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Abstract
The optimization of quantum circuits can be hampered by a decay of average gradient amplitudes
with increasing system size. When the decay is exponential, this is called the barren plateau
problem. Considering explicit circuit parametrizations (in terms of rotation angles), it has been
shown in Arrasmith et al (2022Quantum Sci. Technol. 7 045015) that barren plateaus are equivalent
to an exponential decay of the variance of cost-function differences. We show that the issue is
particularly simple in the (parametrization-free) Riemannian formulation of such optimization
problems and obtain a tighter bound for the cost-function variance. An elementary derivation
shows that the single-gate variance of the cost function is strictly equal to half the variance of the
Riemannian single-gate gradient, where we sample variable gates according to the uniform Haar
measure. The total variances of the cost function and its gradient are then both bounded from
above by the sum of single-gate variances and, conversely, bound single-gate variances from above.
So, decays of gradients and cost-function variations go hand in hand, and barren plateau problems
cannot be resolved by avoiding gradient-based in favor of gradient-free optimization methods.

1. Introduction

Recent rapid advancements in quantum computing hardware enable the implementation of large and deep
quantum circuits, reaching regimes beyond the simulation capabilities of classical computers. A promising
scheme to harness this potential before the advent of practical fault-tolerance are variational quantum
algorithms (VQAs) [1]: quantum circuits are executed on quantum computers and the quantum-gate
parameters are optimized through a classical backend to minimize a given cost function. A critical challenge
in such hybrid quantum–classical optimizations consists in noise and the probabilistic nature of quantum
measurements. In generic variational quantum circuits, average gradient amplitudes tend to decrease
exponentially in the system size (number of qudits). This phenomenon is known as barren plateaus [2, 3].
Unless one already has a very good guess for the optimal circuit, the barren plateau problem implies that we
would need an exponential number of measurement shots for a sufficiently accurate determination of
cost-function gradients, prohibiting the application for large problem sizes. Otherwise, we would very likely
end up with random walks in flat regions of the cost landscape. Numerous works investigate how to avoid an
exponential decay of gradient amplitudes [4–18], and the absence of barren plateaus might imply classical
simulability [19].

The quantum circuits in VQA can comprise fixed unitary gates {Ŵ1,Ŵ2, . . .} and variable unitary gates
{Û1, Û2, . . . , ÛK}. For example, the former could be controlled NOT (CNOT) gates and the latter
single-qubit gates. The variable gates are typically parametrized by rotation angles, Ûi = Ûi(θi) ∈ U(Ni),
and the optimization is based on the Euclidean metric in the angle space {θi}. Using this framework and
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Figure 1. An increase in dimensionality (scaling up the system size n) can lead to a decay of gradients. The situation where the
average gradient amplitude decays exponentially in n is the so-called barren-plateau problem. In general, gradient decay may or
may not be accompanied by concentration of the cost function. As discussed here and in [20] the two phenomena go hand in
hand for VQA.

assuming that the variables gates are composed of rotations e−iθi,kσ̂k with involutory generators
σ̂k = σ̂†

k = σ̂−1
k , Arrasmith et al established the equivalence of barren plateaus and an exponential decay of

the variance of cost-function differences with respect to increasing system size [20].
Alternatively, one can formulate the circuit optimization problem directly over the manifold

M= U(N1)×U(N2)× ·· ·×U(NK) (1)

formed by the direct product of the gates’ unitary groups in a representation-free form. In this Riemannian
approach [21, 22], gradients are elements of the tangent space ofM, and one can implement line searches
and Riemannian quasi-Newton methods through retractions and vector transport onM as discussed in
recent works [23, 24]. Riemannian optimization has some advantages over the Euclidean optimization of
parametrized quantum circuits. For example, it avoids cost-function saddle points that are introduced when
employing a global parametrization {θi} of the manifoldM (consider, e.g. sitting at the north pole of a
sphere and rotating around the z axis). Furthermore, the Riemannian formulation can simplify analytical
considerations, e.g. concerning average gradient amplitudes [16, 17] and cost-function variances as discussed
in the following.

In this report, we establish a direct connection between cost-function concentration and the decay of
Riemannian gradient amplitudes in the optimization of quantum circuits (see figure 1). The proof in the
Riemannian formulation is surprisingly simple and, compared to [20], yields tighter bounds. We will show
that when the gates are sampled according to the uniform Haar measure, the single-gate cost-function
variance is exactly half the single-gate variance of the Riemannian gradient. The corresponding total
variances, where all gates are varied simultaneously, are both bounded from above by sums of the single-gate
variances. Furthermore, the total variances bound all individual single-gate variances. As a consequence, the
barren plateau problem can be equivalently diagnosed through the analysis of cost function concentration
and cannot be resolved by switching from gradient-based optimization to a gradient-free optimization [20,
25].

2. Cost function and Riemannian gradient

Consider a generic quantum circuit Û composed of some fixed unitary gates {Ŵ1,Ŵ2, . . .} and variable
unitary gates {Û1, Û2, . . .} over which we optimize. Starting from a reference state ρ̂0, the circuit prepares the
state ρ̂= Û ρ̂0 Û†. With an observable Ô, the cost function takes the form

E({Ûi}) = Tr
(
Û ρ̂0 Û†Ô

)
(2)

With ρ̂0 =
∑S

s=1 ρ̂s ⊗ |s⟩⟨s| and Ô=
∑S

s=1 Ôs ⊗ |s⟩⟨s|, this setup also covers the more general case

E({Ûi}) =
∑S

s=1Tr
(
Û ρ̂s Û†Ôs

)
with a training set {(ρ̂s, Ôs)} of S initial states ρ̂s and associated

measurement operators Ôs [20].
Considering the dependence on one of the variable gates, Û ∈ U(N), we can write the cost function in the

compact form

E(Û) = Tr
(
ŶŨX̂Ũ†) with Ũ := Û⊗1M and X̂, Ŷ ∈ End

(
CN ⊗CM

)
(3)

2
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Figure 2. Diagrammatic representations for (a) cost function E(Û) and (b) Riemannian gradient ĝ(Û), where we consider the
dependence on a single gate Û ∈ U(N) from the variable gates {Ûi ∈ U(Ni)} that compose the quantum circuit Û ; cf
equations (3) and (4). Cost functions of this form arise in various applications like quantum machine learning and variational
quantum algorithms for the investigation of many-body ground states. Panel (c) shows how a cost function (2) for a quantum
circuit consisting of single-qubit and CNOT gates attains the form (3). Panel (d) shows an example for the variational
optimization of a multiscale entanglement renormalization ansatz (MERA) [26, 27]—a hierarchical tensor network state that
features unitary disentanglers (yellow squares) and isometries (blue triangles). See [16, 17, 23] for more context.

as illustrated in figure 2(a), where the Hermitian operator X̂ on CN ⊗CM comprises ρ̂0, Ŷ comprises Ô, and
both comprise further circuit gates except Û. See figure 2(c) for an example. As discussed in [16, 17],
expectation values ⟨Ψ|Ĥ|Ψ⟩ of a Hamiltonian Ĥ with respect to isometric tensor network states (TNS)
|Ψ⟩= Û |0⟩ can also be written in the form (3). In this case the TNS are generated from a pure reference state
|0⟩ by application of a quantum circuit, and Û corresponds to one tensor of the TNS. The example of a
multiscale entanglement renormalization ansatz (MERA) [26, 27] is illustrated in figure 2(d).

Here and in section 3, we consider variation of one specific unitary gate Û such that the Riemannian
manifold is just U(N); this is referred to as a ‘single-gate’ variation. The extension to variation of all gates
(‘total’ variation) on the full manifold (1) will be discussed in section 4. Projecting the gradient
d̂= ∂ÛE(Û) = 2TrM(ŶŨX̂) of the cost function (3) onto the tangent space of the unitary group U(N) at Û,
we obtain the Riemannian gradient

ĝ(Û) = TrM
(
ŶŨX̂− ŨX̂Ũ†ŶŨ

)
(4)

as illustrated in figure 2(b). Given that we need to stay on the manifold U(N) during the optimization, ĝ is
the relevant direction of change. As discussed in [23, 24], it can be efficiently measured on quantum
computers. Here and in the following, TrN and TrM denote the partial traces over the first and second
components of CN ⊗CM, respectively.

Let us summarize the derivation of equation (4): The N ×N unitary gates are embedded in the 2N2 real
Euclidean space E = End(CN)≃ R2N2

. The gradient in this embedding space is d̂. Using the (Euclidean)

metric (Û, Û ′) := ReTr(Û
†
Û ′) for the embedding space E , d̂ fulfills ∂εE(Û+ εV̂)|ε=0 = (d̂, V̂) for all V̂. For

Riemannian optimization algorithms, one needs to project d̂ onto the tangent space TÛ of U(N) at Û, and
then construct retractions for line search, and vector transport to form linear combinations of gradient
vectors from different points on the manifold [21–23]. An element V̂ of the tangent space TÛ needs to obey
(Û+ εV̂)†(Û+ εV̂) = 1+O(ε2) such that

TÛ =
{
iÛη̂ | η̂ = η̂† ∈ End

(
CN
)}

. (5)

The projection ĝ of d̂ onto this tangent space obeys (V̂, ĝ) = (V̂, d̂) for all V̂ ∈ TÛ. This gives the Riemannian

gradient ĝ= (d̂− Ûd̂†Û)/2 which results in equation (4).

3
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3. Single-gate Haar-measure variances

To evaluate averages and variances over U(N) (or, more generally the manifoldM), we employ
Haar-measure integrals. The average of the Riemannian gradient (4) is zero,

AvgÛ ĝ :=

ˆ
U(N)

dUĝ(Û) =
1

2

ˆ
U(N)

dU
[
ĝ(Û)+ ĝ(−Û)

]
= 0, (6)

because ĝ is an odd function in Û. For the evaluation of AvgÛE and the variances, we only need the first and
second-moment Haar-measure integrals over the unitary group. From the Weingarten formulas [28, 29] for
the first and second moments, one obtains [17]

AvgÛ Û
† ⊗ Û= 1

N Swap and (7a)

AvgÛ Û
† ⊗ Û⊗ Û† ⊗ Û= 1

N2−1

(
1− 1

N Swap2,4
)(

Swap1,2 Swap3,4+Swap1,4 Swap2,3
)

(7b)

with Swap=
∑N

i,j=1 |i, j⟩⟨ j, i| and Swapk,ℓ swaps the kth and ℓth components of CN ⊗CN ⊗CN ⊗CN.
Graphical representations of equations (7a) and (7b) are shown in figures 5(a) and (c). Weingarten formulas
can be proven using the Schur-Weyl duality and the double centralizer theorem [29]. An illustrating proof
for equation (7a) is given in appendix A.

Applying the Weingarten formulas (7), we find a simple linear relation between the single-gate
cost-function variance

VarÛE= AvgÛE
2 −
(
AvgÛE

)2
over U(N) (8)

and the single-gate gradient variance VarÛ ĝ. With the average gradient (6) being zero, we can quantify the
gradient variance by

VarÛ ĝ := AvgÛ
1

N
Tr
(
ĝ†ĝ
)

over U(N) . (9)

This definition can be motivated as follows [17]: As any element of the tangent space (5), the gradient ĝ can
be expanded in an orthonormal basis of involutory Hermitian operators {σ̂k | σ̂k = σ̂†

k = σ̂−1
k } for End(CN)

with Tr(σ̂kσ̂k′) = Nδk,k ′ . This gives the gradient in the form ĝ= iÛ
∑N2

k=1αkσ̂k/N, where each αk

corresponds to the derivative of one rotation angle. Hence, Tr(ĝ†ĝ)/N=
∑

kα
2
k/N

2, i.e. equation (9)
coincides with the average variance of the rotation-angle derivatives [30].

An elementary proof given in appendix B establishes a linear relation between the single-gate
cost-function variance (8) and gradient variance (9).

Theorem 1 (Exact equivalence of single-gate cost-function and gradient variances). In the Riemannian
formulation, the variance of the cost function (2) is exactly half the variance of the Riemannian gradient (4)
when considering the dependence on one of the unitary gates of the quantum circuit (Ûj̸=i fixed), i.e.

VarÛi
E
({

Ûj

})
=

1

2
VarÛi

ĝi
({

Ûj

})
∀
{
Ûj̸=i

}
. (10)

Of course, the proportionality of these conditional single-gate variances translates directly into a
proportionality of the averaged single-gate variances (the conditional variances (10) averaged over all Ûj̸=i),

Vi := Avg{Ûj̸=i}VarÛi
E
({

Ûj

}) (10)
=

1

2
Avg{Ûj̸=i}VarÛi

ĝi
({

Ûj

})
. (11)

4. Total Haar-measure variances

In section 3, we only considered the dependence of the cost function (2) on one of the unitary gates (Û) in
the circuit as well as the single-gate gradient (4). In this section, we consider the dependence on all variable
unitary gates (Û1, Û2, . . . , ÛK) ∈M with Ûi ∈ U(Ni) and the corresponding total variances like

Var{Ûj}E≡ Avg{Ûj}
(
E2
)
−
(
Avg{Ûj}E

)2
(12)

for the cost function.

4
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The full Riemannian gradient of the cost function (2) with respect to all variable gates is simply the direct
sum of the individual gradients, i.e.

ĝfull = ĝ1 ⊕ ĝ2 ⊕ ·· ·⊕ ĝk with ĝi = TrMi

(
ŶiŨiX̂i − ŨiX̂iŨ

†
i ŶiŨi

)
. (13)

Here Ũi := Ûi ⊗1Mi with X̂i and Ŷi depending on the remaining gates of the circuit, and ρ̂0 as well as Ô as in
equation (3). In extension of equation (9), we define the total variance of ĝfull as

Var{Ûj} ĝfull :=
1

K

K∑
i=1

Avg{Ûj}
1

Ni
Tr
(
ĝ†i ĝi

)
(9)
=

1

K

K∑
i=1

Avg{Ûj̸=i}VarÛi
ĝi. (14)

The following central result as proven in appendix C is based on an analysis of covariances, the law of
total variance, and theorem 1.

Theorem 2 (equivalence of circuit cost-function concentration and gradient vanishing). When averaging
over the variable unitaries {Ûi} of the quantum circuit Û according to the Haar measure, the total variance of the
cost function (2) and the total variance of the full Riemannian gradient (14) are both bounded from below by
single-gate variances Vi (equation (11)), and they are bounded from above by or proportional to the sum

∑
i Vi,

Vj ⩽ VarÛ1,...,ÛK
E
(
Û1, . . . , ÛK

)
⩽

K∑
i=1

Vi ∀ j and (15a)

Vj

(14)
⩽ K

2
VarÛ1,...,ÛK

ĝfull
(
Û1, . . . , ÛK

) (14)
=

K∑
i=1

Vi ∀ j. (15b)

In particular, if all single-gate variances Vi of polynomial-depth circuits (K= polyn) decay exponentially in the
system size (number of qudits) n, then both total variances (12) and (14) decay exponentially in n. Conversely, if
one of the total variances decays exponentially in n, then all single-gate variances also decay exponentially. So, the
barren-plateau problem and exponential cost-function concentration always appear simultaneously.

Note that the conclusions below equation (15b) remain valid if we choose a different weighting in the
definition of the full gradient variance (14). For example, we could also define it as

1∑K
i=1N

2
i

∑K
i=1Ni Avg{Ûj}Tr(ĝ

†
i ĝi ), corresponding to an equal weighting of all rotation-angle derivatives in

the parametrization discussed below equation (9).

5. Numerical verification

For an illustration of the general bounds on the cost-function variance in theorem 2, consider a
one-dimensional binary MERA |Ψ⟩ for spin-1/2 chains of length L= 3 · 2T, where T is the number of layers
in the MERA [26, 27]. The cost function is given by the energy (density) expectation value

E= ⟨Ψ|Ĥ|Ψ⟩, where the Hamiltonian Ĥ=
1√
24L

L∑
i=1

∑
a=x,y,z

σ̂a
i σ̂

a
i+1σ̂

a
i+2 (16)

is a sum of three-site interaction terms with Pauli operators σ̂x
i , σ̂

y
i , σ̂

z
i acting on site i. In the evaluation of the

variances, Haar-averages are executed by numerical sampling, and we denote the single-gate variances (11)
by Vτ,k, where the position (τ,k) indicates the kth tensor in layer τ .

As shown in figure 3 for MERA with bond dimension χ= 2, the total cost-function variance Var(E)
(equation (12)) is, in accordance with equation (15a), bounded from above by the sum of all single-gate
variances

∑
τ,kVτ,k, and the single-gate variances Vτ,k provide lower bounds. Within a given layer τ , the

single-gate variances Vτ,k are approximately constant and, as shown in [16, 17], they decrease exponentially
as

Vτ,k ∝ (324/625)τ . (17)

Hence, the best lower bound in figure 3 is given by the maximum of V1,k.
Note that the energy optimization problems for MERA, tree tensor networks states [31–33], and matrix

product states [34, 35] for Hamiltonian with finite-range interactions are actually free of barren plateaus [16,
17]. Nevertheless, the general variance relations from theorem 2 apply.

5
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Figure 3. Numerical verification of theorem 2 for binary one-dimensional MERA [26, 27] with bond dimension χ= 2 and the
cost function E given by the energy expectation value (16). In accordance with equation (15a), the cost-function variance is
bounded from below by single-gate variances Vτ,k and from above by

∑
τ,kVτ,k.

6. Discussion

Given the equivalence of cost-function concentration and gradient vanishing on both the single-gate as well
as full-circuit levels (theorems 1 and 2, respectively), we can assess gradient vanishing and, especially, barren
plateaus more easily through the scalar cost function. In fact, this route has already been pursued in recent
analytic works on the trainability of VQAs [19, 36–40].

Inspired by the work of Arrasmith et al [20] on the parametrized circuits and Euclidean gradients, we
studied the question in the Riemannian formulation which makes the proofs rather simple and yields
additional insights: (a) The single-gate variances of gradients and of the cost function turn out to be strictly
proportional. (b) In the Euclidean formulation, Arrasmith et al obtained results for the variance of
cost-function differences like Varθ

(
E(θ ′)− E(θ)

)
⩽O

(
K2(n)V(n)

)
, where θ ′ is a random reference point,

K(n) is the number of variable gates as a function of the system size n, and V(n) is a common upper bound
for all single-gate (gradient) variances Vi. This difference construction turned out to be unnecessary in the
Riemannian formulation and we could access VarÛ1,...,ÛK

E directly. (c) Furthermore, we obtained the tighter
bound VarÛ1,...,ÛK

E⩽ K(n)V(n). This result aligns with our experience in numerical simulations and could
probably be further tightened.

While quantifying the total cost-function variance is easier than studying single-gate gradient variances
or, equivalently, single-gate cost-function variances, the latter provide more detailed trainability information.
For example, the single-gate variances in MERA tensor networks vary strongly from layer to layer. Gates in
lower layers have a more substantial impact on the cost function landscape than those in upper layers. This
can be taken into account to improve optimization schemes [41].

As a specific example, consider the optimization of the quantum circuit that defines the MERA |Ψ⟩ to
minimize the energy expectation value ⟨Ψ|Ĥ|Ψ⟩ for the spin-1/2 transverse-field Ising chain

Ĥ=−
L∑

i=1

(
σ̂x
i σ̂

x
i+1 + hσ̂z

i

)
. (18)

The Ising chain has a critical point at |h|= 1, where the groundstate is particularly strongly entangled,
featuring the entanglement log-area law. It follows from the analysis in [16, 17] that the total cost-function
variance is (up to finite-size corrections) independent of the system size L and decays algebraically with
increasing MERA bond dimension χ. This means that there is no barren-plateau problem and the
optimization is in general possible. The single-gate variances provide more detailed information: MERA are
hierarchical tensor networks with a layer structure. It turns out that the single-gate variances decay
exponentially in the layer index τ = 1, . . . ,T, where T is the number of MERA layers [16, 17]. See
equation (17) for binary MERA with χ= 2. As demonstrated in figure 4, this suggests a more efficient
optimization scheme [41], where we start by setting the gates of layers τ ⩾ 2 to Ûτ,k = 1 and, initially, only
optimize those of layer τ = 1. After a suitable number of iterations, we proceed by optimizing the gates of
layers τ ⩽ 2, then those of layers τ ⩽ 3 and continue in this way, building up the MERA circuit layer by layer.
The numerical results close to the critical point of the model confirm that this scheme is more efficient than
the traditional approach of, right away, optimizing all layers simultaneously. On average, one achieves a
higher energy accuracy and less circuits remain stuck in local minima.

While single-gate variances provide considerably more information than the total cost-function variance
alone, they still give limited insight about trainability and convergence properties. They can show that

6
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Figure 4. Optimization of randomly initialized binary-MERA quantum circuits with bond dimension χ= 2 for the minimization
of the energy expectation value of the spin-1/2 transverse-field Ising chain (18) at h= 1.03. The plots show the optimization
history for the deviation of the energy density e= ⟨Ψ|Ĥ|Ψ⟩/L from the exact groundstate energy density e∞gs . Insets show
histograms for the accuracy of 100 randomly initialized MERA with six layers after 1200 iterations. (a) The single-gate
variances (11) turn out to decay exponentially in the layer index τ [16, 17]. As indicated by the gray regions, we hence, first
optimize layer τ = 1 only, then, after 100 iterations, all tensors of layers τ ⩽ 2, then all tensors of layers τ ⩽ 3 etc (b) In contrast,
using the traditional apporach of simultaneously optimizing all layers from the very beginning leads to considerably slower
convergence and more circuits stuck in local minima.

gradient amplitudes are on average above or below certain thresholds, but they are certainly not a measure
for the complexity of the cost function landscape, the importance of local minima, or specifics of
optimization trajectories.
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Appendix A. Proof of the first Weingarten formula (7a)

Proof. Consider the Haar-measure integral

B̂ :=

ˆ
U(N)

dUÛ†ÂÛ (A1)

over the unitary group U(N), where Â, B̂ ∈ End(CN) are linear operators. Due to the invariance of the Haar
measure, we have

V̂†B̂V̂=

ˆ
U(N)

dU(ÛV̂)†Â(ÛV̂) = B̂ for all V̂ ∈ U(N) . (A2)

According to Schur’s lemma, a linear operator B̂ that commutes with all elements V̂ of the unitary group is a
scalar multiple of the identity, i.e. B̂= λ1N. Taking the trace, we have

Nλ= Tr B̂
(A1)
=

ˆ
U(N)

dU Tr
(
Û†ÂÛ

)
=

ˆ
U(N)

dU Tr(Â) = Tr(Â). (A3)

Now, choosing Â= |i⟩⟨ j| for an orthonormal basis ⟨i|j⟩= δi,j, we can conclude that

7
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Tr(Â)

N
1N =

ˆ
U(N)

dUÛ†ÂÛ ⇒
ˆ
U(N)

dUU∗
i,kUj,ℓ =

1

N
δi,jδk,ℓ, (A4)

which is the first Weingarten formula and equivalent to equation (7a). See also figure 5(a).

Appendix B. Proof of theorem 1

Proof. Applying the first Weingarten formula (7a), illustrated in figure 5(a), the Haar-measure average of the
cost-function (3) evaluates to

AvgÛE
(7a)
=

1

N
Tr
(
TrN(X̂)TrN(Ŷ)

)
=

1

N
Tr Ẑ (B1)

as shown in figure 5(b), where Ẑ ∈ End(CN ⊗CN) with

⟨i1, i2|Ẑ|j1, j2⟩=
M∑

m,m ′=1

⟨i1,m|X̂|j1,m ′⟩⟨i2,m ′|Ŷ|j2,m⟩. (B2)

Applying the second Weingarten formula (7b), illustrated in figure 5(c), the second moment of the cost func-
tion evaluates to

AvgÛE
2 (7b)
=

1

N2 − 1

(
(Tr Ẑ)2 −

Tr
(
(Tr1 Ẑ)2 +(Tr2 Ẑ)2

)
N

+Tr Ẑ2

)
, (B3)

where Tr1 Ẑ and Tr2 Ẑ denote the partial traces of Ẑ over the first and second components ofCN ⊗CN, respect-
ively. See figure 5(d). Hence, the single-gate cost-function variance VarÛE= AvgÛE

2 − (AvgÛE)
2 over U(N)

is

VarÛE
(B1),(B3)

=
1

N2 − 1

(
Tr Ẑ)2

N2
−

Tr
(
(Tr1 Ẑ)2 +(Tr2 Ẑ)2

)
N

+Tr Ẑ2

)
. (B4)

As discussed in [17] and shown diagrammatically in figure 6, the single-gate gradient variance (9) valuates
to

VarÛ ĝ
(4),(7)
=

2

N2 − 1

(
(Tr Ẑ)2

N2
−

Tr
(
(Tr1 Ẑ)2 +(Tr2 Ẑ)2

)
N

+Tr Ẑ2

)
. (B5)

So, the cost-function variance (B4) is exactly half of the Riemannian gradient variance (B5).

Appendix C. Proof of theorem 2

Proof. (a) Let us first consider a circuit with only two variable unitaries Û1 and Û2. In this case, the cost
function (2) can be written in the form

E= E
(
Û1, Û2

)
=
∑
a

fa
(
Û1

)
ga
(
Û2

)
, (C1)

where fa and ga are continuous functions which only depend on Û1 and Û2, respectively: Analogously to
figure 2(c), we can always bipartition the tensor network for E(Û1, Û2) into two parts f and g with f con-
taining Û1, Û

†
1 and g containing Û2, Û

†
2 . The contraction of the two parts (operator products and trace to

obtain the scalar E) then corresponds to the sum over a in equation (C1).
The single-gate cost variance for Û1 at fixed Û2 then is (Avgi ≡ AvgÛi

and Vari ≡ VarÛi
)

Var1E
(
Û1, Û2

)
= Avg1

(
E2
)
− (Avg1E)

2 (C2)

=
∑
a,b

[Avg1(fa fb)−Avg1 (fa)Avg1 (fb)]︸ ︷︷ ︸
≡Cov(fa,fb)

gagb

and, similarly Var2E=
∑

a,b fafbCov(ga,gb).

8
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Figure 5. (a) Diagrammatic representation for the first-moment Haar-measure integral (7a) over the unitary group U(N). (b)
The single-gate Haar average (B1) of the cost function (3). (c) Second-moment Haar-measure integral (7b) over the unitary
group U(N). (d) Average (B3) of the squared cost function. (e) The single-gate Haar variance (B4) is obtained by subtracting the
squared cost-function average.

Figure 6. (a) Diagrammatic representation of the central quantity Tr(ĝ† ĝ) in the definition (9) of the Riemannian gradient
variance. (b) The single-gate variance (B5) of the Riemannian gradient, obtained by applying the second-moment Weingarten
formula (7b) as illustrated in figure 5(c).

Using that Avg1,2(fafbgagb) = Avg1(fafb)Avg2(gagb) due to the independence of Û1 and Û2 in the Haar-
measure average, the global cost-function variance is (Avg1,2 ≡ AvgÛ1,Û2

≡ AvgÛ1
AvgÛ2

)

Var1,2E= Avg1,2
(
E2
)
−
(
Avg1,2E

)2
=
∑
a,b

[Avg1 (fafb)Avg2 (gagb)−Avg1 (fa)Avg1 (fb)Avg2 (ga)Avg2 (gb)]

= Avg2Var1E+Avg1Var2E−
∑
a,b

Cov(fa, fb)Cov(ga,gb)

⩽ Avg2Var1E+Avg1Var2E. (C3)

This is the right inequality in equation (15a) for the case of two variable unitaries. In the last step, we have
used that the covariance matrices

Cov(fa, fb) = Avg(fafb)−Avg(fa)Avg(fb) = Avg([fa −Avg fa] [fb −Avg fb]) (C4)

9
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and Cov(ga,gb) are positive semidefinite such that the trace
∑

a,bCov(fa, fb)Cov(ga,gb) of their product is
non-negative.
(b) The generalization to a circuit with K variable unitaries follows by iterating equation (C3).

Decomposing the tensor network as before into K parts, each containing only one of the variable unitaries
and its adjoint, we can write the cost function in the form

E= E
(
Û1, Û2, . . . , ÛK

)
=
∑
a

f(1)a

(
Û1

)
f(2)a

(
Û2

)
· · · f(K)a

(
ÛK

)
. (C5)

Now, iterating equation (C3), we find

Var1,2,...,KE⩽ Avg2,...,KVar1E+Avg1Var2,...,KE

⩽ Avg2,...,KVar1E+Avg1

(
Avg3,...,KVar2E+Avg2Var3,...,KE

)
⩽ · · ·⩽

∑
i

Avg{j̸=i}Vari E≡
∑
i

Vi,

where Avgi1,...,in h≡ Avgi1 . . .Avgin h and Vari1,...,in h≡ Avgi1,...,in h
2 − (Avgi1,...,in h)

2.
(c) The right inequality in equation (15a) follows by applying the law of total variance,

Var1,2,...,KE= Avg{j̸=i}Vari E+Var{j̸=i}Avgi E⩾ Avg{j̸=i}Vari E
(11)
≡ Vi, (C6)

which holds for all i. Recall that, given two random variables E and Ui on the same probably space (M), the
law of total variance states that Var(E) = Avg

(
Var(E|Ui)

)
+Var

(
Avg(E|Ui)

)
. This corresponds to the first

step in equation (C6). In the second, step, we have used the nonegativity of the variance.
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