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Abstract

We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders.
We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups
of invertible O-form symmetries. These symmetries can arise as global symmetries in
quantum spin liquids, given by the quotient of the projective symmetry group by a non-
normal subgroup as invariant gauge group. We point out that such coset non-invertible
symmetries in topological orders can exhibit symmetry fractionalization: each anyon can
carry a “fractional charge” under the coset non-invertible symmetry given by a gauge
invariant superposition of fractional quantum numbers. We present various examples
using field theories and quantum double lattice models, such as fractional quantum Hall
systems with charge conjugation symmetry gauged and finite group gauge theory from
gauging a non-normal subgroup. They include symmetry enriched S; and 0(2) gauge
theories. We show that such systems have a fractionalized continuous non-invertible coset
symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a
gapless edge state if the boundary preserves the continuous non-invertible symmetry. We
propose a general approach for constructing coset symmetry defects using a “sandwich”
construction: non-invertible symmetry defects can generally be constructed from an
invertible defect sandwiched by condensation defects. The anomaly free condition for
finite coset symmetry is also identified.
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1 Introduction

Symmetry fractionalization describes how zero-form symmetry can act projectively in topologi-
cally ordered systems [1,2]. Given an underlying topological order and an invertible zero-form
symmetry, one can enumerate all of the mathematically consistent ways the symmetry can act
projectively. In particular, junctions of the symmetry defects can be modified by an Abelian
anyon.

Given the enormous body of work on fractionalization of invertible symmetries, it is natural
to consider the fractionalization of non-invertible symmetries (see [3-7] for recent reviews of
non-invertible symmetries). Examples of non-invertible symmetries are discussed extensively
in the literature. They occur in various field theories such as discussed in [8-17] and lattice
models such as discussed in [18-31]. In this work we present a first step toward extending
symmetry fractionalization to non-invertible symmetries.

As in the case of invertible symmetries, the anomalies of non-invertible symmetry constrain
the low energy dynamics [8,32-36]. Since the anomalies depend on the fractionalization
pattern [35-39], it is important to understand how non-invertible symmetry fractionalizes in
quantum systems.

We will focus on a class of non-invertible symmetries, given by cosets G/K for group G
and a non-normal subgroup K [6,11,40-43]. Such coset symmetries arise naturally in spin
liquids: when the microscopic model has symmetry G, i.e. the “projective symmetry group”, a
subgroup (the “invariant subgroup”) can act trivially at low energy and it is gauged [44-46].
Such models describe K gauge theory of spin liquids, and they have coset global symmetry
G/K, which is non-invertible for non-normal K. Thus, understanding the fractionalization of
the coset symmetry is important for such quantum spin liquids.
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For instance, in many condensed matter system the U(1) electromagnetism is usually treated
as a classical probe field. When the system has charge conjugation symmetry, we can consider
the situation where the electromagnetism can be extended to be Alice electromagnetism [47-49]
where the Z, charge conjugation is gauged. While the fluctuations of the U(1) gauge field
can be suppressed by the electric coupling, the fluctuations of the flat Z, gauge field are
not suppressed, leading naturally to a (U(1) % Z,) /Z, electromagnetic coset non-invertible
symmetry. This provides further motivation for studying such class of non-invertible symmetry.
We will show that such a system with coset symmetry can also have a well-defined electric Hall
conductance, that cannot be explained by taking the symmetry to be U(1).

1.1 Summary of results

Here we summarize the main results of the paper. We consider the coset non-invertible
symmetry expressed as G/K, obtained by gauging a discrete subgroup K of the invertible zero-
form symmetry G. The symmetry G can be either continuous or discrete. We show examples
where the coset symmetry is fractionalized in (2+1)D topological phases.

An example of such symmetry fractionalization is found in fractional quantum Hall (FQH)
systems with Z, charge conjugation symmetry gauged. By FQH system, we simply mean a
topological order with a zero-form U(1) symmetry that is fractionalized, leading to anyons
carrying fractional U(1) charge. For simplicity, we will consider bosonic FQH systems, but
the discussion can be extended to fermionic ones. In FQH states, the U(1) fractionalization is
understood by identifying an Abelian anyon v, called the vison, with the vortex of U(1) global
symmetry. Fractional U(1) charge of each anyon in the system is determined by its braiding
with v. In other words, the junction of U(1) symmetry defects is modified by a decoration of an
Abelian anyon v. When we gauge the charge conjugation of the (bosonic) Abelian FQH state
described by U(1),, Chern-Simons theory, the resulting theory is a non-Abelian topological
order described by O(2), Chern-Simons theory. The gauged FQH state now has a continuous
non-invertible symmetry (U(1) % Z,)/Z,. This symmetry is referred to as cosine symmetry,
since its non-invertible fusion rule is reminiscent of the product to sum formula of cos 6.

We point out that this cosine symmetry is fractionalized, where the anyons of O(2); (for
k =1 the anyons are Abelian) carries fractional charge under the continuous non-invertible
symmetry. This fractional charge of the anyon is a certain superposition of the opposite fractional
charges related by charge conjugation.

Since the conductivity matrix is even under charge conjugation, one can still define the
electric Hall conductance in the gauged system, which is now associated with the response
under the continuous non-invertible symmetry. While the fractional part of the U(1) electric
Hall conductance of the standard (bosonic) FQH state is determined by the spin of the Abelian
anyon as oy = 2h, mod 2, the vison after gauging the charge conjugation typically behaves
as a non-Abelian anyon. Hence, the Hall conductivity is no longer associated with the spin of
an Abelian anyon, but rather with the spin of a non-Abelian anyon. Therefore, the value of
Hall conductance for continuous non-invertible symmetry cannot generally be computed in the
same way as that for an invertible U(1) symmetry. We show that the nonzero Hall conductance
enforces the gapless edge state, once the boundary theory is required to preserve the cosine
symmetry.

Similar to Abelian FQH states, phases with fractionalization of non-invertible coset symmetry
can also be understood from modification of junctions of the zero-form symmetry defects.
To describe the junctions of the coset symmetry, we first need to describe the individual
defects. We show that the defects can be obtained using a “sandwich” of topological operators.
Specifically, the coset symmetry defects are generally described by an invertible symmetry
defects sandwiched by the non-invertible topological interfaces. This expression is useful
for systematically describing the fractionalization of the coset symmetry using the standard
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symmetry fractionalization theory of invertible zero-form symmetries [1]. We establish an
algebraic formalism of the fractionalization for coset symmetry G/K in (2+1)D bosonic TQFT,
in terms of the G-crossed braided fusion category interacting with the non-invertible topological
interfaces. When G is a finite group, we also find necessary conditions for the coset symmetry
G/K being free of 't Hooft anomalies.

We further find that fractionalized coset symmetry can be realized as an exact symmetry
of the microscopic lattice model of the non-Abelian topological order. In particular, we find a
fractionalized cosine symmetry in the S; quantum double model [18,50], which is arguably
the simplest exactly solvable lattice model that hosts non-Abelian topological order. This cosine
symmetry of the S3 quantum double model is understood as the resulting symmetry from
gauging the Z, charge conjugation of U(1) X Z, symmetry in the Z5 toric code. In the S;
quantum double model, the fractionalized cosine symmetry acts on a non-Abelian anyon to
produce the cosine of the non-trivial U(1) fractional charge g, reflecting that the non-Abelian
anyon carries a superposition of the fractional charge (q,—q).

The work is organized as follows. In section 2 we review the fractionalization of invertible
symmetry in terms of Abelian anyons. In section 3, we discuss a class of non-invertible coset
symmetry constructed from the outer automorphism, such as Z, charge conjugation of U(1).
In section 4, we construct quantum double lattice model for S5 enriched by non-invertible coset
symmetry. In section 5, we discuss general coset non-invertible symmetry and a bulk TQFT that
describes the symmetry, and use the bulk TQFT to derive dynamical consequences from the
coset symmetry. In section 6, we apply the discussion to provide construction of new quantum
spin liquids enriched with non-invertible coset symmetry, and give examples of new deconfined
quantum critical points with non-invertible symmetry. In section 7, we discuss the results and
mention several future directions.

2 Review of invertible symmetry fractionalizations

Let us first briefly review the fractionalization of invertible symmetry in (2+1)D. The subject is
discussed extensively in the literature (e.g. [1,39,51-53]), and we will only summarize the
properties relevant to our discussion.

2.1 Fractionalizations: modifying junctions of symmetry

An invertible g-form symmetry is generated by codimension-(q + 1) topological defects in
Euclidean spacetime that each have an inverse.! To fully specify the g-form symmetry, we also
need to specify the junctions of the domain walls. A codimension k > q + 1 junction where
multiple defects meet can be modified with the topological defects of (k — 1)-form symmetry.
The allowed modification is constrained by the higher-group structure of the symmetries [2].
In this work we will focus on ¢ = 0 and k = 2. For zero-form symmetry G and 1-form symmetry
A, the fractionalizations can be classified by H2(G, .A), which specifies the Abelian anyon at the
codimension-two junctions of G defects in (2+1)D [1].2 If the junction of three G domain walls
21,82, 818» are modified with additional 1-form symmetry defect n(g1, g2) € A, then the line
operators that braid with the junction acquire additional projective representation given by the
braiding phase with 1(g;, g>). The 1-form symmetry operators inserted at the junction modify
the correlation functions of the zero-form symmetry. This can result in additional anomalies
depending on the fractionalization (see e.g. [37-39]).

'Here, we will use defect and operators interchangeably.
2In the presence of 2-group symmetry, some fractionalization classes can be identified [38,39].
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In terms of symmetry operators on the Hilbert space, fractionalization means that the
fusion rules of the g-form symmetry generators U, (%) supported on a codimension-q spatial
region with boundary is modified compared with the generators on region without a boundary.
The spatial boundary can be modified with another codimension-(q + 1) symmetry generator
Uq4+1(9%) for a (g +1)-form symmetry. Such boundary modification affects the symmetry action
on excitations that have braiding with the Uy, ,(9X) symmetry.

A method of describing particular fractionalization class is breaking the 1-form symmetry A
with additional microscopic degrees of freedom to screen the 1-form symmetry generator, then
the 1-form symmetry generator is no longer topological and we do not have the freedom to
modify the junction. Rather, when the 1-form symmetry generator is stuck at the junction the
entire configuration is topological. Since there is no 1-form symmetry topological operators that
can modify the junction, there is no longer freedom of changing the fractionalization, and the
microscopic model without the 1-form symmetry corresponds to a particular fractionalization
class. For instance, in gauge theories we can break the center 1-form symmetry by introducing
heavy matter fields in the fundamental representation, and we can break the magnetic 1-form
symmetry (for instance, consider continuous gauge group in (3+1)D) by introducing dynamical
magnetic monopoles, which replace the non-simply connected gauge group such as U(1) with
a simply connected gauge group such as SU(2) of the same rank. In TQFT, the fractionalization
class is an additional data in TQFT enriched with symmetry.

2.2 Example: Fractional quantum Hall systems with U(1) symmetry

As an illustrative example, we can describe the fractionalization of U(1) symmetry in FQH
systems. For simplicity, we will only consider bosonic FQH systems. These theories can be
described as bosonic topological orders with G = U(1) zero-form symmetry.

The U(1) symmetry fractionalization is described by an Abelian anyon a inserted at the
junction of three U(1) transformations 6y, 6,,[0; + 6,],, where 6; ~ 0; + 27 are angles, and
[0]1,,, is the restriction of 6 to [0,27). The Abelian anyon can be written as v?(%1:92) where v is
an Abelian anyon called a vison, with n(6;, 65) = [01]2”[92];2_[91”2]2“ .3 This has the following
consequences:

* Particles can carry fractional U(1) charge given by the mutual statistics with v. The
particles that braid with the v with phase e? carry fractional charge given by ¢ /27 mod
1: the transformations by 6, 6, do not compose into that of [6; + 6,],,, but only up to a
phase e!3 (01 )2xH02lor—[01+60,)27)

* The self-statistics of the Abelian anyon at the junction results in nontrivial correlation
function of the U(1) symmetry defects. The fractional quantum Hall conductance o for
the U(1) symmetry is given by the spin of the Abelian anyon as o;; = 2h, mod 2 (see

e.g. [2]).

3 Fractionalization of non-invertible symmetry: An example

3.1 Coset non-invertible symmetry from outer automorphism

Let us describe a mechanism for coset non-invertible symmetry. We start with a system with an
invertible symmetry G, which has automorphism group Aut(G). G can be either continuous

3In fermionic systems, fractional quantum Hall states obey the spin/charge relation where the Z, subgroup of
the U(1) electromagnetism is identified with the fermion parity symmetry. This implies that there is an odd number
k such that vk = f is the transparent fermion. For instance, in the fermionic Laughlin state U(1),, the simplest
choice for v has spin 1/6 and k = 3.
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or discrete. We gauge a discrete symmetry K that acts on G by p : K — Aut(G). If p maps
elements in K to nontrivial elements of Aut(G), then the symmetry G becomes non-invertible.
To see this, we note that an operator U, for g € G is not gauge invariant under discrete gauging
if g is permuted by p. Instead, the well-defined symmetry generator is

Ug1 = @ Upi(e) > (M

kek

where [ g] is the orbit under the acti(N)n of K, which has length |K|/|K,| for stabilizer K, C K of
g. The non-invertible fusion rule of U follows from the invertible fusion rules of {U,,, (4} up to
condensation defects.*

We can describe the non-invertible symmetry as the coset

. . . GXx,K
Non-invertible coset symmetry G = X

where the discrete group K acts on G by p. Since K is not a normal subgroup for nontrivial
action p, the coset is not a group, but rather a non-invertible symmetry. In addition, when K is
not normal, the left and right cosets differ. Here, we will always refer to the right coset.

(2)

Example: cosine symmetry from gauging charge conjugation Consider G = U(1), and
K = Z, that acts on G by charge conjugation. Gauging K results in the non-invertible symmetry

U[Q] =Up®U_y, 3

where the U(1) transform is e'?, and & — —6 under charge conjugation. It satisfies the fusion
rule (here we take 6 # +0")

U[g] X U[g/] = U[9+9/] + U[@_@/] . 4

The above fusion rule is reminiscent of the formula 2 cos 8 cos 9’ = cos(@ +0’ ) + cos(@ -0’ ),
so this continuous non-invertible symmetry is referred to as cosine symmetry.

The cosine symmetry can be described by the coset O(2)/Z,, where Z, is the charge
conjugation. Since the Z, is not a normal subgroup, the coset is not a group, but rather a
non-invertible symmetry.

Example: Non-invertible SWAP symmetry Consider two copies of a system with K symmetry,
in total the theory has G = (K x K) X Z, symmetry, where the Z, exchanges the two copies and
thus swaps the two K groups. Let us then gauge one of the K non-normal subgroup symmetry:
this results in the non-invertible coset symmetry

G (KW xKk@)xz,
K@ J7¢®))

) ()

where the K symmetry in jth layer is written as K. In particular, the Z, SWAP symmetry
becomes non-invertible, with the fusion rule

SWAP x SWAP = Crepxn) ( Z Uk(z)) s (6)
kDK@
where Cgepx) is the condensation defect of the KM wilson lines Rep(KM) in the first

layer [54], and Uy is the generator of global K (2) symmetry in the second layer. An ex-
ample of non-invertible SWAP symmetry with K = Z, is found in [29].

“As we will show below, when the fusion of U, () produces the trivial element in G, the fusion outcome is
replaced by condensation defect for gauging K symmetry on the domain wall, i.e. condensing the Wilson lines of K
on the wall.
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3.2 Non-invertible symmetry as sandwich of invertible symmetry

Let us consider the (d + 1)D theory 7 with zero-form symmetry G, and gauge the discrete non-
normal subgroup K. As discussed in section 3.1, the gauged theory 7 /K has a non-invertible
symmetry G/K with symmetry defects U[g]. The symmetry defect U[g] can be expressed as
the invertible symmetry defect U, sandwiched by non-invertible domain walls. To determine
the appropriate choice of non-invertible domain walls, we must first determine the “minimal”
nonnormal subgroup K /K. Specifically, there may be a subgroup K C K which is a normal
subgroup of G. Such a K is obtained by a group of elements k € K satisfying gkg™' € K for
any g € G, which can be checked to be a normal subgroup of K, G. In this case, we first gauge
the maximal normal subgroup K of K to obtain an invertible symmetry G/K and then gauge
the remaining part K/K.> Then the symmetry defect for G/K takes the form

Utg] = Drep(ic/i) * Ug * Drep(ic /i) - 7)

Here, U, isa g €G /K symmetry dNefect of the Eheory T /K before gauging {{ /K. DBep(K /B
condenses the Wilson line Rep(K/K) of the K/K gauge theory 7 /K = (7 /K)/(K/K), and
regarded as a half gauging defect that interpolates 7 /K and 7 /K [13] (see Figure 1 for the
case with trivial K). Without loss of generality, we can assume that K is minimal with K = {id},
since G/K is a group. In the following we will use condensation defects Dgep(k)- We will shortly
see that the above defect ﬁ[g] only depends on the Qrbit [g] of g € G under the action of K.
Let us first see a few simple examples for the defect Up,1:

* The defect f][ ] Obviously gives an invertible symmetry defect if and only if Dpepx), EREP(K)
are trivial.

e When the invertible defect U in the middle is trivial, the defect [7[ ¢] is a condensation
defect condensing the electric particles Rep(K). This corresponds to 1-gauging the algebra
object Rep(K) at a codimension-1 defect [54].

The fusion rules of the half gauging defects are given by (up to normalization)

Dgep(x) X Drep(xy = Z Uk (8)
kek
DRep(K) X DRep(K) = CRep(K) P ©)]

where Uy is the K symmetry defect of 7" and Cgepx) is a condensation defect obtained by
1-gauging Rep(K). Also

Uy % 5Rep(K) = BRep(K) > Drepx) X Uk = Drgep(x) » (10)
with k € K, and _ _
Drepx) * Wp = Drepx)>  Wp * Drep(k) = Drep(k) » an

where W, is an Wilson line carrying the irreducible representation p € Rep(K).
From the fusion rule between U and Dgep(x) one can see that the definition of 0[ ] only
depends on the orbit [g],

Ute) = Drep) X Ug X Drep(k) = Drep(k) * UkUg Uit X Drep(y = Uegiery - (12)

5We use this convention so that if K is normal, then the defect under the sandwich construction is invertible. If we
do not gauge K first, then generically our construction would produce the G/K defect together with a condensation
defect, even if K is normal.
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T/K T T/K

Drep(x) Uy Drep(x)

Figure 1: The non-invertible symmetry defect of the gauged theory 7 /K is understood
as an invertible defect sandwiched by a pair of half gauging defects.

The fusion algebra of f][ ¢] follows from the fusion rules above:

Ut % Urg = Drep(icy X Ug X (Z Uk) x Ugs X Dep(ic)
keK

= Drep(ic) X (Z Ugkg/k Uk) X Drep(x)

keKk (13)
= Drep(icy % (Z ngg'k—l) X Diep(i)
keK
= Z ﬁ[gkglk—l] .
kek
When [g’'] =[g '], one of the fusion channels is U[l] which is the condensation defect
Ut11 = Crepcry - (14)

Finally, we can compute the fusion rules of f][g] with the Wilson line of K gauge theory
using (11):
Ugy X Wp = Ugy = Wp X Upg).- (15)

Junction of coset symmetry defects Two coset symmetry defects U[ ¢] can fuse at the junction
into a third defect, which corresponds to one of the fusion outcomes

U[g] X U[g/] = Z U[gkg/kfl] . (16)
kek

For example, the junction for the fusion channel U[g] X U[g,] - U[gkg/k—l] can be obtained
by the junction of invertible G symmetry defects g, kg’k™! and gkg’k~! sandwiched by the
non-invertible defects Dgep(x), as shown Figure 2 (a).

As mentioned earlier, the sandwich construction for the coset symmetry defect has a
redundancy U[g] = U[kgk—l]. In other words, the invertible defect g € G or kgk™! € G leads to
the same coset symmetry defect. This leads to the redundancy in expressing the junction of
the coset symmetry defects: the junction of invertible defects g, g’ into gg’ gives an identical
junction of coset symmetry defects as the junction of kgk™! kg’k™! into kgg’k™! for k € K
(see Figure 2 (b)).


https://scipost.org
https://scipost.org/SciPostPhys.17.3.095

e SciPost Phys. 17, 095 (2024)

(a) ()
g \/k‘{/kl 9 \/ g kgk™! kg'k™!
Drep(x) ~
gkg' k™! 99’ k,(](}/k,i1

Figure 2: (a): The junction of the cosine symmetry defects that corresponds to the
fusion channel U[g] X U[g/] - U[gkg/k—l]. (b): Conjugating the invertible defects by
k € K in the network of coset symmetry defects leads to an another expression of the
same defect network in terms of a sandwich.

Example: Cosine symmetry For example, when G = O0(2) =U(1) XZ, and K =Z, = {1,c}
that acts on G by charge conjugation, the fusion rule of the symmetry defects of 7 /K is given
by

0[9] X ﬁ[e/] = DRep(K) X Ug X (1 + UC) X Ug/ X BRep(K)

— (17)
= Dpep(x) X (Ug+g + Ug—p:Uc) X Dpep(x) -
We then have the fusion rule U, x BRep(K) = BRep(K), o)
ﬁ[e] X U[el] = U[9+9/] + U[e_e/] . (18)

This reproduces the fusion rule of the cosine symmetry (4), and is a particular case of (13).
When [6] =[0"] we get

0[9] X 17[9] = ﬁ[ze] + Crep(x) - (19

3.3 Exotic quantum Hall conductance for continuous coset symmetry

In the section above, we described how to construct defects of non-invertible 0-form symmetry.
We now study the possible decorations of junctions of such defects; these decorations specify
fractionalization patterns of non-invertible 0-form symmetry. We begin with an example. Let
us start with an ordinary fractional quantum Hall system with U(1) symmetry in (2+1)D,
and then gauge the charge conjugation symmetry. This converts the U(1) symmetry into the
non-invertible cosine symmetry, which can be expressed as the coset O(2)/Z, for non-normal
charge conjugation Z,. The non-invertible symmetry obeys the fusion rule (4). We note that the
cosine symmetry does not permute the anyons, just as the ordinary continuous U(1) symmetry.

The current is odd under Z, charge conjugation and therefore becomes not gauge invariant.
Similarly, the electric and magnetic fields are also odd under Z, charge conjugation. Thus the
conductivity matrix is gauge invariant after gauging the charge conjugation and well-defined.

Another way to see that the Hall conductance remains well defined is by using the current
two point function. This quantity is invariant under charge conjugation, and its contact term
gives the Hall conductivity:

(j[_l,(x:ya t)]v(0)> ) UHeuvAaAag(x:y, t)) (20)

where o is the quantum Hall conductance in the unit of e?/h for electron charge e and
Planck constant h. The formula follows from taking the functional derivative in the quadratic

9
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Chern-Simons response [55]. We note that while the full two-point function requires a Wilson
line of the Z, gauge field connecting the two points after gauging the charge conjugation
symmetry, the contact term is not modified. Thus the Hall response is well-defined for the
non-invertible cosine symmetry, and it is given by the response before gauging the charge
conjugation symmetry.

3.3.1 0(2) Chern-Simons theory

We now show that the theory above has a fractional quantum quantum Hall response oy for
non-invertible continuous symmetry that cannot be obtained from the spin of a vison.

Let us start with U(1),; theory for integer k > 1. We can enrich the theory with U(1)
symmetry by identifying the vison with the charge-one Abelian anyon v. We can read off the
Hall conductance as oy = 1/(2k), from the spin of v.

Now, let us gauge the charge conjugation symmetry in the minimal way. In general, gauging
a O-form symmetry in (2+1)D comes with a choice of an H3(K, U(1)) class. Physically, this
corresponds to stacking with a K SPT before gauging. For simplicity, we will only consider
gauging without any additional SPT in this example.

The charge conjugation symmetry transforms a — a~* for a generic Abelian anyon a, so
the gauged theory becomes a non-Abelian topological order. The gauge symmetry is enlarged
to be U(1) X Zy = O(2), i.e. the theory becomes O(2),; Chern-Simons theory. The new particle
content is

e Charge Q # 0,k: these anyons become non-Abelian anyons with quantum dimension
two, given by Q @ (—Q).

* Charge Q = 0: the vacuum anyon and the Z, symmetry defects lead to four anyons: the
trivial anyon, the Abelian boson W given by the Z, Wilson line, and anyons &, y, of spin
% and 19—6 respectively. The quantum dimension of &, and y, is v'k. Therefore, these are
non-Abelian for k > 1.

* Charge Q = k: this anyon and Z, symmetry defects together with this anyon also lead to
four anyons: the Abelian anyons a;, a, with spin %, and anyons &y, yj of spin % and 1—96
respectively. The quantum dimension of &, y, is also vk, so these are also non-Abelian
for k > 1.

In the new theory O(2), the only Abelian anyons have spin 0, k/4 mod 1, so one would not
be able to detect the fractional quantum Hall conductance o = 1/(2k) for k > 1 from looking
at the spins of the abelian anyons. It is instead related to the spin of the non-Abelian anyon
v ®v~!. Thus the non-invertible cosine symmetry O(2)/Z, gives rise to a Hall conductance
proportional to the spin of non-Abelian anyon, rather than an abelain one.

We remark that when k = 1, O(2), «= U(1)g is an Abelian TQFT [56,57]. Thus even in
Abelian TQFTs there can be fractionalized non-invertible coset symmetry. The Wilson line of
the Z, charge conjugation gauge field is the charge 4 Wilson line in U(1)g, and such line can
end on the O(2)/Z, coset symmetry generator. Thus the symmetry acts on the theory through
the surface operator where the charge 4 Wilson line condenses, which is described in [58].

3.3.2 Gapless edge modes

Here we consider a (1+1)D edge state of the above FQH state with cosine symmetry. We argue
that the nonzero electric Hall conductance (20) enforces a gapless edge mode if the boundary
preserves the cosine symmetry. Before giving a proof for this statement, we first need to clarify
what we mean by a symmetry-preserving edge state, since there can be multiple definitions
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for it which bifurcate for non-invertible symmetries [59]. In this paper, symmetry-preserving
boundary condition means a boundary condition that satisfies the following two requirements:®

1. The boundary state is invariant the symmetry action. That is, the boundary state |B)
supported on a closed 2d space is an eigenstate of the symmetry operators D: D |B) o< |B).
This is equivalent to requiring that the type of the boundary condition is invariant under
pushing the symmetry defect onto the boundary.

2. The symmetry defect can terminate at the boundary. Its endpoint is topological and
defines the symmetry defect at the boundary theory.

Let us show that the cosine symmetry-preserving gapped boundary must carry oy = 0.

We take a symmetry-preserving gapped boundary state |B). First, the invariance of the
boundary state on a torus |B) under the cosine symmetry defect Ug_, implies that the Wilson
line W of the Z, charge conjugation symmetry must be condensed at the boundary. This can
be seen by noticing that Uy_, is a condensation defect of W due to (14), which acts on a torus
Tfy by an operator (1+ W (y,)+W(y,) +W(y, )W(r,)).

Meanwhile, the boundary state |3) on a torus contains a state |1) labeled by a trivial anyon 1,
and has the form of |B) = |1) + Z,, |[W) +... with some non-negative integer Z,. One can then
immediately see that the state Uy_, |B) contains the state |W) with some positive coefficient,
which implies that W is condensed at the boundary once we require Up_, |B) o< |B).

Therefore, it must be possible to obtain the gapped boundary must by first condensing W
in the theory 7 /Z,. This brings the theory back to an original FQH state 7 with U(1) % Z,
symmetry. If there is a gapped boundary, then we can further condense Lagrangian algebra
anyons in 7. In other words, without loss of generality, we can describe the boundary state
|B) of T'/Z, by first acting the operator Dgep(z,) on some gapped boundary state |B’ ) of the
theory T,

IB) = Drepzy) [B') @D

where Dgepz,) is an interface operator obtained by half-gauging (see section 3.2 for discussions).
The gapped boundary B is obtained by pushing the defect Dgep(z,) in parallel onto the gapped
boundary B'.

Now let us consider a cosine symmetry defect U, terminating at the gapped boundary B.
Since the Uy is transformed into Uy or U_y by crossing through the interface Dgep(z,)> One can
see that the U(1) defects Uy have to end at the gapped boundary 1, meaning that the gapped
boundary B’ preserves the U(1) symmetry. This enforces oy = 0.

3.4 More example of fractionalized coset symmetry: S; gauge theory

Let us consider Zj3 gauge theory enriched by U(1) symmetry, where the fractionalization is
given by braiding with v = em. Since v carries the spin h, = 1/3, this topological order has
the Hall response o = 2/3. If we gauge the charge conjugation symmetry, we get S; gauge
theory with the Hall response for the cosine symmetry.

There are eight anyons in the S5 gauge theory (see e.g. [60]), which are usually denoted by
AB,C,D,E,F,G,H. Each anyon is associated with a conjugacy class of S; and an irreducible
representation of the centralizer of a representative element from the conjugacy class:

* {1}: the centralizer is S5 with the trivial (A), sign (B), and two dimensional (C) irreps.
o {s,sr,sr?}: the centralizer is {1, s} with the trivial (D) and sign (E) irreps.

e {r,r%}: the centralizer is {1, r, 2} with the trivial (F), e2™/3 (G) and e*™/3 (G) irreps.

®Following the terminology of [59], this amounts to requiring that the boundary condition is both strongly and
weakly symmetric.
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9 0 9

; 2 oy i
(em,e“m~) (€ m,e*m?)

0+0 0+0

22 2 9y
(em, e“m~) (em, e*m*)

0+0 0+ 6

Figure 3: The symmetry fractionalizaton of the non-Abelian anyon G = (em, e?m?).
This anyon splits into em, e?m? of Z, gauge theory and they carry the opposite
fractional charge. As a result, the fractional charge carried by G is a diagonal matrix
diag(1/3,2/3) rather than a number.

The T matrix is diag(1,1,1,—1,1,1,e2™/3 ¢4"/3). A and B correspond to the vacuum of the
Z gauge theory with and without the charge conjugation charge respectively. C corresponds
to the orbit (e, e?) under charge conjugation. D and E correspond to Z, charge conjugation
defects with and without the charge conjugation charge. F, G, and H correspond to the orbits
(m, m?),(em,e?m?), and (e?m, em?). Note that the S; gauge theory does not have an Abelian
anyon with the spin 1/3, so the Hall conductance o} = 2/3 cannot be accounted for by ordinary
fractionalization using Abelian anyons.

Based on the example discussed in section 3.4, we can describe the cosine symmetry defect
of S5 gauge theory as a sandwich of gapped interfaces of S; gauge theory. As discussed in
section 3.2, this perspective allows us to describe the junction of the symmetry defects of
cosine symmetry. The Junctlon of the cosine symmetry defects that corresponds to fusion
outcome U[g] X U[Q/] — U[9+9/] can be realized by the junction of invertible symmetry U(1)
defects among 6, 6’,0 + 6’ decorated with non-invertible defects, see Figure 3. Similarly, the
junction for the fusion outcome [7[9] X U[Q/] — U[@_gl] can also be obtained from the junction
of invertible symmetry U(1) defects among 6,—6",0 —6’.

The symmetry fractionalization of a non-Abelian anyon G = (em, e2m?) in S5 gauge theory
is illustrated in Figure 3. When the line operator of the non-Abelian anyon G crosses through
the junction of cosine symmetries, the junction non-trivially acts on the anyon G, which is
regarded as the symmetry fractionalization.

Unlike the standard fractionalization of the invertible symmetry, the fractional charge of
the cosine symmetry is given by a superposition of opposite U(1) fractional charges. It reflects
Figure 3: the fractional charge depends on whether it splits into em or e2m? with the opposite
U(1) charge when the S5 gauge theory is condensed into a Z5 gauge theory.
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v E(v)
W(0) p

S(v)

Figure 4: The edges nearby a vertex v and plaquette p.

4 Lattice model with fractionalized non-invertible symmetry

In this section, we demonstrate the properties of the non-invertible symmetry fractionalization
with a microscopic lattice model. We consider the (24+1)D quantum double model on a square
lattice, which is a standard lattice model effectively described by a finite G gauge theory. We
find that the quantum double model with the gauge group G = S5 has a fractionalized cosine
symmetry.

4.1 Cosine symmetry in S3 quantum double model

Warm-up: Z3 gauge theory with U(1) symmetry Let us start with Z; toric code with U(1)
symmetry in (2+1)D. We consider a square lattice with a Z; qudit on each edge, with the

Hamiltonian
Hy,=—> A,— > By, (22)
v p

where v and p denote the vertex and plaquette respectively. Specifically, each term is given by

1 T Pt

A =3 (1 +XNXEK W ()X s +XN(V)XE(V)XW(v)XS(v)) ; (23)
1 o .

B, = 3 (14 2012132),23, + 23, 21,209 2,3) . (24)

These two terms are illustrated in Figure 4. _

We define the Z; gauge field a on links satisfying e = Z,. The state with B, = 1
corresponds to the flat Z5 gauge field da = 0. A, = 1 corresponds to the Gauss law constraint
of the Z4 gauge field, so the ground state Hilbert space is described by the Z; gauge theory.

The U(1) global symmetry Uy is defined as the action on the state

da

Uy la) = exp (i[G]zT[f ?) la) , (25)

where 4 is the integral lift of a. This U(1) symmetry exhibits the symmetry fractionalization.
When we write the electric particle of the Z5 gauge theory as labeled by e, the Abelian anyon
e"(01.82) is decorated at the junction of U(1) transformations 61, 6,, and 6; + 6, mod 27.

Cosine symmetry of S; gauge theory We then consider the S; quantum double model in
(2+1)D. The local Hilbert space on each edge has 6 dimensions, whose basis states {|g)} are
labeled by group elements g € S;. The Hamiltonian is given by

Hg,=—> A,— > B,, (26)
v p
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with each term given by

_ 1 g g St St _
= al ZG XN X e X win X 5010 Br = Ognggyiez o 27)
ge
Here we defined the Pauli X like operators as
X¢lh)=1gh), X&' |h)=|ng™"). 28)

It is convenient to label g € S5 by a pair g = (a, b) with a € Z3, b € Z,, satisfying the group
multiplication law

(a1, by) x (ag, by) = (ay + (—1)"ay, by + by). (29)

a, b are regarded as Z5 and Z, gauge fields respectively.
Let us define the operators acting like Pauli X, Z operators on the a, b fields:

Z%a,b)y=e3%a,b), X%|a,b)=la+1,b), (30)

Zbla,b) = (=1)%|a,b),  X’la,b)=|-a,b+1), X°la,b)=la,b+1). (31

xb , Xt corresponds to the left and right action of (0, 1) € S5 on (a, b) respectively.
The vertex term of the S; quantum double model can then be expressed as
A, =AAb (32)

vy

where A is the vertex term of the Z; toric code expressed by X“, and

Ybh b b Sb
o= X X X won X so

v D) (33)

We then define the projection operator

1+2°
Db:l_[( J;) (34)

and the projection operator
mb =] 4. (35)
v

Now we are ready to describe the cosine symmetry of the S3 quantum double model (26).
The generator of the cosine symmetry is given by

U, =2M. by, Db, (36)

where |v| is the number of vertices. This generates an emergent non-invertible symmetry of S5
gauge theory within the low energy subspace where I1° = 1 is satisfied. Within this subspace,
U, is expressed as

U, = 2" . P pPu, vt . (37

This operator (37) generates an exact symmetry of the S; quantum double model. Note that
since we have a projector IT° on the right, the operator (37) annihilates the state with electric
particle of Z, charge conjugation symmetry, while (36) does not.

14


https://scipost.org
https://scipost.org/SciPostPhys.17.3.095

e SciPost Phys. 17, 095 (2024)

In the expression (36), D? condenses the Wilson line for the gauged charge conjugation
symmetry, resulting in a Z; gauge theory. Uy is an invertible symmetry in Z5 gauge theory, and
I1° then brings the theory back to S; gauge theory. Due to the projector D?, it eliminates the
electric particle excitation of charge conjugation symmetry from the state. Since the particle
excitations carry finite energy, its elimination implies that the operator (36) only commutes
with the Hamiltonian in the subspace without Z, electric particles, i.e., TI? = 1.

We note that the form of the operator f]a is aligned with the sandwich form (7); the
operators I1° on the left, D? on the right of (36) correspond to half-gauging defects Dgep(z,)>

BREP(ZZ) at a time slice. For the purpose of computing the fusion rule of operators below, we
consider the low energy subspace where I1? = 1 is satisfied. This allows us to derive the
fusion rules for the coset symmetry in the absence of electric particle excitations for charge
conjugation symmetry. If there are such excitations, the fusion rules can be modified to reflect
the fractionalization of the symmetry on the excitations. We note that for invertible symmetries,
the symmetry action on a pair of conjugate excitations is the same as the action on the vacuum,
since the projective phases cancel. Here, when the symmetry is non-invertible, we need to be
more careful about the distinction.
Below let us derive the properties of the operator:

* When 6 =0,
Ug_o =2M.1bDb1IP . (38)
Here, note that DP can be rewritten as the sum of open string operators
1
b_ - b
Pt ¥ ([12). @)
CeCy(M,Zy) \ecC

where the sum of C is over all possible 1-chains of the square lattice, and |e| is the number
of edges. When projected onto the states with AB =1, only the closed strings C survives,
since the product of Z eb is a line operator of the Abelian anyon in S; gauge theory and it
excites A’; at its ends. We then have

ﬁezoznb(2%—1 > (l_[Zeb))Hb, (40)

CeHY(M,Zy) \e€C

where y = |v|—|e| + |p| is the Euler characteristic of the lattice. This is a condensation
operator for the Abelian boson of S; gauge theory that is the Wilson line from gauging
the charge conjugation symmetry. See Refs. [29,61] for other examples of condensation
operators on (2+1)D lattice models.

* Let us then derive the fusion rules of the operators. One can derive
f]g X f]g/ = U@_,_Q/ + U@_Q/ . 41

To see this, it is convenient to find a simple expression of the operator DTI®D?. Since

Yb b b Kb : . .
the operator X N(V)X E(V)X W(V)X S shifts b fields b — b + dV, most of the product of

these vertex terms are projected out by D?. We can get

1

bbb —_ b b b _ b C b

DPIPDl =D (| |AV)D = 2P (1+v<)DP, (42)
v
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c _ b b b b
Ve =] I X0 X by X v X 2y (43)
v

One can see that VZC2 leaves b fields invariant, while it acts by charge conjugation on the
Z5 gauge field a,
v Ha}) ={=a}) . (44)

The fusion rule of Uy is derived by
Uy x Uy = 2. 1* DU, DPII* DO U, DO ITP
=2M. Dby, D (1+VE ) DU, DI
bb bbb
=2M. 11Dty (14 V< ) Uy DPII
= 2. 1Dty (Ug + U_g VE ) DPTI? (45)
=2M. "D Uy o DPTI® + 2" 1P DP Uy _g vF DOTI

=2 mbpbu, o DPTIP 4+ 2M . 1P DU, _, DPIIP
= U9+9/ + U@_@/ .

4.2 Fractionalization of cosine symmetry in S; quantum double model

Warm-up: Fractionalization of U(1) symmetry in Z; gauge theory Let us consider a state
with anyon excitations, and suppose that an anyon x is separated from other excitations. Let
us pick a subsystem R that contains the x excitation. The fusion rule of the U(1) symmetry
generators support at R is given by

Up(R) x Ug/(R) = Uy 9/(R) x W,(3R)"®07 (46)

where n(6,60") = [Q]Z“HGI]ZZ;_[GW/]Z“ . Here, W,(8R)"%-9) is a closed string operator for e"(?-¢"),
that wraps around the boundary of R. Note that when the closed string operator acts on a
state with no anyon excitations, it gets absorbed into the ground state. However, when there is
an anyon excitation in R, the string operator produces a braiding phase between the anyon
and (@0 This implies that the difference between the action of Uy x Uy, and Uy, ¢ on the

anyon x is given by the fractional phase

Up(R) x Ug/(R)|x,....) = Ugyor(R) x W, (3R @) |x,...)

(47)
= U9+9’(R) X €Xp (znqun(95 9/)) |X: .. ) 5

where exp(2miq,) = M, ., and M, , denotes the mutual braiding between two particles x, e.
The phase proportional to the fractional charge q, manifests the symmetry fractionalization on
the anyon x.

Fractionalization of cosine symmetry in S; gauge theory We will see that the cosine
symmetry U, induces the symmetry fractionalization of the anyon (m,m?) in the S5 gauge
theory. The anyon (m, m?) is created by an open string operator on the line ¥p,p terminating
at the plaquettes p, p’. Given that each anyon carries the quantum dimension 2, the dimension
of the Hilbert space with a pair of anyon excitations has 4 dimensions and is spanned by the
states |(j, k)). Note that this 4 dimensional Hilbert space is technically not physical because the
individual states cannot be distinguished by gauge invariant operators; j, k € {1, 2} labels the
internal basis states of non-Abelian anyon at p, p’ respectively. The symmetry fractionalization
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can be seen by acting the symmetry generators at the region R that contains the plaquette p
but not p’ (see Figure 6). We explicitly compute the action of cosine symmetry in the presence
of anyon excitations, and show that

0o (R) x Upe(R) |, k) = [cos(%“n(e, 0+ 3160+ 9’]275)

+ cos (%”n(e,—e’) 4200~ 9’]27[) ] (L) +I20)),  (48)

and

(G40 (R)+ Oy (R 10110} = [cos( 510+ 0L )+ cos( 510 — 0L ) | A, i) + 1620

(49)

By comparing the above two expressions, one can see that the fusion rule Uy x Uy, =Up, g +Uy_p.

is modified by the fractional charge proportional to 2 5 n(6,£6"). This implies that the non-
invertible cosine symmetry is fractionalized on a non- Abehan anyon (m, m?).
There are two points special about fractionalization of cosine symmetry:

e The fusion of cosine symmetries Uy x Up. splits into two fusion outcomes Uy g or Ug_g.
Depending on the fusion outcome, the effect of symmetry fractionalization becomes
different; in the former case it depends on 1(0, 6”), while in the latter n(6,—6").

* Once we focus on one fusion outcome Up. ¢/, the symmetry fractionalization appears as
the difference between Uy x Uy, and Uy.g in the cosine of the fractional U(1) charge
carried by an anyon.”

Below, we confirm (48), (49). First, we have
Up(R) x Ug/(R) =2M - [P DPU, U, D 1P| + 2" [IPDP U U_p D TP, . (50)

See Figure 5 for details of the operators I1?, D?, U, defined on the region R.

Let us describe an open string operator for the anyon (m,m?) in S; gauge theory. We
consider a straight line of the dual lattice 7, , with length L terminating at two plaquettes p,
p’. Then, the string operator W 2)()/p ) is labeled by (j, k), where j, k € {1, 2} labels the
basis for the Hilbert space with anyons with quantum dimension 2. The Hilbert with a pair of
anyons (m, m?) has 4 dimensions, and its basis is given by |(j, k)) = W((ril 22)(?1,’},/) |GS).

The string operator is then given by [50]

i [ A

- Mooz, | Z 22 2k=0 ek
Wenmey (o) = (“(Xa - k) vz o

-1 ,p

i 1— Z

(1L2) (o _ N 4 k=0 “e;
W(m mZ)(Yp,p’) - (!:!(X@j) 07 | X ﬁ >

21) /a _ at\[1_h 22 k=0%¢,
W(m mz)(YP:P’) - (l:(!(xéj )t X V2 ’

1+, z?
(2 2) | | af l_[ T L 1k=0"¢
(m m2)(Yp p/) - ( (X ) k= O ) \/E >

7We note that cosine symmetry acts on the state |(1,k)) + |(2, k)) by an overall normalization given by cosine of
fractional U(1) charge. In particular, the above fusion rule can annihilate the states with specific choice of 0, 6’.
One could normalize the state |(1,k)) + |(2, k)) to suppress the effect of fractionalization with specific 6, 6’, but one
cannot choose a normalization which eliminates the fractionalization of all symmetry operators.

G
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Figure 5: The region R consists of a set of plaquettes inside a disk. The edges of the
plaquettes in R are represented by orange lines, and the vertices of plaquettes in R
are represented by purple dots. Then, I1? is the product of As over the purple vertices
v, D? is the product of (1 + Z%)/2 over the orange edges e, and Uy is the integral
exp(i[O]M f da/ 3) over the orange region R. Note that IT? also acts on thick black
edges, since the operators AE on the boundary of R act on these vertices.

(a) (b)
0p, L
L-1
L-1
Yp.p’ 2| i
2
1
1
) 0 A
P . o
R !
p

Figure 6: The anyon created by an open line operator 7,,.

where we label the edges by numbers starting with 0 at the plaquette p, and terminating with
L at the plaquette p’. ¢; is an edge of 7, , cutting the edges, and e, is an edge of y,, ,,. See
Figure 6 (b) for an illustration.

. . Gk)  ra . - .
Let us consider a line operator W(m,mZ)(Yp,p’) starting at a plaquette p inside the region

R. The termination p’ is away from the region R. The state with an anyon (m,m?) at the
plaquette p is given by acting any of the four line operators W((Jn.l”];)lz)(}?p,p/) on the ground state.
See Figure 6 (a) for the geometry.

The symmetry fractionalization on (m, m?) can be seen by acting symmetry generators
Ug(R) in the presence of the anyon.

~ ~ . j,k ~
Uo(R) x Up(R)|(, k) = 2" - [P D U Up DO P T, W, (7, ) 1GS)

(m,m

+2M- [P D U U_g DPTIP ] WY, (7,,01GS) . (52)

(m,m
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The projector I, = [ |, A, behaves as an identity operator away from the anyon excitations,

but A, can change the internal state of the anyon I( j, k)) When v is located at the position of the
H

anyon. More concretely, the star operator X Ny )X Z(v) W(V) s( ) acts by charge conjugation

on the internal state of the non-Abelian anyon. One can explicitly check that

b (1,k) (Lk) /a (2,k) /A
I:H :| W(m mZ)( p,p’ ) IGS) 2 (W(m mz)(Yp,p’) + W(m mz)(}/p,p’)) |GS> )

(53)
bYW @h) 1/ K ,a
(100 T Wy () 1GS) = 2 (W) (Fp.) + Wi (1)) 1GS) -

After the wave function is projected by the operator [D?], the Z, gauge field satisfies
7P = 1 inside the region R. According to the expression in (51), the expression of string
operator inside the region R is fixed as

((1111 ]:n)Z)( Tpp) = l_[X ¢ when restricted to the region R, (54)
(2,k) _ af
W(m mz)(yp’p,) = l_.[Xéf when restricted to the region R. (55)
j

With this in mind, one can rewrite the expression as

- - . 1 )
UO(R) X U@’(R) |(]; k)) = 2|V| ' [HbDbUQ U@’Dbnb]R 5( ((nl.l ];32)(Ypp )+ W(rr21 122)(Yp,p’)) |GS>
1
b b (1,k) 2,6 /n
+2M . [P DY U, U_o DI ]RE(W(m O o) W, (75,)) 1GS)
lj k) ,a
=2".[m°D’], [ p(g( ]zn))w(%niz)(yp,p/)] IGS)
ij B .
+2M[1PD], [ (2001 + 100 ) WS, (5, 0] 165).

(56)

One can then see that

2 [P DY L W, (7,,01G8) = (W, (75 + WEY, (7550) 1GS), (57)

(m,m2) m,m2)

so we have
09(R) x Uy (R) 107,10} = o5 310+ [0'D0) ) 11, + 12, K0)
boos (3001 + 10D JAWKN +I20), 6

which produces (48). Meanwhile, the action of Uy, ¢.(R), Ug_g/(R) are evaluated as

G- 1K) = cos( 516+ 0T ) 11K +12,0)
(59)
G- (R, ) = o5 310 -0, ) 10,1 + 12,0

which produces (49).
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Figure 7: Anyon lines (black) passing through invertible symmetry defects g,h € G
and graphical definitions of the U and 7 symbols.

5 General coset symmetry fractionalization and bulk TQFT

5.1 General coset symmetry and its fractionalization in (2+1)D topological order

We now describe the general framework for describing fractionalization of non-invertible coset
symmetry G/K in (2+1)D topological orders. We start with a (2+1)D TQFT with 0-form global
symmetry G and gauge the non-normal subgroup K. G can either be a continuous or discrete
group. The original TQFT is described by a modular tensor category C, whose objects Obj(C)
corresponds to the set of anyons. When G is not a connected group, the G symmetry can act
on anyons by permuting their labels according to different connected components 7y(G) ,
pg :a—*8 afora€0bj(C),g €G. The G symmetry action on the TQFT is then characterized
by the symmetry fractionalization data {U,n} (see Figure 7).

Let us gauge the non-normal K subgroup of the modular tensor category C. The gauged
theory is described by a K-equivalentization of the category C, which we denote as C/K.
Algebraically, the gauging procedure to obtain C/K is performed in two steps [1]. The first step
is to include the vortices of the symmetry group K, which is to take the K-crossed extension Cy
of the category C,

Ci =P, (60)

kek

where a simple object of C; represents the vortex labeled by k € K. The second step is to make
the K gauge group dynamical, and include the electric charge of K symmetry. The simple
anyon in the gauged theory is labeled by ([ax ], T,) € Obj(C/K), where a; € Obj(C,) is a vortex
carrying the holonomy k € K in the ungauged theory, and [a; ] denotes the orbit of a; under
the permutation action of K. 7, is an irreducible projective representation of the gauge group
described as follows. Let us write a subgroup K, € K which fixes the label of the anyon q;
under its action. 7, then satisfies

(k) (k') = ny(k,k)m,(kk’), fork, k' €K,. (61)

This is regarded as an electric charge attached to the particle. The above projective representa-
tion is referred to as an n,-irrep, and its set is denoted by Irrep, (K,).

Fractionalization of coset symmetry in the gauged theory C/K As described in section
3.2, the gauged theory C/K has the coset symmetry defect expressed by the sandwich

Utg1 = Drep(k) % Ug X Dpepx) - (62)
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' w keK ([a], ™)

gh

Figure 8: The anyon line (a, 7t,) crosses through the junction of the cosine symmetry
defects. The fractional phase n«,(g,h) appears depending on the way the anyon
tunnels through the defect.

([a], 7a) ([b], 7p) ([a], 7a) ([6], 7p)

D fd = D S mpuvrta v} omz A

k,k'eK kK E"EK v,o g c

(Ie], e) ([, )

Figure 9: The cosine symmetry defect crosses through the junction of anyons. The
phase factor U appears depending on the way the anyon tunnels through the defect.
u, v,0, p are the labels for the basis of the fusion vertex.

When the anyon ([a], ,) of C/K tunnels through the non-invertible defect U[g], it can be
transformed into multiple choices of anyons. Concretely, U, transforms the anyon according
to the channels

([a], m,) — ([*e&k la], nigk_la)’ fork €K, nigk_la € Irrep,) (Kkgkfla). (63)
Intuitively, the way the non-Abelian anyon ([a], 7t,) is transformed by f][g] depends on the
internal state of the non-Abelian anyon excitation. This leads to the multiple ways the anyon
gets permuted (63), as well as the superposition for the distinct fractional charge of the anyon.

The pattern of the coset symmetry fractionalization depends on the choices of the trans-
formation (63) labeled by k € K. The effect of crossing the anyon through the junction of
coset symmetry defects is described in Figure 8. The phase for the symmetry fractionalization
Nkq(g, ) depends on the label of the anyon ¥a € Obj(C) inside the sandwich. This leads to the
phenomena that the fractional charge is given by a superposition of distinct fractional phases,
see section 3.4 for an example.

The action of the coset symmetry on the junction of anyons is described in Figure 9. Here,
we introduced the tunneling matrix Mgv where the fusion vertex of the anyons u is transformed
into the new vertex v by crossing through the gapped interface D, see Figure 10. This quantity
has been introduced in [62].

Redundancy in expressing the coset symmetry defect by a sandwich As discussed in section
3.2, the sandwich of g € G or kgk™! € G with k € K leads to the same coset symmetry defect.
More generally, for a given network of coset symmetry defects in the spacetime, redefining
the sandwich g — kogk(j1 for all the defects in the network with a single element k, € K
gives an another expression of the same network. However, this redundancy is not manifest in
the symmetry fractionalization laws in Figure 8, 9. Let us investigate the effect of replacing
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— ML v

D

12

Figure 10: The tunneling matrix My, is defined by the shift of correlation function
when the gapped interface D crosses through the junction of anyons. For simplicity
of figure, we have suppressed the label at the intersection between the anyon and D.

g =k g =k, gka1 with kg € K on the symmetry fractionalization data. We will confirm that
the relabeling g —o g leads to the same symmetry fractionalization class of the coset symmetry;
related by a natural isomorphism of the modular tensor category.

In Figure 8, the replacement g —*o g affects on the phase factor by

P nealg.h) ... > PneaFogfon) ... (64)

kek kek
The above change of the phase factor is rewritten as

Y(k?o a) (gh)
Y1 (kﬁ(,a)(h)}/(k%a)(g)

nka(kogzko h) = n(k%a)(gz h); (65)

with

T)kOx(gJ kgl)
Mo (kg koghy )

7x(8) = (66)

This transformation by y is a natural isomorphism, which corresponds to redefining the G
action on the theory C by the unitary fg la,b;c) =[y.(g)rp(g)/v:.(g)]la, b;c) acting on fusion
vertices of the anyons. The natural isomorphism induces the equivalence of the G symmetry
action on the modular tensor category C. By relabeling k — kEO in the expression (64), the
phase factor after the replacement g —% g is given by

P iica(s.h) ..., (67)

kek

where we defined the new symbol 1) related by the natural isomorphism to the original one

7x(gh)

_— h). 6
ro (o a(g) & (68)

ﬁx(g’h) =

Similarly, under the replacement g —*o g Figure 9 is transformed into

D D mpuretal v oM’ ... (69)

k,k’,k"€eK v,o

The above phase factor U is rewritten as

Ykkoa(g)Yk ko b(g)

Uvo(k k' k” )=
Yirky, (g)

[Up, Ug(kEO a,k’Eo b,kuzo C)UE()]W- (70)
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By relabeling the group elements {k, k', k”} — {kkq, k’ko, k"’ko}, the phase factor in Figure 9
after the replacement g —*o g is expressed as

D Dk tal b om .., 71)

k,k' k€K v,o0
where we defined the new tunneling matrix as Mp = MUy, Mz = U, Mp. Mp, Mz correspond
to the tunneling matrices for D x Uy , U— x D, which is the same as D, D due to the fusion rule

of defects (10). It is hence expected that Mp = Mp, M = Mz, but detailed analysis to verify
this property is left for future work. Also, the new symbol U is related to the original one by
the natural isomorphism

7a(8)7p(g)
7:(8)

Therefore, the replacement g — g leads to the same symmetry fractionalization class related
by the natural isomorphism of the data {U, n}.

0;°(a,b,c) = U;°(a,b,c). (72)

Additional corners at junction of sandwich We remark that the junctions of finite-size
sandwich configurations can contain three extra corners where the exteriors of the sandwich
can change, i.e. additional insertion with boundary-changing topological defects. We will not
consider such junctions in our discussion, and we will take the limit where the three corners
coincide into the same junction in the center. For coset symmetries, we do not need to consider
such junctions because there is a canonical choice of domain wall. This domain wall is simply
Dgep(k), Where K is the minimal nonnormal subgroup (see the discussion in section 3.2).

5.2 Non-invertible symmetry from invertible symmetry

A general, gapped domain wall in (24+1)D topological orders can be expressed as a sandwich,
consisting of an invertible domain wall in the middle region of a possibly different topological
order sandwiched by two gapped non-invertible interfaces connecting the middle region to
the original theory [63,64]. The gapped domain walls between two (2+1)D TQFTs C;,C, is
generally described as

D=Dy xUxDy, (73)

where D 4, denotes the gapped interface that condenses the anyons specified by the condensable
algebra Al of a modular tensor category C,, and the theory obtained by anyon condensation
is given by a modular tensor category C. U is an invertible symmetry defect of C, and D A, I8
(orientation reversal of) the defect that condenses the algebra A, of C, to obtain C. When
C; =Cy =C, the above defect D gives a general expression for non-invertible symmetry of the
(24+1)D TQFT C.

Several comments are in order:

* The description of non-invertible coset symmetry f][g] of (2+1)D TQFT discussed in
section 5.1 fits into the form (73), where C; =C, =C/K,C =C, A; = A, = Rep(K). U is
then taken to be an invertible G symmetry defect of C.

* The expression (73) directly implies that the non-invertible symmetry in (2+1)D bosonic
topological order exists if and only if the TQFT contains condensable bosons. This fact
has been pointed out in [62].
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* Let us comment on the realization of the operator D in microscopic lattice models. In the
lattice system, the condensed theory C is typically defined on a specific subspace 7 of
the whole Hilbert space 7{. The operator U is a unitary acting within the subspace 7.
The form of the non-invertible operator D =D 4, x U x D A, 1s reminiscent of the singular
value decomposition (SVD) of the operator D, where the rank of the operator D is the
dimension of the subspace #{. ® This analogy is precise for the cosine symmetry of Sy
gauge theory discussed in section 4. In this case, the subspace # is specified by Z f =1
for all edges as well as VZC2 =1, which is the Hilbert space of Z; toric code even under

charge conjugation action VZC2 . We have Dy, = n°pb, o A, = DPIIP, U = Uj. They satisfy

DLI Dy, = D Azﬁllz = id (up to a real positive value) within the subspace %, ensuring
that the cosine symmetry fits into the form of SVD.

In general, for a given non-invertible symmetry operator D commuting with the Hamilto-
nian DH = HD, let us take an SVD D =D 4 X U x D A,- If there exists a Hamiltonian H’
in the subspace H satisfying HD 4, = D4 H', D 4 ,H = H'D 4, then we have UH’ = H'U
and the non-invertible symmetry operator gives a sandwich expression using an invert-
ible symmetry U and topological interface operators D 4 1,5 A,- We conjecture that the
non-invertible symmetry operator D in (24+1)D topological order generally admits SVD
into the composition of topological operators (73).

5.3 Bulk TQFT for finite coset non-invertible symmetry

Let us show that theories with coset symmetry G/K can live on the boundary of G gauge theory,
where we take G to be a finite group.

Let us first consider the case K = 1. Any quantum system with G symmetry can live on the
boundary of an G SPT phase in the bulk. The G SPT phase has a topological interface with
G gauge theory given by imposing the Dirichlet boundary condition of the G gauge field, i.e.
condensing the electric Wilson lines. By shrinking the G-SPT region, we find the theory can live
on the boundary of a G gauge theory with Dirichlet boundary condition of the G gauge field.
When the G symmetry is anomalous, the bulk G gauge theory has nontrivial topological action
w describing the anomaly. In (D + 1)-dimensional bulk, we can consider w € HP™1(BG, U(1)).
For instance, on the e-condensed boundary of Z, gauge theory there is Z, global symmetry.’

For general subgroup K, we can consider imposing a mixed boundary condition of the G
gauge field, where the G gauge group in the bulk is broken to a subgroup K on the boundary.
If the bulk G gauge theory has topological action w, the subgroup should satisfy

C()lK:_da, (74)

and the boundary K gauge theory has a topological action a. There are different topological
actions on the boundary of D spacetime dimensions, related by shifting a — a4+ v with dv =0
classified by v € HP(BK, U(1)). We note that the Rep(K) symmetry comes from the Wilson
lines in the bulk G gauge theory parallel to the boundary, while the magnetic operators of
the G gauge theory generate 0-form symmetry on the boundary.'° See e.g. [60] for a lattice
construction for such bulk-boundary description. We remark that the condition (74) on the
subgroup K is also appears in e.g. [69].

8To be more precise, the SVD expresses the operator D in the form D = D{VB; where V is a full rank diagonal
matrix acting within the Hilbert space #. The matrices D{,B; satisfy D{TD{ = 5/25/; =idy.
?Such boundary condition is also recently discussed in [65].
19The description of symmetry using bulk TQFT is also discussed in e.g. [66-68].
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5.3.1 Anomalies of finite coset non-invertible symmetry

Let us use the bulk TQFT to investigate whether the coset symmetry can be realized by an
invertible phase, following the method of [34,35]. In other words, we will study whether
or not the 0-form coset symmetry in (24+1)D is anomalous. If the O-form symmetry were an
invertible symmetry G, then we would be determining whether or not the symmetry enriched
topological order has a nontrivial H*(G, U(1)) class. Since the coset symmetry is non-invertible,
its anomaly is not labeled simply by SPTs in (3+1)D.

For coset symmetry G/K, we will examine the situation when the bulk TQFT is the untwisted
G gauge theory without any bulk topological action. We can put the bulk TQFT on an interval,
on one end we impose the boundary condition corresponding to a (2+1)D theory with G gauge
group broken down to its non-normal subgroup K. This means that the G Wilson lines that can
end at the boundary are those whose decomposition under the subgroup K contain the trivial
K representation, while the other Wilson lines remain nontrivial on the boundary (i.e. they are
not condensed at the boundary). In addition, the magnetic operators in the G gauge theory
that carry K -holonomy can end on the boundary, since the boundary has nontrivial K gauge
field; the other magnetic operators cannot end on the boundary.

We need to determine whether or not there exists a boundary condition to put on the other
side such that no operators can stretch between the two boundaries. Specifically, we need to
determine whether or not there exists a boundary condition describing a theory with G broken
down to K’ such that

* K’NK = 1: This guarantees that there are no nontrivial magnetic operators stretching
between the two boundaries.

* There are no nontrivial representations of G such that its decomposition under the
subgroups K,K’ simultaneously contains the trivial representations of K,K’. In other
words, there are no nontrivial Wilson lines stretching between the two boundaries.

If any of the above conditions is not met, then is no (2+1)D invertible phase with coset symmetry
G/K. The discussion can be generalized to higher spacetime dimensions.

For instance, if G = S3 = Z3 X Z, and K = Z,, there are three irreducible representations
1,sign, T where 7 is a two-dimensional representations. The subgroup K’ that satisfies KNK’ = 1
is K’ = Z5. Only the trivial representation of S; simultaneously reduces to sums containing the
trivial representation under both subgroups K,K’. Therefore, the second condition above is
not met. As a result, we can conclude that the coset symmetry S3/Z, cannot be realized in a
trivially gapped theory. In our example, it is realized in S5 gauge theory, which is not trivially
gapped. The same discussion applies to G = Zy X Z, and K = Z, for N > 3.

6 Application: Non-invertible symmetry in spin liquids

In a microscopic model with G global symmetry such that on the low energy states a subgroup
K does not act, i.e. there is Gauss law constraint for K on the low energy subspace, the low
energy effective theory can be described by K gauge theory, and the symmetry is G/K that
acts projectively as G symmetry on the electric excitations. G is called the projective symmetry
group (PSG), K is called the invariant gauge group (IGG), and G/K is the global symmetry
(called the symmetry group (SG) when K is a normal subgroup), which is the quotient of PSG
by IGG [44]. Such symmetry structure arises in parton/slave construction, where one expresses
the physical fields in terms of the parton fields. For instance, in spin systems one can consider
the ansatz in terms of two slave fermion fields ¥;, ¥,

q)physical = \111\112 . (75)
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The slave fermions have gauge symmetry that leaves the physical boson field ®pyysca invariant,
and it is called the invariant gauge group. The physical boson &, ¢, can transform under
a global symmetry group, which in general acts projectively on the slave fermions, since the
transformations only need to compose up to a gauge transformation. Thus the slave fermions
transform under a projective representation of the symmetry group, i.e. a linear representation
of the group extension of the symmetry group by the invariant gauge group, called the projective
symmetry group. In terms of wavefunctions, the physical wavefunction is obtained by projecting
the wavefunction of the two fermions to those with two species of fermions sitting on top of
each other.

When K is a normal subgroup, G/K is an ordinary group-like invertible symmetry, and the
above construction is discussed extensively in the literature. This construction is particularly
useful for describing quantum spin liquids with K gauge theory. For example, [44] discusses
Z, spin liquids described by taking K = Z,, which is the center of the G = SU(2) projective
symmetry group. Here, we generalize the construction to the case when K is not a normal
subgroup. Then we obtain a quantum spin liquid enriched with a non-invertible global symmetry
G/K. The symmetry is an example of the coset non-invertible symmetry discussed in section 3
and section 4.

Suppose we start with a trivially gapped system of fields with G projective symmetry group
and gauge a non-normal subgroup K. As discussed in section 3.2, the remaining G/K coset
global symmetry obeys the fusion rule

81K x g K = Z (g1kgok 1)K, (76)
keK

where g;K € G/K are elements of the coset. Thus the fusion rule of the coset does not obey a
group multiplication law. We note that even when g, = gl_l, the fusion does produce the coset
element K, since g; kgl_1 in general is not in the non-normal subgroup K.

6.1 “Projective” symmetry action on Wilson lines

Since we can describe the system starting with a system with G symmetry, the fields that
transform under the K gauge group also transforms under the G symmetry. Thus the gauge
non-invariant fields have G symmetry, while the gauge-invariant operators have G/K symmetry.
To see this using the formalism of section 5, we note that if K is a non-normal subgroup, the
action of the G symmetry can relate a nontrivial K Wilson line with the vacuum line.

For instance, consider a system with G = S; = Z3; X Z, symmetry, and we gauge the
Z-, subgroup that acts on Zs by charge conjugation. On the gauge non-invariant fields, the
symmetry is S3, while the gauge-invariant operators see S3/Z, symmetry. To see how the
symmetry acts on the Wilson lines of Z, gauge theory, let us decompose the S5 representations
in terms of Z, representations. There are two one-dimensional irreducible representations
1,sgn of S; and one two-dimensional irreducible representation 7 of S5, and they decompose
into Z, irreducible representations 1y, 1; (the subscript is the Z, charge 0,1 mod 2) as follows:

e 1—>1p,s8n— 1;.
o Tf—>10+11.

The decomposition of 7t indicates that the coset symmetry can change the type of the Z, Wilson
line. In particular, it maps it to the vacuum line. Note that this cannot be done with any
invertible symmetry, which must preserve braiding properties. This permutation of the Wilson
line to the vacuum line is consistent with the “sandwich” construction for the coset symmetry
given by sandwiching the S; generator by interface that condenses the Z, electric charge: the
Wilson line can end on the coset symmetry generator.
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6.2 Deconfined critical points with non-invertible symmetry

Let us consider two massless scalars that together transform as the two-dimensional repre-
sentation of S3. Then we gauge the Z, subgroup symmetry that flips the sign of one of the
scalars. The theory is a Z, gauge theory with coset symmetry S3/Z,. The theory has a Z,
1-form symmetry generated by the Wilson line. Due to the fractionalization, there is a mixed
anomaly between the 1-form symmetry and the coset symmetry. To see this, we note if we
condense the Z, electric charge, i.e. the Wilson line becomes trivial, this implies that the coset
symmetry is extended to be the S; symmetry. This implies that the theory must have deconfined
excitations that carry the anomaly. In particular, there are no interactions that can drive the Z,
gauge field to confined phase at the critical point.

We note that before gauging the Z, symmetry, the theory is a critical theory of mass-
less scalars without deconfined excitations, and gauging the discrete symmetry modifies the
spectrum by projecting out the Z, odd local operators while adding a deconfined Wilson line.

7 Discussion and outlook

In this work we investigate the fractionalization of coset non-invertible symmetry using field
theories and lattice models. We show that the non-invertible defects can be obtained using a
sandwich construction: we can build them out of invertible defects together with condensation
defects. We use operators obtained in this way to explicitly derive fractionalization data on the
lattice for certain examples of non-invertible symmetry fractionalization.

There are several future directions. The framework of the consistency rules described
in section 5 allows us to explore the classification of new quantum spin liquids enriched by
non-invertible coset symmetry. There is much to explore in the landscape of solutions to those
conditions. More generally, it would be interesting to explore constraints on the fractionalization
of other non-invertible symmetries beyond the coset construction. Our discussion focuses on
theories in (2+1)D, but the defect sandwich construction can be generalized straightforwardly
to higher spacetime dimensions. Defects in higher dimensions would have additional higher
codimension structures. It would also be interesting to explore new deconfined quantum critical
points with fractionalized excitations for non-invertible symmetries. Another context where
the coset symmetry can arise is in the Higgs phase of G gauge theory where the gauge group
is broken to a non-normal subgroup K, which we will explore in more detail in an upcoming
work.
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