, it follows that f is invariant under the isometries. Using this we can
show that yg is an SO(2)-isometry and fixes the edge I.

Lastly, in order to show that the soliton is also O(2)-symmetric, it remains to show that the curvature form
of the SO(2)-isometry vanishes everywhere. By using the soliton equation and the curvature formula
under the SO(2)-isometry, we can reduce this to the vanishing of a scaling invariant quantity at a point
on I'. By a limiting argument and the scaling invariance, this can be further reduced to the Euclidean
space R3, where the SO(2)-isometry is the rotation around the z-axis, and hence the vanishing assertion
clearly holds.
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2 Preliminaries

In the following we present most of the definitions and concepts that are needed in the statement and
proofs of the main results of this paper.
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2.1 Steady gradient Ricci solitons

Definition 2.1 (steady Ricci soliton) We say a smooth complete Riemannian manifold (M, g) is a
steady Ricci soliton if it satisfies

(2-1) Ric=1%xg

for some smooth vector field X . If, moreover, the vector field is the gradient of some smooth function f,
then we say it is a steady gradient Ricci soliton, and f is the potential function. In this case, the soliton
satisfies the equation

Ric = V2 f.
By a direct computation using (2-1), the family of metrics g(¢) = ¢/ (g), with ¢ € (—o0, 00), satisfies the
Ricci flow equation, where {¢; };e(—o0,00) 1S the one-parameter group of diffeomorphisms generated by
—Vf with ¢ the identity. We say g(¢) is the Ricci flow of the soliton.

Throughout the paper, we use the triple (M, g, f) to denote a steady gradient soliton (M, g) and a
potential function f, and use the quadruple (M, g, f, p) to denote the soliton when p € M is a critical
point of f.

For 3D steady gradient Ricci solitons, by the maximum principle they must have nonnegative sectional
curvature [30]. Moreover, by the strong maximum principle, see eg [63, Lemma 4.13, Corollary 4.19], we
see that a 3D steady gradient Ricci soliton must be isometric to quotients of R x cigar if the curvature is
not strictly positive everywhere. Therefore, throughout the paper we will assume our soliton has positive
curvature. So by the soul theorem, the manifold is diffeomorphic to R3; see eg [67].

There are several important identities for the steady gradient Ricci solitons due to Hamilton; see eg [38].
In particular, we will use frequently

(2-2) (VR,Vf)=—=2Ric(V£,Vf) and R+ |Vf|* = const.

By the second equation, a critical point of f must be the maximum point of R. For a 3D steady gradient
Ricci soliton, since the Ricci curvature is positive, the first equation implies that a maximum point of
R is also a critical point of f. We will show in Section 3 that the critical point exists in all 3D steady
gradient Ricci solitons.

Hamilton’s cigar soliton [49] is the first example of Ricci solitons. It is rotationally symmetric and has
positive curvature. The cigar soliton is an important notion in this paper. In the following we review the
definition of the cigar soliton and some properties we will use, including a precise description of the
curvature decay and the tip contracting rate.

Definition 2.2 (cigar soliton; cf [49]) Hamilton’s cigar soliton is a complete Riemannian surface

R2, g., ), where
( gC f) B dx2+dy2

— 2 2
gc—m and f—log(l—l-x +y )

Geometry & Topology, Volume 29 (2025)



698 Yi Lai

As a solution of Ricci flow, its time-dependent version is

(1) = L D"
Sl = ey
Let s denote the distance to the cigar tip (0, 0). Then we may rewrite g. as
(2-3) gc = ds? + tanh? s d6?,
and the scalar curvature of g. is
4
2-4 Ry =4sech’s = —————.
(2-4) p> S= et ey

In particular, R(xp) =4 and K (xp) = 2. For a fixed 0p € [0, 27r), the curve y(s) := (8o, 5) is a unit-speed
ray starting from the tip, and we can also compute that
r r
(2-5) / Rics (y/(s), y'(s)) ds = / 2sech?sds = 2tanhs|p = 2(1 — %),
0 0 e + 1
which converges to 2 as r — co. Note that this integral is the speed of a point at distance r drifts away
from the tip in the backward Ricci flow g.(¢).

Throughout the paper, by abuse of notation, we will use g, to denote both the metric on the cigar, and
also the product metric on R x cigar such that R(x;p) = 4; and use g to denote the product metrics on
R x ST and R% x S such that the length of the S!-fiber is equal to 2.

With this convention, it is easy to see from (2-3) that for any sequence of points x; — oo, the pointed
manifolds (cigar, g, x;) smoothly converge to (R x S, gsan) in the Cheeger—-Gromov sense.

Next, we introduce the concept of collapsing and noncollapsing.

Definition 2.3 (collapsing and noncollapsing) Let (M", g) be an n-dimensional complete Riemannian
manifold. We say that it is noncollapsed (resp. collapsed) if there exists (resp. does not exist) a constant
k> 0 such that the following holds: For all x € M, if [Rm|(x) < r~2 on Bg(x, r) for some r > 0, then

volg (Bg(x,r)) > kr".

It is easy to see that an n-dimensional Riemannian manifold is collapsed if there is an asymptotic limit
isometric to R”~2 x cigar.

Lemma 2.4 Let (M", g) be an n-dimensional complete Riemannian manifold. Suppose there exists a
sequence of points x; € M and constants r; > 0 such that the pointed manifolds (M, r;” 2g, x;) smoothly
converge to R"~2 x cigar. Then (M, g) is collapsed.

Proof By assumption we may choose a sequence of points y; € M such that (M, r;” 2g, yi) converge to
R"~1x 1. So there is a sequence of constants 4; — oo such that |Rm|,~2¢ < 472 on B,~2, (i, 4;), and
) VOlri_zg Bri_zg (y,-, A,')
lim =0
i—00 A?
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After rescaling, this implies [Rm|g < (4;r;)"2 on Bg(y;, A;r;) and

lim volg Bg(yi, Airi) —0.
i—00 (Airi)"
So (M, g) is collapsed. a

In Section 3 we will see that the converse of Lemma 2.4 is also true for all 3D steady gradient Ricci
solitons, ie any collapsed solitons have an asymptotic limit isometric to R x cigar. Note all 3D steady
gradient Ricci solitons except the Bryant soliton are collapsed [12].

2.2 Local geometry models

We will show in Section 3 that both R x cigar and R% x S! are asymptotic limits in any 3D steady gradient
Ricci solitons that are not Bryant solitons. In this subsection we define e-necks, e-cylindrical planes and
e-tip points, which are local geometry models corresponding to these asymptotic limits. Moreover, to
obtain the asymptotic limits, we need to rescale the soliton by factors that are comparable to volume scale
at the points.

Definition 2.5 (volume scale) Let (M, g) be a 3D Riemannian manifold. Define the volume scale r(-)
to be

r(x) =sup{s > 0:volg (Bg(x,s)) > wos>},
where wg > 0 is chosen such that 7(x) = 1 for all x € R? x S1. It is clear that wyq is less than the volume
of the radius one ball in the Euclidean space R3.

We measure the closeness of two pointed Riemannian manifolds by using the following notion of
€-isometry.

Definition 2.6 (e-isometry between manifolds) Let € >0 and m € N. Let (M", g;) fori = 1,2 be
n-dimensional Riemannian manifolds, and let x; € M;. We say a smooth map ¢: Bg, (x1,€" 1) — M,
with ¢(x1) = x3 is an e-isometry in the C”-norm if it is a diffeomorphism onto the image, and

(2-6) IVE@*g2—g1)| <€ on By (x1.e™!) for k=0,1.....m.
where the covariant derivatives and norms are taken with respect to g;. We also say (M», g2, X3) is

e-close to (M1, g1, x1) in the C™-norm. In particular, if m = [¢ 1], then we simply say (M>, g2, x2) is
e-close to (M1, g1, x1) and ¢ is an e-isometry.

Definition 2.7 (e-isometry between Ricci flows) Let € > 0. Let (M]", g;(¢)) with 1 € [—e~1, e 1] for
i = 1,2 be an n-dimensional Ricci flow, and let x; € M;. We say a smooth map ¢: Bg, (9)(x1, e )= M,
such that ¢(x1) = x, is an e-isometry between the two Ricci flows if it is a diffeomorphism onto the
image, and for k =0,1,...,[e7!],

VE(@*g2() —g1() <€ on Bgyoy(xi.e ) x [ e,
where the covariant derivatives and norms are taken with respect to g1 (0). We also say (M», g2(¢), x3) is
e-close to (M1, g1(t), x1).
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In the following, we will choose the target manifolds to be the cylinder and cylindrical plane, and call the
regions that are close to them the e-neck and e-cylindrical plane.

Definition 2.8 (e-neck) We say a 2D Riemannian manifold (N, g) is an €-neck at xo € M for some
€ > 0 if there exists a constant r > 0 such that (N, r~2g, xo) is e-close to the cylinder (R x S!, (0, 0)).

We say Bg (xq, re~ 1) is the e-neck, r is the scale, xq is the center, and the preimage of {0} x S under
the e-isometry is the central circle. On R x S, let the function x: R x ST — R be the projection onto
the R-factor, and let d, be the vector field. Then by abuse of notation, we will denote the corresponding
function and vector field on N modulo the e-isometry by x and d.

Definition 2.9 (e-cap) Let (M, g) be a complete 2D Riemannian manifold. We say a compact subset
€ C M is an e-cap if € is diffeomorphic to a 2-ball and the boundary 9% is the central circle of an
e-neck N in (M, g). We say that the points in 6\ N are centers of the e-cap.

Definition 2.10 (e-cylindrical plane) Let € > 0. We say a 3D Riemannian manifold (M, g) is an
e-cylindrical plane at xo € M if there exists a constant r > 0 such that (M, r~2g, x¢) is e-close to the
cylindrical plane R? x S'. By abuse of notation, we also refer to the image subset of the e-isometry as an
e-cylindrical plane of g.

We say r is the scale of the e-cylindrical plane, and xg is the center of the e-cylindrical plane. Let
x,y:R2x S! - R and 6: R? x S' — S! be the projection to the three product factors. By abuse of
notation, we use dx, dy, dy to denote the corresponding vector fields on M modulo the e-isometry. In
particular, we call dy the SO(2)-Killing field of the e-cylindrical plane.

At the center of an e-cylindrical plane, we introduce another scale in the following definition, which is
comparable to the volume scale. Since this scale is measured by the length of curves, it is more useful than
the volume scale in the Ricci flow of the soliton when combined with suitable distance distortion estimates.

Definition 2.11 (scale at an e-cylindrical plane) Let (M, g) be a 3D Riemannian manifold. Suppose
X € M is the center of an e-cylindrical plane. We denote by /(x) the infimum length of all closed smooth
curves at x that are homotopic to the S'-factor of the e-cylindrical plane in B(x, 10007 (x)), where
r(x) > 0 is the volume scale at x. It is clear that & (x) is achieved by a geodesic loop at x.

Moreover, by the definition of volume scale we have r(x) = 1 and #(x) = 27 for all x e RZ x S1. So
when € is sufficiently small, we have

1.97r(x) < h(x) <2.1mr(x).
Next we describe points on 2D manifolds that are close to the tip of the cigar.

Definition 2.12 (e-tip point) Lete > 0. Let (M, g) be a 2D Riemannian manifold, x € M. If there is an e-
isometry from (M, r~2(x)g, x) to (cigar, r ~2(xg)gc, xo), for some x¢ € cigar such that dg, (x, Xip) <€,
then we say x is an e-tip point.
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Similarly, if (M, g) is a 3D Riemannian manifold, x € M. Suppose there is an e-isometry from
(M,r~2(x)g, x) to (R x cigar, 7 ~2(x9)gc, xo) for some xo € R x cigar such that dg, (x0, Xip) =< €,
where Xy is the tip of the cigar with the same R-coordinate as xo. Then we say that x is an e-tip point.

2.3 Distance distortion estimates and curvature estimates

In this subsection, we review some standard distance distortion estimates and curvature estimates, which
are originally due to Hamilton [51] and Perelman [66]. A key observation in obtaining these estimates is
the following. Let (M, g(¢)) with ¢ € [0, T] be a Ricci flow. Assume y: [0, 1] = M is a smooth curve.
For any ¢ € [0, T'], write L(¢) for the length of y with respect to g(¢). Then

_ [T Rieg(().79))
@D Lo =- [ SO s

In particular, the following lemma gives an upper bound on the speed of distance shrinking between
two points, using only local curvature bounds near the two points. The proof uses the second variation
formula; see eg [36, Theorem 18.7].

Lemma 2.13 Let (M, g(¢)):c[o,1] be a Ricci flow of dimension n. Let K, ro > 0.

(1) Let xo € M and tg € (0,T). Suppose that Ric < (n — 1)K on By, (x¢,ro). Then the distance
function d(x,t) = d;(x, xo) satisfies, in the outside of By,(xo,r0), the inequality

(0t = A)|t=tod > —(n — 1)(%](;’0 + ro_l).
(2) Letto€|0,T) and xo,x1 € M. Suppose
Ric(x,f9) <(n—1)K
for all x € By, (x0,70) U By (x1.70). Then
0t|t=t0ds(x0,x1) > =2(n —1)(Kro + ”o_l)-
The next lemmas control how fast a metric ball shrinks and expands along Ricci flow, using the nearby
curvature assumptions. They can be proved by using the Ricci flow equation; see eg [69, Lemmas 2.1
and 2.2].
Lemma 2.14 Let (M, g(1))sc[o,1] be a Ricci flow of dimension n, and let xo € M. Let K, A > 0.
(1) Suppose Ricg(;) > —K on B;(x9, A) € M forallt € [0, T]. Then forall t € [0, T],
Bo(xo, A e_KT) C Bs(x9, 4 e_K(T_t)).
(2) Suppose Ricg ;) < K on B;(xo, R) € M forallt € [0, T]. Then forallt € [0, T],
By (x0. Ae X" C By(xo, A).
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The following curvature estimate is also due to Perelman [66, Corollary 11.6]. It provides a curvature
upper bound at points in a Ricci flow, if the local volume has a positive lower bound. For a more general
version of this estimate, see [5, Proposition 3.2].

Lemma 2.15 (Perelman’s curvature estimate) For any k > 0 andn € N, there exists C > 0 such that the
following holds. Let (M", g) x [T, 0] be an n-dimensional Ricci flow (not necessarily complete). Let
X € M be a point with B (x, r)x[—r2,0] € M x[—T, 0] for some r > 0. Assume also vol(Bg (x, 7)) > kr".
Then R(x,0) < C/r?.

2.4 Metric comparisons

We need the following notions and facts from metric comparison geometry; see [21]. Let (M, g) be a
complete n-dimensional Riemannian manifold with nonnegative sectional curvature.

Lemma 2.16 (monotonicity of angles) For any triple of points o, p,q € M, the comparison angle £ poq
is the corresponding angle formed by minimizing geodesics with lengths equal to dg (0, p), dg(0,q) and
dg (p,q) in Euclidean space.

Let op and oq be two minimizing geodesics in M between o, p and o, q, and let £poq be the angle
between them at 0. Then & poq > & poq. Moreover, for any p’ € op and g’ € oq, we have £ p'oq’ > Zpoq.

In a nonnegatively curved complete noncompact Riemannian manifold, we can equip a length metric on
the space of geodesic rays. Moreover, a blowdown sequence of this manifold converges to the metric
cone over the space of rays in the Gromov—Hausdorff sense; see eg [63, Proposition 5.31].

Let y1 and y» be two rays with unit speed starting from a point p € M. The limit lim,_, s Z)/l (r)py2(r)
exists by the monotonicity of angles, and we say it is the angle at infinity between y; and )5, and denote
it as £(y1, y2)-

Lemma 2.17 (space of rays) Let p € M and Soo(M, p) be the space of equivalent classes of rays
starting from p, where two rays are equivalent if and only if the angle at infinity between them is zero,
and the distance between two rays is the limit of the angle at infinity between them. Then Soo (M, p) is a
compact length space.

Lemma 2.18 (asymptotic cone) Let p € M and J (M, p) be the metric cone over Soo (M, p). Then for
any A; — 00, the sequence of pointed manifolds (M, )Ll._l g, p) converges to T (M, p), with p converging
to the cone point in the pointed Gromov—Hausdortf sense. Moreover, for p,q € M, we have that T (M, p)
is isometric to (M, q). We say (M, g) is asymptotic to T (M, p), and T (M, p) is the asymptotic cone
of M.

It is clear that the asymptotic cone J (M, p) is in fact independent of the choice of p. It is easy to see that
the asymptotic cones of the Bryant soliton and R X cigar are a ray and a half-plane. In [60], the author
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constructed a family of 3D steady gradient Ricci solitons that are asymptotic to metric cones over an
interval [0, a], where a € (0, w). We will show in Section 3 that this is true for all 3D steady gradient
Ricci soliton with positive curvature that is not a Bryant soliton.

In the rest of this subsection we introduce a very useful technical notion called strainer [21]. It is similar
to the notion of an orthogonal frame in the Euclidean space R”, that provides a local coordinate system
in the metric space.

Definition 2.19 ((m, §)-strainer) Let§ > 0and 1 <m € N. A 2m-tuple (a1, b1, ...,am, bm) of points
in a metric space (X, d) is called an (m, §)-strainer around a point x € X if

Zaixbj >1z_§ forall i,j=1,...,mwithi # j,

Zaixaj>zn—8 forall i,j =1,...,m withi # j,

Zb,-xbj>%71—8 forall i,j =1,...,m withi # j,

Laijxb; >m -6 foralli =1,...,m.
The strainer is said to have size r if d(x,a;) = d(x,b;) =r foralli =1,...,m. Itis said to have size
atleast r if d(x,a;) >r and d(x,b;) >r foralli =1,...,m.

We also introduce the notion of (m+% 8)—strainers. Similarly, this notion provides a local coordinate
system in the metric space that looks like a half-plane R”? = R” x R.

Definition 2.20 ((m+3,§)-strainer) Let§ > 0 and 1 <m € N. We call a (2m+1)-tuple of points
(a1,b1,...,am,bm, am+1) in a metric space (X, d) an (m—i—% 5)—strainer around a point x € X if
Laixbj > 1w —§ foralli=1,....m+1landj=1,....m withi # j,
Laixa; > in—8 foralli,j=1,....m+1withi # j,
Lbixb; > 4w —§ foralli,j =1,....,m withi # j,

Lajxb; > 1 —§ foralli =1,...,m.
The strainer is said to have size r if d(x,a;) =d(x,bj) =r foralli=1,...,m+1land j =1,... ., m. It
is said to have size at least r if d(x,a;) > r foralli =1,...,m+1landd(x,b;) >r forall j =1,...,m.

2.5 Heat kernel estimates

We prove a few lemmas using the standard heat kernel estimates of the heat equations under the Ricci
flows. Let G(x,¢;y,s), where x,y € M and s < ¢, be the heat kernel of the heat equation d;u = Au
under g(¢), that is,

(2-8) 0:G(x,t;y,5) = Ax:G(x,t;,5), th\n} G(-.t;y,8) =16y.

It is easy to see that G(x,t; y, s) is also the heat kernel of the conjugate heat equation, that is,
—0sG(x,t;y,5) = Ay sG(x,t;y,5) — R(y,s) G(x,t;y,5), }1}2 G(x,t;-,5) = 0x.

We have the following Gaussian upper bound for G.
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Lemma 2.21 (upper bound of the heat kernel for an evolving metric, cf [36, Theorem 26.25]) Let
(M"™, g(t)) be a complete Ricci flow on [0, T'] with |Rm| < K. There exists a constant C; < oo depending
only onn, T and K such that the conjugate heat kernel satisfies

C d2(x,y) )

exp(——
VOII/Z(BS(X, Vit —s))) -Voll/z(Bs (r.1/3(t—9))) Ci(r—s)

foranyx,ye M and 0 <s <t <T.

(2-9)  G(x.riy,8) =

Using this we can prove the following lemma, which gives a time- and distance-dependent upper bound
on nonnegative subsolutions to the heat equation, depending on initial upper bounds.
Lemma 2.22 Forany K, T,« > 0, there is a constant C(K, T, o) > 0 such that the following holds:
Let (M, g(t), yo) be a complete Ricci flow on [0, T]. Assume that

(1) |Rm|(x,¢) <K forall x e M and t € [0, T], and

(2) u: M x[0,T]— [0, 00) is a smooth function with d;u < Au and
u(x,0) < ¢*4o(*.y0),
Then for all D > 0, u(x,1) < Ce @tV forany (x,t) € By(vo. D) x [0, T].
Proof First, by the curvature assumption |[Rm| < K, it follows immediately from the Ricci flow equation
that the metrics at different times are comparable to each other, ie
e Fg(s) =g() =e“Fg(s).

From now on we will use C to denote all constants that depend only on 7', K and «, whose values may
vary.

By the reproduction formula we have

(2-10) ur.) = [ Gx.t53.0)-u(r.0)doy.
M
Now let D > 0 and assume x € By(xg, D), and split the integral into two parts
un= [ Gy 0u0.0dy [ G000 doy.
Bo(x,1) M\Bo(x,1)

For the first part, note that for any y € Bg(x, 1), we have
do(y,x0) = do(y,x) +do(x,x0) <1+ D.

So by the assumption on u we have u(y, 0) < ¢*(1+D2) and hence

(2-11) / G(x,t;9,0)-u(y,0)doy fe“(HD)/ G(x,t;y,0)doy < *(1+D),
Bo(x,1) Bo(x,1)
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To estimate the second part in (2-10), we first claim that for any y € M \ By(x, 1),

d&(x,y))‘

2-12 G(x.t:y,0)<C-exp( —
(2-12) (x,2:y,0) eXP( C

To this end, we note that if 1 > 1, the volumes of the two balls Bo(x, \/t/_2) and Bo(y, \/t/_2 are
bounded below by C 1. So the claim follows immediately from (2-9). If < 1, then by the assumption
on the injectivity radius and the curvature, we see that the volumes of the two balls By(x, \/t/_2) and
Bo(y, /1/2) are bounded below by C~1(¢/2)"/2. Note also that for large enough C we have

_ 1 d2(x,y)
1y n/2<C. —  \)<cC. 077,
(2 ) - *xp 2Cit ) — exp 2Ct

where we used do(x, y) > 1, and C; > 0 is the constant from (2-9). So by Lemma 2.21 this implies

| Loz (@)Y _ (i)
G(x,t,y,O)fC(zt) exp( o <C -exp 2y )

which proves the claim.

Note for any y € M \ Bo(x, 1), we have

u(y,0) < e%do(x0,y) < % (do(x0,x)+do(x,y)) < 9D . pado(x.y)

Combining this with (2-12), we see that the second part in (2-10) satisfies

Ct

2
S CeaD / exp (_M) doy
M Ct

< Ce*P,

aD d(%(x’y) ado(x,y)
(2-13) G(x,t; Y, 0) M(y,O) doy <Ce expl ————— ] -e olx,y doy
M\Bo(x,1) M

where in the last inequality we used the curvature bound |[Rm| < K and ¢ < T, which allows us to apply
a volume comparison to estimate the last integral term; see also [58, Lemma 2.8]. Combining the two
inequalities (2-11) and (2-13) we get |u|(x,1) < Ce@TDP which proves the lemma. |

3 Asymptotic geometry at infinity

In this section, we study the asymptotic geometry of a 3D steady gradient soliton that is not a Bryant
soliton. We show that it dimension reduces to the cigar soliton along two integral curves of Vf. Moreover,
we show that the asymptotic cone of the soliton is isometric to a metric cone over an interval [0, a], where
a € (0, ). We also prove a few other geometric properties of the soliton, one of which is that the scalar
curvature attains its maximum at some point.

Geometry & Topology, Volume 29 (2025)



706 Yi Lai
3.1 Classification of asymptotic limits

The main result in this subsection is Lemma 3.3, which states that there are two asymptotic limits in the
soliton, which are R% x S and R x cigar. In taking limits, we will often need to rescale the metrics by
the volume scale 7 (x;) at the basepoint x;, to guarantee the limit is smooth and also not trivial. Recall by
Definition 2.5, volume scale is the maximum radius such that the volume ratio is not less than wg > 0,
and volume scale is 1 everywhere on RZ x §!.

We will use the following lemma to show that R x 72 cannot be an asymptotic limit.

Lemma 3.1 Let (M, g) be a 3D complete Riemannian manifold with positive curvature, and suppose
RxT?=RxS! xS is equipped with some product metric go (in which the lengths of the two S ! -fibers
are not necessarily equal), and let xo € R x T2. Then there exists an ep > 0 such that for any y € M, the
pointed manifold (M, r~2(y)g, y) is not €y-close to (R x T2, r~2(x0)go, Xo)-

Proof Suppose €y does not exist. Then there exists a sequence of points yr € M such that the
sequence (M, r~2(yx)g, vx) smoothly converges to (R x T2, r~2(x0)go, Xo). It is clear that y; — oo,
because otherwise the manifold is isometric to R x 72, a contradiction to the positive curvature. So
there exists a sequence €, — 0, an open neighborhood Uy of y; and a diffeomorphism ¢ such that
Pk : [—e;l,egl] x T? — U C M, which maps xq € {0} x T2 to y, and is such that ¢ is an ej-isometry.
We say T2 := ¢y ({0} x T?) is the central torus, which is homeomorphic to 72.

In the rest of the proof we show that a connected component of the level set of the function dy,(-) :=
dg(y0,-) at yi is homeomorphic to a 2-torus. Suppose this claim is true. Then for k sufficiently large,
dg (Yo, yx) is sufficiently large, which contradicts the fact that a level set of a distance function to a fixed
point in a positively curved 3D Riemannian manifold must be homeomorphic to a 2-sphere at all large
distances; see eg [63, Corollary 2.11]. Then this will prove the lemma.

To show the claim, without loss of generality we may assume after a rescaling that r(y;) = 1. Let
s:R x T? — R be the coordinate function in the R-direction of R x T2, and let X = ¢ (3x) be a vector
field on U C M. For any small € > 0, it is easy to see that for all large k, the angle formed by any
minimizing geodesic from yq to a point p € Uy and X(p) is less than €. Let y,, with u € (=100, 100),
be the flow generated by X on ¢ ((—100, 100) x T2?) C M. Then the distance function dy, ( -) increases
along yx, at a rate bounded below by 1 — Coe, where Co > 0 is a universal constant. In particular, an
integral curve of X intersects a level set of dy, (-) in a single point.

Therefore, there is a continuous function 5 Tk2 — R such that for any x € Tkz, we have dy, (x50x) (X)) =
dy, (V). Let F: Tk2 — a’y_ol (dy,(yr)) be defined by F(x) = x5(x)(x), then F is continuous. We show
that F is an injection: suppose F'(x1) = F(x2) = y. Then x; = y_5(x,)(y) fori =1, 2. Since x1, x3 € T2,
it follows that (¢k_1)*s(x1) = (¢k_1)*s(x2) =0and

0= (¢ )*s(x1) = (P ) *s(x2) =5(x2) =5(x1).
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So 5(x3) =5(x1), and hence x; = x,. Since Tk2 is compact, F' is a homeomorphism from the 2-torus
onto the image which is a connected component of dy_o1 (dyo(yx))- This proves the claim. |

The following lemma will be used to show that all asymptotic limits split off a line.

Lemma 3.2 Let (M, g) be a complete Riemannian manifold with nonnegative sectional curvature and let
kg—y C M be a sequence of points with dg (yo, yr) — 0o. Then after passing to a subsequence of
{Vk )iy there exists aray 0: [0,00) — M with 0(0) = yo and a sequence of numbers s; — 00 such
that for zj = o (s), we have dg (zg, yx) = dg(yo. yx) and

Ayovize — 7 as k — oo.
Proof A standard metric comparison argument. See for example [4, Lemma 5.1.5]. a
Now we prove the main result in this subsection.

Lemma 3.3 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant soliton.
Let p € M be a fixed point. Then for any € > 0, there is D(e) > 0 such that for all x € M \ Bg(p, D),
the pointed manifold (M, r=2(x)g, x) is e-close to exactly one of the following:

(1) (R xcigar, 7 72(X)ge, X), or

(2) (Rz XSl,gstanv 2)

We call these two limits the asymptotic limits of the soliton.

Proof First, we show that for all x € M \ Bg(p, D), there exists D > 0 such that (M, r2(x)g, x) is
e-close to some product space with an R-factor. This suffices to show that for any sequence of points
{Vk 32 the rescaled Ricci flows (M, r2(yi)g(r?(yi)t), (k. 0)) converge to an ancient Ricci flow
that split off a line.

First, we claim r(yx)/dg (yo, yx) — 0 as k — oo. If this is not true, then (M, g) has Euclidean volume
growth, and hence is flat by Perelman’s curvature estimate (Lemma 2.15); a contradiction. So by passing
to a subsequence we may assume (M, 7~ 2(yx)g(r?>(yx)t), (Vk.0)) converges to an ancient 3D Ricci
flow; see [60, Lemma 3.3].

So by Lemma 3.2 and the strong maximum principle [63, Lemma 4.13, Corollary 4.19], the limit flow
splits off an R-factor. Therefore, by the classification of ancient 2D Ricci flows [39; 41], the limit flow
must be isometric to one of the following Ricci flows up to a rescaling:

(1) R xcigar,

(2) RZxS1,

3) RxT?,

4) RxS?,

(5) R xsausage solution.
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First, item (3) is impossible by Lemma 3.1. Second, we can argue in the same way as [60, Theorem 3.7]
to exclude item (5): In [60, Theorem 3.7], we argued under the O(2)-symmetry assumption, and used the
curve ['(s) fixed by the O(2)-isometry to define a function F'(s) which characterizes the diameter of the
nonflat factor in the asymptotic limits at I'(s). We showed limg_, oo F(s) = co. In our current setting,
we can find a curve f(s): [0, 00) — M going to infinity, such that for all s > 0, (M, R(f(s))g, f(s)) is
e-close to either R x S2, or R x cigar or a time-slice of R x sausage solution at the tip. Then we can
define the diameter function F(s) by replacing I'(s) by I'(s), and show limy_s oo F(s) = oo in the same
way. This implies that R x sausage solution cannot appear in the blowup limit.

Finally, we exclude item (4) as follows: Suppose R x S2 is an asymptotic limit. We claim that all
asymptotic limits are R x S2. If so, then it is clear that the soliton is noncollapsed, and thus has to be
the Bryant soliton by Brendle’s result [12], so we get a contradiction. To show the claim, suppose by
contradiction that there is another limit of type (1) or (2). First, for any € > 0, after scaling down by
sufficiently large C > 0, the metric spaces of R x cigar, R? x S! and R x S are e-close in the pointed
Gromov—Hausdorff sense to an € “!-ball in R x Ry, R? or R, respectively. So for points z sufficiently far
away from a fixed point, the metric space of (M, C ~1r=2(z)g,z) is 2e-close to a (2¢)"!-ball in R x R4,
R? or R.

Next, note that there exists €p > 0 such that R is not €g-close to either R x R4 or R2. Since R x S2 is
not the unique asymptotic limit, we can find points zz — oo as k — oo, such that (M, C ~1r=2(z;)g, z)
for sufficiently large C > 0 is not %eo—close to any of R x R4, R? or R. This contradiction proves the
claim. O

The following lemma shows that in the Ricci flow of the soliton, the closeness of a time-slice to the
asymptotic limit leads to the closeness in a parabolic region of a certain size.

Corollary 3.4 Suppose that (M, g) is a 3D steady gradient soliton with positive curvature that is not
a Bryant soliton. Let p € M be a fixed point. Then for any € > 0, there is a D(¢) > 0 such that for all
x € M\ Bg(p, D), the pointed rescaled Ricci flow (M, r=2(x)g(r?(x)t), x) is e-close to exactly one of
the following two Ricci flows:

(1) (R x cigar, r(%)ge (r2()1), %),
) (R?x S, gqan. X).

Proof Note that the Ricci flows gRxcigar(f) and gr2yg1(7) on R x cigar and R2 x S are both eternal
Ricci flows which have bounded curvature. The assertion now follows from Lemma 3.3 by a standard
limiting argument as in [59, Lemma 3.4]. O

In the rest of this section, we show that R x cigar is a stable asymptotic limit when we move forward in
the Ricci flow of the soliton, in the sense that a region close to the R x cigar stays close to it until it is not
close to any asymptotic limits.
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This is based on the observation that the Ricci flow of the cigar soliton contracts all points to the tip when
we move forward in time along the flow. By using this and the closeness to the Ricci flow of cigar, we
show in the next lemma that an e-tip point x (see Definition 2.12) stays a 2e-tip point outside a compact
subset, when we move along an integral curve ¢—;(x) of —Vf. Note that this amounts to moving forward
along the Ricci flow of the soliton, since g(¢) = ¢*, g satisfies the Ricci flow equation, where {¢;};cr
are the diffeomorphisms generated by Vf.

Lemma 3.5 Fix some p € M. For any € > 0, there exists D(¢€) > 0 such that the following holds.

For any point x € M \ Bg(p, D), let ¢_;(x) be the integral curve of =V f for t € [0, 00). Suppose x is
an e-tip point. Then ¢—;(x) is a 2e-tip point for all t € [0,¢(x)), where t (x) € (0, o] is the supremum
of t such that¢_;(x) € M \ Bg(p, D).

Proof For the fixed €, we choose T'(¢) > 0 to be the constant such that in the Ricci flow of the cigar
soliton, the metric ball of radius 2¢ at time O centered at the tip contracts to a metric ball of radius € at
time 7'(¢). Let 0 < €1 < € be a constant whose value will be chosen later, then choose D(e1) > 0 to be
the constant from Corollary 3.4.

If xo ¢ Bg(p, D) is an e-tip point, in the following we will show that ¢_,2(,);(Xo) is a 2¢-tip point
for all # € [0, T'(¢)] such that ¢_,2(,.)((x0) & Bg(p, D), and ¢p_,2(,,) 7(c)(*0) is again an e-tip point.
Suppose this is true, then the lemma follows by induction immediately.

By Corollary 3.4, there is an €;-isometry i between the two pointed Ricci flows

(M, r~2(x0)g(r?(x0)1), xo) and (R x cigar, r~>(¥ (x0))go(r* (¥ (x0))1), ¥ (x0)).
Note that ¥ is also a 100¢;-isometry between time-slices, and hence an e-isometry for €; < ﬁe.

Let xjp be the tip of the cigar in R x cigar which has the same R-coordinate as ¥ (xo). Then by taking
€1 sufficiently small depending on €, and using the distance shrinking of the cigar, it is easy to see that
d: (¥ (x0), Xip) < 2¢ in the Ricci flow r=2(¥(x0))go(r? (¥ (xg))t), for all £ > 0. This implies the first
half of the claim, that ¢_,2(,);(Xo) is a 2e-point. The second half of the claim follows by the choice
of T'(¢) and taking € sufficiently small that 61_1 > T (e). a

3.2 The geometry near the edges

We study the local and global geometry at points that look like R x cigar. First, we show in Lemma 3.14
that there are two chains of infinitely many topological 3-balls that cover all e-tip points. Using this we
show in Lemma 3.16 that the asymptotic cone of the soliton is a metric cone over an interval [0, a], for
some a € [0, i), and the points in these two chains correspond to the boundary points of the cone. Next,
in Lemma 3.17 we construct two smooth curves going to infinity inside the two chains, such that they are
two integral curves of Vf or —Vf, and along them the soliton converges to (R x cigar, xp).
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Fix a point p € M, in the following technical lemma we show that the minimizing geodesic from p to an
€-tip point ¢ is almost parallel to the R-direction in R x cigar at g. The idea is to study the geometry near
an e-tip point ¢ in three different scales: In the largest scale d(p, q), the soliton looks like its asymptotic
cone; in the smallest scale by the volume scale 7 (g), it looks like R x cigar; in some intermediate scale
between r(g) and d(p, q), it looks like a two-dimensional upper half-plane. Note when there is no
confusion, we will omit the subscript g and write dg(-,-) as d(-,-) and Bg(p,-) as B(p,-).

Lemma 3.6 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. Let p € M be a fixed point. For any § > 0, there exists € > 0 such that the following holds:

Let g € M be an e-tip point, and ¢ be an e-isometry from R x cigar to M. Let d, be the unit vector
field in the R-direction in R X cigar. Let y: [0, 1] - M be a minimizing geodesic from p to q. Then

|lcos £(y"(1), $s(3,))| = 1| < 6.
Proof Suppose not, then there are § > 0, ¢; — 0 and ¢;-tip points ¢; — oo such that

(3-D A(Vi/(l)v(pi*(ar)) €, m—9),

where y;: [0,1] — M is a minimizing geodesic from p to ¢;, and ¢; is an ¢;-isometry at ¢;. For
convenience, we will use ¢€; to denote any sequence Ce¢; where C > 0 is a constant independent of i.

Since dg (p, qi) — oo and the curvature is positive, after passing to a subsequence we may assume that the
rescaled manifold (M, d ~2(q;, p)g. p) converges to the asymptotic cone in the Gromov—Hausdorff sense;
see Lemma 2.18. So we can find a point z; € M such that the pair of points (p, z;) is a (1, ¢;)-strainer
at g; of size dg(g;, p). Let p; be a point on y; and w; be a point on the minimizing geodesic connecting
qi and z; such that d(w;, q;) = d(pi,qi) = ri/8;, where §; > r(q;)/d(qi, p) is a sequence converging
to zero, which we may adjust later. Since r(gq;)/8; < d(q;, p), by the monotonicity of angles, (p;, w;) is
a (1, ¢;)-strainer at ¢; of size r(g;)/8;. So

(3-2) Apigiw; > 7 — €.

Next, consider the rescaled pointed manifold (M, r~2(g;)g.g;), which is €;-close to (R x cigar, Xtip)-
Then there is a sequence of points 0; € M with d(0;, q;) = r(q;)/8; such that the minimizing geodesic
0;:[0,1] = M from g; to o; satisfies £(c7(0), ¢;«(dr)) — 0 as i — oo. Combining this fact with (3-1)

we get
Apiqio; € (%8, T — %8)

Since €; — 0, by choosing §; — 0 properly we have | £ p;gioi — £ pigioi| < 11—08, and hence
(3-3) Zpiqioi € (%8, T — %8)
for all sufficiently large i.

Now consider the rescaled pointed manifold (M, 81-2;'_2 (gi)g,qi). Since §; — 0, after passing to a
subsequence we may assume that it converges to the upper half-plane R x R in the Gromov—Hausdorff
sense, with g; — (0, 0) and 0; — (1, 0) € R x R4 modulo the approximation maps. Assume p; converges
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to (xo, yo) € R x R4. Then by (3-3) we have yg > ﬁ& On the other hand, (3-2) implies that (xg, yo)
is one point in a (1, 0)-strainer at (0, 0) of size 1. So it is clear that |xo| = 1 and yo = 0, a contradiction.

This proves the lemma. |

In the next few definitions, we introduce the concept of e-solid cylinders. These are topological 3-balls
that look like a large neighborhood of the tip in R Xx cigar. A chain of e-solid cylinder is a sequence of
these cylinders meeting nicely. In this subsection, we will show in Lemma 3.14 that all e-tip points are
covered by exactly two such chains.

Definition 3.7 (e-solid cylinder) Let x € M be an e-tip point, and ¢ be the corresponding e-isometry.
We say vr, p := ¢x([—L, L] x Bg,(x4p, D)), is an e-solid cylinder centered at x, where L, D > 0 are
constants.

In order to make sure that the union of two intersecting €-solid cylinders is still a topological 3-ball,
we want them to meet nicely. So we introduce the concept of good intersection between two e-solid
cylinders; see eg [64, Section 5.6].

Definition 3.8 (good intersection) Let y; and y, be two e-tip points, and ¢y, be the corresponding
e-isometries. Let y;: [—L;, L;] — M be a curve passing through y; such that ¢;l,1()7,- (8)) = (s, xip). We
say v(i) = ¢y, ([—L;, Li] X Bg, (x4p, D;)) for i = 1,2 have good intersection if, after possibly reversing
the directions of either or both of the R-factors, the following hold:

(1) The projection r1 in the direction of R is an increasing function along y, at any point of ¥, Nv(1).
(2) There is a point in the negative end of v(2) that is contained in v(1), and the positive end of v(2)
is disjoint from v(1).

(3) Either 1.1D1r(y1) < D2r(y2), or Dar(y2) <0.9D1r(y1).

With the notion above, if two e-solid cylinders have good intersection, then the intersection is homeomor-
phic to a 3-ball; see [64, Lemma 5.19].

Definition 3.9 (chain) Suppose that we have a sequence of €-solid cylinders {v(1), ..., v(k)}, for some
k € N U {oo}, with the curves y; from Definition 3.8. We say that they form a chain of €-solid cylinders
if the following hold:

(1) For each 1 <i < k the open sets v(i) and v(i + 1) have a good intersection with the given
orientations.

(2) Ifv(@)Nv(j)# @ forsomei # j, then |[i —j| = 1.

Lemma 3.10 (cf [64, Lemma 5.22]) Suppose that {v(1), ..., v(k)} is a chain of e-solid cylinders. Then
v(1) U---Uv(k) is homeomorphic to a 3-ball and its boundary is the union of the negative end of v(1),
the positive end of v(k), and an annulus A.
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For an e-tip point x, let v be an e-solid cylinder centered at it. In Lemma 3.11, we construct a chain of e-
solid cylinders starting from v, which extends to infinity on one end. Moreover, the e-solid cylinder on the
other end meets a 2-sphere metric sphere dB(p, Dg) in a spanning disk, where Do > 0 is independent of x.

Lemma 3.11 (extending an e-solid cylinder to a chain) Let (M, g) be a 3D steady gradient soliton with
positive curvature that is not a Bryant soliton. Let p € M be a fixed point. There exists D > 0 such that
the following is true.

For any e-tip point x € M\ B(p, D), there exist an integer N € N and a sequence of e-tip points {x; Y2 N
going to infinity such that xo = x and x_y € 0B(p, D), and an infinite chain of e-solid cylinders
{v(i)}$2 _y centered at x;, where v(i) = ¢; ([—900, 900] x Bg, (xp, L;)) with L; € [500, 1000], such
that if v(i) intersects dB(p, D) for some D > D, then v(i) meets dB(p, D) in a spanning disk.

Proof By Lemma 3.3 we can choose D > 0 sufficiently large that the rescaled soliton at any point
in M\ B( P, %5) is e-close to the asymptotic limits. For an e-tip point xo € M \ B(p, D), assume
d(p, xo) = Do. Let ¢x, be the e-isometry. Then v(0) := ¢y, ([-900, 900] x B, (X4ip, 1000)) is an e-solid
cylinder. Let r be the projection onto the R-direction in R x cigar. By Lemma 3.6, after possibly replacing
r by —r, we may assume £(Vd(p,-), pxo+(0r)) < €. So the two points y := ¢, ((£1000, x4p)) € M
satisfy

d(y+,p) =1 —€)1000r(x9) + Do and d(y—, p) <—(1—¢€)1000r(xq) + Do.

By the choice of D we can find a pair of e-tip points x4+; € B(y+,7(xo)). In particular, we have
X41 & Pxy ([—900, 900] x By, (x4p, 1000)), and

d(x1,p) >900r(xp) + Do and d(x—1, p) <—=900r(xo)+ Dy.

Similarly, let ¢x__, be the e-isometry at x41. Then v(£1) := ¢x_, ([-900, 900] x By, (x4ip, 500)) is an
e-solid cylinder at x4 ;. It is clear that v(0) and v(%1) have good intersections.

Repeating this, we can obtain a sequence of e-tip points {x;}72 _ 5, with x_ny € B(p, D), and a sequence
of e-solid cylinders v(i) := ¢y, ([-900, 900] x Bg.(x4p, D;)) centered at x;, where D; = 500 when
i is odd, and D; = 1000 when i is even, such that x; +1 € B(¢x, ((1000, xp)), 107 (x;)). Therefore, by
triangle inequalities it is easy to see that v(i) only intersects with v(i — 1) and v(i + 1), and has good
intersections with them. In particular, for all i > 0 we have

i—1

d(x;, p) > 900 Z r(xg) + Do — o0.

k=0
So {v(i)}72, is an infinite chain of e-solid cylinders. Moreover, we see that v(i) meets all metric spheres
dB(p, D) with D > D in a spanning disk, since by Lemma 3.6 we have £(Vd(p,-), $x;«(3r)) < €
for all 7. |

In the following, we use Lemma 3.11 to show that all e-tip points outside of a compact subset are contained
in the union of finitely many chains of e-solid cylinders.
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Lemma 3.12 (disjoint chains containing all e-tip points) Under the same assumption as in Lemma 3.11,
and let D be from Lemma 3.11. There exist k chains of e-solid cylinders 61, ...,%6; for some k € N,
each of which satisfies the conclusions in Lemma 3.11. Moreover, all e-tip points in M \ B(p, D) are
contained in the union of €1, ...,%6.

Proof Assume xj is an e-tip point, x; € M \ B(p, D). Then let €; be a chain of e-solid cylinders
produced by Lemma 3.11, whose union contains x1. If there exists an e-tip point xo € M \ (¢; U B(p, D)),
then by Lemma 3.11 we can construct a new chain 6, of e-solid cylinders containing x,. We claim that
%1 N6, = 9, ie the union of all e-solid cylinders in € is disjoint from that in €,.

First, for two e-tip points x, y with d(x, y) < 1000r(x), it is easy to see that d(x, y) < 0.1r(x) when
€ is sufficiently small. Using this fact we see that x; is at least 900r (x;)-away from 4, and hence
€, N€,NIB(p,D1) =, where D1 = d(x3, p) > D. Let a,b > 0 be the infimum and supremum
of {r : €1 N6, N3B(p,r) = @}. Then a < Dy < b. Suppose by contradiction that @ > D. Then
€1 N6y NIB(p,a) # <, and we can find an e-tip y € €1 N6, NdB(p,a). However, by Lemma 3.6
this implies that v the e-solid cylinder centered at y is contained in €7 N 65, and the positive end of v is
at distance a + 1000r(y) from p, which is greater than a. This contradicts the infimum assumption of a.
By a similar argument, we can show b = co. This proves the claim.

Repeating this procedure, we obtain a sequence of chains of e-solid cylinders whose unions are disjoint.
This must stop in finitely many steps, because these chains intersect with dB(p, D) in spanning disks
whose areas are uniformly bounded below. So we may assume these chains are 6y, ..., %€, and they
contain all e-tip points. a

Now we show that the number of these chains is exactly equal to two. To do this, we need the following
lemma, which enables us to glue e-cylindrical planes that intersect, and produce a global S!-fibration on
their union.

Lemma 3.13 (global S!-fibration [64, Proposition 4.4]) Let M be a 3D Riemannian manifold. Given
€’ > 0, the following holds for all € > 0 less than a positive constant €1 (¢’). Suppose K C M is a compact
subset and each x € K is the center of an e-cylindrical plane. Then there is an open subset V' containing K
and a smooth S!-fibration structure on V.

Furthermore, if U is an €-cylindrical plane that contains a fiber F of the fibration on V, then F is €’-close
to a vertical S'-factor in U, and F generates the fundamental group of U. In particular, the diameter of F
is at most twice the length of any circle in the e-cylindrical plane centered at any point of F'.

Lemma 3.14 (two chains containing all e-tip points) Let (M, g) be a 3D steady gradient soliton with
positive curvature that is not a Bryant soliton. Let p € M be a fixed point. There exists a D > 0 such that
the following is true.

There are exactly 2 chains of e-solid cylinders ‘€1 and “,, each of which satisfies the conclusions in
Lemma 3.11. Moreover, all e-tip points in M \ B(p, D) are contained in the union of 61 and @,.
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Proof First, we show k& > 1, which is equivalent to the R X cigar being indeed an asymptotic limit
of the soliton M. Suppose this is not the case. On the one hand, since all e-tip points are contained
in €q,...,%, the complement of them in M \ B(p, D) is covered by e-cylindrical planes. Then by
Lemma 3.13 we can find a connected open subset V; containing B(p,2D) — B(p, D) which carries a
smooth S !-fibration. Consider the homotopy exact sequence

o= (Vi) = mi(SH — m(V1) » (Vi) = -+ .

Since the base space V7 o of this fibration is connected and noncompact, we have 2 (V;,0) = 0, and it
follows that the S !-fiber is incompressible in V7, ie the map 71 (S 1y > 71(Vy)is an injection; see eg [52].

On the other hand, let U be an e-cylindrical plane contained in B(p,2D)— B(p, D), let x € U be the
center of the e-cylindrical plane, and let F be the S!-fiber of the fibration on V that passes through x.
Then by Lemma 3.13, the fiber F' is e-close to the vertical S 1_factor in U, and hence F is also contained
in U, and hence contained in B(p,2D)— B(p, D). Note that the metric spheres dB(p, D) and dB(p,2D)
are diffeomorphic to 2-spheres, and B(p,2D) — B(p, D) is diffeomorphic to R x S2. So if k = 0, we see
that B(p,2D) — B(p, D) — % —---— %y is diffeomorphic to R x SZ, and if k = 1, it is diffeomorphic
to R3, both of which have trivial fundamental groups. Therefore, F bounds a disk in B(p,2D)— B(p, D).
However, this contradicts with the above fact that the fiber F is incompressible. So k > 2.

Next, we show k = 2. Suppose not; then k > 3. The subset K := B(p,2D)—B(p, D)—%1—%y—---—€},
is covered by e-cylindrical planes, so by Lemma 3.13 we can obtain a smooth S !-fibration on a subset V/
containing K. Let C1, C; be two circles of the fibration on V' that are contained in €1, €,, respectively.
Then by Lemma 3.13, C; bounds a spanning disk D; in ¢; fori =1,2. Let A C B(p,2D)— B(p, D) be
an annulus bounded by C; and C, which is saturated by S 1_fibers. Then the union S := D;UD,UA isa
2-sphere which is isotopic to the two metric spheres dB(p, D) and dB(p, 2D). In particular, S separates
0B(p, D) from 0B(p,2D).

Since k > 3, it follows that €3 intersects with S at some e-tip point y. First, y cannot be in the annulus A
because A is covered by €g-cylindrical planes for a very small €g > 0. Second, y cannot be in either of
the two spanning disks D1 and D,, because €3 is disjoint from ¢; for i = 1,2. So this contradiction
proves k = 2. |

It is clear that at the volume scale, an e-tip point is different from a point at which the manifold is an
e-cylindrical plane. We show in the following technical lemma that they can also be distinguished from
each another at an even larger scale. Roughly speaking, the former point looks like a boundary point in
the half-plane, while the latter looks like a point in the plane.

Lemma 3.15 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. Let p € M be a fixed point. For any § > 0, there exists an € > 0 such that for any e-tip point x,
there exists a constant 0 < ry < §d(p, x) such that there is no 2-strainer at x of size larger than ry.
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Proof For x sufficiently far away from p, we have by volume comparison that 7 (x)/d(p, x) < §. Take
ry =1(x)/8. Then ry <8d(p, x), and the rescaling (M, r;2g, x) is the scaling down of (M, r~2(x)g, x)
by 8§1. The scaling down of (R x cigar, x;p) by §~! is C8-close to the two-dimensional upper half-plane
(R x R4, (0,0)) in the pointed Gromov—Hausdorff sense. Take € < §. By the definition of e-tip point,
we see that (M,r~2(x)g, x) is e-close to (R x cigar, Xip). Therefore, (M, r;2g,x) is Ced-close in
the Gromov—Hausdorff sense to the metric ball B((0,0), 1) in the two-dimensional upper half-plane
(R xR, (0,0)).

It is easy to see that there is no (2, €g)-strainer at (0, 0) in R x R4 of size larger than 1, which is the same
in (M, ry 2g,x). Scaling back, it follows that there is no (2, €g)-strainer at x in (M, g) of size larger
than ry. O

Recall that S (M, p) is the metric space of equivalent classes of rays starting from p. We show in the
following lemma that Soo (M, p) is a closed interval [0, 8] for some 6 € [0, 7). Moreover, the two chains
of e-solid cylinders 6; and %6, are two “edges” of the soliton (M, g), in the sense that the two rays y;
and y» correspond to the two end points in [0, #]. We will show 6 > 0 in Corollary 3.43, so that the
soliton is indeed a flying wing.

Lemma 3.16 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. Let p € M be a fixed point. Then Soo (M, p) is isometric to an interval [0, 8] for some 6 € [0, ).

Moreover, fori = 1,2, and for any sequence of points p,(f) € %; such that p](f) — 00 as k — oo, the
minimizing geodesics pp,((l) subsequentially converge to two rays y; and y, such that [y;] = 0 and

[y2] = 0, after possibly switching y1 and Y.

Proof Fix some p € M. We shall say that two quantities d1, d» > 0 are comparable if C ~'d; < d, < Cd
for some universal constant C > 0. By the noneuclidean volume growth of (M, g), the asymptotic cone is
a two-dimensional metric cone over Soo (M, p), where Soo (M, p) is a one-dimensional Alexandrov space,
and hence is an interval or a circle. In the latter case, we can find a (2, €)-strainer of size comparable to
d(p, x) at any point x € M. However, this is impossible at an e-tip point by Lemma 3.15. So Soo (M, p)
is isometric to an interval [0, 8], for some 8 € [0, r]. Moreover, we have 8 < 7, because otherwise the
manifold splits off a line and is isometric to R x cigar, which does not have strictly positive curvature.

First, we show that for any points going to infinity in €1, the minimizing geodesics from p to them
subsequentially converge to rays that are in the same equivalence class in Soo(M, p). Suppose by
contradiction that this is not true. Then we can find two sequences of points pi, por € €1 going to
infinity, such that the minimizing geodesics ppir, pp2k converge to two rays o1, 0p with Z(ol,az) > 0.

Let B : [0, 1] — %1 be a smooth curve joining pix, P2k, Which consists of e-tip points. By Lemma 3.6
we may assume that d(p, Br(s)) is monotone in s. Let 6,1 (s) = Ao d(p, Br () pBr(s) fori =1,2.
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Then it is clear that as k — 00, 61 (0) and 6, (1) converge to 0, and ;% (1) and 8,4 (0) converge to
Z(01,02) > 0. So for sufficiently large k, we have
011 (0 01 (1
1 (0) <€ and (1) >e L
02k (0) 02k (1)
By continuity, there exists a point g = B (sg) with s € (0, 1) such that 01 (sx) = 0> (sk), and hence

Lo1(d(p,qr)) p gk = £02(d(p. qk)) P qk-

Since d(p, p1k), d(p, pax) — oo, we have d(p, q;) — oo. Therefore, after passing to a subsequence,
Pqi converges to a ray o3, which satisfies Z(03,01) = £(03.,02). Since Soo(M, p) is an interval, this
implies

4(03,01) = £(03,02) = 5 4(01,02).

So for sufficiently large k, we can find a (2, €)-strainer at g3 of size comparable to d(qg, p), which is
impossible by Lemma 3.15 because gy, is an e-tip point.

Now it remains to show that the ray o corresponds to one of the two end points in Seo (M, p) =10, 8]. This
can be shown by a similar argument: Suppose 6 > 0 and [01] € (0, ). Then we can find (2, €p)-strainers
at a sequence of e-tip points x; — co at scales comparable to d(p, x;), contradicting Lemma 3.15. O

Now we prove our main result in this subsection. For i = 1,2 we will construct two smooth curves
I'; : [0, 00) — 6; tending to infinity, which are integral curves of either Vf or —Vf, such that the rescaled
manifold converges to R x cigar pointed at the tip along I';.

Lemma 3.17 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. There exists a smooth curve I'; : [0, c0) — 6; which is an integral curve of Vf or —Vf, such
that limg_o ['j (s) = 00, and for any sequence of points x; — oo along I';, the pointed manifolds
(M, r=2(x;)g. x;) smoothly converge to (R x cigar, r 2 (Xtip)&e» Xtip)-

Proof Fix some point p € M, and let Do > 0 be a large constant such that if f has a critical point (which
must be unique), then B(p, Dy) contains the critical point. We will use €(D) > 0 denote all positive
constants depending on D such that € — 0 as D — oo.

Take a sequence of €, -tip points py € €1 going to infinity, where €, — 0. Assume py ¢ B(p, Dy) for
all k. Denote by yp, : [0, sx] — M the integral curve of —Vf starting from py, where s; € (0, o0] is
the smallest value of s such that y,, (s) € d0B(p, Dg). It is easy to see that sy — 0o as k — oo. By
Lemma 3.5 we see that yp, ([0, sx]) C €1 and if yp, (s) ¢ B(p, D) for some D > 0, then yp, (s) is an
€(D)-tip point, where €(D) — 0 as D — oo is independent of k.

First, assume sy is finite for all k. Let g = yp, € €1 NIB(p, Do). Then, after passing to a subsequence,
gk converges to a point ¢oo € €1 N IB(p, Do). Denote by yy, the integral curve of V£ starting from gy
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Then Y4, converges to the integral curve I't : [0, 00) — €1 of V[ starting from g, Which satisfies all
the assertions.

Now assume s; = oo for some k = k. Since the critical point of f (if it exists) is contained in B(p, Dy),
this implies that Yo (s) = o0 as s — oo. Therefore, we may take Ypi, tO be I'1, which is an integral
curve of —Vf and satisfies all assertions as a consequence of Lemma 3.5. By the same argument, we can
find I'; C 6, satisfying the assertions. a

Remark 3.18 When (M, g) is isometric to R x cigar, and the potential function f could be a nonconstant
linear function in the R-direction, then one of I'1 and I'; is the integral curve of Vf and the other is
of —Vf. However, if (M, g) has strictly positive curvature, we will show in Theorem 3.31 that f has a
unique critical point, and I'y and I', are both integral curves of Vf.

Let T' = I'1 ([0, 00)) U T2(]0, 00)). The following lemma shows that the distance from sufficiently far
away points to the subset I' must be achieved at the interior, so that the minimizing geodesics connecting
them to I' are orthogonal to I" by the first variation formula.

Lemma 3.19 Under the same assumptions as in Lemma 3.17, suppose there are a sequence of points
pi — oo and a constant so > 0 such that one of the following conditions holds:

(1) d(pi,T)=4d(pi, T1([0,50]) UT2([0, s0])),
(2) d(pi,T1) =d(pi, T1([0, so]), or
(3) d(pi.T2) =d(pi.T2([0, so])).

Then M is isometric to R x cigar.

Proof We prove the lemma under condition (1), and the two other cases follow in the same way. We
will show that after passing to a subsequence, the minimizing geodesics from p to p; converge to a
geodesic ray y such that £(y, y;) > %n, where y; are the two rays corresponding to the two end points in
Seo(M, p); see Lemma 3.16. Then by Lemma 3.16 this implies Soo (M, p) = [0, 7] and the assertion of
the lemma follows immediately. In the proof we use € to denote a general positive constant that goes to
Zero as i — 0o.

Let g; € T be such that d(p;, I'([—so, s0])) = d(pi,qi). Choose a sequence of points 0; € I'; with
d(gi,0i) = a;d(pi,q;) and such that o; — 0 and d(g;, 0;) — oco. Since a; — 0, we have Zoip,-qi — 0,
and hence

Zoiqipi + Zqioipi > —e.

Since d(p;,0i) = d(pi, ') =d(pi, qi), the segment 0; ¢q; is the longest in the comparison triangle o; p;g;,
so it must be opposite to the largest comparison angle, ie

Zoiqi Di = Zqz'OiPi-
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So the last two inequalities imply
(3-4) £oiqipi = Am—e.

By Lemma 3.16 the minimizing geodesics po; converge to the ray y;. After passing to a subsequence
we may assume the pp; converge to a ray y. Then by the boundedness of {g;} and (3-4), it is easy to
see that £L(y1,y) > %n. By a symmetric argument, we also have £(y5,y) > %n. So £(y1,y2) = m by
Lemma 3.17, which implies a splitting of (M, g), and hence it is isometric to R x cigar. |

3.3 Quadratic curvature decay

The main result in this subsection is the following theorem of the quadratic curvature decay, which
corresponds to the upper bound in Theorem 1.7. We show that there is a uniform C > 0 such that the
scalar curvature has the upper bound R < C/d?(-,T"), where I' = I'{ ([0, 00)) U T'»([0, 00)), and I"; and
I', are from Lemma 3.17.

Theorem 3.20 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. There exists C > 0 such that for any x € M\ T,

R(x) < > *
X) < ——tr.
~d?%(x,T)
Proof First, we introduce some constants that will be used throughout this subsection, and we may
further adjust their values. The dependence of these constants is subject to the order
§, a Dz € Dy, o, C,

such that each constant is chosen depending only on the preceding ones. More precisely, we will choose
D1 and D, sufficiently large that § can be arbitrarily close to zero.

Let € > 0 be some very small number, and fix a point pg € M. Then by Lemmas 3.3, 3.14 and 3.17 we
see that there are D1 > D, > 0 such that the following holds: First, the soliton is an e-cylindrical plane
at all points x which satisfies d (x, po) > %Dl and d(x,I") > %Dz r(x). Second, the soliton is e-close to
(R x cigar, r~2(x0)ge, Xo) for some x¢ for which dg,. (xip, X0) < 10D>.

By compactness we may choose C > 0 large enough, so that Theorem 3.20 holds in B(pg, D1). Moreover,
for points x € M \ B(po, D1) which satisfy d(x, po) > D1 and d(x,T") < D, r(x), by the definition of
the volume scale and a volume comparison argument, it is clear that there exists w > 0 such that

vol(B(X,d(x,T))) > wd(x,I)>.
So Theorem 3.20 holds at x by Perelman’s curvature estimate; see Lemma 2.15.
Therefore, from now on we assume that
(3-5) d(x,po) > Dy and d(x,T)> Dyr(x).

Geometry & Topology, Volume 29 (2025)



O(2)-symmetry of 3D steady gradient Ricci solitons 719

So the metric ball B (x, La(x, F)) is covered by e-cylindrical planes. By the S!-fibration Lemma 3.13,
we see that there is an open subset U D B (x, La(x, F)) which has a global S !-fibration, and the S !-fibers
are incompressible.

The following lemma gives a uniform lower bound for the volume ratio on the universal coverings of U.
So by applying Perelman’s curvature estimate (Lemma 2.15) in the universal covering we obtain the
inequality in Theorem 3.20 at a lift of x, which implies the same inequality at x. So Theorem 3.20
reduces to the following lemma by Perelman’s curvature estimates (Lemma 2.15).

Lemma 3.21 There exists @ > 0 such that in the universal cover U of U, we have B()"c', %d(x, F)) S (7,
and
vol(B(X, 3d(x.T))) = wd?(x,T),

where X € U is a lift of x.

Proof To prove the lemma, we will follow the idea in [6, Lemma 2.2] to construct a (3, §)-strainer
near X of size comparable to d(x, I') for some small § > 0, then use this to obtain a lower bound on the
volume ratio as in [6, Lemma 2.2] and [20, Theorem 10.8.18]. We first construct a (2, §)-strainer at X
using Claims 3.22 and 3.23.

Claim 3.22 There exist p,q € M such that the triple of points {p,q,x} forms a én—triangle and
d(x, p) =d(x,T). Here by a j.-triangle we mean that . > 0 and

prq, qup, prq > W

Proof Lete e (O, ﬁ) be some fixed small number. Let p € T to be the closest point to x on I'. Then
by Lemma 3.19, p is an interior point in I', and p is an e-tip point by Lemma 3.17. Therefore, it is
easy to see that the minimizing geodesic px and v/,+(9d,) is almost orthogonal at p, where ¥, is the

e-isometry to (R x cigar, r 2 (Xtip)&e, Xiip) at p, ie

(3-6) | £(px. Ypu(37)) — 37| < €.
Note that d(x, ") > D, r(x) and d(x, p) = d(x,T"). We claim that
3-7) d(x,T) > 15D2r (p).

because otherwise we may choose D1 sufficiently large (depending on D5) so that d(x, p) < %Dzr( p)
must imply r(p) < 10r(x), which implies d(x, p) < D, r(x), a contradiction. So (3-7) holds.

By Lemma 3.17 we can take D1 to be large so that € is sufficiently small, where € is determined by D>
such that the following holds: By (3-6) and the e-closeness to R x cigar in the region containing the
B(p, D> r(p)), we have for all points y € B(p, D> r(p)) that
~ 1
(3-8) Lypx' < 37 + 155 = 37
where x’ is a point on the minimizing geodesic px such that
d(p,x") = {5Dar(p) <d(x,T).
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Now let ¢ € T be a point such that d (g, p) =d(x, I'). By (3-7) we can choose a point ¢’ on the minimizing
geodesic pq such that

d(p.q) = 5 Dar(p) <d(x,T).

Then using (3-8) we obtain
.

(SIS

Lq'px' <im+ 15 <
By the monotonicity of angles, the last three inequalities imply

~ 1 1 2
Lqpx < 37+ 195 < 57T

Note d(x,q) > d(x,T) =d(x, p) = d(p, q). The segment |Xg| is the longest in the comparison triangle
AX§ p, and thus it must be opposite to the largest comparison angle, ie

qux > qup = qux.
This combined with qux + qup +Z pqx = m implies
qux > qup = qux = %JT.

So {p,q,x} forms a %n—triangle. |

Claim 3.23 There exists o > 0 such that when D1 and D, are sufficiently large, the following holds for
all x € M satisfying (3-5): There is a point x' € B (x, %d(x, F)) such that there is a (2, §)-strainer at x’
of size ad(x,T).

Proof Suppose this is not true. Then there is a sequence of points x; € M going to infinity and
d(x;j, ') — oo such that the claim fails. Let p;, g; be points from Claim 3.22 which form a %n—triangle
together with x;, and such that d(p;, x;) = d(x;, ).

After passing to a subsequence, the pointed manifolds (M, d ~2(x;,T")g, x;) converge to a complete
noncompact length space (X, dy), which is an Alexandrov space with nonnegative curvature [21]. The
triples (p;,q;i, x;) converge to a triple (Poo, doo, Xoo) in the limit space, which forms a %n—triangle. So
the Alexandrov dimension of the limit space is at least two, because otherwise X must be isometric to a
ray or a line, which does not contain any %n—triangles.

Since the set of (2, §)-strainers is open and dense in an Alexandrov space of dimension 2, we can find a
point x" € By, (x, %) such that there is a (2, §)-strainer at x” of size a for some « > 0. This induces a
contradiction for sufficiently large i. a

Assume we can show that the volume of B(x’, 1) is bounded below. Then by a volume comparison using
that x’ € B(x, % d(x, F)), this would imply a lower bound on the volume of B(x, 1). Therefore, we
may assume without loss of generality that there is a (2, §)-strainer (ay, b1, az, b2) at x of size ad(x, T).
From now on we will work with the rescaled metric 4 = d ~2(x, I')g and bound the 1-ball around a lift

of x in the universal cover from below by a universal constant.
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Let 7: U — U be a universal covering, and X, 5,~,5,~ be lifts of x, a;, b; in the universal cover U such
that

(3-9) d()?,ﬁi)=d(x,ai)=d(f,5,~)=d(x,b,~)=a.

Then since the covering map = is 1-Lipschitz, we have

(3-10) d(@.bj) > d(a;.bj). d(@.a;)>d(ai.aj), dbi.b;)>d(bi.b)).

So the comparison angles between X, @;, b ; at X are at least as large as those between x,a;, b; at x, ie
Zfii)?gj > Zal—xbj, Zﬁifgj > Zaixas, Zﬁifgj > Ab1xb,.

So (ay, ds, El,gz) is a (2, 8)-strainer at X.

Next, we will extend the (2, §)-strainer to a (2+%, 5)—strainer at X. Since the S'-fiber in U is in-

compressible, we can find a sequence X; of lifts of x that is unbounded. We may assume that the

/

. . ~ —-1/2 . . ~ o~
consecutive distances of {X;} are at most D, '~. Because otherwise, there would be two points X;, X;

such that d(X;, X;) > D, 172, Rescaling back to the metric g and by Lemma 3.13, we see that the length
of the circle in the e-circle plane at x is at least Dz_l/zd(x, I'). This implies r(x) > Dz_l/zd(x, r),

which contradicts our assumption (3-5). So we can find an i € N such that with ¥ = X;, we have
~ ~ —1/4 —1/2
(7. %) - D5 < Dy 12

Claim 3.24 The tuple (@1,3d2,b1.b>, 7) is a (2—1—%, §)-tuple at X of size at least Dz_l/4 - D2—1/2‘

Proof Note that in the triangle AyXa;, the segment |Va;| has the longest length, and thus must be
opposite to the largest comparison angle, ie

AU X7 > AX74a;.
Since d(X,y) — 0 as Dy — oo, we find
(3-11) A7a;X <3§.
We also have
(3-12) A58 X + La4;X7 + AXya; = 7.

So the last three inequalities imply £7; X7 > %JT —§. The same is true with @; replaced by bi. So

(3-13) La;¥7 > n—8 and ZbF7 > Lin -8,
and hence the claim holds. O
Claim 3.25 The tuple (a1, as, 51,52, X)isa (2+%, 8)—tuple at y of size at least Dz_l/4 — D2—1/2‘

Proof Since |d(7.d;)—d(%.a;)| < D, "* and |d(F.b;)—d(%. b;)| < D3 /*, we see that (@y. @y by . by)
is a (2, §)-strainer at y of size at leasta — D, 14 _ 2D, 12 we may assume that D, is sufficiently large

that this is at least %a > Dz_l/4 — DZ_I/Z.
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By metric comparison we have
A4;X5 + AbiX5 + La;%bh; <2,

which by (3-13) and £;Xb; > 7 — § implies

La;¥7 <in+6 and ZbFy <im+6.
Combining this with (3-12) and (3-11) we obtain

AX5a; > tn—6 and AX§b; >
So the claim holds. |
Now take 7 be the midpoint of a minimizing geodesic between ¥y and X.

Claim 3.26 The tuple (ay,as, bl,bz y,X) is a (3, §)-strainer at in of size at least 1 5D, ~1/4 D2—1/2‘

Proof First, by the monotonicity of comparison angles we have

%JT—S and  Zmxb; >Ayxb,22n s.

AmXa; > AyXa; >
Then repeating the same argument as in Claim 3.25 replacing y by /m, we see that

Xa;mx, Abjmx > Lw — 8.

NI'~

Replacing X by y, similarly we can obtain

Aa;my, Zb; i y > n 8.
Moreover, as before we can see that (a1, az, bl,bz) is a (2, 8)-strainer at /. Finally, A ymx = m is
trivially true. So the claim holds. |
Using the (3, §)-strainer in Claim 3.26, one can construct a 100-bilipschitz map f: B(7, AD, Y 4) —R3
for some sufficiently small A as in [6, Lemma 2.2(i)] and [20, Theorem 10.8.18], which implies
vol(B(, AD; /%)) > c(AD5'/*)3

for some universal ¢ > 0. This implies Lemma 3.21 by volume comparison. |

3.4 Existence of a critical point

The main result in this subsection is Theorem 3.31, which proves the existence of the maximum point of
the scalar curvature, which is also the critical point of the potential function.

In Lemmas 3.27 and 3.28, we study the geometry of level sets of the potential function f. To start, we
first note that the second fundamental form of a level set of f satisfies
V2 f _ Ric

(3-14) M=— —_
IVl r-1(a) IVf]

=
(@)
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Recall the Gauss equation, that for a manifold N embedded in a Riemannian manifold (M, g), the
curvature tensor Rmy of N with induced metric can be expressed using the second fundamental form
and Rmyy, the curvature tensor of M :

(Rmy (u, v)w, z) = (Rmyys (u, v)w, z) + ((u, z), I(v, w)) — II(u, w), (v, 2)).
So (3-14) implies that the level sets of f with induced metric have positive curvature.

More precisely, for a level set of f at an e-tip point, Lemma 3.27 shows that at a point that is sufficiently
far away from this e-tip point in the level set, the soliton is close to R% x S! under a suitable rescaling.
We show this by a limiting argument.

Lemma 3.27 Let (M, g, f) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. For any 8 > 0 and Cq > 0, there exists D > 0 such that the following holds:

For all D > D, there exists € > 0 such that the following holds: Suppose q € M is an e-tip point with
IVfI(q) > Cyl,and let = = f~1(f(q)) be the level set passing through q. Suppose also that z € X is a
point with dx (¢, z) = DR™Y/2(q), where d, is the length metric of the induced metric on . Then the
soliton (M, g) is a §-cylindrical plane at z.

Proof Suppose this is false. Then there is some § > 0 such that for any large D, there exist a constant
D > D, a sequence of constants €; — 0, and a sequence of e -tip points g — 00, and a sequence of
points zx € Xy = f~V(f(qx)) with ds, (qk, zk) = DR~1/2(g;) such that the soliton (M, g) is not a
8-cylindrical plane at z.

In the following we will show that when D is large enough, the level sets X under suitable rescalings
converge to a level set of a smooth function on R x cigar, and z; converge to a point at which R x cigar
isa %S-c:ylindrical plane, which will imply a contradiction for sufficiently large k. We now divide the
discussion into three cases depending on the limit of R(gy). To start, note that R +|Vf|?> = C 12 for some
C1>0.So R<C}and |Vf|<C;.

Case 1 (limsupy_, o, R(gx) > C~2 > 0 for some C > 0 which may depend on the sequence) In this
case we can deduce from the soliton equation V2 f = Ric that derivatives of order at least two of the
functions f; := f — f(qx) are uniformly bounded. Moreover, at g; we have fi(gx) = 0 and

Co ' < IV filar) = 1V |(qx) < C1.

Let V denote the covariant derivatives of gk = %R(qk) g, then we have that |§ f;; Iz, = 4RV2(q)|VS ]
is uniformly bounded above, and in particular at g; we have

IV fil(qr) = 4Co ' R™YV2(qp) > 4Cg CL

So after passing to a subsequence we may assume that the functions f; converge to a smooth function foo
on R x cigar, which satisfies foo(xip) = 0, V2 fs = Ric and

IV fool (xiip) = 4Cy 1 CTL
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Note that Cy and C; are constants that only depend only on the soliton but not the sequence.

Since V? f, = Ric, by the uniqueness of the potential function on the cigar soliton we see that foo
is the sum of the potential function on cigar which vanishes at the tip and a linear function along the
R-factor whose derivative has absolute value at least 4C; Ic L 1 and vanishes at Xtip- In particular, 0 is a
regular value of f and the level set o0 := f.5'(0) is a noncompact complete rotationally symmetric
2D manifold.

Therefore, after passing to a subsequence, as the manifolds (M ' g 6R(qk)g qk) smoothly converge
to (R x cigar, g, Xp), the level sets (Ek, i 6R(qk) ggk,qk) of fk with the induced metrics smoothly
converge to the level set (Zoo, g3, Xiip) Of foo, and zx € X converge to a point Zeo € oo With
ds, o (Xip: Zoo) = %D. Since R x cigar is a %8—cylindrical plane at zo, when D is sufficiently large
depending on § and 4C Ic L !, we obtain a contradiction for all sufficiently large k.

Case 2 (limg_, o R(gr) =0) Consider the rescaled metrics g = 1—16R(qk) g and the rescaled functions

> J =Sl
Je = img
4RV/2(qy)
then ];/’c satisfies ];/;(qk) =0 and
o~ ~ v2f Ric Ric

3-15 V2 =V2%f = - = ,
1 Te= V= R0 ARG AR (gp)
and also

IV frlz, = 4R7V2(q)IV fil = |Vf| < C1.

In particular, at g; we have

(3-16) IV fxlz (ax) = IVf(qr) € [Co L, Chl.

By (3-15) and (3-16), the derivatives of ﬁc are uniformly bounded. Thus there is a subsequence of ];/'c
converging to a smooth function fo, on R x cigar with foo (x4p) = 0.

By (3-15) and (3-16) we have V? foo = 0 and |V foo|(Xip) > 0. So foo is a nonconstant linear function in
the R-direction. In particular, 0 is a regular value of foo, and the level set T := f51(0) is equal to
{a} x cigar C R x cigar for some a € R.

Therefore, after passing to a subsequence as the manifolds (M ' g 6R(qk)g qk) smoothly converge
to (R xcigar, g¢, x¢p), the level sets (Z k> 16 L R(q1)gs o qk) of fk with induced metrics smoothly converge
to the level set (Xoo, g5, Xtip) Of foo, and the points z; € X converge to a point Zo, € Yoo With
ds . (Xiips Zoo) = %D. So it follows when D is sufficiently large that R x cigar is a %8—cylindrical plane
at Zoo. This is a contradiction for large k. O

The next lemma shows that for a point at which the soliton looks sufficiently like the cylindrical plane
R2 x S, the level set of f passing through it looks like the cylinder R x S!. We prove this lemma by a
limiting argument.
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Lemma 3.28 Let (M, g, f) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. For any § > 0 and Cy > 0, there exists € > 0 such that if M is an e-cylindrical plane at x € M
and r(x) > Co_l, then the level set f ~1(f(x)) of f passing through x is a §-neck at x at scale r(x).

Proof Suppose the conclusion is not true. Then for some § > 0 and Cy > 0, there is a sequence of points
x; € M at which (M, g) is an ¢;-cylindrical plane, with €; — 0, such that ¥; := f~!(f(x;)) is not a
d-neck at x; at scale r(x;).

Consider the rescalings of the metrics g; := r~2(x;)g, and the rescalings of the functions
7o fimfitn)
r (xl)
We have f;(x;) =0 and

VER2 = o) VEP2 fy = ) VE (V2 ) = 171 () VR RiC) - for & > 0,
and also
Vi =r? )V fi = rx)Vf;.
Therefore, using r(x;) > Cy 1 we obtain
VEE2 filg = r ' o) VR (Rio) g, < ColVE (Ri) ;.

which goes to zero for each k > 0 since €; — 0. Note that R + |Vf |2 =C 12 for some C; > 0, and we
also have |Vf| < C; and
\V/ilg =IVfI=Cr.
In particular, since r(x;) > CO_1 and €; — 0, it follows that R(x;) — 0 and |Vf|(x;) > %Cl for all large i.
So at x; we have
IV filg, (xi) = IVf1(xi) € [5C1. C1].

So after passing to a subsequence we may assume that the manifolds (M, g;, x;) smoothly converge to
(R? x S, ggtans Xoo), and the functions f; converge to a smooth function fi, on R? x S, which satisfies

Joo(Xe0) =0 and
(3-17) IVEF2 £l =0 for k>0, and  |Vfwl(xe) € [1C1,C1]-

By (3-17) it is easy to see that fs, is a constant in each S!-factor in R? x S!, and a nonconstant
linear function on the R2-factor. After a possible rotation on R?, we may assume the level set Yo, 1=
fo1(0) = {(x,0,0) : x € R, 0 € [0,27)}. In particular, 0 is a regular value of fx, and X is isometric
to (R x S, ggan). Therefore, the level sets (Z;, r~2(x;)gs .2 X;) of f: smoothly converge to the level set
(X0, gstan» Xoo) Of foo- This implies that ¥; is a §-neck when i is sufficiently large, a contradiction. O

The following lemma compares the value of f at two points x and y, when the minimizing geodesic
from x to y is orthogonal to Vf at y.
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Lemma 3.29 Let x and y be two points in M. Suppose that a minimizing geodesic o from y to x is
orthogonal to Vf aty. Then f(x) > f(y).

Proof Since (Vf(0(0)),0’(0)) =0, computing by calculus variation we have

1
f(x)—f(y)=f(o(l))—f(a(O))=/0 (Vf(a(r)),o'(r))dr
= /I/ V2 f(o'(s),0(s)) dsdr
0JO

1 pr
=/[ Ric(o”(s), o (s)) ds dr > 0. o
0J0

The following lemma compares the scales of two e-necks in a positively curved noncompact complete
2D manifold. It says that the scale of the inner e-neck is almost not larger than that of the outer e-neck.

Lemma 3.30 For any § > 0, there exists an € > 0 such that the following holds:

Let (M, g) be a2D complete noncompact Riemannian manifold with positive curvature and let p be a
soul for it. Then for any e-neck N disjoint from p, the central circle of N separates the soul from the end
of the manifold. In particular, if two e-necks N1 and N in M are disjoint from each other and from p,
then the central circles of N1 and N, are the boundary components of a region in M diffeomorphic to
StxI.

Moreover, assume N is contained in the 2-ball bounded by the central circle of N». Then the scales
r1 and rp of Ny and N, satisty
ri<({1+98)r;.

Proof The proof is a slight modification of the proof of [63, Lemma 2.20] using Busemann functions. O
Now we prove the critical point theorem.

Theorem 3.31 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. Then there exists p € M such that R attains its maximum at p and Vf(p) = 0.

Proof Let € > 0 be some constant we can take arbitrarily small, and we will use § > 0 to denote all
constants that converge to zero as € — 0. We suppose by contradiction that R,x does not exists.

First, the level sets of f are noncompact: Suppose not. Then for some a € R, the level set f~!(a) is
compact and hence is diffeomorphic to S2. So f~!(a) separates the manifold into a compact and a
noncompact connected component. Since f is convex and nonconstant, by the maximum principle it
attains its minimum in the compact region. This contradicts our assumption.

Let I'1, 2: [0, 00) € M be the two integral curves of Vf or —Vf from Lemma 3.17, which extend to
infinity on the open ends. First, we claim that I'; and I'y cannot be integral curves of —Vf at the same
time. Otherwise, on the one hand, we have d(I'1(s), ['2(s)) — 0o as s — oo by Lemma 3.16. On the
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other hand, since 'y and I'; are integral curves of —V £, it follows by the positive curvature and distance
expanding along the backwards Ricci flow of the soliton that d(I'1(s), I'2(s)) < d(T"1(so), I'2(so)) for
any s > sg. This contradiction shows the claim.

So we may assume I'; is an integral curve of Vf. In Claims 3.32, 3.33 and 3.34, we will construct a
complete integral curve [': (—oo, +00) € M of Vf such that I'([sg, 00)) C €1, I'((—o0, —sg]) C €6, for
some s > 0, and moreover the manifolds (M, r~2(I'(s))g, I'(s)) converge to (R xcigar, r_z(xﬁp) gc» Xiip)
as s — Fo0. Note that I'((—o0, 00)) is invariant under the diffeomorphisms ¢; generated by Vf.

Claim 3.32 Take y;:[0,00) — M to be the integral curve of —V [ starting from I'1(0). Then y;(s)
goes to infinity as s — 00.

Proof Suppose otherwise: assume for some s; — oo and compact subset V' that we have y;(s;) € V. By
the compactness of V, there is ¢ > 0 such that Ric > cg and ¢ < |Vf| < ¢~ in V. So by the first identity
in (2-2) we have

7 S=SiR(J/1(S)) > c.

Moreover, by the increasing of R(y1(s)) we get (d/ds)|s=s; R(y1(s)) > 0 for all s. It is clear that there
is a uniform Cy > 0 such that

dZ
—R(y1(s))| < Cop for all s.
ds?

We may choose the sequence s; such that s;+; > s; + 1. Then

R(yi(si+1)) = Ry(s1)) + Y (R(1(s41) = R(1(5x)) = R(y(s1)) + 3ic2Cy = o0,
k=1

which is impossible. |

Claim 3.33 As s — oo, the manifolds (M,r~2(y1(s))g. y1(s)) converge smoothly to the manifold
(R x cigar, r =2 (Xtp)gx, Xip)- In particular, y1(s) is an e-tip point for all sufficiently large s.

Proof It follows from Lemma 3.3 that the manifolds (M, r~2(y1(s))g. y1(s)) converge smoothly to
either (R x cigar, r=2(x0)gx, xo) or (R? x S, gyan, Xo). We show that it must be the first case. Since
liminfs— o R(y1(s)) > 0, by the quadratic curvature decay of Theorem 3.20, it follows that y; (s) is within
uniformly bounded distance to the e-tip points on I'; UT,. So the limit must be (R xcigar, r ~2(x0)gs, Xo0)-

Moreover, since 1 (s) is an integral curve of —V £, by the distance shrinking in the cigar soliton it is easy
to see that xo must be a tip point in R X cigar. a

Claim 3.34 For all s sufficiently large, y1(s) C %..

Proof Since the two chains 6; and ‘65 contain all e-tip points by Lemma 3.14, we have either y;(s) € 6,
or y1(s) € €, for all sufficiently large s.
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Suppose y1(s) € €, for all large s. On the one hand, by Claim 3.33, d(y1(s), I'1) — 0 as s — oo. Since
I'1 (s) is the integral curve of Vf, we see that |V f|(I'1(s)) increases in s, and hence

liminf [Vf[(y1(s)) = liminf [V/|(T'1(s)) > 0.

So by Claim 3.33 we have that £(Vf, ¢«(d,)) < € at all e-tip points in 6y, after possibly replacing r
by —r.

On the other hand, for a fixed point pg, by Lemma 3.6, £(Vd(po,-), $x(9r)) < € holds at all e-tip
points in 6; after possibly replacing r by —r. So either £(Vf, Vd(po,-)) <€ or L(—=Vf,Vd(po,-)) <€
has to hold at all e-tip points in €;. Note that Claim 3.32 implies that d(pg, y1(s)) — o0 as s — o0,
and hence (1) must hold. But the fact that d(pg, '1(s)) — oo as s — oo implies that (2) must hold,
a contradiction. |

Therefore, letting I'(s) = "1 (s) for s > 59, and T'(s) = y1(s¢9 —s) for s < 59, we get the desired complete
integral curve I': (—o0, +00) of Vf. So we may assume I'>(s) = y1(s — s¢) for s > s9. Then I'y
and I still satisfy the conclusions in Lemma 3.17, and moreover satisfy the additional properties that
limg— o0 R(I'2(s)) > 0, and that 'y and I'; are both parts of a complete integral curve I'.

After a rescaling we may assume limg_, oo R(I'2(s)) = 4. Then for some s; > 0, whose value will
be determined later, we can find a point p, which is the center of an e-cylindrical plane, such that
|h(p)—2n|<eand d(p,I") =d(p,T'2) =s1; see Definition 2.11 for a(-). Let y, () be the integral curve
of Vf starting from p. Then d(y, (), I') increases in . In particular, d(y,(¢), I'(0)) > d(yp(2),T) > s1.
So by Lemma 3.19 we see that when s is sufficiently large, the distance d(y,(¢),I') for any fixed ¢ is
always attained in ' ((—o0, —sg) U (59, 00)), where I'(s) are e-tip points.

In particular, the minimizing geodesic connecting y,(f) to some point y, € I'((—o0, —sg) U (5o, 00))
such that d(yp(t), y¢) = d(yp(t), T') is orthogonal to I" at the e-tip point y;, and y; — oo as t — 0o. On
the one hand, by the distance distortion estimate we have

d
(-1 000 = swp [ Ricty/©).y/ 61 ds
! yex() Jy

in the backward difference quotient sense (see [36, Lemma 18.1]), where %(t) is the space of minimizing
geodesics y that realize the distance of d(y,(f),I"). In particular, if y, € I'; and y is a minimizing
geodesic connecting y, () to y;, we have

(3-19) %d(yp(t), r)> / Ric(y'(s),y'(s))ds >2—¢€ forall t €0, T],
v

where in the second inequality we used (2-5) that in a cigar soliton with R(xgp) = 4, the integral of Ricci
curvature along a geodesic ray starting from the tip is equal to 2. On the other hand, we have

(3:20) L 4yp0).Talso+1) < inf / Ric(y'(s). y'(s)) ds
dt YEW®) Jy
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in the forward difference quotient sense, where “W'(¢) is the space of all minimizing geodesics between
Yp(t) and I'1(so 4 #). Since R(I'(s)) strictly decreases in s, because otherwise (M, g) is isometric to
R x cigar, we may assume that for some c; > 0 we have R(I'1(sg,o0)) < 4 —c;1. So by (3-20) there
exists some ¢ > 0 such that

d
(3-21) —d(yp(t).Ti(s0 +1) <2-c2.
Therefore, it follows from (3-19) and (3-21) that d(y,(¢),I') = d(yp(t), I'1) for sufficiently large 7.

Therefore, we may let

T =sup{t : d(yp(t),T) =d(yp(t),I2)} < o0,
then d(yp(T),T'1) = d(yp(T),I'2) and d(yp(t),I') = d(yp(t),I'2) for all t < T. Integrating (3-19)
from 0 to T we obtain

d(yp(),T)>d(p.T)+2—€e)t =51+ (2—e)t.

Since y,(¢) is the integral curve of Vf starting from p, it follows by the definition of / that h(y,(2)) is
equal to the length of a minimizing geodesic loop at p with respect to g(¢). So by the Ricci flow equation,
Rm > 0, and |Ric| < CR, we see that h(y, (7)) is nondecreasing in ¢ and the evolution inequality

d
271 (0) = C-R(yp (1)) - h(yp(1))

holds. Combining this with the following curvature upper bound from Theorem 3.20,

C
D)= 26,00 = G+ G-

R(yp
we obtain

C
Eh()’p(l)) = m “h(yp(1)).

Assuming s is sufficiently large and integrating this we obtain
(3-22) h(yp(1)) < h(p)(1+¢€) <2r(1 +¢).

Let g € I'1 be a point such that
d(yp(T).q) = d(yp(T).T).
So by Lemma 3.29 we have
f(@) < fyp(T)).

Since R(I"1(s)) decreases and f(I'1(s)) increases in s, there is g € I'y such that

f(q2) = f(yp(T)) > f(g) and R(q)> R(q2).

In the rest of proof, we will show R(g2) >4 — 6. First, if d(y,(T).q2) < § ' R™Y/2(¢5), then since ¢»
is an e-tip point, we obtain
|h(yp(T)) —4m - R™/2(g2)| < 6.
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This fact combined with (3-22) gives

(3-23) R72(q) < L h(rp(T) +6 <3 +5,

and hence R(g2) > 4—6.

So we may assume from now on that d(y,(T), q2) > §TIR™1/2(g,).
Claim 3.35 There exists an §-cylindrical plane at some z € f~1(f(q2)) at scale r = R~Y2(¢»).

Proof Let¢: (R xcigar, xgp): — (M, g2) be an e-isometry. For the interval [-1/8,1/8] C R and the ball
Bg, (xip, 1/+/8) in (cigar, g.), we consider image of their product U := ¢([—1/8, 1/8]x Bg, (Xip, l/x/g))
Let 0 be a smooth curve connecting ¢» to y,(T) in the level set f~1(f(q2)). Since y,(T) ¢ U, by
continuity 0 must exit U at some z € dU.

Write U+ := ¢ ({£1/8} x Bg, (Xuip, 1/+/8)). We will show that z € ¢ ([—1/8, 1/8]x 0By, (xiip, 1/v/8)) =
0U —dU— — dU4. Replacing + and — if necessary, we may assume f(¢(1/8)) > f(q2) > f(p(—1/6)).

On the one hand, for any y € dU_ let o: [0,£] — M be a unit-speed geodesic from y to some point
qg— € ¢([—1/8,1/8] x xp) which achieves the distance from y to it. Then we have

L
FO)— flgo) = /0 (Vf.o!(r) dr
L pr
= / f V2 f(0'(s),0”(s)) ds dr
0J0

L ol C
< Ric(o’/(s),0'(s))ds dr < —,
N 7
where we used that the length of o satisfies £ € [§~1/2R™1/2(g,),26~1/2R~1/2(¢,)]. This then implies

C 1 C
f(J’)Ef(fI—)+%§f(CI2)—a+% < f(q2),
and hence dU_ is disjoint from f~1(f(g2)).

On the other hand, for any y € U4 let g+ be a point in ¢([—1/8,1/8] x x;p) that is closest to y. Then

SOV fa0 2 fa) + 25 > /42).

and hence AU is also disjoint from f~1(f(g2)). So the claim holds. |

By Lemma 3.28, the two §-cylindrical planes at y,(7) and z produce the two §-necks in the level set
surface f~1(f(¢2)): One 8-neck, denoted by Ny, is centered at y,(T), which has scale 2(1 + &) because
h(yp(T)) <2m(1+35) by (3-23), and h(yp(T)) > h(p) > 2 — € by the choice of p and the monotonicity
of h along integral curves; and the other §-neck, denoted by N,, is centered at z with scale RV 2(q2).
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By the choice of Ny and d(y,(T),q2) > 87! R~12(g,), it is clear that N> is in the 2-ball bounded by the
central circle of Ny. Since f~'(f(g2)) is positively curved, we can apply Lemma 3.30 and deduce that

R7Y2(q) <2(1+6) andhence R(q2) > 4(1—9).

Now letting € go to zero, by the monotonicity of R along I' this implies that R is a constant along T".
So R =2 on I'. By the soliton identity,

Ric(Vf,Vf) = —(VR,Vf) =0.

The Ricci curvature vanishes along I' in the direction of Vf. So the soliton splits off a line and it is
isometric to R x cigar, contradiction. This proves the existence of a critical point of f. O

The following corollary follows immediately from Theorem 3.31 and Lemmas 3.17 and 3.16.

Corollary 3.36 There are two integral curves I';: (—oo,00) — M of Vf, fori = 1,2, such that the
following hold:
(1) Let p be the critical point of f. Then limg_,_oo [ (s) = p;
(2) Ass — oo, the pointed manifolds (M, r~2(I;(s))g, i (s)) smoothly converge to the manifold
(R x cigar, =2 (xyip) ¢ » Xtip)-
(3) For any p](cl) € I'; such that p,(cl) — 00 as k — oo, the minimizing geodesics pp](cl) subsequentially
converge to two rays y1 and y, such that [y1] = 0 and [y2] = 0 € Seo(M, p) = [0, 0] for some
0 €0, ).

3.5 An ODE lemma for distance distortion estimates

We will use the following ODE lemma of two time-dependent scalar functions to estimate certain distance
distortions in Theorem 3.41. This method generalizes the bootstrap argument in [60, Theorem 1.3], which
relies on the O(2)-symmetric structure of the soliton.

Lemma 3.37 (an ODE lemma) Let H,h:[0,T] — (0, co) be two differentiable functions satisfying
H'(t) = Cy-h™' (1),
() < C2- H2(1) - h(2),

for some constants Cy, C, > 0. Suppose

(3-24)

HO) C
(3-25) %0)) > c
Let C3:= C1h™1(0) — CoH1(0) > 0. Then for all t € [0, T] we have
H(t) > C3t + H(0),
{ h(t) < h(0)eC2/(C3HO),
Proof Dividing both sides by %(¢) in the second inequality in (3-24), we get
3 (Inh(1)) < CoH™>(1).
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Integrating this from O to t we get

Inh(t) < C, /t H™2(s)ds + Inh(0),
0

and hence .
h(l) < h(O)€C2 Jo H~2(s) dS’

plugging which into the first inequality in (3-24) we get
H'(t) > C1h(0)e~C2Jo H (@) ds,
Let Hy(t) be a solution to the following problem:
Ho(0) = H(0),
HY(t) = Cth™1 (0)e~C2Jo Ho*(5)ds.

Then it is easy to see that for all > 0,

(3-26)

(3-27) H(t) > Ho(t) > 0.

The second equation in (3-26) implies

In(H{(1)) = In(Cy i~ 1(0)) — C, /0 t Hy2(s) ds,

differentiating which at both sides we obtain

3 (Hy(t) — CoHy M (1)) = 0.
Integrating this and using (3-26) and (3-25) we obtain

H{(t)— CoHy ' (1) = Hy(0) — CoHy 1 (0) = C1h ™1 (0) — CoH ™1 (0) = C3 > 0.

So by (3-27) we obtain

H(t) > Ho(t) = C3t + H(0).
Substituting this into the second inequality in (3-24) we get

C2

d¢(Inh(t)) < m’

integrating which we obtain

h(t) < h(O)ecz/(C3H(0))—C2/(C3(C3t+H(0))) < h(O)eCz/(C3H(0)). O

3.6 Asymptotic cone is not a ray

Theorem 3.41 is the main result in this section. It states that the soliton is Z,-symmetric at infinity, in the
sense that R has equal positive limits along the two ends of I". Moreover, assuming this positive limit is
equal to 4 after a proper rescaling, then any sequence of points going to infinity converges to either R? x S'!
or R x cigar, without any rescalings. As a consequence of Theorem 3.41, we prove in Corollary 3.43
the uniqueness of the Bryant soliton among all 3D steady solitons on R3 asymptotic to a ray.
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We remark that this Z,-symmetry at infinity is also true in mean curvature flow: a mean curvature flow
flying wing in R3 is a graph over a finite slab. Moreover, the slab width is equal to that of its asymptotic
translators, which are two tilted Grim Reaper hypersurfaces [70; 55].

We first prove a technical lemma using metric comparison.

Lemma 3.38 There exists € > 0 such that the following holds: Let X be a 2D complete Riemannian
manifold with nonnegative curvature. Then there cannot be more than two disjoint € -caps.

Moreover, suppose there are two disjoint €-caps centered at p; and p,, and ¥ is an €-neck at a point
p € X such that p is not in the two e-caps. Then the central circle at p separates p; and p3.

Proof For the first claim, suppose by contradiction that there are three disjoint e-caps 61, 6, and €3
centered at py, pp and p3. We shall use 6(¢) to denote all constants that go to zero as € goes to zero.

Assume the minimizing geodesics p; p» and pj p3 intersect the boundary of €1 at x, and x3 respectively,
which are centers of two e-necks. So we have

d(x3,x3) <d8(€)d(x2, p1),
which by the monotonicity of angles implies
£pap1p3 < Axap1x3 < 8(€).

In the same way we obtain that Zp1p2p3, Zp1p3p2 < 4(¢). But then we have

Ap1p2ps+ Zpap1ps + Ap1p3pa < 38(e) <,
which is impossible.

For the second claim, suppose the central circle at p does not separate p; and p,. Denote the e-isometry
of the e-neck at p by ¥: (—e 1,e ) x S = X. Let y1 = ¥({xe~ 1} x S1). Then, after possibly
replacing + with —, we claim that the minimizing geodesics pp1, pp> and pp p» are all contained in the
component of ¥ separated by y_ which contains y: First, since p; and p, are in the same component
of ¥ separated by ({0} x S'), suppose pp; intersects y. Then it follows that pp, also intersects X,
and the claim follows by the minimality of these geodesics.

By the claim, we can use a similar argument as before to deduce

Ap1pap+ Apaprp+ Zp1ppa <7,
which is a contradiction. O

The following lemma is a key ingredient in the proof of Theorem 3.41.

Lemma 3.39 There exists Co > 0 such that the following holds: Let € > 0 be a sufficiently small number,
and p € M be an e-cylindrical plane point. Let g € I" be the point such that d(p,q) = d(p,T"). Suppose
R(g) < CO_I. Then r(q) < 1200 h(p), where h(-) is defined in Definition 2.11.
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Proof Let C denote all positive universal constants, and § denote all positive constants that converge to
zero as € — 0. Let ¥ := f~1(f(g)). Then X is diffeomorphic to S2, and it separates M into a bounded
component f~1([0, f(g))) diffeomorphic to a 3-ball, and an unbounded component f~1(( f(g), o))
diffeomorphic to R x S2. So we may assume I' N ¥ = {g.,g}, and ¢ and g are §-tip points. Let
y:[0, 1] — M be a minimizing geodesic from ¢ to p. Then by Lemma 3.29 we have min,,((9,1}) / > f(q),
so p € f7Y([f(q),00)). Therefore, there is a smooth nonnegative function 7': [0, 1] — R such that

y(r) :==¢_1@)(y(r)) € Zforr €[0,1]. Let p =y (1) = ¢_r(1)(p)-
Claim 3.40 We have that dx(p,q) > % dx(q, p), where dy, denotes the intrinsic metric on X.

Proof First, we may assume (M, g) is an e-cylindrical plane at p. First, by the positive curvature and
distance shrinking in the Ricci flow g(¢) = ¢*,g of the soliton, we have

(3-28) h(p) < h(p).

Consider the smooth map y: [0, 1] x R — M defined by y(r,t) = ¢+ (¥ (r)). Since ¢; is the flow of V[,
we have f o y(r,t) =t + f(q) and hence (x«(9¢), x«(9r)) = (Vf, x«(dr)) = 0. So we can compute

1
(3-29) d(P,CI)ZLength(V)Z/O X, 7)) 0r) + T (1) - X, 7)) (0) AT
1 1
> /0 st ()| dr = /0 670y (7 ()] dr

1
= [ 170l dr = Lengtn(7) = ds(a. .
0
Since |[Vf| > C~! > 00n M \ B(xp, 1), we have
(3-30) d(p.p) =C(f(p)—f(p)=C(f(p)— f()
1 pr
=C/0/0 Ric(y'(s), y'(s)) ds dr

1
<c / Ric(y'(r).y'(") dr < 1d(p.q).
0

where in the second equality we used (V£, y’(0)) = 0, and in the last inequality we used

! . / / 1
[0 Ric(y'(r),y'(r))dr < Ed(P»CI),

which follows from Lemma 2.13(2), Theorem 3.20, and the assumption R(g) < Cj ! by taking Cy
sufficiently large.

Since d(p,q) = d(p,T") = d(p, q), together with (3-29) and (3-30) this implies
ds(p.q) = d(p.q) = d(p.q)—d(p.p) = d(p.q) —d(p. p) = 3ds(q. p).
This proves the claim. O
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Since ¢ is a §-tip point, we may assume without loss of generality that dx (¢, p) > D R~/2(g), where D is
from Lemma 3.27, because otherwise for sufficiently small € we have r(g) < 10r(p) < 10r(p) < 100h(p),
and thus the lemma holds. So we can find a point ¢; on the X-minimizing geodesic between g and p
such that dx(q,q1) = 5R‘1/2(q) and hence

(3-31) r(q) = 10r(q1).

By Lemma 3.27 it follows that (M, g) is a §-cylindrical plane at g1. So by Lemma 3.28 this implies that
the level set X is a §-neck at p and ¢; at scale r(p) and r(g1), respectively.

We may also assume dx(p,q1) > 100r(p) > 10h(p), because otherwise we have r(g) < 10r(q;) <
20r(p) < 20r(p), and thus the lemma holds. We will show the inequalities

(3-32) dx(q.p) =d=(q.q1) =3dx(q. p).

For the first inequality in (3-32), since g and ¢ are in two disjoint §-caps, it follows by Lemma 3.38 that
the central circle at p separates ¢; and ¢ in ¥. So a minimizing geodesic between ¢g; and g intersects the
central circle at p, and hence

dx(q.q1) 2 ds(p.q) —10h(p) + d=(p.q1) = ds(p.q).

where in the last inequality we used dx(p, q1) > 100 r(p) > 10 h(p). For the second inequality in (3-32),
by Claim 3.40 we have

ds(q.q1) =ds(q. p) +d=(p.q1) =ds(q, p) +d=(p.q) =3dx(q. p).
By the first inequality in (3-32) and the positive curvature on X, we can deduce by volume comparison that

0Bx(q, dx(q.q1))| _ |9Bs(q.d=(q, p))|
dE(qv 91) N dz:(‘?» p_)

(3-33)

Since X is a §-neck at both points p and ¢, it is easy to see that

0@ ds@a| 1 PB@ds@ D]

r(q1) r(p)
Therefore, by the second inequality in (3-32) and (3-33) we get r(q1) < 12r(p). Then by (3-31),
r(p) < 10h(p) and (3-28) we get

2.

=

Nl

r(q) < 120r () < 1200A(p) < 1200h(p),

which proves the lemma. |

Now we prove the main theorem in this section. A key step in the proof is to choose two suitable functions
that evolve by the conditions in Lemma 3.37.
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Theorem 3.41 Let (M, g) be a 3D steady gradient soliton with positive curvature that is not a Bryant
soliton. Let I'; and I"y be the two integral curves of Vf from Corollary 3.36. Then after a rescaling of
(M, g), we have

Jim R(Fi(s)) = lim R(I2(s)) = 4.
Moreover, for any sequence of points q; — 0o, the sequence of pointed manifolds (M, g, qi) converge to
either (R? x S, ggan) or (R x cigar, g¢). In particular, if {q;} C T'; U T, then (M, g, qx) converges to
R x cigar.

Proof We will first prove limg—oo R(I';(s)) > 0 for i = 1,2. By Theorem 3.31 we know that f has
a unique critical point xo. Assume f(xo) = 0. Then it is easy to see that all level sets f~!(s) for all
s > 0 are diffeomorphic to 2-spheres, and the induced metrics have positive curvature by (3-14). Let
I'1 and I'; be from Corollary 3.36, and ' = I'1 (—o0, 00) U 'z (—00, 00) U {x¢}. Then the subset I is
invariant under the diffeomorphism ¢;. Let C denote all positive universal constants, € denote all positive
constants that we may take arbitrarily small, and § denote all positive constants that converge to zero as
€ — 0. Suppose by contradiction that the assertion limg_, o R(I'; (s)) > 0 for both i = 1, 2 does not hold;
we will derive a contradiction. Without loss of generality, we may assume limg—o R(I'1(s)) = 0.

Choose a point p € M such that (M, g) is an e-cylindrical plane at p, and d(p,I") = d(p,I'1). By
Lemma 3.5, (M, g) is always an e-cylindrical plane along the integral curve ¢ (p) of V£ starting from p
for t > 0. We abbreviate ¢;(p) as p;. Let g; € I be a point such that d(p;, ') = d(p:, g¢). We claim
that R(g;) — 0 as t — oo.

The claim is clear when limg_, oo R(I'2(s)) = 0, using that g; — oo as t — oo by Lemma 3.19. If

limg—co R(I'2(s)) > 0, we argue as follows: First, for any large 51 > 0, by Lemma 3.19 we can choose p

to be sufficiently far away from xg, so that d(p;, I';) for i = 1, 2 are achieved at points on I'; ((s1, 00)).

On the one hand, by limg_,oc R(I'2(s)) > 0 and (2-7), we may assume %d(pt, I'y) > ¢ for some ¢y > 0.

On the other hand, by limg_. R(I'1(s)) = 0, Theorem 3.20, and the distance distortion estimate in
1

Lemma 2.13(2), we may also assume %d(pt, I'1) < 1gg¢o for all # > 0. So we have
d

d
Ed(pt’ I7) > Ed(l?t, I'1).

Since d(p, ') = d(p, 1), it follows by integrating that d(p;, '2) > d(ps, T1) = d(ps, T') for all ¢ > 0.
So g; always falls on I'1([s1, 00)), and thus R(g;) — 0. So the claim holds.

Since (M, r~2(q;)g, q:) converges to R x cigar as t — oo, it follows for large ¢ that R > C ™! r=2(g,)
in B(q:, C~'r(q:)). Let H(¢:(p)) = d(¢:(p),T). Then by (2-7) this implies:

(3-34) H(p)=C ' r Y(q,).

Further, by Theorem 3.20 we have R < CH ~2(p,) in B(p;, 100 h(p;)), where k(- ) is from Definition 2.11.
So by (2-7) this implies

(3-35) dth(p:) <C - H_Z(Pz)'h(l?t)-
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By the above claim we know R(g;) — 0 as t — 0o, so we can assume R(q;) < CO_1 for Cy > 0 from
Lemma 3.39, by applying which we have r(g;) < 1200 h(p;), and thus

3:H(pr) = (12000)~"-h ™1 (qr),
h(pr) < C-H™>(pr)-h(py).
By taking € sufficiently small, we may assume H(p)/h(p) > 1200 C2. So H(p;) and h(p;) satisfy all
assumptions in the ODE Lemma 3.37, applying which we can deduce

H(p;)>=C™ 't and h(p;)<C for all sufficiently large .
So we obtain r(g;) < C. Since (M, r~2(q;)g.q:) converge to (R x cigar, Xip) as t — oo, this implies
lim; 00 R(g;) > 0, a contradiction to the above claim. This proves limg_soo R(I;(s)) >0 fori =1, 2.

Now we prove limg_—,o0 R(I'1(s)) = limg— o R(I'2(s)) and the remaining assertions of the theorem. Note
that it suffices to show that for any two e-cylindrical plane points x1, x, € M, we have |h(x1)—h(x2)| <§.
To show this, by replacing p; by ¢,(x;) for i = 1,2 in (3-34), and noting that r(¢;) < C~! as a
consequence of limg—,c0 R([';(s5)) > 0 fori = 1,2, it follows that H(¢(x;)) increases at least linearly,
and thus by (3-35) we obtain

(3-36) |h(xi) = h(ge(xi)| <8 for i =1,2.
Claim 3.42 tl_l)rgo d(ps(x1), Ps(x2)) < 00.

Proof First, we have that d(¢;(x;), ') > d(x;, ') + C ™'t fori = 1,2, so by the distance distortion of
Lemma 2.13 and Theorem 3.20 we have

A1), 91 (32)) < max ¢ ¢

dx, D)+ C 11 d(x, T) + C 11 |

integrating which we obtain
(3-37) d(¢r(x1), ¢1(x2)) < d(x1,x2) + CInt.

Therefore, for any sufficiently large ¢, letting y: [0, 1] — M be a minimizing geodesic between ¢, (x1)
and ¢;(x2), by triangle inequalities we have d(y([0,1],T") > C~1¢. So by Theorem 3.20 we have
supsefo,1] R(y(s)) < C /12, and hence (3-37) implies

d c
27 1@ x1), ¢ (x2)) = / Rie(y/(5), 7' () ds = —75.

Y
integrating which we proved the claim. O

Note that ¢, (x2) converges to a rescaling of R? x S1 as t — oo, so by Claim 3.42 we see that

A (e (x1)) = h(r(x2))| < &
for all sufficiently large . Combining this with (3-36), this implies

|h(x1) = h(x2)| <6,

which proves the theorem. O
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In the following we show that the soliton is asymptotic to a sector. Therefore, 3D steady gradient solitons
are all flying wings except the Bryant soliton.

Corollary 3.43 (Theorem 1.1, asymptotic to a sector) Let (M, g) be a 3D steady gradient soliton with
positive curvature. If the asymptotic cone of (M, g) is a ray, then (M, g) is isometric to a Bryant soliton.

Proof Suppose that (M, g) is not a Bryant soliton. Let C > 0 denote all constants depending on
the soliton (M, g), and let € > 0 be some sufficiently small number. Let I'y and I'; be the integral
curves from Corollary 3.36. By Theorem 3.41 we may assume limg_,o0 R(I;(s)) = 4. We write
I' =T1([0,00)) UT'2([0,00)). Let p € M be the center of an e-cylindrical plane, then we have

(3-38) d(¢:(p),T)>19¢t+d(p,T) fort>0.
Suppose max R = R(x¢g) < C. Then we have

d(xo,¢:(p)) <20Ct,
which combined with (3-38) implies
(3-39) d(¢:(p).T) > C Vd(xg,¢:(p)) for all large ¢.

Let g € T’y and g € T'» be sequences of points such that d(x¢, qr) = d(xo0, gk ), and let 0% : [0, 1] > M
be a minimizing geodesic connecting g and g. Then it is easy to see that d(x¢, 0% ([0, 1])) — oo as
k — oo. Since d(xo, ¢ (p)) — 00 as t — oo, the integral curve ¢, (p) must pass through the S!-factor of
an e-cylindrical plane centered at some point on oy (0, 1). In particular, we can find #; > 0 and 5% € (0, 1)
such that t; — oo as k — oo, and

d(¢1.(p). 0k (sg)) < 27.
Since d(qk, qr) = d(ok(sk), qx) = d(or(si), I'), this implies by the triangle inequality that
d(qk. qx) = d(¢4, (p). T) = d(¢4, (p). 0k (sk)) = d (¢, (p). T) —2m,
which together with (3-39) implies
(3-40) d(qk.qr) = C~d(xo, ¢t (p)) for all large k.
Since (M, g) is not isometric to R x cigar, we have
d(qr, @x) < 2—CNd(xo, qx)-
Combining it with the triangle inequality
d(xo. Py () +d(qk. qr) = d(x0. qx) + d(xo0. gk) — 27w = 2d(x0. q) — 27,

we obtain
d(X(), ¢tk (p)) > C_ld(XO’ 6]k)

So by (3-40) this implies d(gx,gx) = C ~'d(x¢. g) and thus Aqpxogy > C7L. Lastly, by Lemma 3.16,
the minimizing geodesics xoqy and xogy converge to two rays o7 and o with Z(al, 02)>C1>0.So
the soliton is asymptotic to a sector. O
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4 Upper and lower curvature estimates

In this section, we prove Theorem 1.7 of the two-sided curvature estimates. For the lower bound,
Theorem 4.8 shows that R decays at most exponentially fast away from I" by using the improved Harnack
inequality in Corollary 4.6. For the upper bound, Theorem 4.11 shows that R decays at least polynomially
fast away from I'. Theorem 4.11 is proved using the quadratic curvature decay from Theorem 3.20 and a
heat kernel method.

4.1 Improved integrated Harnack inequality

In this subsection, we prove an improved integrated Harnack inequality for Ricci flows with nonnegative
curvature operators. This improved Harnack inequality will be used to deduce the exponential curvature
lower bound in Theorem 4.8.

First, we state Hamilton’s traced differential Harnack inequality and its integrated version.

Theorem 4.1 Let (M, g(t)) fort € (0, T] be an n-dimensional Ricci flow with complete time slices
and nonnegative curvature operator. Assume furthermore that the curvature is bounded on compact time
intervals. Then for any (x,t) € M x (0, T] and v € Ty M,

R
4-1) 8,R(x,t)+7+2(v,VR)+2Ric(v,v)zO.
Moreover, integrating this inequality appropriately yields: For any (x1,t1), (x2,t2) € M x (0, T] with
t1 < t2, we have

2
@42) Reat) 11 (JM)_

R(x1,11) ~ 12 2 -1

Remark 4.2 By the soliton identities it is not hard to see that the equality in the differential Harnack
inequality (4-1) is achieved if (M, g(¢)) is the Ricci flow of an expanding gradient Ricci soliton with
nonnegative curvature operator and v = Vf;. We adopt the convention that the flow satisfies

1
Ric(g (1)) + Z—Zg(t) =V2f, fort>0.
See eg [38, Chapter 10.4].

Remark 4.3 In dimension 2, using Ric = %R g one can prove the slightly better integrated Harnack
inequality

2
(4-3) Rxz.t2) , 1 o (‘1M).

R(x1,t1) ~ 12 4 -1

The main result of this subsection shows that (4-3) actually holds in all dimensions. Our key observation
is the following curvature inequality.
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Lemma 4.4 Let (M, g) be an n-dimensional Riemannian manifold with nonnegative curvature operator.
Then

(4-4) Ric < 1Rg.

Proof To show this, let p € M and choose an orthonormal basis {e; }7_, of T, M under which the Ricci
curvature is diagonal, so
RiC == (Al, e ,An),

where A1 > --- > A, are the n eigenvalues. Let k;; = Rm(e;, ej, e;, e;). Then since Rm > 0, we have
ki <Y kji = A

J#i
foralli =2,...,n. So

M=kip+tkizs+-+kin<Ar+Az+---+ Ay,

and hence we have

Ao A
Ric(v,v)i)tl|v|2§(%)| |>= 2|U|2 o

Now we prove the improved integrated Harnack inequality.

Theorem 4.5 (improved integrated Harnack inequality) Let (M, g(¢)) for t € [0, T] be a complete
Ricci flow with nonnegative curvature operator. Suppose also that the (M, g(t)) have bounded curvature.
Then for any x1,x, € M and 0 <t <t <T, we have

2
R(x2,1) _ exp(_ldg(ll)(xl,xz))

R(Xl,ll) 4 tHh—-n

Proof In the Harnack inequality (4-1), letting v = —V (log R)(x, t) and Ty = 0, we get

1 2Ric(Vlog R, Vlog R
(4-5) R0 R+ —2|Viog R + ie( e k. Viog )~ o
Then by Lemma 4.4 we obtain
d
(4-6) — log(tR) > |V log R|*.

at

Let w: [t1, 2] =& M be a g(¢1)-minimizing geodesic from xj to x. Then

| (lzR(xz,lz)
0

t1R(x1,zl)) [n —10g(tR(M(t) 1) dt = [ —log(tR)+<Vlog(tR) >

du 2
Z/ |Vlog R|? + <VlogR —>dt>/ |V10gR|2—|VlogR|‘—M‘dt
11 d t dl

15) 2
=1/
4/,
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Note that if moreover the Ricci flow (M, g(¢)) is ancient, then (4-6) becomes

d 2
4-7) ElonglVlogm .

In particular, the following integrated Harnack inequality is a direct consequence of Theorem 4.5.

Corollary 4.6 (improved Harnack inequality, ancient flow) Let (M, g(t)) for t € (—oo, 0] be a complete
Ricci flow with bounded curvature. Suppose Rmg ;) > 0 for all t € (—o0, 0]. Then for any x1,x2 € M
and t; < tp, we have

R(x32.1) - exp(—l dg(tl)(m , xz))

R(x1,11) — 4 -t '

Remark 4.7 The equality in Lemma 4.4 holds on any two-dimensional solutions. In the cigar soliton,
it is easy to see that the equality in (4-7) is achieved, but the equality is lost in the integrated version.
Nevertheless, the factor i in Corollary 4.6 is still sharp in the sense that using it we can obtain a curvature
lower bound on cigar soliton which is arbitrarily close to the actual curvature decay in the cigar at infinity:

Let (X, g¢) be a cigar soliton and R(xip) = 4. Let (X, g¢ (7)) be the Ricci flow of the soliton. For any
x € X, lett = —do(x, x4p)/2. Then by the distance distortion estimate (2-5) in g¢(¢), we have

dy(x, xiip) < do(x, Xip) + (2 —€)(—1),

where € > 0 denotes all constants depending on do(x, X;p), such that € — 0 as do(x, xgp) — 00. So
applying the improved Harnack inequality we get

R(x,0) > R(xqip, 1) e~ (2= do(x,xip) — 4 ,—(2—€) do(x,xip)
This can be compared with the curvature formula of the cigar soliton (2-4),

16 < 16 e-2400xxip)

R(X, 0) = (edo(x,xtip) + e_dO(x’xﬁp))z B

4.2 Exponential lower bound of the curvature

In this subsection we use the improved Harnack inequality to deduce the exponential curvature lower
bound.

Theorem 4.8 (scalar curvature exponential lower bound) Let (M, g, f, p) be a 3D steady gradient
soliton that is not a Bryant soliton. Assume limg_oc R(I'1(s)) = limg_,oo R(I'2(s)) = 4. Then for any
€9 > 0, there exists C > 0 such that

(4-8) R(x) > C—le—2(1+€0)dg(x,r).

Proof For any ¢¢ > 0, let € > 0 denote all small constants depending on €y, whose values may change
from line to line. Let (M, g(¢)), t € (—o0, 00), be the Ricci flow associated to the soliton (M, g), g(0) = g.
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Consider the subset U consisting of all points x such that the distance d;(x, I') for all # < 0 must be
achieved at e-tip points on I'. Then it is clear by Lemma 3.19 that the complement of U is compact. So
we can find a constant C > 0 such that R > C~! on M \ U. Therefore, it suffices to prove the curvature
lower bound (4-8) for points (x,0) € U x {0} C M x (—o0, 00).

Let x € U and ¢ < 0. By a distance distortion estimate we have

d
(4-9) ——di(x,T) < sup /Ric(y’(s),y’(s)) ds,
dt yex() Jy

where the derivative is the backward difference quotient, and %(¢) is the space of all minimizing geodesics y
which realize the distance d;(x, I'). For any such y connecting x to a point y,; € I" such that d;(x, y;) =
d¢(x,T), we have that y; is an e-tip point since x € U, and y is orthogonal at y; to I". Moreover, by the
assumption limg_ o R(I'1(s)) = limg— 00 R(I'2(s)) = 4 we have

(4-10) R(y:,1) z4—e.

So by taking € small, (4-9) implies

d
—Edt(x, F) < 2(1 =+ 60),

integrating which we get
(4-11) di(x,y) = di(x,T') =do(x,T) +2(1 + €0)(—1).
Now applying Corollary 4.6
(the improved Harnack inequality) and using (4-10) and (4-11) we obtain
R(x,0) > R(yy, 1)e—% Gr/(40) > (4_E)e—(do(x,I‘)+2(1+eo)(—t))2/(—4t)'
Letting 1 = —3do(x, I'), this implies
R(x,0) > (4 —¢)e 2(Fe0)do(x.I), O
Remark 4.9 This curvature estimate is sharp: in the manifold R X cigar, the curvature decays like

0(e=29(-:1) 50 our lower bound estimate O (e ~(21€0) ds(-1) gets arbitrarily close to it as the distance
dg(-,T") goes to infinity.

4.3 Polynomial upper bound of the curvature

In Theorem 4.11 we show that the quadratic curvature decay from Theorem 3.20 can be improved to
polynomial decay at any rate. The proof relies on the following heat kernel estimate. This estimate shows
that the heat kernel starting from (x, #) behaves like a Gaussian, and it is centered at the (x, s) for all
s <t—2.Fors e[t—2,t), the Gaussian bound also holds by Lemma 2.21.
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Lemma 4.10 Let (M, g, f, p) be a 3D steady gradient soliton that is not a Bryant soliton and (M, g(t))
be the Ricci flow of the soliton. Let G(x,t;y,s) forx,y € M and s <t — 2 be the heat kernel of the heat
equation 0;u = Au under g(t). Then there exists C > 0 such that

dg(x,y)
G(x.1:y.5) < C(t —s5)3 2 exp| "2 ).
(. 157.5) = Clt =) exp(
Proof After a rescaling we assume limg—o0 R(I'1(s)) = limg—co R(I'2(s)) = 4. We shall use C to
denote all constants depending only on the soliton (M, g). Without loss of generality, we may assume
s =0. For any s € [0, 1] and z € Bg(x, 1), let y: [s,¢] — M be a curve such that y|[5 5] is a minimizing
geodesic connecting x and z with respect to g(0), and y|pz ;] = y.

For any 7 € [0, — 5], by Theorem 3.20 we have R(y,t — 1) < C/r?(y,t —t). Moreover, denoting
d:(x,T) by r(x,t), by Theorem 3.41 and distance distortion estimates we have

(4-12) r(x,t)+1.90 —s) <r(x,s) <r(x,t)+2.1(t —s).

So R(y,t —1) < C/(r(x,t)+C~'1)2. Fort € [t —2,t — 5], we have R(y(t — 7).t —7) < C and
|y’|(t — 7) < C. Putting these together we can estimate the $-length of y,
-2

t—s
)= [ ﬁR(y,r>dr+/ VERGU=0.0=0) + Y P)de
i

t—2 C t—s
5/0 ﬁ(r(x,t)+C_1r)2 dr—i—/l_z Crdr <C/rt.

Let £(z,5) := £(x,1)(z, 5) be the reduced length from (x,7) to (z,s). Then
Len(25) _ L)

L(z,5)= < <C.
z5) 2t —s 24/t —s
Recalling the heat kernel lower bound by Perelman in [66, Corollary 9.5], we get
C
4-13 G(x,t:z,8)> ——— ¢ t@) >
“-13) ( )= dr(t —s5)3/2 —13/2

for all s € [0, 1] and z € Bs(x, 1), integrating which in Bg(x, 1) we get
C
(4-14) / G(x,t;z,8)dsz > =7 for all s € [0, 1].
By(x.1) 13/

Let y € M, then by the multiplication inequality for the heat kernel in [54, Theorem 1.30] we have

o2
1 (/ G(x,t;z,9) dsZ)(/ G(x,t;z,5) dsz) <C exp(——(dS(x’y) 2 )
Bs(x.1) Bs(y,1) 4C(t — )

Substituting (4-14) into (4-15) and using the distance distortion estimate dgs(x, y)—2>C 14, (x,y)—2>
(2C)~1dy(x, y), we obtain

do(x, y)?
G(x,t;z,8)dsz 5Ct3/2ex (—0— .
(/B‘,(y,n ( s ) PUTaca—y)
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Integrating this for all s € [0, 1], and then applying the parabolic mean-value inequality (see eg [36]) to
G(x,t;-,-) at (y,0), we obtain

O

d?(x,
G(x.1:y.0) ECZ% exp(—M)'

4Ct
Theorem 4.11 (scalar curvature polynomial upper bound) Let (M, g, f) be a 3D steady gradient
soliton that is not a Bryant soliton. Then for any integer k > 2, there exists Cy > 0 such that

R= et

dg ( ) F)

Proof By Theorem 3.20 this is true for k = 2. Let (M, g(¢)) be the Ricci flow of the soliton. We denote
d:(x,T) by r(x,t). After a rescaling we assume limg_, o R(I"1(s)) = limg—oo R(I'2(s)) = 4, so (4-12)
holds.
Suppose by induction that this is true for k > 2, we will show that this is also true for k + 1. In the

following C denotes all positive constants that depend on k, the maximum of R and the limits of R at
the two ends of I'. Since R satisfies the evolution equation

3; R = AR + 2|Ric|?,

for a fixed pair (x,t) € M x (—o0, 00) we have

t
R(x,t) = /M G(x,t;y,5)R(y,s)dsy +2/ /M G(x.t;z,5)|Ric|?(z, ) dez dt :=I(s) + II(s).
N

First, we claim that limg_, o I(s) = 0. To show this, we split /() into two integrals on Bs( , 1000 r(x, s))
and M \ Bs( , 1000r(x s)) and denote them respectively by I;(s) and I5(s). Then for I(s), using
fag G(x.t:y,5)dsy =1 we can estimate that

Il(s)f(/MG(x,t;y,s)dsy)~( sup R(-,s)= sup R(-,5).

By (x, loloor(x,s)) By (x, loloor(x,s))

For any y € Bs( , 1000;’()6 s)) we have r(y,s) > r(x,s) — 100Or(x §)> 5 r(x 5). So by the inductive
assumption, R(y,s) < C/rk(x,s). So it follows by (4-12) that I; (s) < C/rz(x, s), which goes to zero
as s — —oo.

For I5(s), since by (4-12) we have

2
A (. X) _ -
t—s
it follows by the heat kernel estimates Lemma 4.10 and Lemma 2.21 that

G(x’ t’ y’ S) S Ce_dsz(ys-x)/c(t_s),

'r(x,5)=C(t—s) forall y € M\ Bg(x, 19557 (x.5)).

which implies

I(s) < C/ e~ (2x)/Clt=s) dsy <Ce7ED/C 0 a5 s > —o0.
M\B (x Tooo " (* s))
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Next, we estimate /I(s). Let
J(‘L’):=/ G(x,t:z,7)|Ric|*(z, 1) de 2z,
M

and split it into two integrals on By (x, 1og57 (x. 7)) and M \ B (x, 1g557 (x. 7)), and denote them
respectively by Ji(7) and J2 (7). Then by a similar argument as above and using the inductive assumption,
we see that J1(7) < C/r2k(x, 1) and Ja(r) < Ce"&0/C < C /r2k (x, 7).

Therefore, integrating J(s) we obtain

i c
(. TS /s P 1o0 o2 4T

t ¢ t
II(s)=2/ J(r)dr=2/ (Jl(r)—i-Jz(t))dtf/

1 1
=C (r2k—1(x, t) B (r(x, )+ 1.9(t—s))2k—1)
C

<.
r2k=1(x.1)
Combining this with the estimate on I(s), it follows that
R(x,t) <limsup(I(s) +1I(s)) < ——.
(1) = i sup(I(6) +11(6)) = s

Since k > 2, we have 2k — 1 > k + 1, which proves the theorem by induction. |

5 Symmetry improvement theorems

In this section we will study the Ricci De Turck perturbations 7 whose background metric is an SO(2)-
symmetric complete Ricci flow which is sufficiently close to the cylindrical plane R2x S!. Such symmetric
2-tensor can be decomposed as i = h + h_, where h4 is the rotationally invariant mode and /_ is the
oscillatory mode. We show that the oscillatory mode /_ decays in time exponentially in a certain sense.
We will first prove the linear version of this symmetry improvement theorem, that is, the oscillatory mode
of a linearized Ricci De Turck flow on R% x S decays exponentially in time. Then we can obtain the
theorem from its linear version by using a limiting argument.

More explicitly, || decays exponentially in time in the following sense: First, if |2_]| is initially bounded
uniformly by a constant, then the theorem shows that it decays as e for some §y > 0. Moreover, if
|h—|(-,0) has an exponential growth in the space direction, then the theorem shows that |h_|( -, ¢) still

—8ot

decays as e modulo the same exponential growth rate in the space direction.

5.1 SO(2)-decomposition of a symmetric 2-tensor

For a 3D Riemannian manifold (M, g), we say it is SO(2)-symmetric if it admits an effective isometric
SO(2)-action. Equivalently, this means that there is a one-parameter group of isometries ¢y, with 6 € R,
such that ¥y = id if and only if 8 = 2k 7 for k € Z. Throughout this section, we will moreover assume that
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(M, g) is a 3D SO(2)-symmetric Riemannian manifold such that there exist a 2D Riemannian manifold
(N, go) and a Riemannian submersion 7 : (M, g) — (N, go) which maps an orbit of the SO(2)-action to
a point in N. This can be ensured when the SO(2)-action is free.

Let U be a local coordinate chart on N with coordinates p: (x,y) € Uy C R? — p(x,y) € U. Take
a section s: U — 7~ 1(U) C M. Parametrize SO(2) by 0: [0,27) — SO(2). Then we obtain a local
coordinate on 7~} (U) by (x, y,0) — 0 -s(p(x, y)).

Let & be a symmetric 2-tensor on M, and
2

1
(5-1) hy(y):=—— (0"h)(y) db,
T Jo
and i_ :=h—h4. Then hy and h_ are two symmetric 2-tensors. For any 6y € SO(2), we have

1 21 1 27 1 2m+6
93‘h+=—/ 93‘(9*h)d9=—/ (90+9)*hd9=—/ 0*hdo = hy.
2 0 21 0 21 6o

So we say &4 is the rotationally invariant part and /_ is the oscillatory part of 4, and h = hy + h_ is

the SO(2)-decomposition of /. Similarly, we say % is rotationally invariant if &7 = k4, and oscillatory if
hy =0.

We now analyze the structure of the oscillatory mode more carefully. Since the one-forms dx, dy and d6
are invariant under the SO(2)-action, it follows that the basis {dx2, dy?,dx dy,dx df,dy d6,d0?} of
the space of all symmetric 2-tensors are rotationally invariant. So the SO(2)-decomposition of / reduces
to the decomposition of components of h under this basis: /& can be written as below under the local
coordinates,

h = Fydx*>+ Fydy*+ F3dx dy 4+ F4dx df + Fs dy df + Fe d?,

where F;(x,y,0): Uy x S! — R are functions. Let F; + be the i™ component in 4. Then
1 2
Fue.6) = [ Fiter.0)ds)
21 0
which is independent of 6, and

o0
Fi—(x,.0) =) A j(x,y)cos(jO) + Bi j(x, y)sin(j6),
where Jj=1
2

1 (2" 1
Aij(x,y) = ;/0 Fi(x,y,0")cos(j0')do" and Bj j(x,y)= ;/(; Fi(x,y,0")sin(j0") do’.

We have the following observations. Suppose {M;, g;, x; } is a sequence of SO(2)-symmetric Riemannian
manifolds, which smoothly converges to an SO(2)-symmetric Riemannian manifold (Meo, 200, X0 ), and
the convergence is SO(2)-equivariant. Suppose also that 4; is a sequence of symmetric 2-tensors on M;
that smoothly converges to a symmetric 2-tensor on M. Write h; =h; + +h; — and hoo = hoo,+ +hoo,—
for the SO(2)-decomposition. Then A; 4 smoothly converges to /o, 4, and h; — smoothly converges
t0 Moo,
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5.2 A symmetry improvement theorem in the linear case

Note that straightforward computation shows that the decomposition # = hy + h_ is compatible with
the linearized Ricci De Turck flow 9,4 = Aph on the cylindrical plane R? x S!. In the following, we
consider an oscillatory symmetric 2-tensor & on R? x S which solves the linearized Ricci De Turck
equation. Assume |A|( -, 0) satisfies an exponential growth bound, then the following proposition shows
that || decays exponentially in time in a certain sense.

Proposition 5.1 (on R? x S!, linear) Let 8o = 0.01. There exists a Ty > 0 such that for all
a€[0,2.02] and T > Ty,

the following holds. Let h(-,t) fort € [0, T] be a continuous family of oscillatory tensors on R? x S,
which is smooth on t € (0, T] and satisfies the linearized Ricci De Turck flow 0;:h = A h. Suppose that

(5-2) |h(x.y,0,0)| < Ae&V**+)?
for any (x,y,0) € RZ x S!. Then
|h](0,0,0,T) < AT .o=0T

Note that at (0, 0, §), the upper bound || < A at time 0 becomes |h| < A 2T . ¢=%T 4t time T. For
a =0, the bound at time T is || < A .e~%T in which case the exponential decay is clear. For « # 0, there
is an extra increasing factor e2#7, which seems to cancel out the effect of the decreasing factor e %7, In
this case, the exponential decay rate is measured by the time-dependent distance to the “basepoint” in a
suitable Ricci flow. So the increasing factor e2%7 will be compensated for by the distance shrinking as

going forward along the flow.

In Section 6, we will apply the nonlinear version of this proposition on the 3D flying wing with
limg_s 00 R(Tj(s)) = 4 for i = 1,2. We will consider / satisfying the initial bound || < e®*4s(-T),
Since the soliton converges to R x cigar along I', it follows that the distance to I' shrinks at a speed
arbitrarily close to 2. This will outweigh the increasing caused by ¢2*7. Tt is crucial that & can be slightly
greater than 2 since we will rely on this to find an SO(2)-symmetric metric sufficiently close to the soliton

—(2+8)dg

metric so that the error decays like e (I for some small but positive 8. So the error can decay

faster than the scalar curvature as a consequence of Theorem 1.7.

Proof Since 4 is oscillatory, we can write it as

h(x,y,0,t) = Fi(x,y,0,t)dx?> + F>(x,y,0,t)dx dy + F3(x, y,0,1) dy*> + Fa(x,y,0,t) dx d6
+ Fs(x,y.0.1)dy df + Fe(x, y,6,t)d6?,
where F; are in the form
o0
Fi(x,y.0.0)=Y_ A j(x.y.1)cos(j0) + B j(x.y.1)sin(j6),
j=1
Geometry & Topology, Volume 29 (2025)
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where

1 2

Ay = /0 Fi(x, 7,6 1) cos(j6') d,
1 2

Bi j(x,y,t)= ;[0 Fi(x,y,0",t)sin(jO") d6’.

So by the assumption (5-2) we have |Fj(x,y,0,0)| < Ae% \/m, and hence
(5-3) 40,7106, 3,0), Bi,71(x, 3,0) < 24¢7V* 2,
Now, the tensor h satisfies d;h = A h, which in the coordinate (x, y, 6) is equivalent to
(5-4) A Fi(x,y,0.1) = (0xx + dyy +d90) Fi(x,y.0,1) = (Ag2 + dgg) Fi (x, ,0.1).
Solving (5-4) term by term we see

0t Aij = Ag2Aij—j*Ai; and 0;Bi; = Ap2Bij—j* Bi ;.

So A;,j(x,y,1)- e/?(=T) and Bij(x,y,1)- eJ?=T) satisfy the heat equation on R2. In the following,
we will estimate these terms from above at (0,0, T').

For convenience, we will omit the indices for a moment and let

(5-5) u(x, y,1) = Ap j(x, y,1) e/ D,
Then u satisfies the heat equation

8,u = ARzu,
and by (5-3) we have
(5-6) | (x, y,0) < 244V **+¥2 o=i?T
Since cos 0.4 > ﬁ—l, it follows that for any (x, y) € R2, there is

Vx2+y2<1.1(xcosf+ ysinf) forall 6 e[fy—0.4,00+0.4],
where 6 satisfies cos 6y = x/v/x2 + y2 and sin 6y = y/y/x2 + y2. So for any « we have that

(5-7) VX2 Hy? 1 /271 el-la(xcosO+ysind) 19
~ 0.8 Jp :

Let

2
v(x’ y t) _ 2Ae_j2T .e(1~10l)2t . 0_18/ i e(l.lot)(xcos 0+ysin @) de.
. 0

For any fixed 0, by a straightforward computation we see that the function e(1:10)%1 p(1.1a)(x cos 0+ sin6)

is a solution to the heat equation on R2. So it follows that v also satisfies the heat equation, ie
3, V= ARZ V.
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Note by (5-6) and (5-7) we have |u|(x, y,0) < v(x, y,0). Moreover, by Lemma 2.22 we have a linear
exponential growth bound on |u|(x, y, t) for all later times ¢ € [0, T'], which may depend on 7. This
allows us to use the maximum principle (see eg [45]) and deduce that

(5-8) 11)(0,0,T) < v(0,0,T) = 2.54e /T . (110)°T
Since o € [0, 2.02], it is easy to check that
20— (1.1¢)%> +1>0.1.

Take Tp = (In2.5)/0.05, then €%-%°7 > 2.5 for all T > Ty, and hence

250~ T .,(11)°T _ ,2aT  ,—0.05T
Substituting this into (5-8), we obtain

u|(0,0,T) < Ao~ UP—DT 20T  ,—0.05T
Restoring the indices in (5-5), we obtain
|4;.;1(0,0,T) < Ae—(jz—l)T .e2aT  ,—0.05T
Similarly, | B;, ;{(0,0, T') satisfies the same inequality. Therefore, assuming 7o > (In 400)/0.04, we obtain
o0 o0 [e.e] ,
|Fi1(0.0.7) <> |4 71(0.0.T) + ) " [Bi j1(0.0,T) <2427 .¢70-05T .3 " o=(7-DT

S 4A eZ(IT ‘e—0.0ST S 1(1)OA€20[T .e—0.0l T’

which implies |4](0,0,T) < A e2*T .¢=0-01T 'and hence proves the lemma. |

5.3 A symmetry improvement theorem in the nonlinear case

In Theorem 5.3, we prove the nonlinear version of Proposition 5.1. In the theorem, / is a symmetric
2-tensor satisfying the Ricci De Turck flow perturbation with background metric g(¢) being an SO(2)-
symmetric complete Ricci flow which is sufficiently close to R? x S! at a basepoint. We will show that
the oscillatory part of / has a similar exponential decay in time as in Proposition 5.1.

We briefly recall some facts of Ricci De Turck flow perturbations from [9, Appendix A]. Let (M, g(¢))
be a complete Ricci flow and 4 be a solution to the Ricci De Turck flow perturbation equation with
background metric g(t), given by

Va h = Agiyh + 2Rmg ) (1) 4+ 2 ) [A].

where 94 (+)[] is quadratic in / and its spatial derivatives, and the left-hand side contains the conventional
Uhlenbeck trick,
(Vo h)ij = (3ch)ij + g7 (hpj Ricgi +hip Ricg;).
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Then / := o~ A satisfies the rescaled Ricci De Turck flow perturbation equation
Va, i = Agoyh +2Rmg ) () +2.5) ).
which as « — 0 converges to the linearized Ricci De Turck equation,
Va,h = Mgyl +2Rmyg 1y (),
which can also be written as 8;%7 =A LE, where Ay is the Lichnerowicz laplacian
Aphij = Ahij +2 g g% Ryjiohpg — g7 (hp; Ricg: +hip Ricg)).

Theorem 5.3 is proved using a limiting argument: We consider a sequence of blowups of solutions /;
to the Ricci De Turck flow perturbation, and show that they converge to a solution to the linearized
Ricci De Turck flow to which we can apply Proposition 5.1. To take the limit, we need to derive uniform
bounds for 4; and the derivatives.

To this end, we first observe that for a solution / to the Ricci De Turck flow perturbation, |/|? satisfies
the evolution inequality [9, Appendix A.1]

0:|h|* < (g + W)V h> —2(g + h) g798" Vihpy Vihgy + C(n)[Rmg |- |h|> + C(n)|h| - VA,

where C (1) > 0 is some dimensional constant. Note that the elliptic operator (g + /)" Vl.zj is not exactly a
laplacian of metrics. So in order to use the standard heat kernel estimates, we compare this operator with
the exact laplacian Ag ;)4 p(s) in the following lemma, and show that d; |h|? < Ag(t)+h(t)|h|2 + ||

Lemma 5.2 For any n € N, there are constants Co(n) and Cy(n) such that the following holds. Let
(M™", g(t)) witht € [0, T] be a Ricci flow (not necessarily complete) with |Rm| < 1 and inj > 1, and let
h(t) be a Ricci flow perturbation with background g(t). Suppose |V¥h| < 1/Co(n) < ﬁ fork =0, 1.
Then |h|? satisfies the evolution inequality

(5-9) t1h|* < Agy+h(h)* + C1(m)|h|?.

Proof In the following, the covariant derivatives and curvature quantities are taken with respect to g(¢),

and the time-index ¢ in g(¢) and A (¢) is suppressed. Let C denote all dimensional constants whose values

2

may change from line to line. Let (x!, x2, ..., x™) be local coordinates on an open subset U C M, such

that |Vk g| < C for k =0, 1; for example we may choose the distance coordinates [67, Theorem 74]. By
the formula of the Hessian Vl-zj f= Bl.zj f— Fl.kj dr f for any smooth function f on U, it is easy to see

(& + MY V3R = (g + )7 9 |h1> — (g +h)Y T o 1],
Aginlhl* = (g + )Y 0 h1> = (g + )/ TF 0 ||,

where fl]; is the Christoffel symbol of g 4+ /4. So we have
(& + W) VE IR — Aginlhl? = (g + W)Y (T = Tf)dk h .
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Seeing that |f‘l]§ — Fl.kj| < C(|h| + |Vh|) and using the assumption |[VXh| < 1/Co(n) for k = 0,1,
for sufficiently large Co(n) we obtain

(g + P VEIR? = Agpnlh?| < CIhI?|Vh] + CIR| VR < 3|h|? + 3| VA[>.
Combining this with Section 5.3, and noting that

2(g + )Y gP1g""V;hpyVihgy > 1.8|VA|?,
we obtain (5-9). O

Now we prove the main result of this section.

Theorem 5.3 (on almost cylindrical part, nonlinear) There exist &g, To > O such that for any T > Ty,
there exist €(T),8(T), D(T) > 0 such that for any

®€[0,2.02], e<e &<8 and Dy> D,
the following holds.
Let (M, g(t),x0) witht € [0, T] be a three-dimensional SO(2)-symmetric complete Ricci flow with
IRm|g(;) < 1, and suppose (M, g, xo) is §-close to (R? x S, gyan) in the C*®-norm. Let h(t) be a

Ricci De Turck flow perturbation with background metric g(t) on Bgy(xg, D#) x [0, T] and suppose
IVER(1)| < ﬁ for k = 0, 1. Note that the norms and derivatives are with respect to g(0). Suppose also

|VER|(x,0) < e-e100do(x-X0)  for x € By(xg, Dy) and k =0, 1,2,

5-10

( ) |h|(x,t) <e-el0D+ for (x,t) € dBo(x0, D#) x [0, T].
Suppose also

(5-11) |h|(x,0) < € e* @+ (*:X0)  for x e By(xo, D).

Then we have
|th_|(x0, T) < c-e 90T 20T £k —0,1,...,100,

where h_ is the oscillatory part of h.

Proof Let Ty > 0 be from Proposition 5.1, and the value of §g will be determined later. Suppose the
assertion does not hold for some T > Ty and Cy > 0. Then there are sequences of numbers ¢; — 0,
8; = 0 and Dy; > D; — o0, a sequence of SO(2)-symmetric complete Ricci flows (M;, g;(t)) with
t € [0, T], which is §;-close to R? x S at (x;,0) € M; x [0, T], and a sequence of Ricci De Turck flow
perturbation h; (t) with background metric g; (¢), defined on Bo(x;, Dy ;) x [0, T'], such that (5-10) holds
in Bo(xo, D4,;), and

(5-12) |hi|(x,0) < € - e* i @+n@&XD  on Bo(x; D),
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but there is some k; € {0, 1, ..., 100} such that
(5-13) \VKih; _|(x;, T) > ¢ -e%T . 02T

After passing to a subsequence we may assume that the pointed Ricci flows (M;, g; (¢), x;) on [0, T]
converge to (R% x S, ggan, Xo) in the C°%-sense. We will show that /; /€; converge to a solution to the
linearized Ricci De Turck flow on R2 x S!. To this end, since |Vk hl < ﬁ, k=0,1,by Lemma 5.2,
there is Co > O such that

tlhil® < Ag,n; 1hil> + Co-|hil* on Bo(xi, Dy;) x [0, T].

Let u; := e~ C0f|;|2, then this implies d,u; < Ag. +h,ui. Moreover, (5-10) implies

u;(x,0) < el.z . e20d5; 0+n; (X for € Bo(x;, D4),
ui(x,t) < el.z .20 Dy for x € 0Bo(x;, Dy,;) and ¢ € [0, T].

Applying the heat kernel estimate Lemma 2.22 and the weak maximum principle on Bo(x;, Dy,;) x [0, T],
we obtain bounds on |¢;| which are independent of all i: for any A > 0, there exists C(A, T') > 0, which
is uniform for all 7, such that

lui|(x,t) <C(A,T)-€* on Bo(x;,A)x[0,T],

and hence
(5-14) |hil(x,t) <C(A,T)-€; on Bo(x;, A) x[0,T],

with a possibly larger C(A, T). By the local derivative estimates for the Ricci De Turck flow perturbations
[9, Lemma A.14], this implies bounds for higher derivatives,

V7 hi| < Cu(A, T) €172 on Bo(xi, 34)x (0,T],

where m € N and C,,;,(A, T) > 0 are constants depending on A, 7" and m. Moreover, the first inequality
in (5-10) implies

|VEhi| < C(A,T)-€¢ on Bo(x;,1A4)x[0,T] for k =0,1,2.
Therefore, letting H; = h; /¢;,

V™ H;| < Cu(A, T)-t™™? on Bo(xi, 34) x (0, T,
and also
IVKH;| < C(A,T) on Bo(xi,24)x[0,T] for k =0,1,2.

So after passing to a subsequence, H; converges to a symmetric 2-tensor Hys, on (R% x S1) x [0, T] in
the C°-sense, and the convergence is smooth on (0, T].

On the one hand, by the contradiction assumption (5-13) there is some kg € {0, ..., 100} such that
(5-15) VKO Hoo | (x0. T) > e 50T . 20T
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On the other hand, since ¢; — 0, it follows that Hy, satisfies the linearized Ricci De Turck equation

0t Hoo = A1 Hso. The initial bound (5-12) passes to the limit and implies
|Hoo|(x, 0) < e*%esun*:X0)  for a]] x e RZx ST,

So we can apply Proposition 5.1 to the oscillatory part Hs,,— at every point in the backward parabolic
neighborhood U := By (xg,1) x [T —1,T] C (R? x S1) x [0, T] centered at (xo, T), and obtain

a+0.01 ,—0.01T ,2oT . ¢/

|Hoo—| < e e

Since the components of H, — satisfy the heat equation (5-4), it follows by the standard derivative
estimates of heat equations that for all k =0, 1,..., 100,

|VkHoo,—|(xO’ T) < Ck .e—0.0lT .eZaT < e—&)T .eZOlT

for some §g < 0.01, which contradicts with (5-15). O

6 Construction of an approximating SO(2)-symmetric metric

The main goal in this section is to construct an approximating SO(2)-symmetric metric whose error to the
soliton metric is bounded by e~2(+€0)dg (1) for some positive constant €9 > 0, and moreover the error
goes to zero as we move towards the infinity of the soliton. Here I' = I'j (—o0, 00) U 'z (—00, 00) U { p},
where p is the critical point of M, and I'; and I'; are two integral curves from Corollary 3.36.

The construction consists of two parts. First, in Section 6.4, we do an inductive construction to obtain an
SO(2)-symmetric metric g that approximates the soliton metric within the error e~2(1+€0)dg (1) Next,

in Section 6.5, we extend g to a neighborhood of I" to obtain the desired approximating metric.

In the first step, we repeat the following process in an induction scheme: We consider the harmonic map
heat flows from the Ricci flow of the soliton to the Ricci flow of some approximating SO(2)-symmetric
metric. The error between the two flows is characterized by the Ricci De Turck flow perturbation, whose
oscillatory mode decays in time by our symmetric improvement theorem. Therefore, the accuracy of
the approximation will improve by the flow, after adding the rotationally symmetric mode in the Ricci
De Turck flow perturbation to the approximating metric.

Note that the norm of the perturbation could grow very fast in the compact regions since we do not
have a symmetry improvement theorem there. In order to deal with this, we will do surgeries to the
soliton metric g and the approximating SO(2)-symmetric metrics, by cutting off their compact regions
and gluing regions that are sufficiently close to R? x S!. The resulting manifolds are diffeomorphic to
R2 x S1, and close to R? x ST everywhere. So the harmonic map heat flows between the flows of these
manifolds exist up to a long enough time for us to apply Theorem 5.3. In the surgeries, we need to glue
e-cylindrical planes, and for the SO(2)-symmetric metrics we also need to preserve the SO(2)-symmetry
in the resulting metrics. This needs some gluing lemmas in Section 6.1. We conduct the surgeries in
Sections 6.2 and 6.3.
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6.1 Glue up SO(2)-symmetric metrics

In order to do the surgeries, we need to know how to glue SO(2)-symmetric metrics. This is done in this
subsection. Recall that for a 3D Riemannian manifold (M, g), we say it is SO(2)-symmetric if there is a
one-parameter group of isometries g, with 8 € R, such that Y9 = id if and only if 8 = 2kmw, k € Z. In
this subsection, we show how to glue several SO(2)-symmetric metrics which are close to (R? x S, ggan)
and also close to each other on their intersections.

Since the metrics throughout this subsection are e-close to R% x S for some very small €, we will
take derivatives and measure norms using the metric gq., on R? x S!, since different choices of the
e-cylindrical planes only cause an error of Cpe for some universal constant Cy > 0. Moreover, we say
two maps are €-close in C k_norm if their images are e-close, and they are e-close in C k _norm under the
standard coordinates of two e-cylindrical planes e-close to the preimage and image spaces.

First, we show in the following lemma that if a 3D Riemannian manifold (M, g) is e-close to R x S at
X0 € M under two e-isometries ¢; and ¢, then the two vector fields ¢1.(3dg) and ¢4 (dg) are Coe-close.
Therefore, the vector field dg is well-defined on an e-cylindrical plane up to sign and an error €.

Lemma 6.1 Let k € N. There exists Cy, € > 0 such that the following holds for all ¢ < €. Let (M, g)
be a 3-dimensional Riemannian manifold. Suppose (M, g, xq) is e-close to (R? x S, gyan) in the
Ck-norm under two e-isometries ¢;: S* x (—e 1, e V) x (—e"1, e 1) > U; € M fori = 1,2, where
V = ¢1(S! x (=100, 100) x (=100, 100)) C U,. Then after possibly replacing ¢» by ¢» o p, where
p@,x,y)=(—0,x,y) for@ € [0,27) and x, y € (—e~!,e~1), we have

[$1x(39) — ¢2+(39) | ck—1 (1) < Coe.

Proof We shall use € to denote all constants Coe, where Coy > 0 is a constant depending only on k. Let
gi = (gbl._l)*gs[an and X; = ¢;«(dg) fori =1,2. Let (x, y, 0) be the coordinates on U; induced by ¢
such that g can be written as d0% + dx? + dy?, where x, y € (—e~ ', e~ 1) and 6 € [0,27). So X1 = 0g.
The coordinate function 6 can be lifted to a function z on the universal covering U 1 — Uj, so that the
metric on U; can be written as dz2 + dx2 + dy? under the coordinates (x, y, z).

Assume € is sufficiently small. Then
(6-1) 181 —&2lck ) =181 —&leky T 182 —8lck ) e
Since ¥y, g>» = 0, this implies
(6-2) 1x,811ck—17) = |Lx52(82 + (81 — 82)) -1y = 1¥Lx,(81 — 82)lcr-1(v) S €.
Note that all Killing fields on R3 have the form
a10x + a0y +azd; +b1(x0; —z0x) + ba(x0y — ydx) + b3(z0) —y0),

where ay,as,as, b1, bs, bz € R. By a direct computation using (6-2), we see that X5 is e-close in the
C*~1_norm to a vector field on V of the form

(6-3) a10x + a0y +azdg +b1(xdg —00x) + ba(x0y — ydx) + b3(60, — ydp).
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In the following, we will estimate these coefficients and show that |a3 4= 1| < € and other coefficients
are bounded in absolute values by €. First, since X5 is smooth, it follows that the vector field in (6-3)
restricted at & = 0 and 0 = 27 must be e-close. So we must have

|b1| + |b3] <e.

Next, since V&2 X5 = 0, it follows by (6-1) that [V&! X3|ck—1(y) < €, which implies |b2| < €. So X3 is
e-close in the C¥~1-norm to the vector

Y = alax +a28y +a389,

and hence the flow generated by Y, which is

x(t; x0, Yo, 6o) = xo +ait,

y(1:x0, yo, 00) = yo +aat,

0(t; xo, yo, o) = 6o + ast,
is e-close in the C¥~1-norm to the flow generated by X, on V. Since the flow of X, is 2mw-periodic, it
follows that

(6-4) lay| + |laz| + |2mraz —2mn| <€ for some m € N.

Note that for i =1, 2, X; is a unit-speed velocity vector of the g;-minimal geodesic loop, so it is easy to
see that for sufficiently small € we must have either | X, — X1| < ﬁ or |[Xo+ X;| < ﬁ. This implies
laz £ 1] < ﬁ, which combined with (6-4) implies

lar] + laz| +laz £ 1] <€,

which proves the lemma. |

The next lemma is a step further than Lemma 6.1, which shows that if an SO(2)-symmetric metric is
e-close to an e-cylindrical plane, then their Killing fields are also Cge-close.

Lemma 6.2 Let k € N4. There exists Co, € > 0 such that the following holds for all € < €. Let (U, g)
be a 3D Riemannian manifold (which is not necessarily complete), and let xo € U. Suppose that g is
SO(2)-symmetric metric and X is the Killing field of the SO(2)-isometry. Suppose also that (U, g, x¢) is
e-close to (R2 x S, ggan) in the C¥-norm, and

|X — 99| < 1955 ©on Bg(xo,1000) € U,
where 0y denotes the Killing field along the S -direction in an e-cylindrical plane. Then

| X — 9¢lck—1(B, (x0.1000)) = Coe.

Note that the assumption | X — dg| < Tloo in this lemma is necessary even if we derive a better bound
using it. For example, on R? x S, an SO(2)-isometry could be either a rotation in the xy-plane around
the origin, or a rotation in the S!-factor, but their Killing fields are not close to each other.
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Proof We shall use € to denote all constants Coe, where Cy > 0 is a constant independent of €. First, let
¢1 be the e-isometry from (R? x S, gsan) to (U, g, Xo), and let (x, y, 0) with x, y € (—e~ 1, ¢~ !) and
6 € [0, 2r) be local coordinates on an open subset V' containing B (xo, 1000), such that g1 := (¢1_1)* Zstan
can be written as d02 + dx? + dy?. Then  can be lifted to a function z on the universal covering Vv,
and the induced metric on V is dz2 + dx2 + dy2.

Seeing that £x g = 0, this implies
1x g1lck—1 vy = [£x (g1 =& ck—1w) €.
As in Lemma 6.1, this implies that X is e-close in the C¥~1-norm to the vector field on V given by
(6-5) Y =19y + azdy + azdg + ba(xdy — ydx),
where a1, a5,as, by € R.

In the following we will show that |a3 — 1| < € and |a1]|, |az], |b2| < €. First, assume b, # 0. Then the
flow generated by Y is

y(t; x0, Y0, 6o) = yo cos bat + Z—l(l —cosbat) + Z—z sin bot,
2 2

(6-6) x(t; X9, Yo, 0p) = xq cos bat + ZE(COS bot —1) + Cbﬂ sin byt,
2 2

0(t; x0, 0, 00) = b + ast.
Since the flow generated by X is 2-periodic and Y is e-close to X, it follows that
(6-7) |x (27; x0, Yo, 00) — xo| + |y (27; X0, Yo, 60) — Yo| + |2masz —2mn| <€
for some m € N. First, by | X —dg| < ﬁ we have

Y —0g| < |X —Y|+|X —0g] <e+|X — 0| < 555

L

which implies |b2| < 155-

Moreover, by taking yo = 100, —100 in (6-7) and using (6-6), we get
200|cos(2by) — 1| = |y (270, 100, 0) — 100 — y(27; 0, —100,0) 4+ 100| <€,

which combined with |by| < ﬁ implies |by| <e.

So we may assume b = 0 in (6-5), so X is e-close to the vector field in the C k=1_norm on V given by

(6-8) Z = alax +a28y +a389,

which generates the flow
y(#; %0, yo, 6o) = yo +azt,
(6-9) x(t;x0, Y0, 60) = x0 +axt,
0(t; xo0, yo, o) = 6o + ast.
The 2m-periodicity of the flow of X implies immediately

a1 + |az| + [2maz —2mmn| < e.

Using | X —dg| < ﬁ again this implies |az — 1| < €, which proves the lemma. a
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In the following lemma, we show that one can glue one-parameter groups of diffeomorphisms that are
e-close to each other on their intersections, to obtain a global one-parameter group of diffeomorphisms
that are Cge-close to them, where the constant Cy does not depend on €.

Lemma 6.3 Let m,k € Ni. There exists Co, € > 0 such that the following holds for all € < €. Let
(M, g) be a 3D Riemannian manifold. Suppose (M, g) is e-close to (R? x S, gan) at all x € M. Suppose
{U;}$2, is an open covering of M such that at most m of them intersect at one point. Additionally,
suppose that there is a one-parameter group of diffeomorphisms {¢; g }ger on each U; which satisfies

(D) ¢i,0o = ¢i2n =1id,

(2) |piex(0:)—0g| < ﬁ, where dg denotes the Killing field along the S ! -direction in an e-cylindrical

plane up to sign,
3) |¢i —¢j |Ck((U,~mUj)xS1) <€, where ¢;(x,0) = ¢; g(x) for any (x,0) € U; x St
Then there exists a one-parameter group of diffeomorphisms {{ };er on M satistying
(1) Yo = Y2z =1d,
(2) ¥ —dilckw,xs1) < Coe forall i,
(3) Y =¢ison{x €M : Bg(x,1000r(x)) C U;}.

Proof In the following, Co denotes all positive constants that depend on k. Since (M, g) is covered by
e-cylindrical planes, by a standard gluing argument we can find a smooth complete surface N embedded
in M such that the tangent space of N is ﬁ—almost orthogonal to dg in each e-cylindrical plane. Equip
the manifold N x S! with a warped product metric g = gy + d62, 6 x [0, 277), where gy is the induced
metric of (M, g) on N.

First, we will use the local one-parameter groups ¢; g to construct local diffeomorphisms F;: N x St M.

Let V; = U; N N. Then {V;}?2, is an open covering of N, and at most m of them intersect at one point.

Let F;: V; x S1 — U; be defined by

Fi(x,0) = i p(p(x)).
Then F; is a diffeomorphism, and
|E - F] |Ck((V,'ﬂVj)XS1) < C()E.
Next, we will first construct a global diffeomorphism F : N xS! — M by gluing up the diffeomorphisms F;
so that F is Cpe-close to each F;. Suppose € is sufficiently small such that for any x € M, Bg(x,€) is a

convex neighborhood of x, ie the minimizing geodesics connecting any two points in Bg (x, €) are unique
and contained in Bg (x,€). Let A be the open neighborhood of {(x, x) € M 2} the diagonal of M2,

Ay ={(x,y) € M?:dg(x,y) <€} C M>.
Define the smooth map
(6-10) Yo {(s1,52) €[0, 151 +s2 =1} x Ay > M
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as Xa(S1,52, X1, X2) = Vxy,x; (51), Where yx, x,: [0,1] = M is a minimizing geodesic from x5 to x;.
Then for all 51, s € [0, 1] with 57 4+ 52 = 1, and x, x1, x2 € M, X, satisfies the properties

(1) X2(1,0,x1,x2) = x1, Z2(0, 1, x1, x2) = x2,

(2) EZ(SlaSZ»X,x):x-
Then for each K € N, we can inductively construct the open neighborhood

Ag ={(x1,....xg) e MK dg(x;, xj) <€ c MK

of {(x,...,x) € MK} the diagonal in M X (see also [7]), and the smooth map

Sri{G1.....55)€[0. 1] s+ Fsxk =1} x Ag —> M,

by defining
Yg(s1,.. 08K, X1, .o, XK) = Xo (1 =5k, Sk, Zg—1(51, -+ . SK—1, X1, ..., XK—1), XK)»
with the following properties for all s1,...,5x €[0,1], 51 +---+sxg =1 and x, x1,x2,...,xg € M:

(1) If for some j € {l,..., K} wehaves; =1ands; =0 forall i # j, then

Yk(S1,.. i SK X100, XK) = X
2) Zg(S1,..., 8K, X,...,X) =X.
3) Ifsg_j+1 =---=sg =0 for somei > 1, then
EK(sl,...,sK,xl,...,xK)z EK—I(SI,---,SK—i,xlv--wa—i)-

Let {#;}%° . be a partition of unity of N x S! subordinated to {V; x S1}%° ., such that h; is constant on

i:1 =1
each S!-factor, and h; = 1 on V; x S1, where V; = {x € N : Bg,, (x,5007(x)) C V;} x S!. Then let
F: N xS'— M be such that for any x € N x S,
F(x):=2gh1(x),...,hg(x), F1(x), ..., Fr(x)),

where K € N is some integer such that hg/(x) = 0 for any K’ > K. By the properties of Ag and Xg,
we see that F' is a well-defined smooth map, and it satisfies

(6-11) |F_Fi|Ck(V,~xSl)§C0€-

Next, we will show that F is a diffeomorphism. First, by (6-11) and the definition of g we see that for
any p€ N x S' and v € T,(N x S!), we have

(6-12) |Fap(v.0)]g = 0.9]0]z.

So F is nondegenerate. Next, we argue that F is injective. To see this, note that (6-11) and assumption (2)
imply that F is injective on Bg, (x,2) x S! for any x € N, and F(x1 x S1) N F(x2 x S!) = & for
any x1,x2 € N such that dg, (x1,x2) > 1. Now suppose F(x1,61) = F(x2,62). Then we must have
dgy(x1,x2) <1, and hence x1 = x2, 81 = 05 as desired. Therefore, F is a diffeomorphism.
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Next, let 6 € [0,27) be the parametrization of S!, and let X := F4(dg). Then X generates a 27-
periodic one-parameter group of diffeomorphisms g with 6 € [0, 27) on M. In the following we will
show that g satisfies all the properties. Write ¥ (x, 0) = ¥p(x) for all (x,0) € M x S!. First, let
U ={xeM: Bg (x,10007(x)) C U;}. Then it is easy to see that Ui c F(V; x S1). Since h; =1 on
V; x S1, it follows that F = F;, and hence Yo = ¢; 9 On U;, which verifies property (3).

Lastly, to verify property (2), we note that for any x € U; = F;(V; x S1), supposing x = F;(z, 61), then
for any 60 € [0, 27r), we have

$i,0(x) = Pig+e,(x) = Fi(z,01 +0)
and also
Y (F o F'(x),0) =vy(F(z,61).0) = F(z,6; + ).

Therefore, using (6-11) the closeness of F' and Fj, as well as the closeness of F o Fl._1 :U; — M and
id: U; — M, we can deduce that

|V —dilcrw,xsty = Coe,
which verifies (2). O

Now we prove the main result of this subsection, which shows that if there are some SO(2)-symmetric
metrics which are e-close to each other, then we can glue them together to obtain a global SO(2)-symmetric
metric which is Cye-close to the original metrics.

Lemma 6.4 Let k,m € Ny. There exists Cy, € > 0 such that the following holds for all ¢ < €. Let
(M, g) be a 3D Riemannian manifold diffeomorphic to R? x S, which is e-close to (R? x S, ggan)
at all x € M. Suppose {U;}?2 | is a locally finite covering of M such that at most m of them intersect
at one point, and there is an SO(2)-symmetric metric g; on W; := Ueri B¢ (x,10007(x)), with the
SO(2)-isometry {¢; g }9e[0,2) and Killing field X;, which satisfies

(6-13) |gi —g|ck(WI.) <e and |X; _BOICO(WI-) < —10100,

where dg denotes the Killing field along the S -direction in an e-cylindrical plane, up to sign. Let {h; }$2 |

o0

be a partition of unity subordinate to {U; }72 ;.

SO(2)-isometry {Yg}ge[0,2) Such that

Then we can find an SO(2)-symmetric metric g on M with

(6-14) I§ — &lck—1ar) = Coe  and Y9 — i glcr—1w;) = Coe.

Moreover, g = g; on the subset {x € M : h;(¢; g(x)) =1 for 0 € [0,2m)}.

Proof In the following Cy denotes all positive constants that depend on k and m. Let
Vi={xeM:hi(¢;g(x))=1for6 €[0,2m)} CU; CW,.

First, applying Lemma 6.2 to g; we have

(6-15) | Xi —dglcr—1(w;) < Coe,

where 0y is the Killing field along the S!-direction in an e-cylindrical plane up to sign. As in Lemma 6.3,
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let N be a 2D complete surface smoothly embedded in M, whose tangent space is —+=-almost orthogonal

100
to dg.

Next, we will construct a diffeomorphism o: N x S! — M such that o Nx{oy = idy and 0«(dg) is
ﬁ-elose to the S!-factor of any e-cylindrical planes. To do this, first we can find a covering of M by -
cylindrical planes such that the number of them intersecting at any point is bounded by a universal constant.
Then we claim that after reversing the 6-coordinate in certain e-cylindrical planes we can arrange that the
vector fields dg are Cpe-close in the intersections. Suppose the claim does not hold. Then by Lemma 6.1
it is easy to find an embedded Klein bottle in M. Since M is diffeomorphic to R? x S, which can be
embedded into R3 as a tubular neighborhood of a circle, it follows that the Klein bottle can be embedded
in R3, which is impossible by [53, Corollary 3.25]. Now the diffeomorphism o follows immediately
from applying Lemma 6.3, since the one-parameter groups of these e-cylindrical planes are Cye-close.

Therefore, we can replace X; by —X; for some i so that they are all ﬁ—close to 0« (dg). So (6-15) implies
(6-16) | Xi _leCk_l(U,-ﬂUj) < Cpe.
Replacing ¢; g by ¢; _g for such i, this then implies
(6-17) 9,0 —®j.0lck—1w:nu;) < Coe.
Then by Lemma 6.3 we can construct a one-parameter group of diffeomorphisms {4} on M such that
Yo = Y2 =id and
Vo — ¢i0lcr—1(v;) = Coe,
and Y9 = ¢; g on V;.
Let =) 2, h;i-gi. Then § = g; on V; and by (6-13) we have

1 — glck-1 < Coe on M.
Let

e L[ asap

§=7- | Vg do.

Then (M, g) is SO(2)-symmetric under the isometries g, and

2n
_ 1
18 — gilck—2w,) < E/ V58— 9] 98ilck—2,) df

0
1 2n
<3 ) Vg (g —gi)lck—2,) + Vg 8 — ¢/ 98ilck—2,) 40 < Coe,
which combined with (6-13) implies (6-14).
Moreover, if x € V;, then ¥5(x) = ¢; g(x) and g(x) = g;(x), so we have
1 2n 1 2w
glx) = Vg (@(Ye(x)) do = 5 ¢7 (i (i p(x))) db = gi(x),

0 T Jo ’

which finishes the proof. O
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6.2 Surgery on the soliton metric

In this subsection we will conduct a surgery on the soliton by first removing a neighborhood of the
edges I" and then grafting a region covered by e-cylindrical planes onto the soliton. After the surgery, we
obtain a complete metric on RZ x S, which is covered everywhere by e-cylindrical planes.

We fix some conventions and notations. First, in the rest of the entire section we assume (M, g) is a 3D
steady gradient soliton with positive curvature that is not a Bryant soliton. Then by Theorem 3.41 we
may assume after a rescaling that

(6-18) lim R(Ty(s)) = lim R(Ta(s)) = 4.
Next, let p =dg(-,T"). Forany 0 < A < B we write
Tas=p (4, B), T<a=p""([0,4]), Tsa=p '([4,00), Ta=p '(4).

In the following, we construct a complete metric on R? x S and a vector field so that they are equal to
the soliton metric and Vf on the infinite triangular region I's. 4, and it is covered by e-cylindrical planes.
Using the flow of V' we construct a flow g’(¢) on M’ which then satisfies the Ricci flow equation in a
region of M’ x [0, 00), that looks like the space beneath a staircase. In future proofs in this section, the
flow (M’, g’(t)) will be used as domains of harmonic map heat flows.

Lemma 6.5 (e-grafted soliton, e-grafted soliton flow) Let (M, g) be a 3D steady gradient soliton with
positive curvature that is not a Bryant soliton, satisfying (6-18). For any € > 0 and m € N, there exists a
quadruple (M', g’, V, A) which consists of a complete Riemannian manifold (M’, g’), a smooth vector
field V on M’, and a constant A > 200, such that the following hold:

(1) M’ is diffeomorphic to R? x S!.

(2) There is an isometric embedding ©: (I's 4—200, &) — (M, g’). So we will identify T p as a subset
in M’ for any B > A —200.

(3) (M’,g’) is an e-cylindrical plane at any point x € M’ in the C™-norm.

4) V=VfonTlsy,andV =0o0n M’'\ s 4200, and |VkV| <1000 fork =0,...,m.

(5) Let{y;};cr be the flow of diffeomorphisms generated by V with Yo = id. Let (M’, g'(t)) be a
smooth flow for t > 0, where g'(t) = y*,g’. Then y/; = ¢; for t > 0 on I's 4, and

Il g :=v/T>p)=¢:(I'>p).

Moreover, g'(t) satisfies the Ricci flow equation on the open subset

) @y x{eh) € M’ x[0, 00).

t>0

We call (M’, g’,V, A) the e-grafted soliton, and (M’, g'(t), A) the e-grafted soliton flow.
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Proof Let A > 0 be sufficiently large that I'> 4 is covered by e-cylindrical planes. We may furthermore
increase A depending on m, € and the soliton (M, g).

By using the Ricci flow equation d,;g(¢) = —2Ric(g(t)), where g(¢) = ¢*, g, the quadratic curvature
upper bound in Theorem 4.11, and Shi’s derivative estimates [68], we may assume when A is sufficiently
large that

V(g =X sy®)| <€ on ¢ (Tzy) for £=0.....m,

where the covariant derivatives are taken with respect to g, and k € N. Therefore, for each k € N4, by a
standard gluing argument we can construct a metric g5 on I's 4 which satisfies

gk =¢2rg on ¢r(I'zy),
and foralli =0,1,2,...,k—1,
(6-19) IVi(gr —g)| < Coe on M for £=0,...,m,
where here and below Cy denotes all positive constants that only depend on the soliton and .

Now fixed a point p € I's 4 C M and let p; := ¢ (p). Then after passing to a subsequence we may
assume that the pointed manifolds (I's 4, gk, px) converge to a smooth manifold (M’, g’, p’). At the
same time, the isometric embeddings ¢y : (I's 4. g, p) = (¢ (I'>4). &k. Px) C (M, gk, px) smoothly
converge to an isometric embedding 7: (I's> 4, g, p) — (M, g’, p’) in the C™-sense.

Furthermore, by (6-19), we see that (M, g’, p’) is Coe-close to the smooth limit of (M, g, pi), which
by Lemma 3.3 must be isometric to RZ x S! after a suitable rescaling. In particular, this implies that
(M',g’) is complete, diffeomorphic to R? x S, and covered by Coe-cylindrical planes.

Now assume A sufficiently large, and replace A by A — 200 and also € by €/Cy. Then assertions (1), (2)
and (3) are satisfied. We can find a vector field V on M’ which satisfies the conditions in (4). Then (5)
follows by using the fact that g(1) = ¢*,g and V = Vf on I's 4. |

6.3 Surgery on SO(2)-symmetric metrics

The next lemma allows us to do an SO(2)-invariant extension to an SO(2)-symmetric metric g defined
on an open subset containing I's> g for some large B > 0. It extends the incomplete SO(2)-symmetric
metric g to a complete SO(2)-symmetric metric. Moreover, if g is close to the soliton metric g, then the
resulting complete metric is close to the grafted soliton metric g’.

In future proofs in this section, we will run harmonic map heat flows from the grafted soliton flow
(M’, g'(t)) to Ricci flows starting from some suitable SO(2)-symmetric metrics we obtained by the
SO(2)-invariant surgery.
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Lemma 6.6 (SO(2)-invariant extension) There are constants Co > 0 such that the following holds.
For any € > 0, let (M’, g’) be the e-grafted soliton from Lemma 6.5 with m = 1000 and A = A(e, m).
Then for any B > A, suppose g is an SO(2)-symmetric metric on an open subset U D I'> g with the
SO(2)-isometry {¥g }ge[0,2) and the Killing field X, such that

(6-20) 18— ¢ |lcrooy <€ and |X —dglcow) < Togs-

where 0y is the Killing field of an e-cylindrical plane (by Lemma 6.5, (M, g’) is covered by e-cylindrical
planes). Then there is an SO(2)-symmetric metric § on M’ with the SO(2)-isometry 1;96[0,2”) and the
corresponding Killing field X, such that

|§—g,|c98(M/) <Coe and |)’Z— 80|C98(M’) <Cpe.
Moreover, we have § = g and ¥y = Vg for 6 € [0,27) on I'> B+100-

Proof It is easy to find a sequence of points {x;}°, C M’ \ U such that the number of metric balls
Bg/(x;,1000) that intersect at any point is bounded by a universal constant, and {Bg’(x;, 1000)}?2
together with U form an open covering of M'. Let {h;}°2 ; be a partition of unity subordinate to {U;}?2
such that the function h¢ satisfies io(g(x)) = 1 for all x € I's 4190 C U. By the property of (M, g’),
there is an e-isometry (R% x S, ggan) — (M, g’, x;) for each i. The assertions now follow by applying
Lemma 6.4 to glue all the SO(2)-isometries from the e-cylindrical planes on Bg/(x;, 1000) and the

SO(2)-isometry on U. a
6.4 An approximating metric away from the edge
In this subsection, we construct an SO(2)-symmetric approximating metric away from the edge I" such

that the error decays at the rate O (e 2(1+€1)dg(-.T))

In the proof of Theorem 6.7, we will need to choose some constants that are sufficiently large or small
such that certain requirements are satisfied. In order to show that the dependence between these constants
is not circular, we introduce the parameter order

80’ CO? T? Q’ 61 A’ D?

such that each parameter is chosen depending only on the preceding parameters.

Theorem 6.7 (approximation with good exponential decay) Let (M, g, f, p) be a 3D steady gradient
soliton that is not a Bryant soliton satisfying (6-18). Then there exist constants €1, A1 > 0 such that
I'> 4, C M is covered by e-cylindrical planes of g, and an SO(2)-symmetric metric g on an open subset
containing I's 4, , and

IV (g —8)| < e 20+e0d(0) on Ty for m =0, ..., 100,
where the covariant derivatives and norms are taken with respect to g. Moreover, let X be the Killing

field of the SO(2)-isometry of g, and 0y be the SO(2)-Killing field of an e-cylindrical plane of g, then we

1
have | X —dg| < 1500
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Proof We choose the following constants which satisfy the above parameter order, and whose values
may be further adjusted later:

(1) Let 8¢ > 0 be from Theorem 5.3.
(2) Let Co > 0 be the maximum of 1 and the constants Cy > 0 from Lemma 6.1, 6.4 and 6.6.

(3) LetT > Ty, where Ty is from Theorem 5.3. Assume also that 2C§e400 < e%‘sOT and T2 > 160/6.

4) (@) Let0 < e <min{;gg8(T)/C2.€(T)/(e*°C2)}, where §(T),€(T) > 0 are constants deter-
mined by Theorem 5.3.

(b) For any complete metric § on R x S! which is covered by 2Cpe-cylindrical planes in the
C™-sense, the Ricci flow (M’, g()) starting from g stays smooth and [Rm|z¢) < 1/T for all
tel0,T].

(c) Let gi(t)fori =1,2andt € [0, T] be two smooth families of metrics on R? x S! that are
covered by 2Cge-cylindrical planes. Then the harmonic map heat flow

() (R?2x S, 21(1) = (R2x S, 82(r)),  with yo =id,

is smooth for ¢ € [0, T]. The existence of such € is guaranteed by [9, Lemma A.24], the
existence of harmonic map heat flows, and estimates of perturbations.

(5) Let A > 0 be sufficiently large that:

(@) (M’,g’,V,A)isan e/Cy-grafted soliton by Lemma 6.5. In particular, the € /Cy-grafted soliton
flow (M’, g’(1)) satisfies the Ricci flow equation on

UF;ACM/X[O,OO).

t>0

(b) By Theorem 3.41 and (6-18), we may assume that for any point x € I'sy C M and t > 0,
d
(6-21) 2— 1680 < - dg (¢ (x).T) = 2+ {560

(6) Let D = max{A,100InCo,Ine~1, 10D, 1007 /2 400} where D(T) > 0 is determined by
Theorem 5.3.

Step 1 In this step, we impose two inductive assumptions. In the first induction, we construct a sequence
of metrics g, such that g, has an exponential decay rate of o, and the sequence «, increases by a
positive amount one by one. So the last metric g will satisfy all assertions of the theorem. Suppose the
first inductive assumption holds for a fixed n < N. Then in the second induction we construct an infinite
sequence of metrics {g, x }7- ,» Where gn,0 = &x, and g, i has the better decay rate of o +1 on larger
and larger domains depending on k. The domains will eventually cover the part sufficiently far away
from I'. So letting i — oo, we can take a limit of g, x and obtain g, that satisfies the decay rate of
an+1 everywhere, and thus verifies the first inductive assumption for n + 1. We can repeat this process
until o, > 2, which completes the proof.
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Inductive Assumption One

(1) Foranyn e N, if o, := (nInCp)/D < 2.02, there are a sequence of increasing constants D, > 0
and an SO(2)-symmetric metric g, defined on an open subset in M \ I" containing I'> p,, such that

IV™(&n —9)I Eé-e_“”(dg("r)_D”) on I'sp, for m=0,...,100.

(2) Moreover, let X, be the Killing field of the SO(2)-isometry of g,. Then on any e-cylindrical plane
of g, the SO(2)-Killing field dg satisfies

| Xy — 09| < ﬁ on I'sp,.

Suppose Inductive Assumption One is true for a moment. Since (In Cp)/D < 0.01, let N be an integer
such that 2 < (N InCo)/D < 2.02. Then the metric gn on I's p, satisfies all assertions of the theorem,
with €1 = %((N InCy)/D — 2) and A1 = Dy . So the theorem follows immediately after establishing
Inductive Assumption One.

First, for n = 0, since (M, g’) is covered everywhere by €/Co-cylindrical planes and g’ = g on I's 4, by
applying Lemma 6.4 we obtain an SO(2)-symmetric metric on M’ which is covered by Coe-cylindrical
planes, and its restriction on I's p,, satisfies the inductive assumptions for some Do > A + D. Now
suppose the inductive assumption holds for some # > 0. In the rest of the proof we show that it also holds

for n + 1. Now we impose the second inductive assumption.
Inductive Assumption Two

(1) Letn > 0 be fixed. Then for any k € N there exists an SO(2)-symmetric metric g, x, defined on
an open subset in M \ I" containing I'> p, which, on I's p,, +;p, satisfies

V" (Gui—8)| <e-Cyl-em@@cCI=Dn) for j —0,... k and m=0,...,100.

(2) Moreover, let X, x be the Killing field of the SO(2)-isometry of g, x. Then the SO(2)-Killing
field dg of any e-cylindrical plane of g satisfies

1
|Xn,k —89| < 1000 on Fan.

Step 2 For k = 0, Inductive Assumption Two clearly holds by choosing g, 0 = g». Now assume it is
true for some integer kK > 0. In this step, we will extend the SO(2)-symmetric metric g, i to a complete
SO(2)-symmetric metric g, x. Then we will study the harmonic map heat flow between the grafted
soliton flow g’(¢) and the Ricci flow starting from g, x and obtain some distance distortion estimates
under these flows.

First, part (1) of Inductive Assumption Two implies |V (g, x —g)| <€ onIsp, form =0,...,100. So
by applying Lemma 6.6 (SO(2)-invariant extension), we obtain a complete SO(2)-symmetric metric g, x
on M’ such that &, x = &,k on I's p, +-100, and

(6-22) V™ 8k —g')| < Coe and |X,;—dg| <Coe on M’ for m=0,...,98,
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where the norms and derivatives are taken with respect to g’, and X, n,k and g are the SO(2)-killing fields
of gy . and any e-cylindrical plane of g’.

Next, we claim the complete SO(2)-symmetric metric g, x satisfies, on I'sp, 1D,
(6-23) |V (Zni—8)| < Co-e*®.c.Cyte7@n@s-I)=Dn)  for j =—1,0,...,k and m=0,...,98.
We prove the claim in the following three cases:

(a) Foralli>1,since g, k = &n.k o0 I'sp,+100 D I's D, + b, the claim holds by part (1) of Inductive
Assumption Two for g, k.

(b) For i = —1, the claim follows from (6-22) by noting that g =gonI's4 D I'sp,—p.

(c) Fori =0, first, we have g, x = &y x on I'> p, 1100, Where the claim holds by part (1) of Inductive
Assumption Two; then, on I'[p, p,+100]> the claim follows from (6-22) by noting that g’ = g
on I's 4, and using o, <4 and dg(-,I") — D, < 100.

Let (M', 2, x(¢)) with ¢ € [0, T'] be the Ricci flow that starts from the complete SO(2)-symmetric g, .
Then [Rml|g, , ;) <1/T forall € [0, T]. Let {y, x.}: (M’ &' (t)) - (M', g, x(t)) for t € [0, T] be a

smooth harmonic map heat flow with y, x o =id, and let h, (1) := ()(;}c )& (t) = Zn k(). These are

guaranteed by the choice of e.

For fixed n and k, we will omit the subscripts 7 and k in ), k ¢, €n k (t) and h, g (¢) for a moment. For
any fixedi =0,1,...,k+ 1, let

X € FzTDnJriD and x' = y7(x).
We first estimate distance distortions and drifts of points under the harmonic map heat flow.
Claim 6.8 Forany L > 10T /2, we have Bz ()(x', L) C y:(Bg/(1)(x, 10 L)) forall t € [0, T].

- 1
Proof First, we observe that by |h| < 1555 We have

(6-24) Bz t)(xt(x),5L) C x:(Bgr(s)(x,10 L)).
Now let y € Bo(x’, L). By the triangle inequality we have
dg@y(, e (%)) < dgy (X', xe(x)) + dg @y (X', ).

On the one hand, by the local drift estimate of harmonic map heat flows [9, Lemma A.18], and the
curvature bound [Rm|z;) < 1/T, we have for all ¢ € [0, T'] that

(6-25) dzo)(x'. x1(x)) = dg o) (x+ (x). x7(x)) < 10(T —1)/> <1072 < L.

On the other hand, by the distance distortion estimate on the Ricci flow (M’, gx(¢)) under the curvature
bound |Rm|z) < 1/T, we have

dzy(x',y) < 2eT P RMEO 4z ) (x', y) < 4dg (o) (x'. y) < 4L.

Combining the last three inequalities we obtain dg)(y. x¢(x)) < 5L, which together with (6-24) implies
the claim. O
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Since x € FgDnJriD’ by the definition of the flow g’(¢) we see that x € thDnJriD forallt €[0,T]. In
particular, we have x € FgDn+iD =TIsp,+ip. So taking L = %D in Claim 6.8 we see that

(6-26) Bz(0)(x', D) C Bz(0)(x" 7 P) C Bg(x, D) CT=p, +(i-1)D>
which in particular implies x" € I's p, 4 (—1)D-

Step 3 In this step, we will apply Theorem 5.3 (symmetry improvement) at (x’, 0), with constants chosen
as follows.

(a) We choose o in Theorem 5.3 to be «,.
(b) We choose € in Theorem 5.3 to be

%(x') = Co- e . c. Co—(i—l) .o~ n(dg(x'.,1)=Dyp)

Note dg (x",T') is well-defined, since x" € I'> p, +(i—1)p C I'> 4.
(c) We choose Dy in Theorem 5.3 to be
Dy = {5(dg(ry(x,T) = Dp + D) > 14D > D.

First, we verify assumption (5-11). Let y € I'> p 4 (i—1)p. then by comparing (6-23) with #(x’) (note
that since we choose i =0, ...,k + 1, it follows thati — 1 = —1, ..., k, which meets the range of (6-23)),
and using the triangle inequality dg (y, ') > dg(x',T) —dg(y, x), we obtain

(6-27) IV™h|(y,0) < %(x") - €% 0X) for m=0,...,98,
which also holds for all y € Bz(g)(x’, D) by (6-26). This verifies the assumption (5-11).

Next, we verify the assumption of Theorem 5.3 that / restricted on Bgz(gy(x’, Dy) x [0, T] is a Ricci
De Turck flow perturbation. This follows from Claim 6.8: by taking L = Dy we have, for all ¢ € [0, T],

Bz©0)(x", Dy) C x¢(Bgr(1y(x,dg(r)(x, T) = Dy + D))
C xt(Bgroy(x. dgny(x. T) = Do + D)) C xe(T ) C 1e(TL ).
Moreover, by the local derivative estimates for Ricci De Turck flow perturbations [9, Lemma A.14], we
may taking € small so that |V¢h| < Tloo for{ =0,1.
Lastly, we will verify assumption (5-10) of Theorem 5.3. Recall that assumption (5-10) consists of two
estimates of |i| on the parabolic boundary of

Bz0)(x', Dy) x [0, T] = (3Bg(0)(x'. Dy) x [0, T]) U (Bz(0)(x", D#) x {0}).

We first verify assumption (5-10) on 0Bz (x’, D4) x [0, T]. Note by (6-25) that dg(x,x") < 1071/2,
and thus by (6-21) and the triangle inequality dg(x’,T') < dg(x,T) + dg(x, x’) we have

dg(x',T) <dg(ry(x,T) +2.1T + 10TY2 = 10Dy +2.1T 4+ 10T /2 4 D,,.
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Then using a, < 4 we obtain

1/2
¢~ n(dg(x'.T)=Dy) 5 ,—4(10D4+2.1T+10T /2y > ¢~40D4—10T - ,—40D4=D - ,—50D;

Using D > 1001n Cy and Dy > (i + 1) D, we also have

Co-e4°0-C0_(i_1) > o~ (+DD - ,—10D4

Substituting these into #(x’), we obtain

(6-28) 1] < 1o55 < €'°°P* - 9(x").

Next, we verify assumption (5-10) on Bg(g)(x’, D4) x {0}. Let y € I'[p, +(j—1)D,D,+ D) for some
0 < j <i—1. Then we have dg(x’, y) > (i — j) D, which implies

Cl7I < o(nCo)/Dyds(x'y) < (0.01di(xy),

which combined with (6-23), #(x’) and the triangle inequality implies

(6-29) |th|(y, O) < %(x/) . Cé_j Le%n (dg(x',T)—dg(y.I')) < %(X/) . e4dg(x’,y)

forally eI'sp,—pandallm=0,...,98. If y € I's p, +(i—1)p> then (6-29) also holds by (6-27). Since
Bg(0)(x'. Dg) C I'>p,—p, this together with (6-28) verifies assumption (5-10).

Step 4 1In this step we will apply Theorem 5.3, get an exponential decay on the oscillatory part of &
at time 7', use this decay to extend Inductive Assumption Two from k to k + 1, and deduce that Inductive
Assumption One holds for n + 1. To be concrete, by applying Theorem 5.3 (symmetric improvement)
at (x’,0), we obtain

|vmh_|(x/’ T) < %(x/) . eZOtnT '6’_50T < CO '6400 e C()—(i—l) . e—an(dg(x/’l")—D,,) . e2otnT '6_80T
form =0,...,100. We will estimate below that the last term e %7 is sufficiently small that it outweighs
all other factors bigger than 1. Specifically, we have
|th_|(x/, T) < CO . e400 e C()_(i_l) . e—an(dg(x,l")—Dn) . eZOlnT A e_%SOT
< CO . e400 - C()_(i_l) Lo dgry(x,)=Dy) . e—%(SoT
< %E . C()_l . e_an (dg(T)(xsr)_Dn),

where in the first inequality we used the triangle inequality dg (x',T') —dg(x,T') > —dg(x, x”) together
with dg (x', x) < 10712 and T1/2 > 160/8; in the second inequality we used the distance distortion esti-
LsoT
2900

mate (6-21) and a, < 4; in the last inequality we used ZC(f 0400 < . The above inequality also holds

when the norms and derivatives are with respect to ( X;l)* g'(T) after removing the factor % So we have
(6-30) IV g5 h—|(x,T) < €-Cq' - e e ®D=Dn) for =0, ..., 100,
where the norms and derivatives are with respect to g(7').
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Now we restore the subscripts 7, k. Since

' (T) = tn 57 Pn i (T) +8n i (T)) and  hy 4 (T) = hy g+ (T) + hp g —(T),
by letting
:g\n,k+1 = X:,k,T(hn,k,—i-(T) + gn,k(T))’

we see that g, x4 is an SO(2)-symmetric metric on M’ and (6-30) implies
V(8" (T) = Gns1)| < € Cgt e @000 on TL) )

form =0, ..., 100, and the norms and derivatives are with respect to g(7"). Note that this is true for all
i=0,1,....k+1. Since g'(T) =¢* ;g and ¢_7: (FZA, g'(T)) = (I's 4, g) is an isometry, replacing
Zn,k+1 bY ¢7(Zn k+1) we then have

—ay(dg(-,I')—Dy)

V™ (g — 8nit1)| <€-Cy'l-e on I'>p,+ip

form =0,...,98. This verifies part (1) of Inductive Assumption Two for k + 1. Moreover, it is easy
to see that part (2) of Inductive Assumption Two for k + 1 also holds, as a consequence of the smallness
of € and |A|.

Therefore, Inductive Assumption Two holds for all k£ > 0. Now let p € I's p,, be some fixed point. Then
we may assume, after passing to a subsequence and letting k — oo, that the pointed SO(2)-symmetric
manifolds (M’, g, x, p) converge in the C”8-norm to an SO(2)-symmetric manifold (M’, gn+1, p)
which satisfies

(6-31) V™ (g —8ns1)| Se€-Cql e n@sC-D=Dw) on 1y gy

foralli e N and m =0,...,98. Moreover, part (2) of Inductive Assumption One holds for n + 1 with
2n+1, as a consequence of part (2) Inductive Assumption Two and the smooth convergence. It remains
to verify part (1) of Inductive Assumption One. For any i > 0 and y € I'\p, +iD, D, +(i+1)D)> W€ have
dg(y,T') < Dy + (i + 1) D, which together with (6-31) implies

V7 (g = GnsDI() < €71 @ D=Drs),

where
(D+Dy)InCo+a,DynD (n+1)InCy
D = > D d =,
n+1 lnCO—"—(an n an an+1 D
Therefore, we have
V(g = &n+1)| < €@t @eD=Dus) on Ty py

form =0, ..., 100, which verifies part (1) of Inductive Assumption One for n + 1, and thus completes
the proof. O
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6.5 Extend the approximating metric near the edges

The approximating SO(2)-symmetric metric g in Theorem 6.7 is defined on an open subset away from T".
Next, we want to extend it to an SO(2)-symmetric metric which is also defined on a neighborhood of
I'. Seeing that the soliton dimension reduces to R x cigar along I', we can find a sequence of SO(2)-
symmetric metrics close to g in balls centered at I" whose radius goes to infinity. Then by gluing these
metrics with g, we obtain an SO(2)-symmetric metric g defined everywhere outside of a compact subset
of M. We will show that g — g has the same exponential decay rate as g — g, and it decays to zero at
infinity in addition. In Section 6.1 we studied the gluing of SO(2)-symmetric metrics that are close to
R2 x S!. Here we need to glue SO(2)-symmetric metrics that are close to R x cigar, which needs the
following gluing lemma. The lemma shows that if a vector field on R x cigar is almost a Killing field,

and it is close to dy at a larger distance to R, then it is also close to dy at a smaller distance.

Lemma 6.9 For any Cy, €1 > 0, there exists C(C1, €1) > 0 such that the following holds for any € > 0.
Let (r,s,0): (R xcigar, gs) = R4 xR x [0, 27) be coordinates such that g5, = dr? + ds?* + ¢?(r) d?0,
and let r be the distance to the line R x {xq,}. Suppose Y (r, s, 0) is a smooth vector field, defined for all
(r,s,0) € [A, B] x [—S0,50] X [0,27) for some 1 < A < B and s € [0, 00|, such that

(6-32) IVE(£Lygs)| < Cre 20+ for k =0,...,98.
Suppose also that
(6-33) IVE(Y —39)|(-,B.-) <€ fork=0,...,98.
Then we have
IVE(Y —8g)|(-, A,-) < Ce 20+DA L C(B—A)e 4+ Ce for k=0,...,9.
Proof Write Y = Y595 + Y9, + Y %3, under the coordinates (s, r, #). Then, by the formula of Lie
derivatives for a symmetric 2-tensor, we have
(6-34) Lygs(0r.09) = 0¥ +0,Y%0%  Lygs(dr.0)=0,Y +03,Y", Lygs(d,.0,)=20,Y".
Moreover, by assumption (6-33) we have
(VEYS|+ |VEY 7|+ VR = D(-. B.) < Ce720HeDA
By the third equation in (6-34) and (6-32), integrating from r = A to r = B and using (6-33) we see that
IVELY T oot (- ) < Ce 20D ¢y

for any r € [A, B]. Substituting this into the first two equations in (6-34), integrating from r = A to
r = B and using (6-33), we obtain

(VE2 P =D+ VYD, A,) < Ce20H04 4 C(B — A)e + Ce.
which proves the lemma. O
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We now prove the main result of this section.

Theorem 6.10 Let (M, g, f, p) be a 3D steady gradient soliton that is not a Bryant soliton. Assume
that limg_, 00 R(I'1(5)) = limg_00 R(I'2(s)) = 4. Then there exist constants C, €1 > 0 and an SO(2)-
symmetric metric g defined outside of a compact subset of M such that for any k =0, ..., 98,

(6-35) IVE(g—8)| =0 asx—>oo and |VF(g—g)| < Cem20rends(.D)

where the covariant derivatives and norms are taken with respect to g.

Proof We will use €(D) to denote a general function that goes to zero as D — oo. Let C > 0 denote
all constants that depend only on the soliton. On the one hand, since for each i = 1, 2 the manifold
dimension reduces along I'; to R x cigar, we can find D1 (s) > 0 for all large s with D (s) — oo slowly
enough in s so that (M, g, T; (s)) is e"2(1+€0D1()_¢lose to R x cigar in Bg (I (s), D1(s)), where 1 > 0
is from Theorem 6.7. Then by a standard gluing argument, we can find an SO(2)-symmetric metric g; on
an open subset U; containing the balls Bg (I'; (s), D1(s)) for all large s, such that:

(1) Foreachi = 1,2 we have
(6-36) V(@ — )| < min{e(dg (- p)), Ce2FD%CDyon v,
where €(dg (-, p)) denotes a general function that tends to 0 as dg (-, p) — oo.
2 UnU,=2.
(3) Let x; 6 with 6 € [0, 27) be the SO(2)-isometries for (U;, g;) fori =1, 2. We can also assume that
there is an embedded surface N; in U; N I'> 1000 Which is diffeomorphic to R? and intersects each

S orbit of Xi,o exactly once, and its tangent space Tx N; at x € N; is ﬁ-close to the orthogonal
space of the S !-orbit passing through x.

(4) For each large s, there is a smooth map v; s from Bg (I'; (), D(s)) into (R x cigar, g5 ) which is a
diffeomorphism onto the image, such that

(6-37) V(@i =y} gm)| < Cem20Hends (D),
Let X; be the Killing field of the SO(2)-isometry of g;. Then
(6-38) IVE(X; = (Wi,9)5 " (39))] < Ce720 e,

On the other hand, by Theorem 6.7, we have an SO(2)-symmetric metric g defined on an open subset
U D TI's 4 for some A > 0 such that

(6-39) VK (g —8)| < Ce 20Fen)ds (D) for k= 0,...,100.

Let yg with 0 € [0, 27) be the SO(2)-isometries for (U, g), and Y be the Killing field of yg. Next, we
will compare the two vector fields X; and Y on I's 4 N U;. First, by (6-36), (6-37), (6-39) and triangle
inequalities we have

VK@ -y} gw)| < Cem20rende (D) for k=0, ..., 100.
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Then by £y g = 0, this implies
(6-40) IVK( Ly v} gz)] < Cem20TendsCI) for k= 0,..., 98,
Moreover, by Theorem 4.11 we can see that (M, g) is a C/d ;(- , T')-cylindrical plane in the C¥-sense

and Cy > 0 at points where the metrics g and v/, g5 are both defined. So we can apply Lemma 6.2 and
deduce

C
k — ; -1 _ =
(6-41) IVE(Y — (Wi5)7 1 (39))] < 7207 for k =0,...,98.

We can find D> : [sg, 00) — R for a sufficiently large so, such that D2 (s) < D1(s), Bg(I'i (s), D2(s)) C
U; and D, (s) — oo sufficiently slowly as s — oo so that

C
(D1(s) — Da(s)) < ——— < e 2(+€)Da(s)

6-42 —
(6-42) D2(s) D1 (s)

Therefore, for each i = 1, 2, by (6-40), (6-41) and (6-42) we can apply Lemma 6.9 with ¢ = C/ Df(s)
and B = Di(s) > A = D5(s), and deduce

|Vk(Y _ (wi,s);l(ae)n < C€—2(1+61)D2(s) < Ce—2(1+€1)dg(-,r)

on Bg (I (s), D2(s)) N U for k = 0,...,98. Combining this with inequality (6-38) we see that for
Vi i= Ussso Bg(Li(s), D2(s)), we have

(6-43) IVE(Y — X;)| < Ce2(H+e)de (1)
onUNV; fork =0,...,98, and thus
V¥ (o = x1,0)] = Cem20TeN (D),

Therefore, by the same argument as in Lemma 6.3, we can glue the metrics g on U, g; on V; fori = 1,2,
and also glue the SO(2)-isometries yg and y; g for i = 1,2 to obtain an SO(2)-symmetric metric g
defined outside of a compact subset of M, which satisfies the following properties:

(1) Foreachi = 1,2 we have that g = g; on W;, where Bg (I'; (s), D3(s)) C W; C V; is a x; g-invariant
open subset, D3(s) < D2 (s), and D3(s) — 0o as s — o0.
(2) Wehavethatg =gon U \ (V7 UV3).
(3) For some Dg > 0, we have
(6-44) IVKE(g—g)| < Ce™20+€0)de (1) on o py for k=0, ..., 98,
1§ — gl =€ldg (-, p)) on Wy UW,.

The first inequality implies that g satisfies the assertion of exponential decay away from I'. Moreover,
since dg(x, p) — oo as dg(x,I') — oo for any x € M \ (W1 U W), the first inequality implies that
|g —g| <e€(dg(-, p)) also holds on M \ (W; U W>). So g satisfies the assertion of decaying to zero at
infinity. O
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7 The evolution of the Lie derivative

In this section, (M, g) is a 3D steady gradient soliton that is not a Bryant soliton, and (M, g(¢)) is the
Ricci flow of the soliton. Let /(z) be a linearized Ricci De Turck flow with background metric g(¢).
The main result is Proposition 7.3, which shows that 4(¢) tends to zero as ¢ goes to infinity, if the initial
value /1(0) satisfies the condition /(x,0)/R(x) — 0 as x — oo. In particular, let g be the approximating
SO(2)-symmetric metric obtained from Theorem 6.10, and let dg with 6 € [0, 277) be the Killing field of
the SO(2)-symmetry. We show that the Lie derivative £;, g satisfies this initial condition, hence decays
to zero as t — oo under the linearized Ricci De Turck equation.

7.1 The vanishing of a heat kernel at infinity

In this subsection we prove a vanishing theorem of the heat kernel to a certain heat-type equation at time
infinity. We will see that for a linearized Ricci De Turck flow /A (t), the norm |2|(-, ¢) is controlled by the
convoluted integral of this heat kernel and |A|( -, 0).

Let G be the heat kernel of the heat-type equation

2|Ric|?

(7-1) 3 H=AH + H.

That is, for any t > s and x, y € M,
2|Ric|?(x, 1)

0 G(x.1:y.8) = Ax G(x.1:y.5) + R(x,1)

G(x,t;y,s) and lim G(-,;y,s) =§,.
N\

Lemma 7.1 (vanishing of heat kernel at time infinity) Let p be the point where R attains its maximum.
For any fixed D > 0, let

uD(x,z):/ G(x,t;v,0)dpy.
BO(paD)

Then supg, (, pyun(-,t) > 0ast — oo.

Proof Note that up satisfies the equation (7-1). First, we show that there exists C; > 0 such that
up(x,t) < Cp forall (x,t) € M x [0, 00). Since the scalar curvature satisfies the equation

2|Ric|?
8,R = AR 4 2RIl

R’

by using the reproduction formula we have

R(x,t) = /M G(x,t;y,00R(y,0)doy.

By compactness we have for some ¢ > 0 that R(y,0) > ¢ for all y € Bo(p, D), so it follows that
up(x,t) <c 'R(x,t) <c 'R(p). So we may take C; = ¢~ R(p).
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Now suppose the lemma does not hold. Then there exist € > 0 and a sequence of t; — oo and x; € By, (p, D)
such that up (x;, ;) > € > 0. Without loss of generality we may assume that #; -1 > ¢; + 1. Since u < Cj,
by a standard parabolic estimate we see that |0;up|(x,?)+ |Vup|(x,t) < C; for some C, > 0. Therefore,
there exists §; € (0, 1) such that

(7-2) / / G(x,t;9,0)doy dtxz/ up(x,t),dix > 6;
B:(p,D) JBo(p,D) B:(p,D)

forall t € [t;, t; 4+ 61].
Recall that the (symmetric) curvature operator Rm: A2TM — A2TM is defined so that
(Rm(v; Avj), vp Avg) = R(vi, vj, v, vg) forany vi,vj, vk, v € Tx M,
where here R(-,-,-,-) is the curvature tensor of type (4, 0). We use the convention
R(vi,vj,vi,v;) = —|lv; A vj||2 - K(vi Avj).

Since in dimension 3, elements of A27'M are all simple, we can choose an orthonormal basis {e}, e, 3}

for T M, such that Rm is diagonalized by ej Aes, €1 Aes, ex Aes. Thatis, there are constants A1, A2, A3 €R

such that Rm(e; Aep) = —Asze; Aen, Rm(eg Aesz) =—As e Aez and Rm(ex Ae3) = —Ap ez Aes. Since

Rm > 0 (equivalent to positive sectional curvature in 3D), we have A1, A2, A3 > 0. So it is easy to see

that 2|Ric|? = 2(A2 + A3)® +2(A1 + A3)%2 +2(A1 + A2)? and R? = 4(A1 + A5 + A3)2, which implies
2|Ric|*> — R%? <0.

So by compactness there is 6, > 0 such that

2|Ric|? — R?
(7-3) sup ———— < —85.
B/(p.D) R

Let Fp(t) = fBo(p,D) [y G(x,t:y,0)d;sx doy. Then since
(7-4) 8,/ G(x,t;y,0)dsx
M

_ / 8,G(x.1:y.0) — R(x.1)G(x.1: .0) dyx
M

2|Ric|?(x, 1)
R(x,1)

_ /M W(ZREP(}C, 1) = R2(x.1)) dyx.

where we used that the heat kernel G satisfies a Gaussian upper bound so that |, m DxG(x,t:y,0)dx

= / Ax:G(x,t;,0) + G(x,t;9,00— R(x,t)G(x,t;y,0)dsx
M

vanishes by the divergence theorem. Hence we obtain

G 09,0 .
(1-5) b Fp(t) = / / G130 o iRic2 — R2)(x. 1) dyx doy <O,
Bo(p.D) JM  R(x.,1)
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and by (7-2) and (7-3) we see that d; Fp (t) < —818, for all ¢ € [t;,¢; + §1]. Note that G is everywhere
positive so that Fp(z) >0 and t;4+1 >¢t; + 1 > t; + &1, implying

ti+61 0
~Fp(0) < lim Fp(1)~ Fp(0) < Z/ §1-8ydt ==Y 878, =—00

i=1 i=1

which is a contradiction. This proves the lemma. O

7.2 The vanishing of the Lie derivative at infinity

We prove the main result in this subsection by applying the heat kernel estimates. First, we prove a lemma
using the Anderson—Chow pinching estimate.

Lemma 7.2 (cf[1]) Let (M, g(t)) witht € [0, T] be a 3D complete Ricci flow with bounded curvature
and positive sectional curvature. Consider a solution h to the linearized Ricci De Turck flow on (M, g(t)),
and a positive solution H to the equation

2|Ricl|?
[Ric] (x,t)H
R(x,t)

R WNALE Ry
8(H2 <A 2 +2VH -V e

Proof By a direct computation using d;1 = A ¢(s)h and (7-6) we have (see [1])

2 h|2 A2 Ric|? IHV‘h'k—(V‘H)h'k|2
a’(|1-1_|2):A(|H|2)+2VH V(' | )+H2( ijkthirhjic— Ric |h|) — H4l —

(7-6) 9 H=AH+

Then

Then the lemma follows immediately form the pinching estimate from [1] that for any nonzero symmetric
2-tensor A,
Rm(h.h) _ [Ric|?
h? = R

We now prove the main result of this section. Noting that |A|( -, ¢) is controlled by the convoluted integral
of the heat kernel of (7-1), we split the integral into two parts, where in the compact region, the integral
tends to zero as a consequence of our vanishing theorem. In the noncompact subset, we use the assumption
h(x,0)/R(x) — 0 as x — oo and the reproduction formula of the scalar curvature to deduce that the
integral is bounded above by arbitrarily small multiples of the scalar curvature.

Proposition 7.3 Let (M, g(t)) be the Ricci flow of a 3D steady gradient Ricci soliton that is not a Bryant
soliton. Consider a solution h(t), with t € [0, 00), to the linearized Ricci De Turck flow on M, ie

d:h(t) = AL,g(l)h(l‘).
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Suppose h satisfies the initial condition
|hl(x,0)
R(x)

—0 as x — oo.

Then for each D > 0,

sup  |h|(x,t) >0 ast— oo.
x€B/(p,D)

Proof Let H(x,t) = [, G(x,t;y,0)|h|(y.0)doy. Then H solves the equation

2|Ric|?(x, 1)

0:H=AH
! + R(x,t)

Therefore, by Lemma 7.2 and applying the weak maximum principle to |i|?/ H?, we see that |h| < H,
that is,

(7-7) meNsA/xLuyﬂwm%mdw.

For any € > 0, by the assumption on |k|( -, 0), we can find some D > 0 such that |4 (y,0)| < eR(y,0) for
all y e M\ Bo(p, D). We may assume D > 1/¢. So by (7-7) and using Lemma 7.1 (vanishing of heat
kernel) we have for all sufficiently large ¢ and x € B;(p, D) that

W@JNS/ G@JWﬁWM%m%y+/ G(x.1:y.0)[1|(y.0) doy
BO(p’D) M\BO(]?,D)

<e€ —i—e/ G(x,t;y,0)R(y,0)doy =€+ €R(x,t) <e(l+ R(p)).
M

This implies supg, (, py |h|(-,7) < €(1 + R(p)) for all large 7, and the assertion follows by letting
e —0. o

As a direct application, we prove the following:

Corollary 7.4 Let g be the SO(2)-symmetric metric from Theorem 6.10, and X be a vector field on M
which is a smooth extension of the Killing field of the SO(2)-isometry of g, and X has a bounded
C?-norm. Let h(t) be the solution to the initial value problem of the linearized Ricci De Turck flow
dch(t) = Ap g@ryh(?),
h(0) = £xg.
Then for each D > 0,

sup  |h|(x,1) >0 ast— oo.
xeB;(p,D)

Proof By Proposition 7.3 it suffices to show that |z|(x,0)/R(x) — 0 as x — oco. On the one hand, by
Theorem 6.10, there exist €1, C; > 0 such that
|h(0)] < Cy e 20FeDde (D) o M,

(7-8)
|h(x,0)] — 0 as x — oo.
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On the other hand, by Theorem 4.8 (scalar curvature exponential lower bound) we can find a constant
C» > 0 depending only on €7 such that

(7-9) R > Cyle 2(+3e0ds (1),

For any € > 0, by the second condition in (7-8) we can find D(e) > 0 such that |#|(x,0) < € for all
X € M\ Bg(p, D(¢)). First, if ' () \ Bg(p, D(€)), where

_ In(C/v/e)

L(e) = 1)

we have
7](x,0) <€ = e C-e2UFTDLE < /o R(x).

Second, if x € I's [ (¢), then by the first condition in (7-8) and (7-9) we obtain
|h|(x, 0) < C; o€l dg(x,T) ,6—2(1+%61)dg(x,F) < C1Cy-e € L(e) R(x).

Note L(¢) — oo as € — 0, it follows immediately that |#|(x,0)/R(x) — 0 as x — oc. |

8 Construction of a Killing field

Let (M, g) be a 3D steady gradient soliton that is not a Bryant soliton, and let (M, g(¢)) with ¢ € (—o0, c0)
be the Ricci flow of the soliton. In this section, we study the evolution of a vector field X(¢) under the

equation
(8-1) 0: X(t) = Ag(t)X(l)—i-Rng(t)(X)‘

In particular, we will choose X(0) to be the Killing field of the SO(2)-isometry of the approximating
metric obtained from Theorem 6.10, and show that X(¢;) converges to a nonzero Killing field of the
soliton (M, g) for a sequence t; — oo.

Throughout this section, we assume
Jim R(I(s)) = lim R(I2(s)) = 4,
and g is the SO(2)-symmetric metric defined outside of a compact subset of M from Theorem 6.10.

First we fix some notation. Let A > 0 be sufficiently large that I'> 4 is covered by e-cylindrical planes
for some sufficiently small €. In particular, the SO(2)-isometry g of g acts freely on an open subset
U D TI's 4, and the length of each S!-orbit is 100e-close to 2. So we can find a 2D manifold (N, gxn)

and a Riemannian submersion 7: (U, g) — (N, gn) which maps a S!-orbit to a point in N.

Let p: (=1,1)> — B C N be a local coordinate at p € N such that p(0,0) = p, and s: B — U
be a section of the Riemannian submersion 7. Then the map ®: (—1, 1)2 x [0,27) — U defined by
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D(x,y,0) =vg(s(p(x,y))) gives a local coordinate at s(p) € U under which g can be written as
7= Z gap dadB + G(dO + Ax dx + Ay dy)?,
o,B=x,y
where G, Ax, Ay and gap are functions that are independent of 8, and G is the length of S L_orbit. Note

that a change of section changes the connection form A = Ay dx + A, dy by an exact form, and leaves
invariant the curvature form

A= (0xAy —0yAx)dx Ndy = Fxydx Ndy.

Lemma 8.1 For any k € N, there are Cy > 0 such that for all ¢ € U we have

(8-2) IVo(dA)|(m(9)) = —dg(q, 0 for £ =0,1,
- \VAS 1/2 —Ck =
(8-3) IV*G ' =|((g)) < dk( I for £ =1,2,

where V denotes the covariant derivative on the 2D manifold (N, gn).

Proof We adopt the notation that for a tensor t = t; Helr gy @ .. @ dx/s @ 3xl1 ®:---®dy; on B,

J1eJs
we have
i1...0p __ i1...0r i1...0r a2 11 1r
T fode = 0 (T 500 T e = e (T 50D
ol _ il...ir jl J:
Vo, T=1,,"] dx ®dx Qdx’* @0y, ® -+ ®x,

V2 o =gl Jskédx Rdx'®dx/' @ @dx" ® 0y, ®- @y, .

Oxp.xg Ji..
For a point p in the base manifold parametrized by x and y, it is convenient to choose the section so that
A(p) = 0. Then the nonzero components of the curvature tensor Ry sk of g are given in terms of the
components of the curvature tensor Rggys of (B, gn), the components Fyy, and the function G, by

Rouop = —3Giap + 1GT1G G o + g7 G? Fyy Fps,
(8-4) Rgxyx = —3GFxy;x — 3G.xFxy,

Riyxy = Rxyxy — %Gny.
(See [62, Section 4.2].) Let Ryyx 1 be the components of the curvature tensor of the soliton metric g,
then by Theorem 4.11 we have |Ryjgr| < Ck/dg(- ,I') for any k € N and Cy > 0. So by (6-35) we

obtain |R7jxr| < Cx/ dg(- , I') after replacing Cj by a possibly larger number. In particular, by the
second equation in (8-4) we obtain

(8-5) V(G2 dA)|(n(q)) < kL forall g € U.
dg(q,T)
By Kato’s inequality this implies
(8-6) 916%2 d|(e(9)) = [9(G3/2 dA)|(n(q)) = ——.
dk(q,T)
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By Theorem 3.41 there exists C > 0 such that for # > 0,

dg(¢:(q),T) > dg(q, T)+C 1t

for any point ¢ € I's 4, where A > 0 is sufficiently large. Note that since (M, g, ¢;(g)) converges to
R2 x S1 as 1 — oo, we have lim; o0 |G3/2 dA|(7(¢:(¢))) = 0. Since by (8-6) we have

4 n3/ _ Sa3/ %%
(8-7) T |G2 dA|(z(¢:(9)))| = |(VIG? dA|, m« (Vf ($:(q))))] < E@G (@)D

integrating which from 0 to co, we see that there is some C;_1 > 0 such that

Cik—1
1G32 dA|(n(q)) < - —.
dk=1(q.T)

This together with (8-5) implies (8-2). This also implies |%g°‘5 G2szy|(n(q)) < Ck/dg(q, I') in
the first equation in (8-4), and hence implies |§2G1/ 2|(n(q)) < Cy/ dé]f (g, T). Similarly, we obtain
|§G1/2|(n(q)) < Ck/délf(q, I') by integrating along ¢;(g) from 0 to cc. |

Let dg be the Killing field of the SO(2)-isometry of g outside of a compact subset of M. We can extend
it to a smooth vector field Y on M such that |Y| < 10. Let Y (¢) = ¢« Y for all ¢ > 0, and let

(1) = =0:(Y (1)) + Ag ()Y () + Ricg (1) (Y (2)).
We will often abbreviate it as Q(¢) = —d;Y + AY + Ric(Y') when there is no confusion. Next, we show

that Q(¢) has a polynomial decay away from I".

Lemma 8.2 For any k € N, there are Cy, > 0 such that

C
|Q@Jn557i—3 forall 1 = 0.

r(x, T
Proof Since g(t) = ¢*,g, ¢:: (M, g) — (M, g(t)) is an isometry, it follows that
Y (1) = 0:(PenY) = Pux(LvrY), AgnY(t) = s (AY), Rice()(Y(1)) = drx(Ric(Y)).
So the lemma reduces to showing

) Cr
—%vrY + AY +Ric(Y)| < ———.
s 1= g

Let h = Ly g. Then by a direct computation we have the identity (see eg [12])
(8-8) div(h) — 3 tr Vi = AY +Ric(Y).
Since by (6-35) we have
IV"h| = V™ (Lyg)| = [V"(Ly (g — D) < C 20 H04D for =0, 1,

it then follows that
|div(h)| + |tr VR| < C Lo 2(1+e)dg (-.T)
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Therefore, by (8-8) and Theorem 4.11 (scalar curvature polynomial upper bounds),

C
(8-9) |AY +Ric(Y)| < C e 20FeNds (D) < K __
dk(-.T)

So the lemma reduces to estimating [£Ly Y |.
To do this, we assume Vf = F?3y + F*d, for o = x, y, where F? = 99 f -G~!. Then we can compute
(8-10) LyvrY =£Evf89 =—(39F9-89+39Fa-8a).

We will see in the next equations that the components dg F¥ and 9y F¥ also appear in the components of
v r g which we will compare them to. Replacing the section § =0by 6+ 3 [ 0y Ax(x', ") dx' dy’ =0
and define the local coordinates using this new section, then by (8-2) we have

g= Y gapdadf+Gdo*+h,
a’5=x7y

where £ is a 2-tensor satisfying |V™h| < Ck/déf(- ,I') for m = 0, 1. In particular, this implies

|8ao| +1088a0] < for o, B = x, .

Ck
dk(-,T)
So by a direct computation we obtain
1) (Pv78)ep =209 F* - Zap — F 395G + O(d (-, 1),
(LvrQeo = F*0aG +2(09F?)- G + 0(dg*(-. 1)),

where O(d, k(.,T)) denotes functions that are bounded by Cy/d éf (-, ') in absolute values.

Since %&vig = V2 f =Ric, we have

C
|85, 8] < [%v7 (& — &) + | Lypgl < € e 20HdCD L oRicy | < — K
g\
Therefore, by comparing (8-10) and (8-11) we can deduce
Cr ~
|LvrY| < k—+C-|VG|,
dg(-,T)

which combined with (8-3) implies

Ck

LY | <
ST ak(T)

proving the lemma. |

Let Z(¢) be a vector field which solves

—~3,Z + AZ +Ric(Z) = 0(t),
Z(0) = 0.

In the next lemma, we show that Z(¢) has a polynomial decay away from I".

(8-12)
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Lemma 8.3 For any k € N, there are C > 0 such that |Z(t)| < Ck/dlk(- ,I).

Proof We can compute that
AZP?=2(AZ,Z)+2(VZ,VZ) and 9;|Z|*>=2(3;Z,Z)—2Ric(Z, Z),
combining which with (8-12) we obtain

0| ZW)1 = gl ZOP =2V () ZW)1% 1) = 2L (1), Z()) g 1)
which we will often abbreviate as 9;|Z|?> = A|Z|?> —2|VZ|? —2(Q, Z). Similarly, we can show
0:1X]?> = Al X|>—2|VX|? < Al X|?. By the maximum principle we get | X(¢)| < |X(0)| < C, and hence
1ZO| = YO+ [X ()= C.
So by Lemma 8.2,

C
3| ZI> <A|Z|>+C-|0] §A|Z|2+er) forany m =0,...,94.
t 7

The lemma now follows immediately from the following lemma. a

Lemma 8.4 Let (M, g(t)) be a 3D steady gradient soliton that is not a Bryant soliton, and suppose that
u: M x [0, T] — oo is a smooth nonnegative function which satisfies u(-,0) = 0 and

Co
for some integer k > 2 and Co > 0. Then there exists C = C(Cy, k) >0 such that u(-,t) < C/dtk_l(- ,T).

8tu < Au +

Proof Let C > 0 denote all constants depending on Cy, k. Denote d;(x, ) by r(x, t), which satisfies
the distance distortion estimates (4-12). By u( -, 0) = 0, the maximum principle, and the integral formula
for solutions of heat-type equations, we obtain

d C
u(x,1) < / f G(x.1:y.5)———— dyy ds,
0/ M ré(y.s)
where G(x,t;y,s) is the heat kernel of the heat equation under g(¢); see (2-8).

For a fixed s € [0,7], we split the integral [,, G(x,1:y,5)(Co/r*(y,s)) dsy into two integrals on
By (x, ﬁr(x, s)) and M \ Bs (x, ﬁr(x, s)), and denote them respectively by I(s) and 7I(s). We will
estimate them similarly as in the proof of Theorem 4.11. For II(s), note that

dsz(y,x) - r(x,s)
t—s ~— C

forall y e M \ By (x, Tloor(x’ s)), by the heat kernel estimates of Lemmas 4.10 and 2.21 we obtain
C

1(s) < C / e BROD/CE—) gy < . prEnIC o
 JM\Bs(x.r(x,5)/1000) - T rkx,s)
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For I(s), we have r(y, s) > %r(x,s) forall y € Bs(x #r(x,s)), and thus

> 7000
I(s) <C sup r_k(y, 5) < Z .
ye€By(x,r(x,s)/1000) ré(x,s)
Therefore, by (4-12) and the estimates of /(s) and /I(s), we obtain
rc 1 1 C
u(x,t)f/ dst( — )5 . |
o rk(x,s) rk=1(x,t)  (r(x,t) +1.9¢)k-1 rk=1(x,t)

Now we prove the main result of this section, which finds a nontrivial Killing field of (M, g) as time
goes to infinity.

Proposition 8.5 There exists a vector field X, such that x__ g = 0 which does not vanish everywhere
and has bounded norm.

Proof Let X(t)=Y(t)—Z(¢) and X (t) = ¢p—¢ X (). We will show that there exists a sequence ¢; — 00
such that the vector fields X (t;) on M smoothly converge to a nonzero Killing field X .

By the definitions of Z(¢) and X (¢), it is easy to see that
0: X() = AX(t) + Ric(X(1)),
{ X(0) =Y(0).
Let h(t) = £x(;)g(t). Then a direct computation shows that /() satisfies the linearized Ricci De Turck
equation

%ath(t) = Aph(1),
h(0)=%xg=%yg.
Note that we have the isometry

(M. g(t), p, X(1). h(t)) +=> (M. g, p, X (1), h(1)).
where /(1) = 7 h(t) = Lg,)8-
By Theorem 3.41, for any € > 0, I'> 4 is covered by e-cylindrical planes on scale 1 for sufficiently large A.
So we may pick a point ¢ € M such that ‘|Y|(q,0) — 1‘ <e€and r(q,0) >2Cy + 1, where C; > 0 is the

constant from Lemma 8.3. Then by the definition of ¥ we have |Y |(¢:(g),t) = |Y|(¢.0) > 1 —¢, and by
Lemma 8.3 we have | Z|(¢:(q),t) =|Z]|(g,0) < % Therefore,

1X1g(q:0) = [X1g) (D (@), 1) = 1Y g1y (De (@), 1) =1 Z g () (B2 (9), 1) = 5 —€.
Next, by | X |(z) < C, and the standard interior estimates for linear parabolic equations [61, Theorem 7.22],
we have that |V¥ X |(r) < Ci uniformly for all # on (M, g(¢)), and thus IVEX|(r) < C on (M, g) for
any k € N. Therefore, by the Arzela—Ascoli theorem, there exists #; — oo such that X(t) smoothly
uniformly converges to a vector field X, and correspondingly h (t;) converges to a smooth symmetric
2-tensor £x__ g.

First, we have X, # 0, because | Xoo|(g) = |)Af I(q.t;) = 1 — €. Moreover, by Corollary 7.4 we see that
h(t;) converges to 0 smoothly and uniformly on any compact subsets of M, implying £x__ g = 0. O
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9 Proof of the O(2)-symmetry

In this section we prove the O(2)-symmetry for all 3D steady gradient solitons that are not the Bryant
soliton. In Proposition 8.5 we find a nonzero smooth vector field X such that £x g = 0. We will show
that X induces an isometric O(2)-action {yg}ge[0,2r)- Throughout this section we assume (M, g, f, p)
is a 3D steady gradient solitons with positive curvature that is not the Bryant soliton, where p is the
critical point of f, and f(p) = 0.

First, let { xg }ger, be the one-parameter group of isometries generated by X, we show that X and Vf
commute, and hence the diffeomorphisms they generate commute.

Lemma 9.1 We have that [X,Vf] =0, and yg o ¢p; = ¢; 0 yg forall t e R and 6 € R.

Proof We first show that the potential function is invariant under yg. Let p be the critical point of f.
Since p is the unique maximum point of R, we have yg(p) = p for all ¢, and hence

foxe(p)=f(p)=0, V(foxe)(p)=Vf(p)=0, V>(foye) =Ric=V>f.

For any x € M, let o : [0, 1] — M be a minimizing geodesic from p to x, then

1 pr
FOe() = f(e(p) + /0 /O V2(f 0 16)(0(s).0'(s)) ds dr

1 pr
= f(p)+ /0 [0 V2 £(0'(s).0'(s)) ds dr = f(x).

So foyg=f.Nowsince y5(f)= f and yp,g = g, itis easy to see that y,(Vf)=Vf. So [X,Vf]=0
and hence yg o ¢y = s 0 xg.

Second, we show that yg is an SO(2)-isometry.

Lemma 9.2 There exists A > 0 such that after replacing {y9} by {x19}, we have that {yg} is a SO(2)-
isometry on M.

Proof Since f is invariant under yy, it follows that the level sets of f are invariant under yg. So yg
induces an isometry on each level set of f. Since the level sets f~1(a) for a > 0 are compact and
diffeomorphic to S2, it is easy to see that X | £—1(q) vanishes at exactly two points, and yg|r-1(,) acts by
rotations with two fixed points.

Therefore, for some a > 0, after replacing X by AX for some A > 0 we may assume that xg|s-1(,) = id
if and only if # = 2k for k € Z. In particular, for a point y € f~!(a), we have y2,(y) = y, and
(X2r|f-1(q))*y is the identity transformation of the tangent space 7y f ~!(a). Since yg is a smooth
family of diffeomorphisms, and yo = id, it follows that y,, preserves the orientation. So ()2 )y is the
identity on 7}, M, and hence y», = id. Therefore, yg for 6 € [0, 27r) is an SO(2)-isometry. |
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Next, we show that the fixed-point set ' ={x € M : X(x) =0} ={x € M : yg9(x) = x, 0 € R} of the
SO(2)-isometry yg coincides with I' = I'y (—00, 00) U 'z (—00, o0) U {p}, where I'y and I'; are two
integral curves of Vf from Corollary 3.36.

Lemma 9.3 r=r’.

Proof Note that "\ {p}, T\ {p} are both unions of two integral curves of Vf. Let I'| and I'} be
the two connected components of I'' \ {p}. It suffices to show that for each j = 1,2, the integral
curves I'; and Fj/. intersect at some point, after possibly switching the order of 'y and I';. To see this,
note that on the one hand, by Corollary 3.36 we have that the manifolds (M, r~2(x)g, x) converge to
(R x cigar, r =2 (tip)&e, Xiip) for any sequence x — oo along I'. On the other hand, since the points on I'’
are fixed points of the SO(2)-isometry, it is easy to see that the manifolds (M, r~2(x)g, x) converge to
(R x cigar, r 2 (xtip)&c, Xip) for any sequence x — oo along I'.

Therefore, for any i € N, after switching the order of I'; and I'; we may assume that there are two points
x; € T1N(M\ Bg(p,2)) and y; € '} N (M \ Bg(p,2)) such that dg(x;, y;) < i~l. Lett; >0bea
constant such that ¢_, (x;) € Bg(p,2) \ Bg(p, 1). Then

dg(P—1; (xi), p—1; (V1)) = dg 1) (X0, yi) < dg(xi, yi) <i™' = 0.
So after passing to a subsequence we may assume ¢y, (x;), p—, (i) = g # p, and hence g € T'1 N T}

and I'y = I';. Similarly we can show ', = Fé. O

Lastly, we prove the O(2)-symmetry, that is, that there exist a totally geodesic surface N C M and a
diffeomorphism ®: N x S' — M \ T such that the pullback metric ®*g is a warped-product metric
d*g = gy + 9> dBH?, with § € [0, 27), where gy is the induced metric on N and ¢ is a smooth positive
function on N. Note that not every SO(2)-isometry is an O(2)-isometry. For example, the S !-action on
§2n+1  C"*1 by complex scalar multiplication is an isometry, which gives CP" = §27+1/81 Byt it
is not an O(2)-isometry since the curvature form is nonzero.

Lemma 9.4 The SO(2)-isometry yg is an O(2)-isometry.

Proof Let X = f~!(a) for some fixed @ >0, and 5 : [0, 1] — = be a minimizing geodesic in ¥ connecting
the two fixed points {x4, X4 }. Let : (0, 1) x (—o0, 00) X [0, 2r) — M \ T be a diffeomorphism defined as
O(r.1,0) = ¢:(x9(a(r)) = xo(d:(o(r)).

Note that ¢; and yg commute by Lemma 9.1. Then we can write the metric under this coordinate as
g= > gapdxgdxg+G(do+ A)>.
a,f=rt

Since the vectors d,, d; = Vf and dg = X are orthogonal at all points in
S\ {xq, Xz} =P{(r,0,0):r €(0,1),0 €]0,2m)}),
the connection form A = A, dr + A; dt vanishes at these points. Moreover, we have 4; = 0 everywhere

because (d;,dg) = (Vf, X) =0.
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On the one hand, since A vanishes on X\ {x,, X, }, by the curvature formula (8-4) for an SO(2)-symmetric
metric we have

O-1) Ric/g = Rorir = —3GFrisr — 3G r Fru.

On the other hand, by the soliton equation Ric = V2 f we have

(9-2) Ric;o = Vg f = —(Vys V. 96) = —(Va, 01, 0g) = 509(ds.9;) =0,

where we used (9;,d9) = (X, Vf) =0and d4(d;, ;) = X(I[Vf|?) = 0. So by (9-1) and (9-2) we have
(9-3) Vo, (G¥? dA) = GV*(GFrey + 3G, Fry)dr ndt =0 on M\T,

where V denotes the covariant derivative on the 2D submanifold {p:(o(r)) | r€(0,1),t € (—o0,00)}.
Claim 9.5 The equality dA = 0 holds on M \ T.

Proof Consider the rescaled manifolds (M, r;” 2g,x4), where r; > 0 is an arbitrary sequence going to
zero. Then it is easy to see that (M, r;” 2g, x4) smoothly converges to the Euclidean space R3, with T
converging to a straight line, which we may assume to be the z-axis after a change of coordinates. So the
SO(2)-isometry on (M, r;” 2g, x4) converges to the rotation around the z-axis. Note that |G dA| is scale
invariant, so this convergence implies |G d A|(r;, 0) — 0 as i — 0o, which proves lim, ¢ |G dA|(r,0) =0.
So lim, o |G3/2 d A|(r,0) = 0. Then by (9-3), we get G3/2 dA(r,0) = 0 and dA(r,0) = 0. So dA =0
on X\ {x4, X4}

Note that we may choose X to be f~!(a) for any a > 0, and the same argument implies dA = 0
everywhere on M \ I", which proves the claim. |

Now since dA = 0 and A; = 0, we have dA,/dt = dA;/dr = 0. Note that A,(r,0,60) = 0, and this
implies A,(r,¢,60) = 0 for all t € R. So A = 0, and hence the metric can be written as the following
warped-product form under the coordinates (r, ¢, 9),

g= Z gaﬂdxadXﬁ;—FGdQZ. |

o,f=rt

Using the O(2)-symmetry and the Z,-symmetry at infinity, to prove Theorem 1.6 we can follow the same
line as in [60, Theorem 1.5].
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