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1 | INTRODUCTION

This dynamic symbiosis plays a large role in successful plant performance, given that
AMEF help to ameliorate plant responses to abiotic and biotic stressors. Although the
importance of this symbiosis is clear, less is known about what may be driving this
symbiosis, the plant's need for nutrients or the excess of plant photosynthate being
transferred to the AMF, information critical to assess the functionality of this relation-
ship. Characterizing the AMF community along a natural plant productivity gradient
is a first step in understanding how this symbiosis may vary across the landscape. We
surveyed the AMF community diversity at 12 sites along a plant productivity gradient
driven by soil nitrogen availability. We found that AMF diversity in soil environmental
DNA significantly increased along with the growth of the host plants Acer rubrum
and A. saccharum., a widespread tree genus. These increases also coincided with a
natural soil inorganic N availability gradient. We hypothesize photosynthate from the
increased tree growth is being allocated to the belowground AMF community, leading
to an increase in diversity. These findings contribute to understanding this complex
symbiosis through the lens of AMF turnover and suggest that a more diverse AMF

community is associated with increased host-plant performance.
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pathogens (Lanfranco et al., 2016). Through this symbiosis, the plant

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that as-
sociate with the roots of many terrestrial plants (Smith & Read, 2008;
Van Der Heijden et al., 2015). The AMF symbiosis is ancient and pro-
vides biotic and abiotic advantages to terrestrial plants, such as in-

creased access to water and nutrients as well as protection against

host provides up to 20% of the photosynthetically fixed carbon to
the symbiont, which sustains their ability to benefit host plant per-
formance (Brundrett & Tedersoo, 2018; Roth & Paszkowski, 2017,
Smith et al., 2011; Smith & Read, 2008). As a result, differences in
plant productivity could shape the composition and diversity of AMF

communities (Figure 1) by influencing the amount of photosynthate
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FIGURE 1 Conceptual diagram displaying the interplay between the natural resource availability gradient and increasing plant growth
over the gradient, plant communities, AMF community composition and diversity, and plant performance. Image created with BioRender.

com.

allocated belowground. Although the nature of this reciprocal rela-
tionship is clear, we understand little regarding changes in AMF com-
munity composition along gradients of plant productivity. Do shifts
in AMF composition and diversity result from plant nutrient demand,
greater amounts of photosynthate allocated belowground to AMF
symbionts, or some combination of both? Furthermore, gaining in-
sight into how AMF community composition and diversity changes
along plant productivity gradients may reveal concomitant changes
in AMF community function. To address this knowledge gap, we ex-
amined the diversity of AMF communities associated with individ-
ual trees along a naturally occurring gradient of plant productivity.
As Earth System Models (ESM) aim to incorporate the role of the
mycorrhizal communities on plant productivity, understanding this
knowledge gap becomes critical for ensuring accurate predictions of
terrestrial productivity and carbon storage (Reich et al., 2006; Terrer
etal.,, 2019; Wieder et al., 2015).

Arbuscular mycorrhizal fungi community composition and diver-
sity have variable impacts on host plant performance. For example,
the interactions between AMF and the host plant can range from
mutualism to antagonism, depending on the specific environmental
conditions (Ibadnez & McCarthy-Neumann, 2016; Wang et al., 2023);
however, AMF are mostly known for their role in facilitating nu-
trient uptake, specifically nitrogen (N) and phosphorus (P) (Wang

et al., 2023; Xie et al., 2022). Nitrogen is acquired by plants through
the mycorrhizal interface, wherein AMF transfer inorganic N to
the host using high affinity nutrient transporters in the extraradi-
cal mycelium (ERM) (Biicking & Kafle, 2015; Hodge & Fitter, 2010).
Increased plant performance resulting AMF symbioses has been
documented in a wide range of environments as well as among plant
taxa (Diagne et al., 2020; Nakmee et al., 2016). Despite these obser-
vations, positive, negative, and neutral responses of plant perfor-
mance to AMF have occurred, suggesting that the benefit or cost of
AMF can be dependent on multiple environmental factors (Egerton-
Warburton et al., 2007). Presently, there is ambiguity in how these
symbioses function, i.e., are they driven by plant nutrient demand,
by the belowground allocation of photosynthate to AMF, or both?
Under similar environmental conditions, such as climate and
soil type, plant productivity is usually driven by soil resource avail-
ability (i.e., soil N availability; Ordofiez et al., 2009; Rennenberg
et al., 2009). Despite greater amounts of photosynthate available for
belowground allocation when soil resources are abundant, there is
likely a decreasing benefit of the AMF symbiosis to the host plant
(Ma et al., 2021); the greatest benefit to plant performance appears
to occur in nutrient-poor soil (Bertolazi et al., 2018). As a result,
AMF community composition, diversity, and function could change
as plant productivity increases across a soil nutrient gradient. In a
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natural grassland experiment, AMF species richness was positively
correlated with plant belowground richness and plant community
biomass (Hiiesalu et al., 2014), suggesting that plant excess photo-
synthate, and not plant nutrient demand, shape AMF richness.

Soil pH and moisture are two of the main environmental drivers
of AMF community composition and diversity (Dumbrell et al., 2010).
The range of soil pH limits mycorrhizal colonization and subsequent
growth, which in turn impacts the overall community composition
(Chen et al., 2022). AMF communities also are sensitive to soil mois-
ture, because AMF spores in the soil require moisture to germinate
and colonize the plant roots, as well as support extraradical mycelial
growth (Wang et al., 2021). Finally, soil texture impacts AMF com-
munity diversity as AMF function can shift with varying textures
(Lekberg et al., 2007). Therefore, disentangling how AMF commu-
nity composition and diversity vary along gradients of plant produc-
tivity needs to account for potentially covarying edaphic conditions.

Insights into this interplay may be gained by studying the compo-
sition and diversity of AMF communities of a single host plant that
occur across a gradient of plant productivity under similar climatic
and soil conditions. Using a naturally occurring gradient of soil N
availability along which plant growth increases, we quantified the
composition, community turnover, and diversity of AMF on a sin-
gle host tree genus (Acer rubrum and A. saccharum). We sampled,
processed, and sequenced soil samples directly from individual trees
across a net N mineralization gradient. This gradient has remained
stable over time (Argiroff et al., 2022; Pellitier, Ibafez et al., 2021;
Pellitier, Zak et al., 2021; Zak et al., 1989; Zak & Pregitzer, 1990) and
is well-suited to provide insight into plant-mycorrhizal relationships,
especially given that differences in climate, soil texture, and other
physical properties are minimal across sites. Using this approach, we
cannot discern causation in the bi-directional interaction between a
host plant and its AMF community, but as a first step, we can reveal
patterns in AMF diversity along a natural soil resource availability
gradient that is linked to plant performance. Specifically, our objec-
tive was to evaluate the diversity of AMF communities of individual
trees along a naturally occurring gradient of soil inorganic N avail-
ability in northern broadleaf temperate forests. Understanding the
diversity of AMF communities along naturally occurring plant pro-
ductivity gradient could shed light on predicting potential function
of AMF in fostering plant growth, which has now been incorporated
into global biogeochemical models (Terrer et al., 2018) predicting
terrestrial productivity and carbon storage.

2 | MATERIALS AND METHODS
2.1 | Site descriptions and study design

We sampled the soil around 42 Acer rubrum (red maple) and 30 A.
saccharum (sugar maple) trees across a natural soil inorganic N avail-
ability gradient in the Manistee National Forest in northern Lower
Michigan, USA (Figure S1; gradient spans ~76 km). Trees were located
in 12 even-aged second growth stands (sites) that have regenerated
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following clear-cutting in the early 20th century and have been pre-
viously described (Argiroff et al., 2022; Pellitier, Zak et al., 2021; Zak
et al., 1986). Both maple species are common and widely distributed
across eastern North America, and broadly occur within these north-
ern hardwood forests. Dominant overstory individual within each
site were selected for this study. Acer rubrum is known to thrive on
diverse sites, from dry ridges and southwest slopes to peat bogs and
swamps, and it is moderately shade tolerant (Burns & Honkala, 1990).
Acer saccharum is not as widely distributed as A. rubrum, and grows
on mesic and well-drained soil; it is shade tolerant and slow growing
(Burns & Honkala, 1990). Across our study sites, N availability ranges
from ~80 to 120kgNha year™, which captures the full range of N
availability in the upper Lake States region (Zak & Pregitzer, 1990).
Variation in inorganic N availability that creates the natural gradi-
ent has arisen from the effects of physiography on microclimate
and nutrient retention over the past 10,000years, and this gradient
has remained seasonally and inter-annually stable (Pellitier, Ibafnez
et al., 2021; Pellitier, Zak et al., 2021; Zak et al., 1989). Soil texture
is uniform (~85% sand; Zak et al., 1989) and macroclimate (i.e., an-
nual precipitation and temperature) does not differ due to close geo-

graphic proximity among stands (separated by <50km).

2.2 | Treesampling

In June 2022, at each site, we identified Acer individuals larger than
10cm diameter at breast height (1.3m; DBH) within each forest
stand. We extracted tree cores from five individuals at DBH using
Haglof 5.15 mm increment borers (Haglof Inc.). The north and south
side of each tree was cored to the pith, and cores were stored in
paper straws until they could be dried. We dried core samples over-
night in a 100°C oven and mounted them afterwards in cradles.
Cores were then sanded with progressively finer sandpapers start-
ing at 100 grit and ending at 1600 grit. We digitized the prepared
samples using a flatbed scanner at a resolution of 1200 dpi.

We measured annual ring width (growth) of digitized scans at a
precision of 0.001 mm using the Cybis CooRecorder program. We
then used Cybis CDendro to crossdate samples and assemble dif-
ferent chronologies by site and species, estimating pith using the
geometric method if not present on the sample (Duncan, 1989).
Correlations among chronologies (expressed population signal, EPS)
vary between 0.57 and 0.79 for A. rubrum and 0.42 and 0.78 for A.
saccharum. We estimated historical DBH for treei in year y using ring
width and the diameter of trees in 2022. To measure yearly growth

for use in our analyses, we calculated Basal Area Increment (BAI) as:

(1)

) DBH,, > DBH;,_,?
BAlLy =me — = — — "
2.3 | Tree core analysis

Tree basal area increment (BAIl) estimates of each tree from
1981 to 2021 were analyzed as a function of N mineralization
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(Nmin) in the soil collected around each tree, and as a function
of other variables known to be associated with aboveground
tree growth in these species, size (InDBH) (Bigelow et al., 2021;
Cook, 1990; Duncan, 1989), growth the previous year (BAI,U,

lag effect; Wang & Ibanez, 2022), minimum temperature in May
(minMay; a proxy for beginning, and length, of the growing sea-
son; Ibanez et al., 2018; Pellitier, Ibafnez et al., 2021; Pellitier, Zak
et al., 2021). We also included spatially explicit random effects
(SERE) to account for any spatial dependencies within each site
not accounted for by the covariates. We tried several combina-
tions of covariates and functions and described below the model
with the best fit based on deviance information criterion (DIC;
Spiegelhalter et al., 2002). For each species independently, we

modeled BAl fortreeiinyeary (baihy) with alog-normal likelihood:

BAli,y ~ LnormalD;,, 6?;, ()

And process model:
D;, =a+/31-Nmini+ﬂ2-BAI,-Vy_1+ﬂ3In(DBH,V)

+f4+MayminTemp, + SERE; )

To account for an increase in variance as growth increases with a
greater DBH, we estimated the variance (¢2;,) as a function of DBH
(Lines etal.,, 2012):6%;; = a+ b« In(DBH;, ). Spatially explicit random
effects for each tree i were estimated as a function of distance to

neighbor j (Distanceu) using a decay function:

No.Neigh;
SEREi~Exp0nentia|< Z emoDanes; "§ERE> (4)
j=1

All model parameters were estimated within a Bayesian frame-
work from non-informative prior distributions, a ~ Uniform(0, 5),
B, ~ Normal(0, 1),a ~ logNormal(1,0.001), b ~ Normal(0,0.001),

= exp(d), & ~ Normal(0, 1), and O'SERE ~ Uniform(O, 10).

Analyses were conducted using JAGS (Plummer, 2021) and the
rjags package in R (R Core Team, 2023). We ran three MCMC chains
for 10,000 iterations until convergence was reached. The posterior
parameter means, standard deviations, and 95% credible intervals

were then estimated across 50,000 iterations.

2.4 | Soil sampling

At the time of tree core extraction, we collected soil cores in a
2-m radius around each individual tree. After removing intact and
partially decayed litter (Oi and Oe horizons), eight soil cores (5-
cm diameter) were collected at evenly spaced intervals to a depth
of 5cm around each individual tree. The cores were composited
by individual tree and transported on ice to the laboratory. We
passed the soils through a 2-mm sieve and immediately stored a
subsample at -80°C for characterization of AMF communities.
We used two additional fresh subsamples for the determination
of inorganic N availability (described below) and air-dried the
remainder.

2.5 | Characterization of soil properties

We used 35-day laboratory net N mineralization assays to re-
confirm soil inorganic N availability among our study sites (Vitousek
et al.,, 1982; Zak et al., 1989). Specifically, we extracted inorganic
N (NO,™ and NH,*) with 2M KCI, then measured the initial and
post-incubation extracts using an AQ2 Discrete Analyzer (SEAL
Analytical). Laboratory net N mineralization measurements are a
robust representation of inorganic N availability, because they are
strongly correlated with in situ net N mineralization rates across
these forest ecosystems (Zak et al., 1989; Zak & Pregitzer, 1990).
Soil pH was measured using a 1:1 ratio of air dried soil and deionized
water, and C and N were determined using a CN analyzer (LECO) as

previously described by (Argiroff et al., 2022).

2.6 | Microbial community characterization

We extracted genomic DNA from four 0.25g subsamples of soil
from around each tree (n=72) using the PowerLyzer PowerSoil DNA
Isolation Kit (Qiagen) with bead beading at 3000rpm for 30s and fol-
lowing the manufacturer's protocol. All extracted DNA quality and
quantity was checked using gel electrophoresis and the Quant-iT
PicoGreen kit method (Thermo Fisher Scientific). The 18S region was
amplified using modified NS31 and AML2, well characterized prim-
ers for AMF, to contain barcodes and lllumina dual-indexed primers
(Table S1; Lee et al., 2008; Morgan & Egerton-Warburton, 2017,
Simon et al., 1992). All PCRs were performed in triplicate following
a modified protocol using Phusion High Fidelity DNA Polymerase
and master mix (New England BiolLabs, Argiroff et al., 2022; Taylor
etal., 2016). Each PCR contained 5 uL High Fidelity Phusion 5 x buffer,
0.7 pL each primer (10 uM initial concentration), 2 pL dANTPs (20 mmol™
initial concentration of each dNTP), 2 uL of template DNA (DNA con-
centration ranged from 8.5 to 55ng/pL) and 0.2 L of Phusion High
Fidelity DNA Polymerase (2000U/mL) brought to a final volume of
25pL with 14.4 L molecular-grade water. PCR conditions consisted
of an initial denaturation step at 95°C for 5min, followed by 30cycles
of the following: 30s at 95°C, 60s at 69°C and 45s at 72°C followed
by a final extension step of 72°C for 3min. PCR libraries were se-
quenced with MiSeq 2x250bp with v2 chemistry (lllumina) at the
Advanced Genomics Core at the University of Michigan.

2.7 | AMF community composition

We calculated amplicon sequence variants (ASVs; Callahan
et al., 2017; Pauvert et al., 2019) using forward reads only as there
was no overlap and previous studies have found that forward reads
alone resolve AMF taxonomically (Davison et al., 2012; Morgan &
Egerton-Warburton, 2017). ASVs were created using the “DADA2"
pipeline (Callahan et al., 2016; Rosen et al., 2012) with “cuta-
dapt” (Martin, 2011) in R version 4.3.0 (R Core Team, 2023) and
RStudio version 4.3.0 (Posit team, 2023). All reads were filtered and
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trimmed using the following parameters: manN=0, truncLen=240,
maxEE=1.75, trunQ=2, minLen=200. We then assigned taxonomy
using a local blast environment with a modified MaarjAM database
(Opik et al., 2010). The modified MaarjAM (non-type) database was
edited to remove sequences with excessively short or long length and
with any ambiguous bases. Taxonomic assignments were assigned and
filtered using a bitscore of 300 or higher as small portions of the 18S
region had a high percent identity but with only partial overlap, re-
sulting in an incorrect assignment by percent ID or e-value alone; this
step also removed suspected non-AMF reads. To assess AMF diversity
across the N mineralization gradient, we used the shared ASV com-
munities between both maple species (147 ASVs) and calculated the
Chaol richness index (Chao, 1984). The Chaol index is an indicator of
species richness in a sample and is widely used in microbial ecology for
assessing community diversity (Hughes et al., 2001; Kim et al., 2017).

2.8 | Phylogenetic analysis of microbial data

A multiple sequence alignment (MSA) was created using MAFFT
with the L-INS-i method (Katoh, 2002). The MSA contained virtual
taxa (VTs) assignments from representative Glomeromycota genera
as well as our ASV reads. Next, we generated a maximum likelihood
phylogenetic tree with 1000 bootstrap replicates. The phyloge-
netic trees were inferred using a GTR+G+1+Gamma4 model in
MEGA11 (Tamura et al., 2021). The phylogenetic tree was visual-
ized and annotated using iTOL (Figure S2; Letunic & Bork, 2021).

2.9 | Statistical analyses of microbial data

The Chaol diversity relationship to average BAl per tree over the past
41years and net N mineralization (Figure 3) were assessed using lin-
ear regression. To assess the turnover of the dominant AMF commu-
nity associated with our environmental gradients, we used “TITAN2”
(Baker & King, 2010). ASVs and VTs with both purity and reliability
20.95 were considered significantly related to BAI or the N miner-
alization gradient (Baker & King, 2010). Altogether, the following
packages were used, “tidyverse” package for data filtering and visu-
alization (Wickham et al., 2019), “TITAN2" to relate ASV and VT abun-
dances to continuously distributed variables (Baker & King, 2010),
“decostand” from the “vegan” package for data transformation
(Oksanen et al., 2022), and “phyloseq” and “Biostrings” (McMurdie
& Holmes, 2013; Pagés et al., 2020) for amplicon sequencing data

manipulation. All statistical analyses were performed in R.

3 | RESULTS
3.1 | Treegrowth

After discounting damaged tree cores we analyzed tree growth data for
38 A. rubrum individuals and 26 A. saccharum trees. Net N mineralization
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ranged from 0.22 to 1.84 ugg'1 day'1 for A. rubrum and from 0.34
to 1.87 pgg'1 day™ for A. saccharum (Figure 2). As we expected, tree
growth increased with increasing levels of N mineralization for the two
species (Figure 2). The model goodness of fit (R?) was 0.80 for A. rubrum
and 0.76 for A. saccharum. Growth was also significantly associated with
growth the previous year, and, in the case of A. rubrum, with higher May
minimum temperatures (Figure 2). Parameter values of the analyses are

found in the supplemental information (Table S3).

3.2 | Characterization of AMF taxa and their
variability across the N mineralization gradient

Our sequencing effort resulted in approximately 5 million reads. After
quality control and removal of non-AMF reads, we had 499 ASVs
across all four orders within Glomeromycota. Taxonomic assign-
ment to VTs with the MaarjAM database showed that 183 ASVs col-
lapsed into 51 individual VTs within six genera (Glomus, Paraglomus,
Acaulospora, Diversispora, Claroideospora, and Archaeospora). To verify
taxonomic assignments, we constructed a phylogenetic tree that con-
firmed our sequences spanned all known orders of AMF (Figure S2).
However, even with our sequencing coverage of Glomeromycota, the
bulk of the sequences were assigned to the genus Glomus (Figure S2).

To better understand the dominant members within the AMF
community, we focused on the ASVs that occurred on multiple
trees across sites and only those that appeared from both tree spe-
cies which resulted in 171 ASVs total. The AMF species richness
of this shared community significantly increased as tree growth,
measured as average BAI per tree from the past 41 years, signifi-
cantly increased (F1,62=34'2’ p<0.001, adj. R?=0.35; Figure 3a).
There was also a significant relationship to the net N mineraliza-
tion rate (FMS: 25.3, p<0.001, adj. R?=0.26; Figure 3b).

Furthermore, to evaluate AMF community turnover along our
environmental gradient, we used TITAN2 analysis. TITAN2 tested
individual taxa, AMF ASVs and VTs, against the environmental gra-
dients and two metrics, purity and reliability, were used to evaluate
the strength of the relationship of that taxon to the gradients. We
tested for AMF ASVs (Figure 4) and VTs (Figure 5) that significantly
responded to BAI and the net N mineralization gradient, based on
Hellinger-transformed abundances (Legendre & Legendre, 2012).
We found that 56 ASVs increased in relative abundance to plant
growth measured as BAI, whereas only 5 decreased (Figure 4a).
Similarly, 41 ASVs increased as N mineralization increased, whereas
2 ASVs decreased (Figure 4b). When all ASVs were collapsed into
their respective VT assignments, we again examined these rela-
tionships between the relative abundance of the VTs compared
with BAI and along the N mineralization gradient (Figure 5). We
found that 12 VTs increased as BAl increased, whereas 2 decreased
(Figure 5a), along with a similar relationship between N mineraliza-
tion with 3 VTs that increased and 2 that decreased (Figure 5b).
Overall, we see a significant increase in AMF ASVs, and corre-
sponding taxonomic VTs, as plant growth (BAI) and inorganic N
availability (N mineralization) significantly increase.
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FIGURE 2 Growth data (dots) and predicted growth (lines) of Acer rubrum and A. saccharum increasing along the nitrogen mineralization
gradient (left panels). Coefficients of the variables included in the analysis are net N mineralization rate in soil (Nmin), tree growth from the
previous year (BAIS y-1), tree size (InDBH), and minimum temperature in May (MayMinTemp) (right panels). Asterisks indicate statistical
significance; 95% credible intervals do not overlap with zero. Additional information is found in Table S3.

To highlight some of the prevalent VTs that appear in both in-
creasing BAIl and net N mineralization, VT00166 and VT00219
have previously been described as generalists and all significant
VTs shown are prevalent at a global scale across most biomes
(Davison et al., 2011; Djotan et al., 2023; Opik et al., 2010; Vétrovsky
et al., 2023). Both VT00166 and VT00219 have been previously ob-
served on Acer spp. All VTs have previously been found in soil or on
plant roots (Opik et al., 2010) and VT00219 has been identified as
an indicator species in higher nutrient treatments (Liu et al., 2021).
VT00385, which significantly responded negatively to both BAI and
inorganic N availability, is also found in multiple ecosystem types
and was previously shown to decrease with higher ambient N (Van
Diepen et al., 2011).

4 | DISCUSSION

Soil resource availability (i.e., N) is a main driver of plant productiv-
ity, the accessibility to which is facilitated by the AMF symbiosis. In
turn, plants contribute to the symbiosis with photosynthate. What is

not clear is whether the composition and diversity of the AMF com-
munity, and thus its function, results from plant nutrient demand,
by the supply of photosynthate belowground, or both (Figure 1).
Although numerous studies have shown the impact of AMF on plant
performance (Chitarra et al., 2016; Delavaux et al., 2017; Lanfranco
et al.,, 2016; Smith & Read, 2008), we lack a clear understanding
of how plant productivity may shape the composition, diversity,
and function of AMF communities. By studying the AMF commu-
nity along tree growth and a soil resource gradient, we sought to
reveal the relationship between plant performance and AMF com-
munity composition and diversity. Although disentangling causative
mechanisms in this relationship is difficult without experimentation,
we observed a high level of species turnover and greater diversity
of AMF communities that corresponded to increases in host plant
productivity.

If plants at the high end of soil N availability gradients depend
less on AMF to meet their nutrient demand, then it is possible that
greater amounts of photosynthate are available for their AMF sym-
bionts. More specifically, trees on the higher end of the nutrient gra-
dient may produce and allocate more photosynthate belowground,
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FIGURE 3 The relationship between Chaol AMF species richness and the (a) mean BAI per tree over the last 41 years representative

of Acer rubrum and A. saccharum growth and (b) the net N mineralization gradient. The plots represent significant regressions with Chaol
species richness as the dependent variable and (a) mean BAI and (b) N mineralization gradient as the independent variables, from which the
adjusted R2 was calculated, the shaded area represents 95% confidence intervals.

leading to greater availability with less competition for these re-
sources, and thus promotion of greater diversity within the AMF
community. Overall, a more diverse AMF community appears to re-
sult from greater amounts of photosynthate, along with increased
tree growth (Figures 2 and 3), being allocated to fine roots and po-
tentially their AMF symbionts (Fellbaum et al., 2012, 2014). Whether
these compositional shifts translate to functional change in the AMF
community remains an open question.

Along our N mineralization gradient there were some shifts in
soil pH as expected, and minimal changes in soil moisture, and tex-
ture (Table S2). Although soil pH varies across the gradient, values

range from 3.6 to 5.4 among sites. Soil moisture varied from 6.7
to 18.6% across sites, and soil texture is consistent, ~90% sand,
throughout all sites (Zak et al., 1989), eliminating it as a contribu-
tor to the increase in AMF diversity. Although these soil environ-
mental factors play a part in shaping AMF community composition
and diversity, our results suggest increased plant productivity and
potentially more photosynthate, originating from increased soil N
availability, are driving changes in AMF community diversity.
Overall, AMF composition and diversity within plant roots and
the soil is highly variable and differs seasonally, annually, method-
ologically, by host plant, and by ecosystem type (Egerton-Warburton
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FIGURE 4 Responses to (a) tree growth measured as BAIl and (b) inorganic N availability for |nd|V|duaI AMF ASVs in soil determined by
TITANZ2 analysis. For BAI, 56 of our AMF ASVs increased, whereas only 5 decreased. For N mineralization, 41 ASVs increased, whereas 2
decreased. For both plots, bars display median Z-scores (across 1000 bootstrap replicates), which represent the magnitude of the change

in ASV relative abundance across BAI and the gradient of inorganic N availability, respectively. Positive Z-scores indicate genera that
increased with increasing BAI or inorganic N availability, whereas negative Z-scores indicate genera that decreased in relative abundance
with BAI or increasing inorganic N availability. We considered responses with both purity and reliability 20.95 as statistically significant. ASV
abundances were Hellinger-transformed prior to TITAN2 analysis and shared across both Acer spp.
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FIGURE 5 Responses to (a) tree growth measured as BAIl and (b) inorganic N availability for individual virtual taxa (VTs) in soil determined
by TITAN2 analysis. For BAI, 12 of our AMF VTs increased, whereas only 2 decreased. For N mineralization, 3 VTs increased, whereas 2
decreased. For both plots, bars display median Z-scores (across 1000 bootstrap replicates), which represent the magnitude of the change

in VT relative abundance across BAI and the gradient of inorganic N availability, respectively. Positive Z-scores indicate VTs that increased
with increasing BAI or inorganic N availability, whereas negative Z-scores indicate VTs that decreased in relative abundance with BAI or
increasing inorganic N availability. We considered responses with both purity and reliability 20.95 as statistically significant. VT abundances
were Hellinger-transformed prior to TITANZ2 analysis and shared across both Acer spp.
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et al., 2007; Helgason et al., 1998; Johnson et al., 2003; Treseder &
Allen, 2002; Van Der Heijden et al., 1998). By controlling for many
of these factors, we detected an increase in AMF richness along a
soil N availability gradient, yet the main genus across all sites was
Glomus (Figure S2). This increase in richness suggests an additive ef-
fect, wherein multiple AMF taxa, from the dominant Glomus along
with other genera, increased together across the gradient to create
an overall pattern of increased AMF diversity. We suspect this effect
likely results from increases in plant productivity along the gradient,
due to higher soil moisture and N availability, which would support
the more diverse AMF community by allocating more photosyn-
thate belowground. Previous research conducted in similar forests
of this region found that AMF communities on A. sacccharum roots
were also predominately colonized by Glomus and some Acaulospora
(Van Diepen et al., 2011). In addition to this, other studies have re-
ported a dominance of Glomus in the soil community. This may be
due to the ability of this genus to survive and propagate more effi-
ciently via pieces of mycelium or mycorrhizal root fragments (Daniell
et al., 2001; Hart & Reader, 2002; Suzuki et al., 2020). Given the in-
crease in AMF diversity as well as the increase in plant performance
of Acer spp. across the gradient, we cannot discern whether this is
being driven by either the plant or the AMF community; however,
we can conclude that there is an additive effect occurring in terms of
increasing AMF diversity.

It is important to acknowledge the challenges that arise from
studying the interplay of this symbiosis (Figure 1). Specifically, draw-
ing causation from the patterns that we have found proves especially
difficult. Given these patterns of AMF diversity, which coincide with
plant performance, we suggest that the next step is to examine the
way the trees are contributing to the allocation or selection of the
symbionts through the flux of photosynthate belowground. More
specifically, which components, traits, or environmental factors of
the plant community lead to a positive, negative, or neutral impact
on the AMF community (Figure 1). Disentangling this portion (plant
community influence of AMF community composition and diversity;
Figure 1) of the bi-directional symbiosis could lead to a more com-
prehensive understanding of the functionality of these interactions
and its role in the carbon cycle.

In addition to this, there are ambiguities that come with translat-
ing AMF community composition and diversity to potential function,
given current experimental tools and frameworks. Some of these am-
biguities arise from the biology of AMF, more specifically that they
are notoriously difficult to study as they are reliant on a plant host
for photosynthate, whereas some host plants can survive with or
without AMF symbionts. To note, few AMF species (i.e. Rhizophagus
spp. and Gigaspora spp.) can be cultured in a lab outside of their nat-
ural habitat in root organ cultures, but these taxa are the exception
(Kokkoris et al., 2024; Sugiura et al., 2020). It may also be possible
that we are unable to fully infer function using classic taxonomic and
phylogenetic approaches when studying AMF, as there may be de-
tails we are unable to capture within the intricate communication of
this bi-directional symbiosis. Regardless of these challenges, there
are multiple experimental approaches that have been implemented

to identify AMF and newer approaches to potentially infer function
of the AMF community, including spore morphological identifica-
tion, DNA and RNA sequencing, examining the proteome, and min-
ing genomes for the presence or absence of specific genes, such as
effector proteins (Aparicio Chacon et al., 2023; Beaudet et al., 2018;
Couto et al., 2013; Oehl et al., 2011; Venice et al., 2020; Victorino
et al., 2020). For example, effector proteins which are important for
establishing the initial symbiosis with the host plant may shed light
on how AMF physiology alters plants, and it has been suggested that
AMF may use effector proteins to their benefit (Aparicio Chacén
etal., 2023). These experimental tools are useful to generate data on
AMF community composition and diversity that allow researchers to
observe patterns, yet challenges remain in the translation of these
results to AMF function. To mitigate and work with these challenges,
we think it is necessary to continue to intentionally disentangle the
interplay between AMF and their hosts in natural systems to gener-
ate pertinent data for exploring the entirety of this symbiosis.

Taken together, our observations support the idea that increas-
ing AMF diversity along a natural resource gradient coincides with
increasing host-plant performance (AMF supports plant perfor-
mance; Figure 1). The additive effect occurring within the AMF
community that leads to an increase in diversity contributes to
the understanding of this complex symbiosis by examining AMF
community dynamics along this naturally occurring and highly sta-
ble resource gradient of soil N availability that also supports plant
growth. These findings emphasize the need to further understand
the bi-directional interactions between AMF, the plant hosts, and
their environments for a holistic understanding on their interplay in
natural gradients of resource availability. Finally, these results nat-
urally lead to questions that address the other side of the symbiosis
by linking aboveground tree growth models to the belowground
AMF community. Being able to connect the aboveground plant
performance to the belowground mycorrhizal communities through
this shared lens of soil mycorrhizal ecology and forest ecology, will
shed light on how these communities impact each other throughout
this complex symbiosis.
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