
1

Accelerated AB/Push-Pull Methods for Distributed
Optimization over Time-Varying Directed Networks

Duong Thuy Anh Nguyen, Student Member, IEEE, Duong Tung Nguyen, Member, IEEE,
and Angelia Nedić, Member, IEEE

Abstract—This paper investigates a novel approach for solving
the distributed optimization problem in which multiple agents
collaborate to find the global decision that minimizes the sum of
their individual cost functions. First, the AB/Push-Pull gradient-
based algorithm is considered, which employs row- and column-
stochastic weights simultaneously to track the optimal decision
and the gradient of the global cost function, ensuring consen-
sus on the optimal decision. Building on this algorithm, we
then develop a general algorithm that incorporates accelera-
tion techniques, such as heavy-ball momentum and Nesterov
momentum, as well as their combination with non-identical
momentum parameters. Previous literature has established the
effectiveness of acceleration methods for various gradient-based
distributed algorithms and demonstrated linear convergence for
static directed communication networks. In contrast, we focus
on time-varying directed communication networks and establish
linear convergence of the methods to the optimal solution, when
the agents’ cost functions are smooth and strongly convex.
Additionally, we provide explicit bounds for the step-size value
and momentum parameters, based on the properties of the
cost functions, the mixing matrices, and the graph connectivity
structures. Our numerical results illustrate the benefits of the
proposed acceleration techniques on the AB/Push-Pull algorithm.

Index Terms—Distributed optimization, accelerated algorithm,
time-varying graph, directed graph.

I. INTRODUCTION

Distributed optimization has attracted significant interest in
recent years due to its wide range of applications in large-scale
multi-agent systems, such as sensor networks [1], formation
control [2], and machine learning [3]. In these systems, data
samples are distributed across multiple agents with compu-
tation tasks divided among them. Communication between
agents only occurs through established communication links.
This paper considers a system of n agents, where each agent’s
local cost fi is determined by its data sample. The goal is
for the agents to collaborate and reach a consensus on an
optimal solution for the global cost f , by solving the following
optimization problem:

min
x∈Rp

f(x) =
1

n

n∑
i=1

fi(x). (1)

The use of decentralized and collaborative approaches for
solving the optimization of the sum of convex functions has
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garnered significant attention in the literature, with many
algorithms proposed, including gradient-based methods [4],
dual averaging methods [5], ADMM [6], and Newton methods
[7], [8]. Early works often assume doubly-stochastic weights,
which require underlying networks to be undirected or bal-
anced [6], [9], [10]. To address directed graphs, [11] intro-
duced subgradient-push algorithm, a decentralized subgradient
method based on the push-sum technique, which is later
extended to time-varying graphs in [12] with a convergence
rate of O(ln t/

√
t) for diminishing step-sizes. Algorithms such

as ADD-OPT [13] and Push-DIGing [14] further improve the
convergence rate by incorporating the push-sum protocol with
a gradient estimation approach. These methods require knowl-
edge of agents’ out-degree to construct a column-stochastic
weight matrix, while algorithms such as [15] and FROST [16]
only use row-stochastic weights. These algorithms introduce
a nonlinear term through division by the Perron eigenvector
estimation of the weight matrix, which may result in stability
issues. The AB/Push-Pull method, introduced by [4], [17],
eliminates the need for Perron eigenvector estimation by using
both row- and column-stochastic weights simultaneously, and
demonstrates linear convergence for static directed commu-
nication networks. References [18] and [19] further establish
linear convergence of this method for time-varying directed
graphs, with the latter work also providing an improved
analysis and explicit range for the step-size.

The heavy-ball method [20] and Nesterov’s momentum
[21] are popular acceleration techniques for gradient-based
methods to achieve faster convergence. Several distributed
algorithms have been proposed in the literature that incor-
porate these momentum methods. In [22], two variants of an
accelerated distributed Nesterov gradient method are proposed
for convex (and strongly convex) smooth objective function
when the communication network is static undirected. For a
static directed network, papers [23] and [24] propose methods
that combine the AB/Push-Pull gradient tracking method with
a heavy-ball momentum and Nesterov momentum, respec-
tively. In particular, the linear convergence for the AB/Push-
Pull method with a heavy-ball momentum term is proved in
[23], while [24] only shows convergence through numerical
examples for the AB/Push-Pull method with a Nesterov
momentum term. Reference [25] further proposes a double-
accelerated method based on AB/Push-Pull by incorporating
both momentum terms, while [26] proposes to combine
Nesterov momentum term with the FROST method. All the
aforementioned acceleration methods are studied for a static
directed graph. For time-varying communication networks,
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[27] proposes to utilize heavy-ball and Nesterov techniques to
accelerate the Push-DIGing algorithm [14] that uses column-
stochastic matrices only. Furthermore, all prior studies on the
double-accelerated method [25], [27] mandate that the param-
eters for heavy-ball and Nesterov acceleration are identical.

In this paper, we focus on a general network setting where
agent communication is given by a sequence of time-varying
directed graphs. Building on the AB/Push-Pull algorithm,
we propose a general formulation that incorporates acceler-
ation techniques such as heavy-ball momentum and Nesterov
momentum, as well as their combination with non-identical
momentum parameters. This is an innovative departure from
existing works, which mandate identical momentum param-
eters. The AB/Push-Pull algorithm does not rely on Perron
eigenvector estimation, making it well-suited for time-varying
weights and serving as the foundation for the development of
these acceleration methods. A key challenge in the analysis is
the time-varying nature of the mixing matrices. Our analysis
uses time-varying weighted averages and norms to establish
consensus contractions for each update step for both row- and
column-stochastic mixing matrices.

We prove that the accelerated algorithm converges linearly
to the optimal solution when the agents’ cost functions are
smooth and strongly convex. The convergence result is de-
rived based on appropriate values for constant step-size and
momentum parameters, with explicit upper bounds provided
in terms of the cost function properties, mixing matrices, and
graph connectivity structures. Numerical results demonstrate
that the acceleration of the AB/Push-Pull method leads to
faster convergence. The results also show that allowing for
different values of acceleration parameters provides increased
flexibility and the potential for faster convergence. Our main
contributions can be summarized as follows:

• We propose a novel algorithm that combines the
AB/Push-Pull method with acceleration techniques such
as heavy-ball momentum, Nesterov momentum, and a
combination of both, using non-identical coefficients.

• We consider a general, directed, and time-varying com-
munication network and rigorously prove the linear con-
vergence of the proposed algorithm. The proof extends
and improves the previous results [18], [19], [23]–[25] by
providing a comprehensive analysis and explicit ranges
for the step-size and momentum parameters in terms of
cost function properties and communication structures.

The structure of this paper is as follows. We outline the
distributed optimization problem in Section II. In Section III,
we introduce the accelerated algorithm, and its convergence
analysis is presented in Section IV. The performance of the
proposed algorithm is demonstrated in Section V. Finally, we
conclude with some key points in Section VI.

Notations. Unless otherwise stated, all vectors are consid-
ered to be column vectors. The standard Euclidean norm is
denoted by ∥ · ∥. The notation 1 represents a vector with
all entries equal to 1, and I denotes the identity matrix.
The i-th entry of a time-varying vector uk is denoted by
[uk]i. For a vector v, we use notation min(v) = mini vi and
max(v) = maxi vi. A vector is considered to be stochastic if
its entries are nonnegative and sum to 1.

To denote the ij-th entry of a matrix Ak, we write [Ak]ij .
The minimum positive entry of a nonnegative matrix is
denoted by min+(A). A nonnegative matrix A ∈ Rn×n is
considered to be row-stochastic if A1 = 1, and a nonnegative
matrix B ∈ Rn×n is considered to be column-stochastic if
1TB = 1T. Given a positive vector a = (a1, . . . , an) ∈ Rn,
the a-weighted norm is as follows:

∥x∥a =

√√√√ n∑
i=1

ai∥xi∥2 for x = (x1, . . . , xn) ∈ Rp×· · ·×Rp.

When a = 1, the norm ∥x∥a reduces to the Euclidean norm of
x, and we simply write ∥x∥. We have the following inequality,

∥x∥ ≤
√

1
min(a) ∥x∥a for x ∈ Rp×· · ·×Rp, a > 0. (2)

We let [n] = {1, . . . , n} for an integer n ≥ 1. A directed
graph G = ([n], E) is specified by the edge set E ⊆ [n]× [n]
of ordered pairs of nodes. Given a directed graph G = ([n], E),
the sets N out

i and N in
i denote the out-neighbors and the in-

neighbors of a node i, i.e.,

N out
i = {j | (i, j) ∈ E} and N in

i = {j | (j, i) ∈ E}.

When the graph varies over time, we use a subscript k to
indicate the time instance. For example, Ek denotes the edge-
set of a graph Gk, N in

ik and N out
ik denote the in-neighbors and

the out-neighbors of a node i, respectively, at time k.
A directed graph is strongly connected if there is a directed

path from any node to all other nodes in the graph. Given a
directed path, the length of the path is the number of edges in
the path. For a strongly connected directed graph G = ([n], E),
we use the following definitions:

Definition 1 (Graph Diameter): The diameter D(G) is the
length of the longest path in a collection of all shortest directed
paths connecting all ordered pairs of distinct nodes in G.
Let pjl denote a shortest directed path from node j to node
l, where j ̸= l. A collection P of directed paths in G is a
shortest-path graph covering if pjl ∈ P and plj ∈ P for
any two nodes j, l ∈ [n], j ̸= l. The utility of the edge
(j, l) with respect to the covering P is the number of shortest
paths in P that pass through the edge (j, l). Define K(P) as
the maximum edge-utility in P taken over all edges in the
graph, i.e., K(P) = max

(j,l)∈E

∑
p∈P

χ{(j,l)∈p}, where χ{(j,l)∈p}

is the indicator function taking value 1 when (j, l) ∈ p and,
otherwise, taking value 0. Denote by S(G) the collection of
all possible shortest-path coverings of the graph G.

Definition 2 (Maximal Edge-Utility): The maximal edge-
utility K(G) is the maximum value of K(P) taken over
all possible shortest-path coverings P ∈ S(G), i.e.,
K(G) = maxP∈S(G) K(P).

II. PROBLEM FORMULATION

We consider a system of n agents that are connected by
a communication network, with the aim of collaboratively
solving the optimization problem in (1), where each function
fi : Rp → R represents the cost function known only to
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agent i. The agents aim to find a globally optimal solution
by performing local computations and exchanging information
with their neighboring agents through a sequence of directed
communication networks, represented by a time-varying graph
sequence {Gk}.

At each time step k, agents communicate over a directed
graph Gk, and their updates are governed by two non-negative
matrices Ak and Bk, which align with the connectivity struc-
ture of the graph Gk, in the following sense:

[Ak]ij> 0 ∀j∈ N in
ik ∪ {i}, [Ak]ij= 0 ∀j ̸∈ N in

ik ∪ {i}, (3)
[Bk]ji> 0 ∀j∈ N out

ik ∪ {i}, [Bk]ji= 0 ∀j ̸∈ N out
ik ∪ {i}. (4)

Moreover, each matrix Ak is row-stochastic and each matrix
Bk is column-stochastic for all k ≥ 0. Additionally, we
assume that there exist scalars a > 0 and b > 0 such that
min+(Ak) ≥ a and min+(Bk) ≥ b for all k ≥ 0.

We consider the problem under the following assumptions:
Assumption 1: For each k, the directed graph Gk =

([n], Ek) is strongly connected.
Remark 1: We can relax Assumption 1 by considering a

sequence of C-strongly connected graphs, i.e., for every k ≥ 0,
there exists an integer C ≥ 1 such that the graph formed by
the edge set EC

k =
⋃(k+1)C−1

i=kC Ei is strongly connected.
Assumption 2: Each fi is continuously differentiable and

has L-Lipschitz continuous gradients, i.e., for some L > 0,

∥∇fi(x)−∇fi(u)∥ ≤ L∥x− u∥, for all x, u ∈ Rp.

Assumption 3: The average-sum function f = 1
n

∑n
i=1 fi

is µ-strongly convex, i.e., for some µ > 0,

⟨∇f(x)−∇f(u), x− u⟩ ≥ µ∥x− u∥2 for all x, u ∈ Rp.

Remark 2: The strong convexity condition implies that
problem (1) has a unique optimal solution denoted by x∗, i.e.,

x∗ = argmin
x∈Rp

f(x).

III. ACCELERATED AB/PUSH-PULL METHODS

The AB/Push-Pull method, initially proposed in [4], [17],
is a general framework that unifies many of the existing
decentralized first-order methods with gradient tracking. Thus,
it is worthwhile to consider adding momentum terms to
accelerate its convergence. In this section, we introduce a
comprehensive approach that encompasses three methods for
accelerating the distributed AB/Push-Pull algorithm for time-
varying directed graphs. These methods include the heavy-
ball method [20] (also, in Section 3.2.1 of [28]), the Nesterov
gradient method [21], and a combination of these two methods.

Let each agent i ∈ {1, 2, . . . , n} possess two local copies
xi
k ∈ Rp and sik ∈ Rp of the decision variable and a

gradient-tracking variable yik ∈ Rp which is an estimate of
a “global update direction”, at iteration k. These variables are
maintained and updated over time, as follows:

To begin, agents are directed to use the step-size α > 0, the
heavy-ball momentum parameter β ≥ 0, and the Nesterov
momentum parameter γ ≥ 0. Additionally, each agent i
initializes their updates with arbitrary vectors xi

−1, x
i
0, s

i
0 and

with yi0 = ∇fi(s
i
0), without the need for coordination among

Algorithm 1: Accelerated AB/Push-Pull
Agents are directed to use α > 0, β ≥ 0 and γ ≥ 0.
Every agent i ∈ [n] initializes with arbitrary initial vectors
xi
−1, x

i
0, s

i
0 ∈ Rp and yi0 = ∇fi(s

i
0).

for k = 0, 1, . . . , every agent i ∈ [n] does the following:
In-bounds mixing weights [Ak]ij , for all j ∈ N in

ik ;
Out-bounds pushing weights [Bk]ℓi, for all ℓ ∈ N out

ik ;
Receives sjk and [Bk]ijy

j
k from in-neighbors j ∈ N in

ik ;
Sends sik and [Bk]ℓiy

i
k to out-neighbors ℓ ∈ N out

ik ;
Updates xi

k+1, sik+1 and yik+1 by

xi
k+1 =

n∑
j=1

[Ak]ijs
j
k − αyik + β(xi

k − xi
k−1), (5)

sik+1 = xi
k+1 + γ(xi

k+1 − xi
k), (6)

yik+1 =
n∑

j=1

[Bk]ijy
j
k +∇fi(s

i
k+1)−∇fi(s

i
k), (7)

end for

agents. Each agent i also independently decide on the entries
of Ak in the i-th row for their in-neighbors j ∈ N in

ik , while the
value [Bk]ij is determined by agent j ∈ N in

ik . At every time
k, every agent i sends its vector sik and a scaled direction
[Bk]ℓiy

i
k to its out-neighbors ℓ ∈ N out

ik . Every agent i also
receives these vectors sent by its in-neighbors j ∈ N in

ik .
Upon the information exchange step, every agent i updates its
vectors using equations (5)–(7) for all k ≥ 0. The proposed
procedure is outlined in Algorithm 1.

The method in Algorithm 1 is a generalization of three
methods to accelerate the AB/Push-Pull algorithm, namely,

• β > 0, γ = 0: Heavy-ball method
• β = 0, γ > 0: Nesterov gradient method
• β > 0, γ > 0: Combination of Nesterov gradient and

heavy-ball methods.

Relations to the AB/Push-Pull algorithm: From the view-
point of an agent, the information about the gradients is pushed
to the neighbors, while the information about the decision
variable is pulled from the neighbors, as noted in [17]. Hence,
the update step for aggregating the decision variables using
the row-stochastic matrix Ak is referred to as a pull-step,
while the step for tracking the average gradients using the
column-stochastic matrix Bk is referred to as a push-step as it
mimics the push-sum consensus method, originally proposed
in [29], later used in decentralized gradient-based methods [3],
[11], [12], and recently studied in [30]. Moreover, the role of
gradient tracking is to account for the heterogeneity of the
local data distributions among agents.
Acceleration techniques: Intuitively, the heavy-ball momen-
tum term, represented by β(xi

k − xi
k−1), accelerates the gra-

dient method by adding inertia to the updates. The Nesterov
momentum term, represented by γ(xi

k+1 − xi
k), is mathemat-

ically shown to improve convergence rate, but its underlying
intuition is not immediately clear. A geometric interpretation
of the Nesterov accelerated algorithm can be found in [31].
We discuss the impact of incorporating the momentum terms
on the convergence rate of the standard gradient method, i.e.,

xk+1 = xk − α∇f(xk),
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where α > 0 is a stepsize. We recall the following updates of
the heavy-ball method (see [20], or Section 3.2.1 of [28]):

xk+1 = xk − α∇f(xk) + β(xk − xk−1),

where β > 0, and the Nesterov gradient method [21]:

xk+1 = yk − α∇f(yk),

yk+1 = xk+1 + γ(xk+1 − xk),

where γ > 0. The convergence rate of the gradient method is
well-known to be O

((
Q−1
Q+1

)k)
, where Q = L

µ is the condition
number of the objective function f(x) (see [28]). By properly
choosing the parameters α and β, the heavy-ball method can
achieve a faster, locally accelerated rate of O

((√
Q−1√
Q+1

)k)
. The

Nesterov gradient method also has the rate of O
((√

Q−1√
Q

)k)
when 0 < α ≤ 1/L and γ = (

√
Q − 1)/(

√
Q + 1),

which is faster than the gradient method but slower than
the heavy-ball method in terms of the dependence on the
condition number Q (since Q ≥ 1). These acceleration
methods, as well as their combination, have been studied in
the context of distributed optimization algorithms. It has been
shown numerically and/or theoretically in [23]–[25] that the
accelerated AB/Push-Pull algorithms converge linearly for
static directed graphs with appropriate choices of step-size
and momentum parameters. However, despite this progress,
a comprehensive theoretical analysis for the convergence on
time-varying directed graphs is still an open problem, which
will be addressed in the next section.

IV. CONVERGENCE ANALYSIS

In this section, we present a detailed convergence analysis
of the generic accelerated AB/Push-Pull algorithm over a
time-varying directed communication network. We begin by
introducing some preliminary results. We then proceed to
establish the estimates for the four quantities of interest,
namely the optimality gap, the consensus error, the state
difference, and the gradient estimation error. By combining
these estimates, we demonstrate the linear convergence of the
algorithm. Finally, we provide a step-size selection rule and
the bounds for the acceleration parameters that ensure the
convergence of the proposed algorithm.

A. Preliminary Results

We first present the contraction property of the gradient
mapping, assuming that the objective function is strongly con-
vex and has Lipschitz continuous gradients, in the following:

Lemma 1 ( [28]): Let f be a µ-strongly convex and L-
smooth function. For 0 < α < 2L−1, we have

∥x− x∗ − α∇f(x)∥ ≤ q(α)∥x− x∗∥ for all x,

where q(α) = max{|1− αµ|, |1− αL|} < 1.
We then proceed by presenting some foundational results

that will support our later analysis.
Lemma 2 ( [32], Corollary 5.2): Consider a vector collec-

tion {ui, i ∈ [n]} ⊂ Rp, and a scalar collection {γi, i ∈

[n]} ⊂ R of scalars such that
∑n

i=1 γi = 1. For all u ∈ Rp,
we have the following relation:∥∥∥∥∥

n∑
i=1

γiui − u

∥∥∥∥∥
2

=
n∑

i=1

γi∥ui − u∥2 −
n∑

i=1

γi

∥∥∥∥∥ui−
n∑

ℓ=1

γℓuℓ

∥∥∥∥∥
2

.

Lemma 3 ( [32], Lemma 5.4): Consider a sequence {Ak}
of row-stochastic matrices. Then, there exists a sequence {ϕk}
of stochastic vectors such that

ϕT
k+1Ak = ϕT

k for all k ≥ 0. (8)

Moreover, if Assumption 1 holds and Ak is aligned with the
graph Gk (see (3)) with min+(Ak) ≥ a > 0 for all k ≥ 0,
then the entries of each ϕk have a uniform lower bound, i.e.,
[ϕk]i ≥ an

n for all i ∈ [n] and for all k ≥ 0.
Lemma 4 ( [19], Lemma 3.4): Consider a sequence {Bk}

of column-stochastic matrices and the vector sequence {πk},
defined as follows:

πk+1 = Bkπk, initialized with π0 = 1
n1. (9)

Then, the vectors πk are stochastic vectors. Moreover, if
Assumption 1 holds, where Bk is aligned with the graph Gk

and min+(Bk) ≥ b > 0 for all k ≥ 0, then [πk]i ≥ bn

n for all
i ∈ [n] and k ≥ 0.

Remark 3: When the graph sequence is C-strongly-
connected (Remark 1), the product of weight matrices
Ak+C−1 . . . Ak+1Ak and Bk+C−1 . . . Bk+1Bk are row- and
column-stochastic, respectively. These matrices represent the
directed paths among the nodes in the composition of the
graphs Gk, . . . ,Gk+C−1, capturing the underlying connec-
tivity patterns and facilitating the understanding of informa-
tion flow dynamics. Moreover, the more general results of
Lemma 3 and Lemma 4 indicate the existence of stochastic
vector sequences ϕk and πk, such that for all k ≥ 0,

ϕ′
k+C (Ak+C−1 . . . Ak+1Ak) = ϕ′

k

and πk+C = (Bk+C−1 . . . Bk+1Bk)πk.

Furthermore,

[ϕk]i ≥
anC

n
and [πk]i ≥

bnC

n
for all i ∈ [n].

Consider a strongly connected directed graph G = ([n], E),
and weight matrices A and B that are aligned with the graph
G (in sense of equations (3) and (4)). Let D(G) and K(G)
be the diameter and the maximal edge-utility of the graph G,
respectively. We have the following two results:

Lemma 5 ( [32], Lemma 6.1): Let A be a row-stochastic
matrix, ϕ be a stochastic vector and let π be a nonnegative
vector such that πTA = ϕT. Consider a collection of vectors
x1, . . . , xn ∈ Rp. For x̂ϕ =

∑n
i=1 ϕixi, we have√√√√ n∑

i=1

πi

∥∥∥∥∥
n∑

j=1

Aijxj − x̂ϕ

∥∥∥∥∥
2

≤ c

√√√√ n∑
j=1

ϕj∥xj − x̂ϕ∥2,

where c =
√

1− min(π)(min+(A))2

max2(ϕ)D(G)K(G) ∈ (0, 1) is a scalar.
Lemma 6 ( [19], Lemma 4.5): Let B be a column-

stochastic matrix, ν be a stochastic vector with positive
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entries, i.e., νi > 0, ∀i ∈ [n], and let the vector π be given by
π = Bν. Consider the vectors y1, . . . , yn ∈ Rp and vectors
wi =

∑n
j=1 Bijyj for all i ∈ [n], we have√√√√ n∑

i=1

πi

∥∥∥∥∥wi

πi
−

m∑
ℓ=1

yℓ

∥∥∥∥∥
2

≤ τ

√√√√ n∑
i=1

νi

∥∥∥∥∥yiνi −
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

,

where τ =
√
1− min2(ν) (min+(B))2

max2(ν)max(π)D(G)K(G) ∈ (0, 1) is a scalar.
The column stochastic property of the matrices Bk ensures

that the sum of the y-iterates, at any time k, is equal to the
sum of the gradients ∇fi(s

i
k), as seen in the following lemma

(the proof follows from mathematical induction on k, and uses
the column-stochasticity of Bk and the initialization of the y-
variables; see Algorithm 1).

Lemma 7: Consider Algorithm 1, and assume that each Bk

is column-stochastic. Then, we have
n∑

i=1

yik =
n∑

i=1

∇fi(s
i
k) for all k ≥ 0.

B. Main Results

The convergence analysis of the accelerated AB/Push-Pull
method is based on establishing a contraction relationship
between the following four quantities: (i) the optimality gap,
(ii) the consensus error, (iii) the state difference, and (iv) the
gradient estimation error, given respectively as follows:

∥x̂k − x∗∥, D(xk, ϕk) =

√√√√ n∑
i=1

[ϕk]i∥xi
k − x̂k∥2, (10a)

∥xk−xk−1∥, S(yk,πk)=

√√√√ n∑
j=1

[πk]j

∥∥∥∥∥ yjk
[πk]j

−
n∑

ℓ=1

yℓk

∥∥∥∥∥
2

, (10b)

where x̂k =
∑n

i=1[ϕk]ix
i
k, xk = (x1

k, . . . , x
n
k ) and x∗ is the

optimal solution of problem (1). We define the constants φk >
0, rk > 0, ck ∈ (0, 1) and τk ∈ (0, 1) as follows where
x̂k =

∑n
i=1[ϕk]ix

i
k, xk = (x1

k, . . . , x
n
k ) and x∗ is the optimal

solution of problem (1). We define the constants φk > 0,
rk > 0, ck ∈ (0, 1) and τk ∈ (0, 1) as follows

rk =
√
n+ 1√

min(πk+1)
, ck =

√
1− min(ϕk+1) a

2

max2(ϕk)D(Gk)K(Gk)
,

φk =
√

1
min(ϕk)

, τk =

√
1− min2(πk) b

2

max2(πk)max(πk+1)D(Gk)K(Gk)
.

(11)

We first establish the recursive relation for the weighted
average {x̂k} that will be utilized in the subsequent analysis.

Lemma 8: The weighted average sequence {x̂k} satisfies,

x̂k+1 = x̂k +
n∑

i=1

(β[ϕk+1]i + γ[ϕk]i)(x
i
k − xi

k−1)

− α
n∑

i=1

[ϕk+1]iy
i
k, for all k ≥ 0.

Proof: Plugging in the update for sjk from (6) into the
update for xj

k in (5) and rearranging the terms results in:

xi
k+1 =

n∑
j=1

[Ak]ijx
j
k − αyik + γ

n∑
j=1

[Ak]ij(x
j
k − xj

k−1)

+β(xi
k − xi

k−1). (12)

By taking a weighted average of xi
k+1 using the ϕk+1 weights,

from relation (12) we obtain
n∑

i=1

[ϕk+1]ix
i
k+1 =

n∑
i=1

[ϕk+1]i

n∑
j=1

[Ak]ijx
j
k − α

n∑
i=1

[ϕk+1]iy
i
k

+β

n∑
i=1

[ϕk+1]i(x
i
k−xi

k−1)+γ

n∑
i=1

[ϕk+1]i

n∑
j=1

[Ak]ij(x
j
k−xj

k−1).

Since ϕT
k+1Ak = ϕT

k , for the double-sum term we have
n∑

i=1

[ϕk+1]i

n∑
j=1

[Ak]ijx
j
k=

n∑
j=1

( n∑
i=1

[ϕk+1]i[Ak]ij

)
xj
k=

n∑
j=1

[ϕk]jx
j
k.

By using the definition of x̂k=
n∑

j=1

[ϕk]jx
j
k, and combining the

preceding two equations, we arrive at the desired relation.
We next examine the behavior of the directions yik generated

by the update in (7). The analysis will make use of some
weighted norms of scaled directions yik, where the scalings
are time-varying and defined by a stochastic vector sequence
{πk} associated with the matrix sequence {Bk}.

Lemma 9: Under Assumption 1, we have,√√√√ n∑
i=1

∥yik∥2
[πk]i

≤ S(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

yℓk

∥∥∥∥∥ for all k ≥ 0.

Proof: By Lemma 4, we have πk > 0 for all k ≥ 0, thus
n∑

i=1

∥yik∥2

[πk]i
=

n∑
i=1

[πk]i

∥∥∥∥ yik
[πk]i

∥∥∥∥2 .
Using the relation in Lemma 2 with γi = [πk]i and ui =
yik/[πk]i for all i, and u = 0, we obtain

n∑
i=1

[πk]i

∥∥∥∥∥ yik
[πk]i

∥∥∥∥∥
2

=
n∑

i=1

[πk]i

∥∥∥∥∥ yik
[πk]i

−
n∑

ℓ=1

yℓk

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

ℓ=1

yℓk

∥∥∥∥∥
2

= S2(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

yℓk

∥∥∥∥∥
2

,

where the last equality is implied from the definition of the
S-quantity in (10b). Therefore,√√√√ n∑

i=1

∥yik∥2
[πk]i

=

√√√√S2(yk,πk)+

∥∥∥∥∥
n∑

ℓ=1

yℓk

∥∥∥∥∥
2

≤S(yk,πk)+

∥∥∥∥∥
n∑

ℓ=1

yℓk

∥∥∥∥∥,
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where the inequality is obtained by using
√
a+ b ≤

√
a+

√
b,

which is valid for any two scalars a, b ≥ 0.
Lemma 10: Under Assumption 1, Assumption 2, and As-

sumption 3, we have the following relation for the sum of the
y-iterates, which holds for all k ≥ 0:∥∥∥∥∥

n∑
i=1

yik

∥∥∥∥∥≤L√n (φk∥x̂k−x∗∥+φkD(xk,ϕk)+γ∥xk−xk−1∥),

where φk > 0 is as given in (11).
Proof: By Lemma 7, we have∥∥∥∥∥

n∑
i=1

yik

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

∇fi(s
i
k)

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

(
∇fi(s

i
k)−∇fi(x

∗)
)∥∥∥∥∥,

where we use
∑n

i=1 ∇fi(x
∗) = 0, valid for the optimal

solution x∗ to problem (1) (which exists and is unique due to
Assumption 3). By Assumption 2 that each fi has Lipschitz
continuous gradients with a constant L > 0, we obtain∥∥∥∥∥

n∑
i=1

yik

∥∥∥∥∥ ≤
n∑

i=1

∥∥∥∥∥∇fi(s
i
k)−∇fi(x

∗)

∥∥∥∥∥ ≤ L
n∑

i=1

∥sik − x∗∥.

We define sk = (s1k, . . . , s
n
k ) and x∗ = (x∗, . . . , x∗). By

Hölder’s inequality we have
∑n

i=1 ai ≤
√

n
∑n

i=1 a
2
i , for all

ai, i ∈ [n], implying that∥∥∥∥∥
n∑

i=1

yik

∥∥∥∥∥≤L
√
n∥sk−x∗∥≤L

√
n(∥xk−x∗∥+γ∥xk−xk−1∥)

≤L
√
n(φk|xk − x∗∥ϕk

+ γ∥xk − xk−1∥), (13)

where the second inequality follows from the updates of the
s-iterates in (6), while the last inequality follows from the
relation for the norms in (2) and the fact that [ϕk]i > 0 for
all i and k (by Assumption 1 and Lemma 3). For the quantity
∥xk−x∗∥ϕk

, applying the relation in Lemma 2 with ui = xi
k,

γi = [ϕk]i for all i, and u = x∗ yields
n∑

i=1

[ϕk]i∥xi
k − x∗∥2 = ∥x̂k − x∗∥2 +

n∑
i=1

[ϕk]i∥xi
k − x̂k∥2,

where x̂k =
∑n

ℓ=1[ϕk]ℓx
ℓ
k. Using the definition of D(xk, ϕk)

in (10), we further derive the following inequality:

∥xk − x∗∥ϕk
≤ ∥x̂k − x∗∥+D(xk, ϕk), (14)

which uses
√
a+ b ≤

√
a+

√
b. The desired relation follows

by combining the relations in (13) and (14) with the inequality
∥xk − xk−1∥ϕk

≤ ∥xk − xk−1∥.
In the following, we derive upper bounds for each of the

four quantities defined in (10). We begin by assessing the
optimality gap in the subsequent proposition.

Proposition 1: Let Assumption 1, Assumption 2, and As-
sumption 3 hold. Let the step-size α in Algorithm 1 be such
that 0 < α < 2

nmin(πk)L
, where L is the gradient Lipschitz

constant. Then, we have for all k ≥ 0:

∥x̂k+1−x∗∥ ≤ qk(α)∥x̂k − x∗∥+ αL
√
nφkD(xk, ϕk)

+ αS(yk, πk) +
(
β + (1 + αL

√
n)γ

)
∥xk − xk−1∥,

where qk(α)=max{|1− αnmin(πk)µ|, |1− αnmin(πk)L|}.
Proof: See Appendix A.

In the next proposition, we investigate the behavior of the
deviation of the iterates xi

k, i ∈ [n], from their weighted aver-
age x̂k, as measured by the ϕk-weighted dispersion D(xk, ϕk).

Proposition 2: Under Assumption 1, Assumption 2, and
Assumption 3, the following inequality holds for all k ≥ 0,

D(xk+1, ϕk+1)≤(ck + αL
√
nφk)D(xk, ϕk)+αS(yk, πk)

+αL
√
nφk∥x̂k−x∗∥+(β+γ(ck + αL

√
n))∥xk−xk−1∥.

Proof: See Appendix B.
The next result establishes an upper bound for the state

difference of the x-sequence produced by the update in (5).
Proposition 3: Let Assumption 1, Assumption 2, and As-

sumption 3 hold. Then, for all k ≥ 0, we have:

∥xk+1−xk∥≤(β+γ
√
n(1+αL))∥xk−xk−1∥+αS(yk,πk)

+αL
√
nφk∥x̂k−x∗∥+(ckφk+1+φk+αL

√
nφk)D(xk,ϕk).

Proof: Let us denote zik =
∑n

j=1[Ak]ijx
j
k and

vik =
∑n

j=1[Ak]ij(x
j
k − xj

k−1). Define the vectors zk =

(z1k, . . . , z
n
k ), vk = (v1k, . . . , v

n
k ), yk = (y1k, . . . , y

n
k ) and

x̂k = (x̂k, . . . , x̂k). Then, we can write the x-update in (12)
compactly as follows:

xk+1 = zk + γvk − αyk + β(xk − xk−1). (15)

By adding and subtracting x̂k and using the triangle inequality,
we obtain:

∥xk+1 − xk∥ ≤ ∥xk+1 − x̂k∥+ ∥x̂k − xk∥
≤∥zk−x̂k∥+α∥yk∥+β∥xk−xk−1∥+γ∥vk∥+∥xk−x̂k∥, (16)

where the last inequality follows from the compact represen-
tation of the x-update in (15). For the first term in (16), we
use the relation for norms in (2) and Lemma 5 with A = Ak,
xi = xi

k, and ϕT
k+1Ak = ϕT

k to obtain the following bound:

∥zk − x̂k∥ ≤ φk+1 ∥zk − x̂k∥ϕk+1
≤ ckφk+1∥xk − x̂k∥ϕk

.

For the second term in (16), using the fact that the vector πk

is stochastic, Lemma 9 and Lemma 10, we derive

∥yk∥ =

√√√√ n∑
i=1

[πk]i
∥yik∥2
[πk]i

≤

√√√√ n∑
i=1

∥yik∥2
[πk]i

≤ S(yk,πk)

+ L
√
n (φk∥x̂k−x∗∥+φkD(xk,ϕk)+γ∥xk−xk−1∥) .

For the fourth term in (16), we have

∥vk∥2 =
n∑

i=1

∥∥∥∥∥
n∑

j=1

[Ak]ij(x
j
k − xj

k−1)

∥∥∥∥∥
2

≤
n∑

i=1

n∑
j=1

[Ak]ij∥xj
k − xj

k−1∥
2 ≤ n∥xk − xk−1∥2,

where we use the fact that Ak is row-stochastic.
The last term in (16) follows from the relation for norms

in (2) and the definition of D(xk, ϕk), as follows

∥xk − x̂k∥ ≤ φk∥xk − x̂k∥ϕk
= φkD(xk, ϕk).

Combining the estimates for each of the terms in (16), we
obtain the desired relation.
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Next, we provide a recursive relation for the gradient esti-
mation error S(yk, πk), as given in the following proposition.

Proposition 4: Under Assumption 1 and Assumption 2, the
following inequality holds for all k ≥ 0,

S(yk+1, πk+1) ≤ τk S(yk, πk) + Lrk(1 + γ)∥xk+1 − xk∥
+ Lrkγ∥xk − xk−1∥.

Proof: See Appendix C.
We now present a composite relation for the four quantities

defined in (10), by defining the vector Vk as follows:

Vk =
(
∥x̂k − x∗∥, D(xk,ϕk), S(yk,πk), ∥xk−xk−1∥

)T
. (17)

For the vector Vk we have the following result.
Proposition 5: Let Assumption 1, Assumption 2, and As-

sumption 3 hold. Then, for the iterates produced by the
accelerated AB/Push-Pull method in Algorithm 1 with the
step-size α ∈ (0, 2(nL)−1), we have

Vk+1 ≤ Mk(α, β, γ)Vk for all k ≥ 0,

where the ij-th element mi,j
k of the matrix Mk(α, β, γ) are

given as follows:

m1,1
k = qk(α), m1,2

k = αL
√
nφk, m1,4

k = β+γ(1+αL
√
n),

m1,3
k = α, m2,1

k = αL
√
nφk, m2,2

k = ck + αL
√
nφk,

m2,3
k = α, m2,4

k = β + γ(ck + αL
√
n),

m3,1
k = Lrk(1 + γ)m4,1

k , m3,2
k = Lrk(1 + γ)m4,2

k ,

m3,3
k = τk+Lrk(1+γ)m4,3

k , m3,4
k = Lrkγ+Lrk(1+γ)m4,4

k ,

m4,1
k = αL

√
nφk, m4,2

k = ckφk+1 + φk + αL
√
nφk,

m4,3
k = α, m4,4

k = β + γ
√
n(1 + αL).

Proof: The stated relation follows directly from Proposi-
tion 1, Proposition 2, Proposition 3, and Proposition 4.

Remark 4: From Proposition 5, to prove that Vk tends to 0
at a geometric rate, it is sufficient to show that

Mk(α, β, γ) ≤ M(α, β, γ),

for some matrix M(α, β, γ), where the preceding inequality
is to be understood entry-wise. Then, we select an appropriate
step-size α in the range (0, 2(nL)−1) and the acceleration
parameters β, γ, such that the eigenvalues of M(α, β, γ) lie
inside the unit circle, i.e., the spectral radius of M(α, β, γ) is
less than 1.

We now determine an upper bound matrix M(α, β, γ) for
Mk(α, β, γ). To do this, we define upper bounds for the
constants ck, τk, rk, and φk defined in (11) as c ∈ (0, 1),
τ ∈ (0, 1), r, and φ, respectively, i.e.,

max
k≥0

ck ≤ c, max
k≥0

τk ≤ τ, max
k≥0

rk ≤ r, max
k≥0

φk ≤ φ. (18)

For the quantity qk(α) in Lemma 1, when α ∈ (0, 2(nL +
nµ)−1), we have qk(α) = 1− αnmin(πk)µ < 1. Let σ be a
lower bound for min(πk), k ≥ 0, i.e., σ ≤ mink≥0{min(πk)}.
Note that Lemma 4 provides such a lower bound applicable to
any sequence of strongly connected graphs {Gk}. Better lower

bounds can be obtained when the graphs have more specific
structures. We have the following upper bound for qk(α):

max
k≥0

qk(α) ≤ 1− αnσµ ∈ (0, 1). (19)

Using the upper-bounds given in (18) and (19), for α ∈
(0, 2(nL + nµ)−1), we have Mk(α, β, γ) ≤ M(α, β, γ), for
all k ≥ 0, with the matrix M(α, β, γ) given by

1−αnσµ αL
√
nφ α β+γ(1+αL

√
n)

αL
√
nφ c+ αL

√
nφ α β+γ(c+αL

√
n)

u1 u2 τ+u3 Lrγ+u4

αL
√
nφ (c+1)φ+αL

√
nφ α β+γ

√
n(1+αL)


(20)

where the third row of the matrix M(α, β, γ) is co-linear with
the fourth row, i.e.,

(u1, u2, u3, u4) = Lr(1 + γ)[M(α, β, γ)]4,:.

We next define constants ηi, i ∈ [6], as follows:

η1 = (1− τ)(1− c)nσµ, (21a)

η2 = (1− τ)(nσµL
√
nφ+ L2nφ2), (21b)

η3 = Lr[(1 + c)φ+ 1− c](nσµ+ L
√
nφ), (21c)

η4 = (1− τ)[(1 + c)φ+ 1− c], (21d)

η5 = η1(
√
n−c)+[nσµ(1+c+L

√
n)+2L

√
nφ]η4, (21e)

η6 = (1 + γc− γ
√
n)η2 + (1 + γ)η3 + L2nφη4. (21f)

We now present the main result of this paper, which states
that the accelerated AB/Push-Pull algorithm (Algorithm 1)
converges to the global minimizer at a linear rate.

Theorem 1: Let Assumption 1, Assumption 2, and Assump-
tion 3 hold. Consider the iterates produced by Algorithm 1,
the notations in (18)-(19) and the constants ηi, i ∈ [6], defined
in (21). If the step-size α > 0 and the acceleration parameters
β ≥ 0 and γ ≥ 0 are chosen such that

α ≤ min

{
1− c

L
√
nφ

,
1− τ

Lr
,
η1 − κη5

η6
,

2

n(L+ µ)

}
,

max{β, γ} <
η1
η5

,

β + γ
√
n < 1,

(22)

then ρM < 1 where ρM is the spectral radius of M(α, β, γ)
and, thus, limk→∞ ∥xi

k − x∗∥ = 0 with a linear convergence
rate of the order of O

(
ρkM

)
for all i ∈ [n].

Proof: Recall that by Proposition 5, we have

Vk+1 ≤ Mk(α, β, γ)Vk, for all k ≥ 0.

With the matrix M(α, β, γ) defined as in (20), we obtain

Vk+1 ≤ M(α, β, γ)Vk, for all k ≥ 0. (23)

Thus, ∥x̂k −x∗∥, D(xk, ϕk), ∥xk−xk−1∥, and S(yk, πk) all
converge to 0 linearly at rate O

(
ρkM

)
if the spectral radius

ρM of M(α, β, γ) satisfies ρM < 1. By Lemma 8 of [17], we
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will have ρM < 1 if all diagonal entries of M(α, β, γ) are
less than 1 and det(I−M(α, β, γ)) > 0 where

det(I−M(α, β, γ))

=αη1(1 + γc− γ
√
n)− α2(1 + γc− γ

√
n)η2 − α2(1 + γ)η3

−α[nσµ(β + γc+ γL
√
n) + L

√
nφ(β + γ)]η4 − α2L2nφη4,

with positive constants η1 > 0, η2 > 0, η3 > 0 and η4 > 0
defined as in (21a)–(21d). Let κ = max{β, γ}, we can further
simplify the determinant as follows

det(I−M(α, β, γ)) = α [(η1 − κη5)− αη6] ,

where η5 and η6 are positive constants defined in equations
(21e) and (21f), given that γ

√
n < 1. Hence, we need to

choose α ∈ (0, 2(nL+ nµ)−1) and β ≥ 0, γ ≥ 0, so that the
following conditions are satisfied{

c+ αL
√
nφ < 1, τ + αLr < 1,

β + γ
√
n < 1, (η1 − κη5)− αη6 > 0.

which yields the range in (22).
We note that Theorem 1 includes the case when β = γ = 0,

thus recovering the convergence rate of the AB/Push-Pull
for time-varying graphs without accelaration, which has been
shown in [18] and, recently, in [19] (with explicit bounds
on the stepsize selection). Theorem 1 also encompasses the
results of acceleration for static directed graphs where the
graph remains unchanged over time, Gk = G, for all time
steps, k > 0. This includes the case when γ = 0 from [23],
the missing convergence analysis for β = 0 in [24], and the
case β = γ > 0 presented in [25].

Remark 5: The convergence analysis for C-strongly-
connected graph sequences is performed similarly to our
analysis above by utilizing the results in Remark 3, and by
recognizing that contractions resulting from row- and column-
stochastic matrices occur after k = C.

V. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithm by testing it on several real-world datasets, and
assessing its accuracy and efficiency. We compare the results
between the AB/Push-Pull algorithm (ABPP) and its variants
using different acceleration techniques, including the heavy-
ball momentum (ABPP-m), Nesterov momentum (ABPP-N),
and the combination of the two momentum techniques (ABPP-
mN). This comparison is sufficient as the performance of the
AB/Push-Pull algorithm and other existing algorithms, such
as Push-DIGing [14] and subgradient-push [12], as discussed
in our introduction, have already been evaluated (see, for
example, [18], [19]).

In our simulations, all the communication graphs are di-
rected, time-varying, and have self-loops. To ensure the graphs
are strongly connected, a directed cycle linking all agents is
established at each iteration. Utilizing time-varying directed
communication graphs proves to be highly practical in nu-
merous scenarios characterized by dynamic communication
networks among agents, where the flow of information or
commands between agents can be directed. These scenarios
often arise due to various factors such as communication
delays, user mobility, and the influence of straggler effects.

A. Distributed Ridge Regression

Consider a sensor fusion problem, as described in [17],
[33]. The goal of the sensor fusion problem is to estimate an
unknown parameter x by utilizing data from n sensors. Each
sensor i has a measurement matrix Hi ∈ Rs×p, and a noisy
observation zi = Hix + ωi ∈ Rs of x, where ωi represents
the noise. The resulting sensor fusion problem is given by the
following minimization problem:

min
x∈Rp

n∑
i=1

(
∥zi −Hix∥2 + λi∥x∥2

)
,

where λi > 0 is the regularization parameter for the local cost
function of sensor i.

We follow the setup in [17] where n = 20, p = 20,
and s = 1 are chosen to make the local cost function ill-
conditioned, requiring coordination among agents for fast
convergence. The measurement matrix Hi is generated from
a uniform distribution in the unit Rs×p space and, then,
normalized so that its Lipschitz constant is equal to 1. The
noise ωi follows an i.i.d. Gaussian process with zero mean and
unit variance N (0, 1). The regularization parameter is chosen
as λi = 0.01 for all i ∈ [n] to ensure the strong convexity
of the loss function. Figure 1(a) illustrates the accelerated
linear convergence of the proposed algorithm using different
acceleration techniques (ABPP, ABPP-m(1), ABPP-N, ABPP-
mN), using α = 0.25, β = 0.7 and γ = 0.05. When Nesterov
momentum is not used, a larger value of β = 0.8 may be
selected (ABPP-m(2)). The plot measures performance based
on the residual between the iterates xi

k, i ∈ [n], at time step
k and the optimal value x∗, given by 1

n

∑n
i=1 ∥xi

k − x∗∥.

(a) Sensor fusion problem (b) Diabetes dataset

Fig. 1: Residual plots

We also test how the changes in the momentum parameters
β and γ affect the convergence rate, as shown in Figure 2. The
results imply that the algorithm converges faster with higher
momentum parameter values. Also, the range of parameters
satisfies the conditions in (22). Note that the value of γ is
much smaller due to the condition β + γ

√
n < 1 in (22).

Fig. 2: Effects of varying momentum parameters (α = 0.25)
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B. Distributed Logistic Regression (L2-Regularization)

In this experiment, we examine binary classification prob-
lems using real-world datasets to evaluate the performance
among the different acceleration technique over a time-varying
directed network. We consider a total of N labeled data point
for training, with each node i possessing a local batch of
mi training samples. The j-th sample at node i is a tuple
{bij , yij} ⊆ Rp ×{+1,−1}. To construct an estimate x =
[x0, x

T
1:]

T∈Rp+1 of the coefficients, where x1:=[x1, . . . , xp]
T,

we will use the principle of maximum likelihood and define
the local logistic regression cost function fi at node i as:

fi(x) =
1

mi

mi∑
j=1

ln
[
1 + exp

{
− (xT

1:bij + x0)yij

}]
+

λ

2
∥x∥2,

which is smooth and strongly convex due to the inclusion
of the L2-regularization. The nodes cooperate to solve the
following decentralized optimization problem:

min
x∈Rp+1

1

n

n∑
i=1

fi(x).

We examine the performance of the proposed algorithm using
two datasets.

Pima Indians Diabetes Dataset: We evaluate the perfor-
mance of our algorithm using the Diabetes dataset, which
consists of N = 700 training samples and 68 test samples. The
dataset is divided among n = 7 agents, with each agent having
mi = 100 samples. A regularization parameter of λ = 0.001 is
used and the algorithm stops when the consensus error among
agents is less than 10−7. The accuracy on the test set is 79.41%
for all 4 algorithms. Figure 1(b) illustrates the accelerated
linear convergence of the proposed algorithm using different
acceleration techniques for α = 0.5, β = 0.7 (ABPP-m(1),
ABPP-mN) and γ = 0.1 while β = 0.8 for ABPP-m(2).

MNIST Dataset: The task at hand is to perform digit
classification on the MNIST dataset. Figure 3 shows a part of
randomly selected samples, where each image is featured as
a 784-dimensional vector. We use 2000 training samples and
1000 test samples. The problem is divided among 10 agents,
with each agent handling 200 samples. The regularization
parameter is set to λ = 0.001, and the algorithm terminates
when the consensus error among agents is below 10−3.

Fig. 3: Samples from MNIST Dataset

As a sanity check of accuracy, we visually examine the
coefficients generated by the proposed algorithm for the binary
classification task of hand-written digit 0 versus non-zero dig-
its. The visualization, shown in Figure 4, highlights the most
important features identified by the algorithm for classifying a
digit as 0. The blue pixels indicate the highest probability of
a digit being classified as 0, while the red pixels indicate the

lowest probability. As seen in Figure 4, the blue pixels form
the shape of a 0, with more red pixels in the center, indicating
that these pixels are less likely to be shaded in images of a 0.

Fig. 4: Heatmap of Coefficients for Logistic Regression in
Classifying Zero and Non-Zero Digits using ABPP-mN

We now assess the performance of the four algorithms in
classifying hand-written digits. The tasks are to classify hand-
written digits {1, 2} and classify hand-written digits {3, 5}.
The results of the numerical experiments are shown in Table I
which include the number of iterations, the computational time
and the accuracy on the test set.

Classify {1, 2} Classify {3, 5}
# Iterations Time (s) Accuracy # Iterations Time (s) Accuracy

ABPP 1326 75.5 98.3% 3287 246.0 95.49%
ABPP–m 1008 51.9 98.6% 1704 137.4 95.30%
ABPP–N 1380 95.8 98.3% 3261 266.5 95.49%
ABPP–mN 944 47.6 98.6% 1606 117.8 95.70%

TABLE I: Performance for α = 0.01, β = 0.3 and γ = 0.01.
Overall, the results demonstrate that the proposed algorithm

with acceleration techniques substantially enhances the con-
vergence rate while having comparable performance to the
AB/Push-Pull algorithm. The heavy-ball momentum, in partic-
ular, significantly improves the convergence, and incorporating
both heavy-ball and Nesterov momentum may be beneficial in
some cases (Figure 1). The Nesterov parameter γ is influenced
by the number of agents in the network, as it is multiplied
by

√
n (see (22)). The heavy-ball parameter β, on the other

hand, can be set to a larger value for faster convergence. By
considering different values for the Nesterov and heavy-ball
acceleration parameters β and γ, our proposed algorithm offers
greater flexibility and the potential for faster convergence.

VI. CONCLUSION

In this paper, we propose a novel approach for solving
distributed optimization problems over time-varying directed
networks. The proposed algorithm incorporates acceleration
techniques to improve the performance of the AB/Push-Pull
algorithm. Theoretical analysis is provided to prove linear
convergence to the optimal solution under certain conditions.
Additionally, explicit bounds for the step-size and momentum
parameters are derived based on the properties of the cost func-
tions and network structure. The numerical results demonstrate
the benefits of the proposed acceleration techniques on the
AB/Push-Pull algorithm. An interesting open direction is to
theoretically analyze the acceleration over the AB/Push-Pull
algorithm.
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APPENDIX

A. Proof of Proposition 1
Proof: Under Assumption 3, the unique minimizer x∗ of

f(x) over x ∈ Rp exists. By subtracting x∗ from both sides of
the relation for x̂k in Lemma 8, and by adding and subtracting∑n

i=1[ϕk+1]iαn[πk]i∇f(x̂k), we obtain:

x̂k+1 − x∗ = x̂k − x∗ −
n∑

i=1

[ϕk+1]iαn[πk]i∇f(x̂k)

+ α
n∑

i=1

[ϕk+1]i

(
n[πk]i∇f(x̂k)− yik

)
+

n∑
i=1

(β[ϕk+1]i + γ[ϕk]i)(x
i
k − xi

k−1).

As a result of the convexity of the norm and the stochastic
nature of ϕk+1, we can deduce that:

∥x̂k+1 − x∗∥ ≤
n∑

i=1

[ϕk+1]i∥x̂k − x∗ − αn[πk]i∇f(x̂k)∥

+ α

n∑
i=1

[ϕk+1]i∥yik − n[πk]i∇f(x̂k)∥

+

n∑
i=1

(β[ϕk+1]i + γ[ϕk]i)∥xi
k − xi

k−1∥. (24)

For a step-size α satisfying α ∈ (0, 2
n[πk]iL

), for all i ∈ [n],
by Lemma 1, it follows that

∥x̂k − x∗ − αn[πk]i∇f(x̂k)∥ ≤ qi,k(α)∥x̂k − x∗∥,

with qi,k(α) = max{|1− αn[πk]iµ|, |1− αn[πk]iL|}.
We have the following estimate for the first term on the

right-hand-side of (24):
n∑

i=1

[ϕk+1]i∥x̂k − x∗ − αn[πk]i∇f(x̂k)∥

≤
n∑

i=1

[ϕk+1]iqi,k(α)∥x̂k − x∗∥ ≤ qk(α)∥x̂k − x∗∥,

using the stochasticity of ϕk+1 and qk(α) = max{|1 −
αnmin(πk)µ|, |1 − αnmin(πk)L|}. Since max(ϕk+1) ≤ 1,
to estimate the second term on the right-hand-side in (24),
we factor out [πk]i (which is positive by Assumption 1 and
Lemma 4), as follows

n∑
i=1

[ϕk+1]i∥yik−n[πk]i∇f(x̂k)∥

≤
n∑

i=1

∥yik−n[πk]i∇f(x̂k)∥ =
n∑

i=1

[πk]i

∥∥∥∥∥ yik
[πk]i

−n∇f(x̂k)

∥∥∥∥∥
≤

n∑
i=1

[πk]i

∥∥∥∥∥ yik
[πk]i

−
n∑

ℓ=1

yℓk

∥∥∥∥∥+
n∑

i=1

[πk]i

∥∥∥∥∥
n∑

ℓ=1

yℓk − n∇f(x̂k)

∥∥∥∥∥
≤

√√√√ n∑
i=1

[πk]i

∥∥∥∥∥ yik
[πk]i

−
n∑

ℓ=1

yℓk

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

ℓ=1

yℓk−n∇f(x̂k)

∥∥∥∥∥
≤ S(yk, πk)+

∥∥∥∥∥
n∑

ℓ=1

yℓk−n∇f(x̂k)

∥∥∥∥∥,

where we add and subtract
∑n

ℓ=1 y
ℓ
k, and use the triangle

inequality to obtain the second inequality. We use the fact
that the vector sequence {πk} is stochastic to derive the third
inequality (see Lemma 3), and the last inequality follows from
the definition of the S-quantity in (10b). We now estimate
the last term in the preceding relation. By Lemma 7 we
have

∑n
ℓ=1 y

ℓ
k =

∑n
ℓ=1 ∇fℓ(s

ℓ
k); hence, in view of ∇f =

1
n

∑n
ℓ=1 ∇fℓ, it follows that∥∥∥∥∥
n∑

ℓ=1

yℓk − n∇f(x̂k)

∥∥∥∥∥ =

∥∥∥∥∥
n∑

ℓ=1

(
∇fℓ(s

ℓ
k)−∇fℓ(x̂k)

)∥∥∥∥∥
≤

n∑
ℓ=1

∥∇fℓ(s
ℓ
k)−∇fℓ(x̂k)∥ ≤ L

n∑
ℓ=1

∥sℓk − x̂k∥

= L
√
nφkD(xk, ϕk) + L

√
nγ∥xk−xk−1∥,

where we use the gradient Lipschitz continuity property for
each fi, the s-update in (6) the definitions of the D-quantity
in (10a) and the constant φk in (11). Hence, we obtain the
following relation for the second term in (24):

n∑
i=1

[ϕk+1]i∥yik − n[πk]i∇f(x̂k)∥

≤S(yk, πk) + L
√
nφkD(xk, ϕk) + L

√
nγ∥xk − xk−1∥.

For the final term in (24), since ϕk is stochastic, we have

n∑
i=1

[ϕk]i∥xi
k−xi

k−1∥≤

√√√√ n∑
i=1

[ϕk]i∥xi
k −xi

k−1∥2≤∥xk−xk−1∥.

We can obtain similar relation when the weight is ϕk+1, thus,
n∑

i=1

(β[ϕk+1]i + γ[ϕk]i)∥xi
k − xi

k−1∥ ≤ (β + γ)∥xk − xk−1∥.

Substituting the estimates obtained above for each term on the
right-hand-side of (24) gives the desired relation.

B. Proof of Proposition 2

Proof: Let ui
k = xi

k − xi
k−1 and ûk =

∑n
i=1[ϕk]iu

i
k.

Subtracting the relation for x̂k given in Lemma 8 from the
x-update in equation (12), and using the triangle inequality,
we have

D(xk+1, ϕk+1) ≤

√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥
n∑

j=1

[Ak]ijx
j
k − x̂k

∥∥∥∥∥
2

+α

√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥yik−
n∑

j=1

[ϕk+1]jy
j
k

∥∥∥∥∥
2

+γ

√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥
n∑

j=1

[Ak]iju
j
k − ûk

∥∥∥∥∥
2

+β

√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥ui
k−

n∑
j=1

[ϕk+1]ju
j
k

∥∥∥∥∥
2

. (25)
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Under Assumption 1, we use Lemma 5 to estimate the first
term in (25), with A = Ak, xi = xi

k and ϕT
k+1Ak = ϕT

k :√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥
n∑

j=1

[Ak]ijx
j
k−x̂k

∥∥∥∥∥
2

≤ck

√√√√ n∑
j=1

[ϕk]j∥xj
k−x̂k∥2

≤ ckD(xk, ϕk). (26)

Similarly for the third term in (25), using Lemma 5 with A =
Ak, xi = ui

k and ϕT
k+1Ak = ϕT

k , we obtain√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥
n∑

j=1

[Ak]iju
j
k−ûk

∥∥∥∥∥
2

≤ck

√√√√ n∑
j=1

[ϕk]j∥uj
k−ûk∥2.

Next, using the relation in Lemma 2 with γi = [ϕk]i, ui = ui
k

and u = 0, it follows that
n∑

i=1

[ϕk]i

∥∥∥∥∥ui
k−

n∑
j=1

[ϕk]ju
j
k

∥∥∥∥∥
2

≤
n∑

i=1

[ϕk]i∥ui
k∥2 ≤ ∥xk−xk−1∥2,

where the last inequality follows from the stochasticity of ϕk

and the definition of ui
k, for all i ∈ [n]. Thus,√√√√ n∑

i=1

[ϕk+1]i

∥∥∥∥∥
n∑

j=1

[Ak]iju
j
k−ûk

∥∥∥∥∥
2

≤ck∥xk − xk−1∥. (27)

Similar argument can be used to estimate the forth term in
(25), which yields

n∑
i=1

[ϕk+1]i

∥∥∥∥∥ui
k −

n∑
j=1

[ϕk+1]ju
j
k

∥∥∥∥∥
2

≤
n∑

i=1

[ϕk+1]i∥ui
k∥2 ≤ ∥xk − xk−1∥2, (28)

and, for the second term in (25), as follows√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥yik −
n∑

j=1

[ϕk+1]jy
j
k

∥∥∥∥∥
2

≤

√√√√ n∑
i=1

[ϕk+1]i∥yik∥2

≤
√

max
j∈[n]

([ϕk+1]j [πk]j)

√√√√ n∑
i=1

∥∥yik∥∥2
[πk]i

≤

√√√√ n∑
i=1

∥∥yik∥∥2
[πk]i

≤L
√
n (φk∥x̂k−x∗∥+φkD(xk,ϕk)+γ∥xk−xk−1∥)

+S(yk,πk), (29)

where the last inequality follows from Lemmas 9 and 10. By
combining the estimates for each term in (25), as given by
relations (26)–(29), we arrive at the desired relation.

C. Proof of Proposition 4

Proof: By defining wi
k =

∑n
j=1[Bk]ijy

j
k, wk =

(w1
k, . . . , w

n
k ) and gk = (∇f1(s

1
k), . . . ,∇fn(s

n
k )), the update

for the y-iterate in compact form is given as

yk+1 = wk + gk+1 − gk for all k ≥ 0. (30)

Let Λ = diag−1(πk+1), we can write

yk+1Λ = wkΛ + (gk+1 − gk)Λ for all k ≥ 0.

By subtracting the vector ȳk+1 = (ȳk+1, . . . , ȳk+1), where
ȳk+1 =

∑n
j=1 y

j
k+1, from both sides of the preceding relation,

we have for all k ≥ 0,

yk+1Λ− ȳk+1= wkΛ− ȳk + (ȳk− ȳk+1) + (gk+1− gk)Λ.

By taking πk+1-induced norm on both sides and noting that
S(yk+1, πk+1) = |yk+1Λ− ȳk+1|πk + 1, we obtain

S(yk+1, πk+1) ≤ ∥wkΛ− ȳk∥πk+1
+ ∥ȳk+1 − ȳk∥πk+1

+ ∥(gk+1 − gk)Λ∥πk+1
. (31)

For the first term in (31), by using the definitions of wk and
ȳk, we can deduce that

∥wkΛ− ȳk∥πk+1
=

√√√√ n∑
i=1

[πk+1]i

∥∥∥∥∥ wi
k

[πk+1]i
−

n∑
ℓ=1

yℓk

∥∥∥∥∥
2

≤ τk

√√√√ n∑
i=1

[πk]i

∥∥∥∥∥ yi
[πk]i

−
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

= τk S(yk, πk),

where the first inequality follows from Lemma 6 with G =
Gk, a strongly connected directed graph (see Assumption 1),
B = Bk, π = πk+1, and ν = πk. The last equality follows
from the definition of S(yk, πk).

For the second term in (31), since ȳk =
∑n

i=1 y
i
k =∑n

i=1 ∇fi(s
i
k) (as stated in Lemma 7), we have

∥ȳk+1−ȳk∥πk+1
=

√√√√ n∑
i=1

[πk+1]i∥ȳk+1−ȳk∥2=∥ȳk+1−ȳk∥

=

∥∥∥∥∥
n∑

i=1

(
∇fi(sik+1)−∇fi(sik)

)∥∥∥∥∥≤
n∑

i=1

∥∇fi(sik+1)−∇fi(sik)∥

≤ L
n∑

i=1

∥sik+1 − sik∥ ≤ L
√
n∥sk+1 − sk∥,

where the last inequality follows from the Lipschitz continuity
of the gradients ∇fi (Assumption 2).

For the last term in relation (31), we have

∥(gk+1 − gk)Λ∥πk+1
=

√√√√ n∑
i=1

∥∇fi(sik+1)−∇fi(sik)∥2

[πk+1]i

≤ L

√√√√ n∑
i=1

∥sik+1 − sik∥2

[πk+1]i
≤ L√

min(πk+1)
∥sk+1 − sk∥,

where the first inequality follows by the Lipschitz continuity
of the gradients ∇fi. Thus,

S(yk+1, πk+1) ≤ τk S(yk, πk) + Lrk∥sk+1 − sk∥,

where rk =
√
n+ 1√

min(πk+1)
. Using the compact form of the

s-update of the method in (6), we further obtain

∥sk+1 − sk∥ ≤ (1 + γ)∥xk+1 − xk∥+ γ∥xk − xk−1∥.

The desired relation follows from the preceding two relations.
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