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Abstract—Quantum data-syndrome (QDS) codes are a class of
quantum error-correcting codes that protect against errors both
on the data qubits and on the syndrome itself via redundant
measurement of stabilizer group elements. One way to define a
QDS code is to choose a syndrome measurement code, a classical
block code that encodes the syndrome of the underlying quantum
code by defining additional stabilizer measurements.

We propose the use of primitive narrow-sense BCH codes
as syndrome measurement codes. We show that these codes
asymptotically require O(tlog/) extra measurements, where ¢
is the number of stabilizer generators of the quantum code and
t is the number of syndrome measurement errors corrected by
the BCH code.

Previously, the best known general method of constructing
QDS codes out of quantum codes required O(¢® log £) extra mea-
surements. As the number of additional syndrome measurements
is a reasonable metric for the amount of additional time a general
QDS code requires, we conclude that our construction protects
against the same number of syndrome errors with significantly
less time overhead.

I. INTRODUCTION

The ability to accurately detect, identify, and correct errors
is essential to building functional and scalable quantum com-
puters. This is typically achieved through the use of quantum
stabilizer codes, which are defined by their stabilizer group.
The measurement of the group generators produces a binary
syndrome that indicates the locations of errors. These measure-
ments involve several multi-qubit gates, which can introduce
errors on the qubits involved and corrupt the measurement
outcome.

For syndrome fault tolerance, we can measure additional
stabilizer group elements to add redundancy. One common
way to do this is to repeatedly measure the same set of
stabilizers [1], [2]. However, the syndrome can be protected
much more efficiently with the use of quantum data-syndrome
(QDS) codes. Introduced over a series of papers by Fujiwara
[3], [4] and Ashikhmin, Lai, and Brun [5], [6], [7], QDS
codes simultaneously encode quantum information and protect
against syndrome errors.

We propose a way of constructing quantum data-syndrome
codes using primitive narrow-sense BCH codes. We will
also show that such a construction that protects against ¢
syndrome errors requires O(t log(n — k)) additional measure-
ments, which is a significant improvement over other ways of
constructing these codes. Recently, BCH codes have also been
used to design good flag fault-tolerant syndrome extraction
schemes [8].

In this paper we will look at a phenomenological error
model, in which individual gates of a stabilizer have a chance
of causing an error on the syndrome bit. This model does
not consider hook errors propagated onto data qubits, but is
intended to be a stepping-stone to exploring a full circuit
model in the future.

II. BACKGROUND
A. Stabilizer codes

Pauli operators on n qubits are n-fold tensor products of
Pauli matrices Py = I = [} 9], =X = [{}], =Y =
(907, Ps=2=[}§ 2], of the form

iC'Pa0®Pa1®"'®Panfl’

with a;,c¢ € {0,1,2,3}. For simplicity’s sake we will omit
tensor products from our notation; so the three-qubit operator
X ®Y ® I becomes XY I. These operators form the group
P

An [n, k, d] stabilizer code encoding k logical qubits into
n physical qubits is defined by its ¢ := n — k independent
stabilizer generators, {g1,gs,...,g¢} C P™. These operators
generate the stabilizer group & C P™ of the code, which
is commutative, does not contain —I®", and has order 2¢.
Elements of the stabilizer group fix the states in the quantum
code: for any stabilizer g; € S and any codeword |¢)) of the
associated quantum code, g; [¢)) = |[¢).

A stabilizer on n qubits can be seen as a length-n vector
with elements in GF(4), under the homomorphism 7 : P —
GF(4) that maps I - 0,X - 1Y v =14w,Z - w
and ignores any global phase of £1, 4. This can be naturally
extended to send operators on n qubits from P™ to GF(4)"
[7]. Under this homomorphism, multiplication of stabilizers
corresponds to bitwise addition in GF(4)™. Throughout this
paper we will use g € P" to refer to a stabilizer and g €
GF(4)™ to refer to the corresponding length-n GF(4) vector
7(9).

The measurement of a code’s ¢ stabilizer operators gives
as an output a length-¢ binary vector called the syndrome
s = (81,82,...,8¢). The i-th syndrome bit s;, corresponding
to stabilizer operator g;, is 0 if £ and g; commute, and 1 if
they anticommute. For vectors x,y € GF(4)™ with elements
x;,y; € GF(4), the analogous function is the trace inner
product x xy : GF(4)" x GF(4)™ — GF(2):

X*y = Z(Ivy_z + TiYi),
i=1
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where 0 = 0,1 = 1,0 = 1+w, 1 + w = w, and multiplication
is typical in GF(4) [9]. Essentially, the i-th element of the sum
is0ifz; =0, y;, =0, or z; = y;, and 1 otherwise. The trace
inner product is 0 when the Pauli operators represented by x
and y commute, and is 1 when they anticommute.

B. Quantum Data-Syndrome Codes

We assume that Shor-style syndrome extraction [1], [2] is
used for measurement, in which a weight-w stabilizer can be
measured fault-tolerantly using w single-qubit measurements.
This is done using transversal gates and a w-qubit ancilla
cat state to prevent a single error on an ancilla qubit from
propagating to more than one data qubit.

In this paper, we focus on the phenomenological model
where errors can either occur on the data qubits or on the
syndrome bits. We only consider measurement errors—errors
that result in a single syndrome bit-flip, equivalent to an error
on the ancilla qubit after all transversal gates have already
occurred, with no propagation to data qubits. Let p,, be the
probability of a single-qubit measurement error. Then the
probability of incorrectly measuring a stabilizer generator S;
of weight w; is given by

por(8) = 3 (M)t

j odd

If any bits of the syndrome are flipped during measurement,
the resulting erroneous syndrome vector § = s + & may
suggest an incorrect series of gates to restore the state. Some
stabilizer codes have a choice of generators that allow them
to correct either a single data error or a single syndrome
error [4], [10], but in general, we need to perform additional
stabilizer measurements to add redundancy against syndrome
errors. Shor accomplished this by repeatedly measuring each
stabilizer generator multiple times [11]. However, this can be
achieved more efficiently by measuring an overdetermined set
of stabilizer elements. We call a quantum code with r extra
measurements beyond the £ = n — k needed an [n, k,d : 7]
quantum data-syndrome (QDS) code if it can correct up to a
combined |(d — 1) /2| data and syndrome errors, after [7].

A reasonable metric for the amount of extra time a QDS
code takes is the number of extra syndrome measurements that
take place. Assuming elements of the stabilizer group are of
roughly equal weight, the measurement of each syndrome bit
involves a similar number of gates to be performed, and thus
takes a similar amount of time. This assumes that stabilizer
measurements are done sequentially; the ability to measure in
parallel could produce further improvement, but when consid-
ering the general case, we cannot assume that measurements
can be performed in parallel [12]. Because of this, a QDS
code that requires fewer additional stabilizer measurements to
correct a certain number of syndrome errors is generally more
efficient than one that requires more additional measurements.
This is one reason that encoding syndrome information by
simply repeating stabilizer measurements is inefficient—an m-
fold repetition of ¢ stabilizer measurements that can correct

up to [Z-1| syndrome errors requires O(mf) additional

measurements.

A general framework for designing a QDS code with a
desired total distance 2t.+ 1 was proposed by Fujiwara [4]. It
involves s-detection parity check matrices (s-DPMs), which
are parity-check matrices for codes that can detect up to s
errors [4]. Specifically, an s-DPM(m,w) is a binary m x w
matrix such that any m X s submatrix contains a row of
odd weight. In [4, Theorem 3.5], Fujiwara showed that a 2¢-
DPM(m, w) exists so long as:

o o (2)- (%) o]

Fujiwara in [4] shows that for a [n,k, 2t 4+ 1] stabilizer
code, up to t total errors including up to t. syndrome errors
(for t. <t) can be corrected if a 2i—DPM(m;,n — k) exists
for each 1 < 4 < ¢.. The resulting matrix of stabilizer group
elements to be measured has |S| rows where:

tc
S| =n—k+2t.+ > (2t — 2i+ 1)m;,
i=1

o ((5) (747 ]

Theorem 1. The construction in [4] requires O(t3log/)
additional stabilizer measurements.

Proof. As we have ¢ = n — k, then we can express m; in
terms of £ as:

e [log? <(2gz) - (é 2z'2i)> +logz ew '

As we are interested in the behavior of this code asymp-
totically, we look at the behavior for larger ¢. The binomial
coefficient (Z) can in general be expressed as the polynomial:

k i

(Z) - Zs(k7)% )

=0

where s(k,i) = (—1)*7[*] are the Stirling numbers of the
first kind [13]. There are several special values of Stirling
numbers of the first kind; most valuable to us are s(n,n) =
[2] = Tand s, —1) = =[] = —(5) = -2,

Now consider the terms in these expansions with order
greater than 27 — 2:

a2 7 p2ie1
() = i~ a7y w0
. . 2 : N2i—1
(32)- B2 2 o
Expanding the (¢ — 24)%" and (£ — 2i)%*~! terms, we see:
(0= 20)% = (% — (20)20%1 4+ O(£>~2),
(0 —20)%~1 = 21 4 O(£%2),
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so in fact the /2" and ¢**~! terms of the polynomials are
(evaluating the Stirling numbers of the first kind):

O\ 2 220 — 1) 2 viio
(m) T2 2 AT O,

(23)'
0 —2i 2 (20)20770 0 24(20 — 1) 2! .
(22‘ ):@i)!‘ gz e o

Then the difference between these two binomial coefficients
will have a highest-order term in ¢ of the form ¢£27~1:

We know the m; is at least (2i — 1) log, ¢:
_ 0 (-2
m; = 089 2% 2% 0go €

\
21'627,'71 .

So the number of redundant stabilizer measurements required
by this construction is at least

te
2.+ (2te — 2+ 1)(2i — 1) log, L.
i=1
This sum can actually be evaluated to K closed form;
Sie (20— 1)(2te —2i+1) log, £ = log, £(25). So in terms
of ¢ and /, the total number of additional stabilizers constructed

18

log, ¢
1S — (n — k) :2t0+% (23 + t,) .
The dominant term of this is %, and
2t3 log, ¢ .
% € O(t2log ).

O

III. SYNDROME MEASUREMENT CODES

In general, given a stabilizer code, it is nontrivial to choose
a set of stabilizer generators such that the resulting QDS
code has a good total minimum distance. Instead we make
use of syndrome measurement (SM) codes [5]. A syndrome
measurement code is a [ng, ¢, 2ts+1] classical block code that
defines an overdetermined set of ng stabilizer operators to be
measured. This allows for a two-step decoding protocol that
is simpler than simultaneously decoding syndrome and data
errors, but can perform suboptimally in comparison [7]. In the
classical decoding step, the measured length-nc bit string is
decoded with a decoder of the SM code. This results in a
length-¢ syndrome for the stabilizer code, which is then used
to correct quantum errors in the second step. One advantage of
using a SM code is that the number of correctable syndrome
bit-flip errors is easy to dictate and independent from the
minimum distance of the stabilizer code.

If we have a stabilizer code [n,k,d] whose syndrome
is encoded in a [n¢,¥,dc] classical code, then the overall

minimum distance of the QDS code is d’ > min(d,dc),
and it can correct up to a simultaneous L%J errors on the
data qubits and |92=1| errors on the syndrome bits. This
ability to control the distance of the SM code makes the codes
particularly useful for systems with relatively high probability

of measurement error.

IV. PROTECTING SYNDROMES WITH BCH CODES

We propose the use of primitive narrow-sense Bose-
Chaudhuri-Hocquenghem (BCH) codes as SM codes to encode
the syndrome bits. These codes are a class of cyclic binary
codes of the form [2™ — 1,2™ — R(m,t) — 1,2t + 1], where
R(m,t) < mt for a chosen m, t € N. The properties of a BCH
code are defined by the degree of the least common multiple
of certain irreducible polynomials [14], [15], [16]. Any BCH
code can be shortened to create a [2"* —1—a, 2™ — R(m,t) —
1 — a,2t + 1] code. Note that because both the number of
logical and data bits both decrease by a, this process does not
change the difference between the number of logical and data
bits. This means that whether we use a regular or shortened
BCH code as an SM code, the number of additional stabilizers
measured will still be R(m,t).

In order to encode a syndrome of an [n, k, d] quantum code
(with a £x 2n stabilizer matrix H) in a BCH code with distance
ds = 2ts+1, we choose m to be the smallest integer such that
¢ < 2™ —mitg—1. Note that this means 2™ 2 < ¢ < 2™ < 44,
and so log, £ is O(m) and m is O(log ¢).

We use this m and our desired tg to find the corresponding
[2™ —1,2™ — R(m,tg) — 1,2ts + 1] BCH code, and if 2™ —
R(m,ts) — 1 > £ we shorten it by an appropriate amount
so that it is a [{ + R(m,tg), ¥, 2ts + 1] code. This code has
alx ({+ R(m,tg)) generator matrix Gp. We can use this
matrix to generate the (¢ + R(m,tg)) x 2n stabilizer matrix
for our [n,k,d : R(m,ts)] QDS code, Hg := GLH.

Theorem 2. Using a BCH code or shortened BCH code that
can correct up to t errors as a SM code encoding { syndrome
bits requires O(tlog{) additional stabilizer measurements.

Proof. When we encode ¢ bits in a BCH code with distance
2t+1, we find the m used to construct the code as the smallest
m such that 2" —1—mt > ¢, and we can see m is in O(log £).
The number of additional stabilizer measurements required
when using a BCH code as a syndrome measurement code
is the difference between the number of encoded and data bits
in the BCH code. This is definitionally R(m,t) < mt, so
R(m,t) € O(mt) = R(m,t) € O(tlog¥). This R(m,1)
is the same for a BCH code and any resulting shortened
BCH code, so our methodology requires O(tlog ¢) additional
stabilizer measurements. O

The significance of this improvement can be seen by con-
sidering the rotated surface code. A [d?,1,d] rotated surface
code is defined by ¢ = d? — 1 stabilizers; this means that
¢ € O(t?) for t = |%1]. A standard way to protect against
t syndrome errors, proposed by Shor, requires at least 2t
and up to t? additional rounds of syndrome extraction [1].
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A minimum-weight perfect-matching (MWPM) space-time
decoder is the standard method for fault tolerant syndrome
extraction for the surface code [17], [18]. The method uses
d = 2t+1 € O(t) rounds of syndrome measurements, yielding
O(ft) total measurements. In terms of ¢, this means that the
most efficient ¢-fault-tolerant syndrome extraction for the sur-
face code requires O(#3) additional measurements. Fujiwara’s
methodology requires O(t3log¢) additional measurements,
which is O(t3logt) in terms of ¢. In contrast, using our
methodology, we require O(tlog ¢) additional measurements;
in terms of ¢ this means our method is O(tlogt) for the
surface code, significantly better than the alternatives in terms
of measurements, but at the cost of a complex syndrome
extraction circuit relative to MWPM.

A. Example: encoding the [7, 1, 3] Steane code in a BCH code

The Steane code is a CSS code that encodes X and Z
errors using the [7,4, 3] Hamming code. This Hamming code
has parity check matrix:

101 01 01
Hgp=10 1 1 0 0 1 1
0 001111

So the generators of the Steane code’s stabilizer group S and
corresponding binary parity-check matrix Hg are:

S=(XIXIXIX, IXXIIXX IITXXXX,
ZIZIZIZ IZZIIZZ, IIIZZZZ) ,

[0 Hy
Hs_[HH O].

This code gives us a syndrome of length 6. Say we want
to protect against tg = 3 possible syndrome errors. Then we
determine our relevant BCH code. The smallest m such that
6 < 2m~1—3m—1ism =5, so our BCH code is a [31, 16, 7]
code. We need to shorten it by a = 10 bits in order for it to
encode exactly 6 bits; the resulting code is a [21,6,7] code
with generator matrix Gp:

100000000101011010010
010000000010101101001
Gp=[001000111100001001100
B 000100011110000100110
000010001111000010011
000001111010111110001

Multiplying G by our matrix Hg gives us a 21 x 14 matrix
that defines a set of stabilizers whose measurement returns a
length-21 syndrome vector. This can be decoded by appending
a = 10 zeroes to the beginning of the vector and passing it
through the decoder for the original [31, 16, 7] code (for more
on the decoding of cyclic codes see [15]). The resulting length-
16 vector will begin with 10 zeros that can be removed, and we
are left with a 6-bit syndrome—which can be used to identify
and correct errors on our 7 data qubits in the usual way.

=
3

-
2

=
2

Additional stabilizer measurements needed
=
S

= = Fujiwara, ! = 20
BCH, £ =20

= = Fujiwara, { = 60
= BCH, [ =60

= = Fujiwara, = 100
= BCH, £ = 100

2 4 6 8 10 12 14 16 18 20
Distance of classical code

Fig. 1. Comparison between the number of additional measurements required
by our BCH encoding vs. the additional measurements required by Fujiwara’s
construction for several values of £ = n— k. Note that the latter’s construction
is also limited by the number of stabilizer generators in the quantum code.

B. Time overhead

A QDS code that uses a BCH code as an SM code will
need only O(mtg) additional measurements to be performed.
Note that m € O(log ¢), so the number of additional measure-
ments is O(tglog¥). Compared to Fujiwara’s construction,
which is O(t2log £), we can see that ours gives a significant
improvement. Note that Fujiwara’s construction restricts t.
to be at most the ¢ of the quantum code the QDS code
is based on. If we desire to protect against a number of
syndrome errors fewer than those corrected by the base code,
our construction outperforms. If we instead protect against
more syndrome errors than ¢, our construction allows for this
while Fujiwara’s does not. Specifically, if we have a quantum
code and want to protect against fewer than ¢ syndrome errors,
Fujiwara’s construction grows with the number of errors
cubed. For the same code and desired correctable syndrome
errors, our BCH construction requires a number of additional
stabilizer measurements that is linear in ¢. For a comparison
of the additional stabilizer measurements needed to obtain the
same error-correcting properties between our and Fujiwara’s
constructions see Fig. 1.

This means that protecting against a specific number of
syndrome errors can be done with significantly less time
overhead using our encoding procedure than using Fujiwara’s
construction. It also means that if a circuit has a limited
amount of time to perform stabilizer measurements, our con-
struction can correct significantly more errors on the syndrome
bits than Fujiwara’s construction.

As an example of this, consider a code with ¢ = 10. If we
want to protect against up to 3 syndrome errors, Fujiwara’s
construction requires up to 76 additional stabilizers. The
highest-distance BCH code encoding ¢ = 10 bits such that
R(m,t) < 76 is the [80,10, 23] shortened BCH code (short-
ened from a [127,57,23] code) that only needs 70 additional
measurements while protecting against up to 12 syndrome
errors. Our methodology allows for significantly more well-
protected syndrome measurement in the same amount of time.
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Fig. 2. Behavior of BCH and Fujiwara encoding on a code with £ = 10, t. =
3, tpog = 12, and the same number of additional stabilizer measurements.
This shows the probability of a logical error arising from incorrect stabilizer
decoding. Errors in the results due to sample error from the Monte Carlo
simulations are negligible.

V. COMPARISONS

To illustrate this, we perform Monte Carlo simulation over
many error weights. To obtain accurate results despite the
need for high-weight errors with low probability, we use the
importance sampling methodology outlined in [19]. For a
system with probability of syndrome error ps on a number of
syndrome bits ¢, and probability of qubit error p, on number
of qubits ¢, we can calculate the probability of a logical error:

4 q
perr<pq»ps> = Z Z Awq,ws(pqaps)pL(wqaws)a

ws=1wg=1

where A, (p,n) = ()(p)“(1 — p)"~* is the probability
that w errors will occur on n possible locations when an error
occurs with probability p (and errors occur independently),
and Ay, 1w, (Pg, Ps) = Aw, (Pgs @) Aw, (ps, ) is the probability
that exactly w, qubit errors and w, syndrome errors will occur.
Then pr, (wq, ws) is the Monte Carlo-determined probability of
an error resulting from the decoding process when w, qubit
errors and w, syndrome errors occur.

Our construction performs significantly better than Fuji-
wara’s under a wide range of possible measurement error
probabilities. As an example, consider this encoding of an
¢ = 10 code (Fig. 2). The probability of a set of bit flips
resulting in a logical error is significantly lower with the
BCH SM code at all bit-flip error probabilities, with a very
pronounced effect at lower probabilities due to the significantly
higher distance in the BCH construction.

In a realistic model, it is likely that qubit errors and
syndrome bit-flip error probabilities are similar to each other.
It can be helpful then to look at the behavior of these codes
while varying both errors. In Fig. 3 we look at an encoding of
the Steane code in a BCH code and in Fujiwara’s construction
for syndrome bit-flip probability 100x greater than the Pauli
error probability. We can see that the codes both reach the
same slope, because the probability of qubit error becomes
more significant than the probability of measurement error.
However, because the BCH code has a higher distance, it
behaves significantly better.

- Fujiwara encoding
BCH encoding

1078

Logical error probability

10-° 1074 1073 1072 107t

Syndrome bit-flip error probability

1076

Fig. 3. Behavior of BCH and Fujiwara encoding on the Steane code when
qubit error probability is 100x less that syndrome bit-flip error probability.
This shows that at very high error probabilities, both codes perform relatively
similarly; however the BCH code performs significantly better at lower error
probabilities.

VI. CONCLUSION

We show that using the family of classical BCH codes,
we can protect against any number of syndrome errors ¢ we
choose, while only requiring a number of additional stabilizer
measurements linear in ¢. This is a significant improvement on
the previous construction given in [4], which requires a number
of additional measurements cubic in ¢. Our use of BCH codes
confers two advantages. First, for a specific desired number
of syndrome errors to correct, our construction requires sig-
nificantly fewer syndrome measurements and therefore takes
significantly less time than that in [4]. Second, if we have a
certain amount of time allocated for syndrome measurement,
our construction allows for significantly more syndrome errors
to be corrected with the same overhead as Fujiwara’s method.

Although BCH codes are generally good codes, this method-
ology may not the optimal choice for specific quantum codes.
For highly structured families of quantum codes, using BCH
codes as SM codes may not preserve the structure of the
underlying quantum code. For example, a good classical code
may not be a good SM code for a QLDPC code if it measures
high-weight stabilizer elements. For surface codes, using a
BCH code as a SM code likely will not preserve the locality
of stabilizer elements. For a CSS code it may be desirable
to avoid having to measure the product of both X- and
Z-type stabilizers, and therefore to encode the X- and Z-
type subgroups separately with SM codes. Future work may
therefore include encoding subsets of the stabilizer generators
in separate syndrome measurement codes to preserve certain
properties of the base quantum code.
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