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Sea ice regulates heat exchange between the ocean
and atmosphere in Earth’s polar regions. The thermal
conductivity of sea ice governs this exchange, and
is a key parameter in climate modelling. However,
it is challenging to measure and predict due to
its sensitive dependence on temperature, salinity
and brine microstructure. Moreover, as temperature
increases, sea ice becomes permeable, and fluid
can flow through the porous microstructure. While
models for thermal diffusion through sea ice have
been obtained, advective contributions to transport
have not been considered theoretically. Here,
we homogenize a multiscale advection—diffusion
equation that models thermal transport through
porous sea ice when fluid flow is present. We
consider two-dimensional models of convective flow
and use an integral representation to derive bounds
on the thermal conductivity as a function of the Péclet
number. These bounds guarantee enhancement in the
thermal conductivity due to the added flow. Further,
we relate the Péclet number to temperature, making
these bounds useful for global climate models. Our
analytic approach offers a mathematical theory which
can not only improve predictions of atmosphere—
ice—ocean heat exchanges in climate models, but
can provide a theoretical framework for a range of
problems involving advection—diffusion processes in
various fields of application.
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1. Introduction

Heat exchange at the ocean—atmosphere interface is a key driving force in Earth’s climate
system. In the polar regions, sea ice is a thin, dynamic layer that moderates these exchanges,
acting as an insulating blanket on the ocean and reflecting incoming solar radiation. As a
material, sea ice is a complex, multi-phase composite with three main constituents: solid pure
ice, liquid brine inclusions/channels and air bubbles. The properties of sea ice are determined
by the intrinsic properties of each phase, how much of each phase is present and how the
components are arranged geometrically. Particularly in sea ice, the thermal properties of the
constituents vary over a significant range, with the thermal conductivity of pure ice at its
freezing point being about 2.2 W (m K)™, the thermal conductivity of liquid brine smaller by
about a factor of four, and that of air smaller by a factor of about 100 [1-3]. Moreover, the
thermal conductivity of sea ice changes as the volume fraction of each component varies as a
function of temperature and salinity. The complexity of sea ice as a composite material with
internal fluid motion makes it challenging to predict its thermal conductivity. Nevertheless, this
key parameter is critical to modelling sea ice growth [4,5] and even larger scale dynamics and
thermodynamics of the ice cover. In turn, the central role of sea ice in large-scale heat transport
in the polar regions and the climate system more broadly makes its thermal conductivity a
critical parameter in climate and weather modelling [6-10].

An explicit expression for the thermal conductivity of sea ice is particularly difficult to obtain
due to its dependence on the microstructure, namely, the volume fraction, size distribution
and connectivity of the brine inclusions as well as the air bubbles. In addition, the thermal
properties of sea ice can constantly change due to the sensitivity of the microstructure to
changes in temperature and salinity, making the task of obtaining an exact expression for the
thermal conductivity of sea ice, or even an accurate theoretical model, quite non-trivial.

Over the past several decades, various models have been proposed for predicting the values
of the thermal conductivity of sea ice, accounting for these dependencies on temperature and
salinity. The thermal conductivity used in many global climate models is represented by one
of the two empirical models fitting the data [11], either the model suggested by Maykut and
Untersteiner (MU71) [12] or the bubbly brine (BB) model [8]. However, the expected values
of the thermal conductivity of sea ice produced by the MU71 model were positively biased
compared with in situ experimental measurements [9]. As an improvement, Pringle et al. [8]
suggested the BB model, which provided a better fit when compared with datasets obtained
at temperatures colder than the critical temperature for brine percolation and flow [13]. For a
fixed salinity, both the MU71 and the BB models yield values that monotonically decrease as
temperature increases.

As the temperature rises, however, sea ice becomes more permeable, and liquid brine with
high salt concentration can drain from the sea ice into the ocean, giving way to fresher ocean
water, perhaps laden with nutrients, to flow into the icy complex [13,14]. Convective flow
is present during the natural solidification of seawater and other binary solutions [15,16].
Moreover, it has been suggested that fluid convection can result in an enhancement of thermal
conductivity [9]. This enhancement of the thermal conductivity, once percolation has been
initiated, is not captured in either the MU71 or BB models.

For some specific types of fluid flows, such as shear flow, estimates in the form of bounds
on effective diffusivity (or effective thermal conductivity) have been obtained [17,18]. However,
when considering sea ice, simple velocity fields such as shear flow may not be a good repre-
sentation of the actual flow field. First-year sea ice, as a mushy layer, can support convective
flows both internally and on the ocean-mushy layer interface [15]; see figure 1a. The convection
along the interface facilitates the drainage of liquid brine, which is then replenished by fresher
seawater flowing through the surrounding channels [15,16,20-22]. Wells et al. [19] demonstrated
that the observed arrangement of fluid channels correlates with an optimization problem where
brine flux is maximized, resulting in convective flows, as illustrated in figure 1b. Moreover,
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convection within sea ice is characterized by a distinct pattern of broad upward flows countered
by narrow, gravity-driven downward flows through channels, which form as brine drains and
ice dissolves [23].

In this study, we examine the thermal conductivity of sea ice in the presence of convective
fluid flow. Assuming the convective flow within the sea ice to be continuous, which can be
mathematically represented by a Fourier series, we focus on BC and cat’s eye flows as depicted
in figure 1c. These flow models can be used to represent both internal and ocean-sea ice
interface flows. While not perfectly capturing the intricacies of actual convective flows in sea
ice, our introduction of these flow fields establishes a foundational basis for deriving bounds
and estimates for more realistic continuous flow patterns.

Homogenization techniques offer sophisticated means to encapsulate the complex interplay
of physical and thermal properties within a heterogeneous material, such as sea ice, into an
effective or bulk coefficient, transcending the rapidly varying microstructure. This notion of an
effective property has been used in the study of sea ice thermal behaviour; the expressions for
the thermal conductivity and the specific heat derived in [8] and [2,24], respectively, consider
effective properties of sea ice that depend only on temperature and salinity. Homogenization
methods, such as the analytic continuation method [25-29] or variational principles [30,31],
recover the effective properties of a composite material, given information about the individual
phases. In general, homogenization can be applied when the microstructure of a material is
considered to be composed of period cells with a small length scale relative to the macrostruc-
tural scale of the full domain [27,29,32].

The primary goal of homogenization is to replace a detailed equation on the microscale,
whose solution may be computationally expensive or provide no insights into the full system
behaviour, with a simplified macroscale equation. Figure 2 depicts the process of homogeniza-
tion to reduce the complexity in the specific case of sea ice. A three-component composite
material model of sea ice is detailed in figure 24, and uniformed sea ice with properties is
presented in figure 2b. In this paper, we consider uniformed sea ice filled with cell periodic fluid
moving through the ice, as in figure 2c. To obtain bounds on the effective thermal conductivity

x* of sea ice in the presence of fluid flow, we segment the sea ice domain () into discrete
period sub-cells, each characterized by uniform thermal properties, averaged temperature, and
bulk salinity. Moreover, each sub-cell Qg supports a cell periodic bulk convective fluid flow,

as shown in figure 2c. Through this framework, we establish bounds on «x*, providing a more
comprehensive understanding of the impact of convective flow on the thermal properties of sea
ice in a global system.

To obtain such bounds on x*, we employ an integral representation of the effective thermal
conductivity derived originally in [17] to characterize the large-scale, long-time behaviour.
This representation involves the Péclet number P, a dimensionless number representing the

ratio of advective to diffusive transport, and a positive spectral measure u that captures the
characteristics of the flow geometry. Murphy et al. [33-35] studied the measure u and derived
explicit expressions of its moments in the case of a cell periodic fluid flow, as depicted in
figure 2c. In this paper, we obtain bounds on the effective thermal conductivity of sea ice in
the presence of fluid flow of the forms (2.13) and (2.14) as a function of the Péclet number.
Furthermore, for the special case of sea ice, we derive a new representation of the Péclet
number as a function of salinity and temperature, which allows us to rewrite our bounds for the
effective thermal conductivity of sea ice as a function of temperature. This study contributes to
the ongoing development of mathematical models for thermal and diffusive transport through
porous sea ice but with the added complexity of convective fluid flow. While it expands on
existing frameworks, we introduce novel bounds for the effective thermal conductivity of sea
ice with two-dimensional brine flows.

In §2, we derive bounds on x* for both a BC flow (2.16) and (2.17) and a cat’s eye flow (2.43)
and (2.44) as a function of the Péclet number. In §3, we give a new representation for the Péclet
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Boundary-layer mode

Figure 1. (a) Schematics of the convective flow in the ocean—sea ice interface (boundary-layer mode). Reprinted (adapted)
with permission from [15]. Copyright 1997, American Chemical Society. (b) Magenta curves represent the streamlines of the
convective bulk velocity field within sea ice [19]. Reproduced with permission. Copyright 2011, American Geophysical Union.
(c) Streamlines for the cat’s eye flow of the form u = (—sin(3x)cos(3z), cos(3x)sin(32)).
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Figure 2. Sea ice schematic with ocean below and atmosphere above. (a) The sub-frames show a detailed microstructure
with ice, brine inclusions and air bubbles coloured light blue, blue and white, respectively. Permeable sea ice is bounded
(dashed line) from above by impermeable sea ice. (b) Uniformed sea ice with properties independent of microstructure.
Here thermal properties, such as conductivity x and specific heat c, depend only on temperature T and salinity S. Locally,
thermal properties are taken to be constant (sub-frame). (c) Periodization of the uniformed sea ice domain Q with cell
periodic fluid flow u = (—sin (3x) cos (32), cos (3x) sin (3z)). (Top sub-frame) Sub-cell Q¢ has constant thermal properties
and periodic flow. (Bottom sub-frame) Streamlines of the convective flow in the interface layer [19]. Panel (c) bottom
sub-frame is reproduced with permission. Copyright 2011, American Geophysical Union.

number in terms of temperature and salinity. For fixed salinity, this allows us to obtain bounds
on x* as a function of temperature; see figure 3. In §4, we quantitatively validate our bounds
using Monte—Carlo simulations of a stochastic differential equation (SDE) representing our
governing advection-diffusion process; see figure 4a. This is supplemented with a qualitative
validation using available in situ measurements of the thermal conductivity of sea ice; see figure
4b. We conclude our results in §5 and discuss the implications of the enhancement of thermal
conductivity on the global climate system as well as future work these results motivate.

2. Bounds on the effective thermal conductivity of sea ice

In this section, we present the mathematical background and the analytic derivation of the
bounds on the effective thermal conductivity of sea ice %x* in the presence of fluid flow. Let
Q be a domain of uniformed sea ice where convective flow is relevant and partitioned into
sub-cells. On each sub-cell 0y, we consider the advection—diffusion equation with constant
thermal properties and cell periodic fluid flow. In this framework, homogenization methods
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Figure 3. (a) Bounds on x; (W(mK)™") as a function of 7P. Solid (black) lines form the first set of bounds (2.43), and
dashed (blue) lines constitute the second set (2.44), with fixed % = 2 (W(m K)™"). (b) The Péclet number, plotted as a
function of temperature, is illustrated for different values of salinity. Specifically, salinity values of S = {3.5,5, 8, 10} ppt
correspond to solid, dash-dotted, dotted and dashed lines, respectively. Here, we fixed the parameters v = 0.5 m s and
o =890kg m>, (c) Bounds on x3; (W(m K)_1) as a function of T (°C). Solid lines (black) form the first set of bounds (2.43),

and dashed lines (blue) constitute the second set (2.44), with fixed parameters S = 5ppt, v = 0.5m s, o = 890kg m>
and P as defined in (3.6).
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Figure 4. Bounds on x7; as a function of temperature in the case of a BC fluid flow field. The solid (black) lines denote
the first set of bounds as in (2.16) while the dashed (blue) lines denote the second set of bounds as in (2.17). The vertical
dashed (grey) line denotes when T = —5°C, roughly the critical temperature for percolation. (a) The x-dots (red) represent
the numerical values of x7; obtained by (4.7) for a BC flow as in (2.13). (b) The dots (red) denote the thermal conductivity
data from [9] along with the accompanying error bars (green).

yield an integral representation for x* valid on the entire domain (. This integral representa-
tion, given in terms of the Péclet number introduced in (2.5), can then be bounded. The Péclet
number is a dimensionless parameter relevant to problems regarding transport phenomena and
is constructed using the characteristic length of and velocity within Q. The fluid flow within
the sea ice is represented by a BC flow or a cat’s eye flow, resulting in similar bounds on x*
given in (2.16)-(2.17) and (2.43)—(2.44), respectively. These are the first analytic bounds of the
effective thermal conductivity in polar sea ice in the presence of convective fluid flow.

(a) Mathematical background

Let Q c R? denote a domain filled by uniformed sea ice, and consider a spatially periodic
sub-cell Oy C Q. Consider a mean-zero, incompressible, time-independent bulk fluid velocity
field u periodic on Qy, satisfying (u) =0 and V - u =0, where (- ) denotes spatial average over
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Qyp (see figure 2c), where Q) is a representative period cell for the uniformed sea ice. Let T(t, x)
denote the temperature within sea ice at time ¢ > 0 and position x € (), and « is the constant
thermal diffusivity of sea ice within a sub-cell Qy. Given an initial temperature distribution
To(x), the temperature T satisfies the non-dimensionalized advection—diffusion equation

L —aAT+u-VI,  TOx)=To), >0, =zeQy. @.1)

In this setting, we make the assumption that spatial variations of the initial temperature Ty
occur on a spatial scale much larger than that for the bulk fluid flow u. A rescaling of our
problem in terms of fast variables, namely by letting ¢~ /6> and x - x/8 for some & <1,
allows us to study the long-time, large-scale solutions to this system through a temperature
field T defined by the limit [17,18,36-39]

(i -renf) -0 s

In particular, T satisfies the diffusion equation [37,40,41]

%—T SV (@VT), T(0,x) = Tox). 2.3)
The constant, symmetric effective diffusivity tensor a* describes the long-time, large-scale
thermal dispersion [42]. Using a spectral theorem for the self-adjoint operator il'HI' [34], where
I'= -V(-A)'V - is projection onto curl-free fields, and H is the antisymmetric stream matrix
associated with the fluid velocity field u satisfying H' = - H and u = V - H, the effective thermal

conductivity x* can be explicitly represented as

K= x(} + P2 f :1‘1"‘—7%2) . (2.4)

with x = acp, where c and p are the specific heat and the density of sea ice within Q, respec-
tively. The matrix I denotes a d x d identity matrix, and u is a tensor-valued measure whose
components are spectral measures of the operator il HI' [17,34,35,43,44]. Here, P is the Péclet

number, or the comparative ratio of the magnitude of thermal convection to thermal diffusion, of
the fluid flow field, defined in terms of the characteristic length L., characteristic velocity v. and
constant thermal diffusivity a as [45]

LcUc
o

P= (2.5)

The advection-dominated and diffusion-dominated regimes are characterized by P> 1 and
P < 1, respectively. The resulting integral representation (2.4), initially introduced in [17,44] for

the effective thermal diffusivity, is known as a Stieltjes integral. It separates how the strength of
the flow influences the effective behaviour from the geometry of the flow, such as the structure
of convective cells or finer scale turbulent features, through P and u, respectively.

Another advantage of the Stieltjes representation in (2.4) is that it can be written as a power
series, allowing us to leverage the theory of Padé approximants, which are generalizations of
power series expansions of functions that allow for approximation with only a finite number of
terms. They can be used sometimes even when the power series fails to converge. To this end,
we focus on a diagonal component of x* and write x* = xj; which involves the positive measure

H = ujj. We introduce the variable z = P? and rewrite x* in terms of the Stieltjes function f(z),
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¥ =x(1+zf(2), f(z)= [ du(2)/(1+24%). (2.6)

Expanding 1/ (1 + z/lz) in a geometric series leads to the following Stieltjes series representation of

f(2) in involving the even moments U of the spectral measure u [46],

f(2)= / " dud) icnz", e =(-1)"u®, = / m/l”d,u(/l). 2.7)

5 =
o 1+ 2 n=0

The Padé approximant of order [L/M] of f(z) is given by

L/M]
PIEMl(z)
[L/M)a) = Er) 28)
Q[/ ](Z)
where we define the determinants
CL-M+1 CL-M+2 CL+1
CL-M+1 CL-M+2 ** ‘L
CL-M+2 CL-M+3 CL+2
. A . . CL-M+2 CL-M+3 CL+1
PEMg = | ' e OF : EL
‘L CL+1 CL+M
cL CL+1 et CL+M-1
L-M L-M+1 L
Z cnZMJrn Z CnzMJrnfl Z ann M ZM-1 1
n=0 n= n=0

using the convention that ¢, =0 for n <0 [46]. Padé approximants provide nested upper and
lower bounds for the Stieltjes function f(z) when a finite number of the constants ¢, are known.
As more of the ¢, are incorporated, the bounds become tighter and can converge in a region
near z = 0. Specifically, the sequences {[M —1/M]}y -1 and {[M/M]}y -1 form nested, converging
lower and upper bounds for f(z) in M, respectively [46]. Namely, for all M > 0,

[-1/0](z) < [0/1](z) < - < [M - 1/M](2) < f(2) < [M/M](z) < - < [1/1](2) < [0/0](z).  (2.9)
Applying the Padé approximants (2.9) to the Stieltjes function in (2.6) yields nested converging

bounds on the components of the effective thermal conductivity x* of the form

x(1+P[M-1/M](2)) < x* <x (1 + P M/M](z)), M =0. (2.10)

The Padé approximants in (2.8) are given explicitly in terms of the ¢, = (- 1)"u".

One of the key difficulties in utilizing Padé approximant theory lies in computing explicit
expressions for the moments u, as defined in (2.7), which depend on the convective flow
within the system. It has been established for certain flow types, such as shear flow and flows
mimicking confocal sphere assemblages, that the spectral measure can be explicitly computed
and the values of x* attain Padé bounds. For example, the spectral measure for shear flow is
given by a delta function centred at the spectral origin, so all the measure moments are zero
except for the zeroth moment. In this case, the value for x* attains the upper bound [0/0](z) [17].
However, the nature of the brine flows through the porous microstructure of sea ice is more
complex and not adequately represented by such flows. A more realistic model would be a
periodic convective fluid with a wide up and a narrow down flow, as described in [23].

We now outline the method introduced in [33,34] and [35] to calculate the moments
of the spectral measure. In principle, this method can be used to explicitly calculate all
of the moments u™ of the spectral measure given any space-time periodic bulk velocity
field expressible by a finite Fourier series of linear combinations of complex exponentials
dlexren y e O kezt,wez Specifically, for a given domain Q= [O,27‘c]d, d=>1, it was
shown that for a non-dimensional mean-zero incompressible Qg-periodic time-independent

H
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fluid flow v = (vy, . . ., v4), which can be expressed as a linear combination of the functions ek-x

the components of the moment u take the form

K =(g g2 K =00 V'8, &=CATv, jk=1..d (211

involving the sesquilinear inner product (¢, )1 2=(V¢ - Vi) where (-) denotes the spatial
average over ) and i denotes the complex conjugate. Moreover, all the odd moments are zero,
ie. /.1(2"_1) =0 [17,34,35,43,44,47], whereas the components of the even moments /.1(2”) are given
by

K= (@ I VI g 1= ) @ V)80 (212)

where (-, - ), is the L*(C)) inner product [34]. Since the v; are given by a finite linear combi-
nation of the complex exponentials e’*** and such exponentials are eigenfunctions of both of
the operators (—A)_1 and V, the g; are known explicitly, hence the [(- A)_l(v - V)]"g; are known
explicitly for each n=1,2,3, .... Consequently, the orthogonality properties of complex exponen-

tials can be used to explicitly compute /.1(2") foreachn=1,23,....

(b) Analytic derivation of bounds on #*

In this study, we aim to integrate the previously derived results described above to establish
upper and lower bounds on the non-zero components of the effective thermal conductivity x* of
sea ice when convective brine flow is present. We consider the period domain Q, = [0, 2] filled
with a bulk brine velocity field u = uypv, where the constant uy € (0, «°) represents the strength of
the flow, has dimensions of velocity (m s™), and is independent of the flow geometry. The flow

geometry is determined by the non-dimensional vector field v, which is chosen to be either a BC
flow of the form [48]

v = (Ccos(xp), Bcos(x1)), X =(x1,X2) €y, (2.13)

for given B, C € [0,1], or a cat’s eye flow of the form [18]
v = (-sin(x1)cos(xz) + B cos(x1)sin(xy), cos(x1)sin(x,) — B sin(x1)cos(xz)), (2.14)
for x=(x1,x2) € Qy and a given B € [-1,1]. Figure 1c depicts a cat’s eye flow pattern. For

both choices of flow geometry v, the bulk brine velocity field u is both divergence-free and
mean-zero. With this choice of u on a period sub-cell Q, the Péclet number P appearing in (2.4)

is determined by the strength of the flow v. = 1y and the length L. =27 of a period sub-cell Q,
and takes the form
21Uy

p=2l. (2.15)

Next, we present and prove the key theorem of this paper, which establishes bounds on the
effective thermal conductivity in terms of the Péclet number P.

Theorem 2.1. Let Q) = [0, 27)* be a periodic domain with a bulk brine velocity field u. If u = upv
with a non-dimensional BC flow geometry v given in equation (2.13) with B,C € [0,1], and dimen-
sional flow strength uy > 0, then the effective thermal conductivity tensor x* is diagonal with entries xi
and 1,. Moreover, the first two sets of bounds on xiy take the form

c*p?
1+

x<xi1 <K , (2.16)
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40C*P? + (11¢* - 9B°C?)P*
80+2(11B°+ C*)P?

20%p2?
' (2.17)

+
4+BP?

<« SK(1+

where P is the Péclet number and x is the thermal conductivity of sea ice in the absence of fluid flow.

Proof. To obtain explicit expressions for the first two sets of bounds, for M =0 and M =1, we
calculate the first three, non-zero moments of the measure u, and note that for the given BC
flow v = (v, 1y), defined in (2.13), the following identities hold for j=1,2

g] = Uj, (218)
-BC/ . i
v-Vu;=— (sm(x1 + ) + (-1)’sin(x; - xz)), (2.19)
(—A)_l(sin(xl + %) + (— 1) sin(x; - xz)) = %(sin(xl + %) + (— 1) sin(x; - xz)) . (2.20)

Plugging (2.18) into (2.11), we establish that the zeroth moment ”(0) is diagonal and takes the
form

c* 0
0 B

o_1
L)

(.21)

Combining (2.18)—(2.20) with (2.12) for n =1, reduces the expression for the components of the

second moment u® to
K = (- Vo, (= A (v Vo), (2.22)

and direct calculations shows that u® is diagonal and takes the form

BC?
u® =

51 (2.23)

where I is a 2 x 2 identity matrix. Following similar calculations, the fourth moment u® takes
the form
w _ B (1B +C? 0
3200 o 112+ B2 (2.24)
Plugging the (1,1) entries of the moments 4", n=0,2,4, calculated in (2.21), (2.23) and (2.24),

back into the Padé bounds framework (2.7)—(2.9), allows us to obtain the first two sets of nested
approximants for M = 0,1

C2
[-1/01(P)=0,  [0/0)(P) ==,
O1IP) = z_czz e - 40C% + (11C* - 9B°CY)P? ’
4+BP? 80 +2(11B>+ CH)P? (2.25)
which together with (2.10) yields the bounds on xf; (2.16) and (2.17). [

Note 1. Plugging the (2,2) entries of the moments M(”>,n =0,2,4, calculated in (2.21), (2.23) and
(2.24), back into the Padé bounds framework (2.7)—(2.9), allows us to obtain the first two sets of Padé
approximant bounds on x5, , which are explicitly given by interchanging the roles of B and C in (2.16)
and (2.17).

Acquiring bounds on the effective thermal conductivity while accounting for BC flow is
a fundamental step towards establishing bounds on the effective thermal conductivity of sea
ice under more intricate flow conditions. Specifically, by leveraging the bounds obtained in
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theorem (2.1) for BC flow, we can employ linear transformation techniques to deduce bounds
on the effective thermal conductivity in scenarios involving cat’s eye flow.

Theorem 2.2. Consider a periodic domain Qy C R%,d > 1. Every cat’s eye flow 1t of the form (2.14)
on Qg can be written as a linear transformation of a BC flow w of the form (2.13) on a new domain Qo
which can be written as a linear transformation of CQy. Moreover, the corresponding moments ﬁ(") of the

spectral measure i as in (2.11) can be recovered through the corresponding spectral moments u® of the
spectral measure for the associated BC flow via the relation

Fem - 1(

= (w7 + (-1 g). (2.26)
Proof. Let (x1, x2) € Qg and consider a general cat’s eye flow for § € [-1,1]

u = (- sin(xy)cos(x2) + B cos(x7)sin(x,), cos(x;)sin(x,) — B sin(x1)cos(x2)) . (2.27)
Using trigonometric identities, (2.27) reduces to

= (Bcos(61) + C cos(6,), C cos(6,) — Bcos(61)), (2.28)

where we introduce the constants B = 5 1-5 and C = 5 1+ . The arguments 65, 6, can be expressed

in terms of x7, X, such that

6=(6,,6,)= (x1 X+ o X - X+ E) . (2.29)

I
2’ 2

Equation (2.28) allows us to express the cat’s eye flow (2.27) as a linear transformation of a BC

flow, i.e.

- (1 1)\[Ccos(6)

us (1 —1)(3 cos(el))' (2.30)
The moments of the measure for an admissible flow are defined in (2.12), specifically, for the
cat’s eye flow, we explicitly write

E = (@ VI[(- 207 V" g [(- A0 V"), - (2.31)

The linear transformation defined in equations (2.29)—-(2.30) yields the relations

—_

-Ve=5u-Vs  (-A)"=2(-A9)7", (2.32)

N

and the expressions for cat’s eye flow of g; = (-A)'§, j=1,2in (2.12) in terms of the BC flow,
g = (-A)'u take the form

gi=(a+(-1"g). (2:33)
Plugging (2.32) and (2.33) back into (2.31) yields

A = 2w VoA - Vo (g + (1) 1), (A M Vo o+ (1) gy)), . 239)

Using linearity (2.34) reduces to

~(@2n) _ 1
M L3 2(

B (-1 ), (2.35)

where ,u(2 ) and ;1(2") diagonal entries of the #@" moment for a BC flow, as found in theorem 2.1g

Note 2. Explicitly, the moments [1(2")

by

are symmetric and diagonally constant with components given
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~(2 ~(2 1 n
#5{1) = #gzn) = E(uﬁ") + /vézz ))r (2:36)

~ ~ 1
Y = B = (- 1) (2.37)

Corollary 2.1. For a cat’s eye flow (2.14) with 8 = 0 the moments take the form

B0 =u0n j=1,2 (2.38)
Proof. Setting 8 =0 in the cat’s eye flow (2.14), theorem 2.2 implies that B= C and theorem 2.1
implies 13" = u$3”. Therefore, from equations (2.36)—(2.37) we conclude (2.38). n

Using theorem 2.2 and the bounds in the case of BC flow from theorem 2.1, the below
corollary follows directly:

Corollary 2.2. Let Qy=[0, 2n* be a periodic domain with a bulk brine velocity field u.
If u=upv with a non-dimensional cat’s eye flow geometry v given in equation (2.14) with
B € [-1,1], and dimensional flow strength uy > 0, then the first two sets of nested Padé approx-

imant bounds on the effective thermal conductivity x* take the form

P21+ ﬁ%]
+ U

! 8

xl < x* <xl

PA80(L + %) + PH6(1 + B2 - 5(1 - B2
+ 4

1(1 .
640 + 48P*(1 + ) (2.39)

2P2(1+ B
<x*<
"o ra-gy) "

where P is the Péclet number defined in (2.15), x is the thermal conductivity of sea ice in the absence of

fluid flow, and I is the 2 x 2 identity matrix.
Proof. Plugging the moments (2.21), (2.23) and (2.24) from theorem 2.1, into (2.36) and (2.37),
the moments of the measure for the case of a cat’s eye flow, for n =0, 2, 4, take the form

B+c® C*-B BC?
0
Lo 4 4 u-| 8
Cc’-B* B*+C? 0 BC?
4 4 8
3B°CX(B*+C% BCA(B*-C?
o 160 64
BB -C? 3BCB+AA) |
64 160 (2.40)
or equivalently, in terms of §, where C = ! ;‘6 and B= #,
1+ g -y
o_| 8 4 o | 128
M - > o |/ M - 20 |7
B 1+ 0 (1-8)
4 8 128
31-gY(1+8)  -p(-p)
@ 5120 1024
L 2 242 212 2 |
B (1-§) 31-8)(1+p)
1024 5120 (2.41)

The moments (2.41), and the Padé bounds framework (2.7)—(2.9), allow us to obtain the first two
sets of nested approximants for M = 0,1
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[-1/0](P)=0,

2

o/oi(P) = L5E,

o 20+pY)
0/1 = ,
O e P
80(1+ %) + PA(6(1+ ) - 5(1- B°))
[1/1)(P) = YR :
640 + 48P(1 + ) (2.42)

Plugging the approximants in (2.42) back into (2.10) yields the bounds in (2.39). |

Having established bounds on the effective thermal conductivity in the case of the cat’s eye
flow using the linear transformation applied to a BC flow, we proceed to validate these bounds
by a direct derivation of the aforementioned bounds for the cat’s eye flow. For simplicity, we
consider the case of a cat’s eye flow with § = 0. The derivation of the bounds in the general case,
B € [-1,1], follows a similar approach.

Lemma 1. Let QO = [0,2n]* be a periodic domain with a bulk brine velocity field w. If u = ugv with
a non-dimensional cat’s eye flow geometry v given in equation (2.14) with § =0, and dimensional flow
strength ug > 0, then the effective thermal conductivity tensor x* is diagonal. Moreover, the first two sets

of bounds on x* take the form

PZ
kI < <xlfl+ 5| (2.43)
o2 7?2(80 + 732)
xI|1+ <xfL<xl|l+——+F, (2.44)
16 + P? 640 + 48P?

where P is the Péclet number defined in (2.15), x is the thermal conductivity of sea ice in the absence of
fluid flow, and I is the 2 x 2 identity matrix.

Proof. We first note that for cat’s eye flow v, defined in (2.14) with =0, the following
identities hold

1 1. 1. 1.
8 =75V v-Vu; = 751n(2xj), (-4) 1sm(2xj) = Zsm(ij), (2.45)

where v; is the jth component of v, j=1,2. To obtain an explicit expression for the moments
™, n=0,2,4, we combine (2.45) with (2.11) and (2.12), which yields

1 @ 3

o_1 @__ 1 -
- v L 5

(2.46)

where I is the 2 x 2 identity matrix. Plugging (2.46) back into the Padé bounds framework (2.7)-
(2.9), allows us to obtain the first two sets of nested approximants for M = 0,1

1/0](P)=0 0/01(P L 0/1(P 2 1/11(P 80+ 7 247
[F10(P) =0, 0P =5,  O/UP)=1m, [P = o, (247)
which, combined with (2.10) yield the bounds in (2.43) and (2.44). |

Given the thermal conductivity of sea ice in the absence of fluid flow x, theorem 2.1 and lemma
1 provide bounds on the effective thermal conductivity x* as a function of Péclet number, assuming
the convective flow field has a BC or cat’s eye geometry, respectively. Figure 3a depicts the two sets
of bounds (2.43) (black/solid lines) and (2.44) (blue/dashed lines) as a function of » when x is a fixed
constant. While these bounds cannot be directly compared with in situ data, the gap between the
lower solid (black) bound, which is independent of convective flow, and the lower dashed (blue)
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bound, which incorporates the sub-cell flow strength, guarantees the enhancement in effective
thermal conductivity.

Note 3. The analysis in this section addresses the transport of a passive tracer within porous media
and is applicable outside the scope of sea ice.

In situ measurements of the effective thermal conductivity of sea ice x* are usually reported
as a function of temperature T, it is necessary to convert the analytic bounds found in this
section to a temperature-dependent form for comparison with available data. For this purpose,
in the following section, we will broaden our perspective and concentrate on sea ice properties
in a macroscale framework, over Q. This will allow us to understand the properties of sea ice at
a larger scale and provide a comprehensive overview of the behaviour of the effective thermal
conductivity under varying conditions.

3. Bounds as a function of temperature

In §2, we considered sea ice as a porous medium and derived bounds for the effective thermal
conductivity %" in the presence of a periodic bulk convective fluid flow as a function of the Péclet
number. While the Péclet number plays an important role in the theory of fluid flow within
porous media, measurements of the effective thermal conductivity of sea ice are often given as a
function of temperature. To compare the bounds found in §2 with available in situ effective thermal
conductivity data, itis necessary to convert them into a temperature-dependent form. The effective
thermal conductivity x* is a macroscale material property of sea ice, and yet the bounds we derived
depend on the microscale properties defined locally within a sub-cell Qp, such as the thermal
conductivity x and the Péclet number P. Within Q, the thermal conductivity x is constant, and the
representation of the Péclet number (2.15) given in §2 involves the strength u of the prescribed
fluid flow. In this section, we will take into account the entire domain Q on which the properties
depend on both temperature and salinity. Moreover, we will reconsider the general representation
for the Péclet number (2.5), derive a specific form for 7 on Q2 and reveal the relation between the
local flow strength uy and the Darcy velocity within the sea ice. This will enable us to connect the
analytic bounds with the physical nature of the problem, extending the bounds presented in §2
in terms of macroscale properties of sea ice. To this end, we will review the physical and thermal
properties of sea ice as a function of both temperature T and salinity S.

(a) Sea ice physical and thermal properties

In the context of sea ice, the permeability is governed by the brine volume fraction, which

changes with temperature T ("C) and salinity S (ppt). In particular, for T € [-22.9,-0.5]°C, the
brine volume fraction ¢ is given by [49]

_ S (49185
¢ = m(W + 0.532) , (3.1)
and the sea ice permeability IT(m?) satisfies the relation [50]
T1(¢) = 34> x 1078 . (3.2)

The thermal properties of sea ice without the presence of fluid flow, also depend on temperature
and salinity. In particular, the thermal conductivity of sea ice without fluid flow x (W (m K)™) is
given by the BB model [8] as

x=L(211-0.011T +0.093), (33)
Pi T
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where p and p; are the density (kg m™) of sea ice and pure ice, respectively, or by the MU71
model [12] as

K =2.03+ 0.117% . (3.4)
For the range of sea ice densities p which are physically relevant (see table 1), the absolute error
between the two representations of x in (3.3) and (3.4) is at most 0(10™), and without loss of
generality we choose to use the BB model (3.3) for the rest of this paper.

The specific heat capacity ¢ (J (kg K) '), for temperatures between —1.8°C and -23°C, takes the
form [2,24]

¢ = 4186.8{0.505 + 0.0018T - 0.0008S +0.000019ST + 4.3115% . (3.5)

Refer to table 1 for a concise overview of the parameters discussed in this section.

(b) Péclet number for sea ice

Utilizing the provided sea ice data, we establish a relationship between the Péclet number in )
and temperature, which is formally presented in the subsequent lemma.

Lemma 2. Let Q € R be a domain of uniformed sea ice. The Péclet number of sea ice P(S, T) in Q as

a function of salinity S (ppt) and temperature T(°C) takes the form
3/2
P(S, T) = ﬁu% 1074, (3.6)

where v is the Darcy velocity, ¢ is the brine volume fraction (3.1), c is the specific heat capacity (3.5), p is
the density of sea ice and x is the thermal conductivity of sea ice without fluid flow.
Proof of lemma 2. We introduced the general form of P in (2.15) in terms of a characteristic

length L, and a characteristic velocity v.. On the domain (), the characteristic length is the
square root of the permeability [52], and the characteristic velocity is the Darcy velocity. Thus,
the Péclet number on this scale is parametrized as

P= @ (3.7)

where IT is the fluid permeability as defined in (3.2), « is the thermal diffusivity, and v is the
Darcy velocity, which is assumed to be approximately 0(107") (m s™"). Fluid velocities of this
order of magnitude are likely to be in the upper range of or even above what may be attainable
in natural sea ice but serve to demonstrate how significant advective enhancement can be in
sea ice thermal transport. This parametrization is, indeed, one of several versions of the Péclet
number applicable to the study of porous materials [53-55], and it is particularly relevant in the
case of sea ice when considered as a saturated rock. Plugging (3.2) back into (3.7) and using the
relation x = acp yields the required result (3.6). | |

The representation for the Péclet number in (3.7), in conjunction with that in (2.15), allows
us to make sense of both the strength uy of our prescribed convective bulk flow and the length
scale of the dimensionless sub-cell problem. In (2.15), we considered a non-dimensionalized
advection—diffusion equation within the mathematically abstracted period sub-cell (), where
the characteristic length L.=2m and velocity v.=uy were naturally associated. In (3.7) we
considered a dimensionalized advection—diffusion throughout the full physical material on the
domain Q with characteristic length L. = \/TT and velocity v, = v. To connect the two settings of
our problem, we equate the two representations for the Péclet number and find that
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Table 1. Table of parameters.

symbol description value units
P Péclet number —
v ........................... Darcyveloqty .................................... 10_1 ...... 102 ............................................. - ..S.:i ..................................
B R permeab|||ty ...................................... 10_8_10_”[5” .................................... s
................................. bnnevolumefracnon(o,ﬂ—
a ........................... d|ffus|oncoefﬁc|ent ........................... 0(10_7) .................................................... - 'z";i .................................
K ........................... conductmtycoefﬁc|entw|thoutW(mK)*1 ...........................
flow
C ........................... speqﬁcheatcapaqtyJ(kgK)-1 ............................
................................. sa||n|ty[0,10]ppt
................................. sea|cedens|ty[840,940][8]kgm*3
pl .......................... pure|cedens|ty ................................. 917 ........................................................... k gm_3 ................................
T tempertie BT
uy = %v . (3.8)

We conclude that the dimensionless length scale for the sub-cell problem, 27, should be of
the order of \/ﬁ, where IT is defined in (3.2), for this relation to hold. With this relationship,
we expect that as the permeability, and thus the brine volume fraction, of the sea ice increa-
ses, the strength of the prescribed convective flow in ) also increases. This relationship
also consolidates our understanding of the two definitions we use for the Péclet number. In
particular, (2.15) provides a representation of the Péclet number when the problem is viewed
in the mathematically abstracted microscale as in (2.1), while (3.7) comes from a macroscale
perspective of the physical system in which all properties defined in table 1 hold.

The behaviour of the Péclet number exhibits distinct characteristics with changing tempera-
tures. At low temperatures, the Péclet number remains small, indicating a regime dominated
by diffusion. However, as the temperature surpasses the percolation temperature and the sea
ice becomes permeable, the Péclet number experiences a rapid increase. In particular, as the
temperature approaches zero, the Péclet number becomes unbounded, as depicted in figure 3b.
This transition signifies the shift from a diffusion-dominated regime at colder temperatures to
an advection-dominated regime at warmer temperatures. These findings align with the concept
of sea ice as a mushy layer, characterized by convective flow within the ice [15,19,20,22,56].

Incorporating the revised expression of the Péclet number, as given by (3.6), into the bounds
derived in §2, allows us to bound the effective thermal conductivity as a function of temper-
ature for a given fluid velocity field. Figure 3c depicts the bounds on the effective thermal

conductivity of sea ice x* in the presence of a periodic cat’s eye fluid flow as a function of
temperature, as obtained by plugging P(S, T) from (3.6) into the previously computed Padé

bounds (2.43) and (2.44). The gap between the lower solid (black) bound, which is independent
of convective flow, and the lower dashed (blue) bound, which incorporates the flow strength
of the domain (), guarantees the enhancement in effective thermal conductivity. Moreover, this
dependency of the lower bound in (2.44) on the temperature implies that in the presence of
flow, the effective thermal conductivity will increase and that values of the effective thermal
conductivity used in large-scale sea ice and climate models without accounting for advection
are probably well off from the correct values in those situations where a brine velocity field is
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active. These bounds highlight the importance of accounting for this enhancement to improve
accuracy in global climate models. Further, this corroborates the experimental findings of
Trodahl et al. [9], who proposed an enhancement in thermal conductivity for temperatures
beyond the critical temperature for percolation [13,50], due to the added convective flow, see
figure 4b. To verify the analytical findings presented in §2 and §3, we will proceed with a
numerical validation through the implementation of subsampling simulations.

4. Comparison of bounds with simulations and field data

In this section, we provide a quantitative validation for our analytic bounds by numerically
estimating the diagonal elements of x*. The advection-diffusion equation (2.1) is the Fok-
ker-Planck equation for the probability density of a random process governed by an SDE
[57]. Leveraging this relationship, we employ the methods developed by Cotter and Pavliotis to
estimate the effective thermal conductivity x* [58]. Additionally, we qualitatively compare our
bounds with Antarctic field data, as reported in [9].

Introducing a scaled bulk fluid velocity field 1 = 0(x, 7) at the position x and time 7, defined

as U =cou and satisfying V - =0, and a change of variables t = cpt, the advection-diffusion
(2.1) takes the form
oT _ A

5 kAT+u- VT, (4.1)
where T is the temperature and x is the uniform conductivity of sea ice in the absence of
fluid flow. By considering T to be a probability density function, we can interpret (4.1) as a
Fokker—Planck equation associated with an SDE. In particular, (4.1) corresponds to a Langevin
equation of the form [48,57,59,60]

dx _dx@), 4.2)
dr
. . . . ey s .. dwy .
where W is the Wiener process, or Brownian motion, with its time derivative representing

dr

Gaussian white noise. Thus, the realization of a random process undergoing advection and
diffusion, X, = x(7), satisfies the It6 SDE

dX, = Q(X,, 7)dr +2c dW. (4.3)

To obtain the behaviour of the effective thermal conductivity we introduce the rescaled random
walk Xt = eX(t/€?), and obtain the rescaled SDE

dx, = 16(_ r) + 2 AW, (4.4)

Cotter & Pavliotis [58] showed that, for the time interval [0, E], with € < fixed, the scaled

random walk X; converges weakly on C[[0, ]; R?] to the Brownian motion
lirr}) dX; =42x* dW,. (4.5)
£—

Furthermore, Cotter & Pavliotis [58] showed that subsampling is required to obtain an accurate
expression for x*. We follow their method and present a brief summary of the method applied
to our SDE (4.4) as follows. We let k¥ be a function of temperature as in (3.3) or (3.4). For
7€[0,2], let 1, =mAT, m=0,...,M, with 70 =0, 1)y = €, and for each realization n=1, ..., N, the
Euler—Maruyama method updates an initial condition x,, ¢ = X, according to the recursive rule

Xn,m+1= Xpm ™+ ll-\l(xn, ms Tm)AT + \/ﬂAwn, ms (46)
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AWy, = Wyym+1~ Weym - 4.7)

See [61] for additional details. The subsampling method requires us to consider displacement
over time steps which are larger than Az, and we estimate the conductivity using the quadratic
variation

1 £

1
Kn, 6t = 55 (%nk+1= Xn, k) ® (X k1= X k), (4.8)
* =0

k=
where x,  are approximate sample paths of (4.4) generated with a time step 67 and subsampled
at times 7y, {T:Tk+1 =Tk +07,70=0,T =Kdé7,k=0,1, . . .,K} with 87> Ar. Moreover, Cotter &
Pavliotis [58] showed that for §t=¢° with o € (0,2), the error estimate on %}, 5, as in (4.7) is
bounded.

In figure 44, we present both our analytic bounds and numerical simulation results when « is
parametrized as in (3.3). We choose B=C =0.5,S=4ppt,v=0.I1ms " and p =890kg m . Here,
we choose the numerical parameters to minimize the order of the error. In particular, we choose
the time step A7 =5 x 10~* with subsampling time step 67 =5 x 107°. Each experiment ran for a
sample size of N =100, and a long time £ =1000 to allow advective enhancement to stabilize.
Initial positions of the random walk X, were uniformly chosen in the domain (= [0, 27'(]2.
Our simulation results quantitatively agree with the analytic bounds and capture a similar
enhancement of the effective thermal conductivity.

In their study, Trodahl et al. [9] collected in situ measurements of the thermal conductivity
of sea ice in Antarctica. Conducting measurements in such extreme conditions is challenging,
where the error in the measurements increases with rising temperature and subsequent increase
in sea ice permeability. Despite the large error in measurements, Trodahl et al. suggested that
the observed enhancement in effective thermal conductivity at warmer temperatures is due to
convective flow within the sea ice resulting from increased permeability of the sea ice. The
analytic bounds derived in (2.16) and (2.17) support this argument, as the field data lies within
our analytic bounds, see figure 4c. Furthermore, the region where the two lower bounds diverge
implies that such enhancement is guaranteed.

Note 4. Fiqure 4 depicts the numerical values of xi1. However, given the symmetry for x* when
B = C, the values of x5, are statistically the same. The case of B> C can better capture the anisotropy in
sea ice, in which case ki1 # K3,.

Note 5. Enhancement is guaranteed due to the gap between the two lower bounds for x*. The solid

(black) lower bound represents the thermal conductivity without fluid flow x, and the lower dashed (blue)
bound is the first lower bound involving the fluid velocity field. This area is marked grey in figure 4.

5. Conclusions

This paper presents a novel and rigorous mathematical framework for the characterization
of enhanced thermal transport in porous composite materials, focusing specifically on the
case of sea ice. Building upon previous theoretical advances [17,34,35,46], we have derived
the first analytic bounds for the effective thermal conductivity of sea ice for two models of
convective bulk fluid flows that provide an initial approximation of flow fields in sea ice. Our
results establish that once a convective fluid flow is active in the sea ice, an enhancement is
expected in the effective thermal conductivity. Furthermore, the analytic bounds demonstrate a
close alignment with our numerical simulations, indicating that these techniques offer accurate
estimates of effective thermal conductivity in diffusion-dominated fluid flows, such as those
encountered in thermal transport through sea ice. Employing such convective fluid flows, while
mathematically convenient and physically relevant, does not exhibit the full complexity of fluid
exchange between the ocean and sea ice. When brine is rejected from the sea ice layer into
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the ocean, relatively fresh seawater enters the sea ice layer, impacting the temperature, salinity
and fluid properties within the system. The detailed modelling of such feedback mechanisms
is outside the scope of this paper. To overcome this difficulty, we assumed that the fluid
flow is imposed on the system and does not experience interactions with the system. In other
words, we assumed that the fluid flow is not affected by changes in temperature. Adopting a
predetermined fluid flow field made our analysis presented in this paper feasible.

In situ measurements of the thermal conductivity of sea ice present significant challenges,
leading to a scarcity of available data. Collecting these measurements under harsh and variable
conditions requires sophisticated equipment and methodologies. Additionally, as temperatures
increase and sea ice becomes permeable, the difficulty of accurately collecting such data
increases. As a result, the most recent comprehensive in situ study of sea ice thermal conduc-
tivity was conducted nearly two decades ago [9,62]. This lapse in updated measurements is
particularly relevant given the dynamic nature of sea ice. Recent years have witnessed a shift
in the composition of sea ice, with an increase in first-year ice [63]. First-year ice has different
physical properties compared with multi-year ice and, in particular, the brine rejection that
occurs in first-year ice results in convective flow within the mushy layer, which enhances the
thermal conductivity. In 2001, Trodahl et al. assumed an increase in thermal conductivity within
sea ice at higher temperatures due to fluid flow, as per their measurements [9]. Our find-
ings, derived from an analytical mathematical model, support this hypothesis. Although the
empirical data from Trodahl et al. is subject to significant uncertainties, our results conclusively
demonstrate that an enhancement in effective thermal conductivity is inevitable at warmer
temperatures, where sea ice becomes permeable to fluid flow. This provides a theoretical
underpinning to the observed phenomena, highlighting the critical role of temperature and
fluid dynamics in the thermal properties of sea ice. Updated in situ measurements are required
to accurately understand and predict the thermal dynamics of sea ice, especially in the context
of global climate change and its impact on polar regions.

The results of this paper extend significantly into the realm of climate modelling, with the
results indicating that the addition of convective flow within sea ice could cause the effective
thermal conductivity to increase by a factor of roughly 2-3. This enhancement primarily applies
to the lower, warmer section of the sea ice where temperature and permeability are sufficient
for convection. During the freezing season, this effect is confined to the bottom 10 cm, and
while full permeability may occur in summer, the vertical temperature gradients and resulting
heat fluxes are much smaller. This finding suggests a potential underestimation in calculating
heat flux by a similar factor in existing climate models. Global climate models might benefit
from incorporating the bounds presented in this paper, which will, under certain conditions,
allow them to capture the enhancement of thermal transport through sea ice in their models.
Recognizing and addressing this discrepancy is crucial for increasing the accuracy of climate
projections. The integration of a flexible, convective flow-dependent thermal conductivity
mechanism into climate models could improve our understanding of sea ice dynamics and
contribute to more precise predictions of ice growth and melt patterns, especially with rising
temperatures.

The significance of this paper extends beyond the specific context of this study, indeed, to
thermal transport through almost any porous medium where the pore space is filled with
a fluid that can move. Our work here also applies to the bulk transport of other tracers
through almost any porous medium. In sea ice, our results can, in principle, be applied to
advection—diffusion of salt or nutrients being transported through the ice, as well as heat.
Moreover, our methodology incorporates the Péclet number in the derivation of the bounds.
As the Péclet number holds broad relevance for transport phenomena in materials with a
porous microstructure, our results offer applicability to a broad range of systems beyond sea
ice. Finally, while representations of the Péclet number as a function of physical properties of
a given specific porous medium are available in the literature, this paper suggests the first
physical representation of the Péclet number as a function of temperature and salinity in the
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context of sea ice. While outside the scope of this paper, such a representation will allow us to
relate the ratio of advection to diffusion with changes in temperature.

In conclusion, this research establishes a rigorous mathematical foundation for investigating
and quantifying the enhanced thermal transport in composite materials, with a particular
focus on sea ice. Our study provides valuable analytic bounds, validated through numerical
simulations and field data, which serve as robust tools for characterizing effective thermal
conductivity. Furthermore, these results provide an initial step towards understanding effective
thermal conductivity in the presence of convective flow in sea ice. Future projects should
try to fully capture the precise structure of the natural convective flow, incorporate variable
processes inherent to the system, such as brine rejection, and capture the dependence of the
fluid flow on heterogeneity and porous structure of the sea ice. In addition, the inclusion of
melting and freezing processes, which affect the fluid flow properties, brine volume fraction
and connectivity, can improve the estimated bounds. Further research aiming to refine the
models to account for the detailed characteristics of convective flow will be vital to building on
the bounds established in this study. The results we have presented will serve as a cornerstone
for developing more accurate and realistic models of thermal transport in sea ice. Additional
future directions involve validating our methods further with field data and integrating our
results into climate models to enhance predictions related to polar sea ice and climate processes.
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