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Abstract
Sampling from the output distributions of quantum computations comprising only commuting gates, known as instantaneous

quantum polynomial (IQP) computations, is believed to be intractable for classical computers, and hence this task has become
a leading candidate for testing the capabilities of quantum devices. Here we demonstrate that for an arbitrary IQP circuit
undergoing dephasing or depolarizing noise, whose depth is greater than a critical 𝑂 (1) threshold, the output distribution can
be efficiently sampled by a classical computer. Unlike other simulation algorithms for quantum supremacy tasks, we do
not require assumptions on the circuit’s architecture, on anti-concentration properties, nor do we require Ω(log(𝑛)) circuit
depth. We take advantage of the fact that IQP circuits have deep sections of diagonal gates, which allows the noise to build
up predictably and induce a large-scale breakdown of entanglement within the circuit. Our results suggest that quantum
supremacy experiments based on IQP circuits may be more susceptible to classical simulation than previously thought.
Furthermore, we show that the critical depth threshold of our algorithm is tight, and below this threshold there are noisy
IQP circuits which are hard to sample from. Thus we demonstrate that noisy IQP circuits exhibit a phase transition in the
computational complexity of sampling, as circuit depth is increased.

1 Introduction
The field of quantum computation is based on the practical expectation that quantum computers will deliver large speed-ups
compared to classical computers on important tasks. However, in most cases, implementing these algorithms is only expected
to be feasible on a fault-tolerant quantum computer which is beyond the capabilities of current quantum devices. With the
aim of experimentally demonstrating a quantum speed-up without error correction, a range of computational tasks — so
called “quantum supremacy” experiments — have been devised which are expected to be difficult for a classical computer to
solve, but which are tractable for a quantum computer. Notably these include random circuit sampling, IQP circuit sampling,
boson sampling, and many others1. Many of these protocols have been implemented on a variety of hardware on a scale
approaching or achieving quantum supremacy2.

On the flip side, it has been argued that many of these implementations fall short of demonstrating “quantum supremacy”
by showing that the quantum computation performed is actually simulatable (or spoof-able) using currently available classical
computers. In the process, many improvements have been made to simulation techniques, both of quantum circuits generally
and of the particular supremacy experiments [16, 17, 18, 19, 20, 21]. These simulation techniques are not only of interest for
their practical results or relation to quantum supremacy experiments, but also because many of them elucidate the mechanism
through which quantum circuits may become easy or hard to simulate, thus giving us insight into the question of where the
power of quantum computers comes from.

One of the most popular suggestions for demonstrating quantum supremacy, which we will focus on in this work, is the
task of sampling from Instantaneous Quantum Polynomial (IQP) circuits. IQP circuits, first introduced in [22, 23] are circuits
in which the gates commute, and so there is no notion of a temporal order to which gates are applied first. Such circuits are
known to be classically hard to exactly sample from assuming the polynomial hierarchy does not collapse [1], and hard to
approximately sample from assuming complexity-theoretic conjectures [24]. Moreover, sampling IQP circuits can be shown
to be equivalent to sampling from the output of certain time-evolved Hamiltonians [25, 26]. The popularity of IQP sampling
task is partly due to the fact that IQP circuits do not require a universal gate set, and thus are easier to practically implement,
and some such experiments have been implemented [15].

A key problem in the practical implementation of all quantum supremacy tests — using IQP circuits or otherwise — is
that often the device we have access to is noisy. Intuitively, noise destroys the quantum properties of quantum computers,
rendering them more easily classically simulatable. Bremner et al. [27] show that IQP circuits can be approximately sampled

∗Joint Center for Quantum Information & Computer Science, National Institute of Standards & Technology and University of Maryland, College Park
†Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park
‡Applied and Computational Mathematics Division, National Institute of Standards & Technology (NIST)
1[1, 2, 3, 4, 5, 6, 7]. See [8, 9] for a more comprehensive reviews.
2[10, 11, 12, 13, 14, 15]

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1037

D
ow

nl
oa

de
d 

05
/2

4/
25

 to
 1

28
.8

.1
20

.3
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



from, assuming ‘anticoncentration’ of circuit output distributions and a single layer of bit-flip noise before measurement,
by exploiting a low-degree Fourier approximation. Gao et al. [28] and Aharonov et al. [20] extend these techniques to
demonstrate that in the presence of noise, random circuit sampling becomes classically simulatable, assuming the circuits
satisfy ‘anticoncentration.’ The anticoncentration requirement comes up in proofs of hardness and easiness, and it is a
statement about the ‘flatness’ of the output distribution on average, when the quantum circuit is chosen randomly from some
ensemble (see [9] for details on this property).

For example, [20] show that, assuming random quantum circuits are sampled from a distribution that satisfies the
anticoncentration requirement, there is a classical algorithm that samples from an 𝜖-approximation to the random quantum
circuit’s output distribution, with success probability 1 − 𝛿 (over the choice of the random quantum circuit), and runtime
poly(𝑛, 1/𝜖, 1/𝛿) (where 𝑛 is the number of qubits). Random quantum circuits will usually have this anticoncentration
property, provided the circuit depth is sufficiently large (say, at least Ω(log 𝑛)). On the other hand, certain families of IQP
circuits have been shown to anticoncentrate at constant depth [34].

In this work, we demonstrate a polynomial-time classical simulation algorithm for sampling from the output distribution
of any IQP circuit beyond an Ω(1) depth, in the presence of dephasing or depolarizing noise interspersed between gates.
Importantly, our algorithm requires no assumption about the output distribution or distribution from which the IQP circuit is
selected, and instead applies to every IQP circuit constructed from gates involving 𝑂 (1) qubits.

Our methods exploit the fact that Pauli noise inflicted on an IQP circuit has the effect of removing entanglement locally.
This allows us to break down our circuit into small subcircuits, each of which is not connected to the other subcircuits by
entangling gates. We thus only have to simulate these smaller subcircuits disjointly, while the gates between them can be
simulated classically. To show this, we employ results from graph percolation theory and concentration of measure. Our
approach is distinctly different from previous works that relied on Fourier analytic arguments, i.e., showing that noise in
the quantum circuit causes the quantum state to become concentrated on a set of low-degree Fourier components, and then
devising ways to find or approximate these Fourier components [27, 28, 20].

The onset of classical simulatability at Ω(1) depth due to noise has been observed recently in a different setting of
computing expectation values for optimization problems [29]. To our knowledge, our results are the first to demonstrate the
onset of classical simulatability at Ω(1) depth due to noise in the setting of sampling from the output distribution (for circuits
whose noiseless implementations are thought to be hard to sample from).

Our sampling algorithm is efficient when the circuit depth is larger than a critical threshold which scales as
𝑂 (𝑝−1 log

(
𝑝−1)), where 𝑝 is the strength of the noise. We furthermore show that this bound is tight by demonstrating the

existence of hard-to-sample noisy IQP circuits (up to complexity-theoretic assumptions) at depths of Θ(𝑝−1 log
(
𝑝−1)). To

construct these circuits, we use existing results on fault-tolerance in low-depth IQP circuits [30][27], which we describe in
section 4. This demonstrates an asymptotically sharp phase transition in the complexity of exact sampling from the output
distribution of a noisy IQP circuit at constant depth.

Our results also place limitations on how error mitigation techniques can be used to achieve quantum advantage with
noisy IQP circuits. This is motivated by recent works that have proposed fault-tolerant implementations of IQP circuits
with 𝑂 (1)-local operations of super-constant depth. But these constructions all deviate from the IQP framework in some
significant way, such as by performing mid-circuit measurements with classical feed-forward, introducing non-diagonal gates,
or supplying fresh qubits. For example, [31] describes an implementation of IQP circuits that shows robustness to noise by
performing a single step of mid-circuit measurement with feed-forward. Taking a different approach, [15] implement logical
IQP circuits augmented with CNOT gates, which are not diagonal. [27] manages to construct a fault-tolerant high-depth IQP
circuit, but this construction involves 𝑂 (log 𝑛)-local gates.

Broadly speaking, we show that these departures from the IQP framework are unavoidable, i.e., any fault tolerant
construction that achieves quantum computational advantage using noisy IQP circuits must depart from the IQP framework in
ways such as these. We discuss this in section 5.1 and section 5.2.

2 Preliminaries and Notation
IQP circuits involve the application of a unitary which is diagonal in the computational basis on qubits initialized in the |+⟩
state, followed by measurement in the Hadamard basis. The diagonal unitary is canonically constructed with gate sets such as
{𝑇, 𝐶𝑆}, {𝑒𝑖𝑡𝑍 , 𝑒𝑖𝑡𝑍𝑍 }, or {𝑍, 𝐶𝑍, 𝐶𝐶𝑍} [24]. Our results hold generally for any diagonal gate set and connectivity as long
as each diagonal gate acts on 𝑂 (1) qubits. In our notation, we represent an arbitrary diagonal gate using CPTP map D, and
associated diagonal unitary matrix 𝐷, where D(𝜌) = 𝐷𝜌𝐷†. Our results also apply to IQP circuits augmented with SWAP
gates (e.g. for implementations on architectures with restricted connectivity), but we omit discussion of this case as it follows
straightforwardly from our results.
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Circuit Depth = 𝑑
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Figure 1: A generic IQP circuit on a 1D architecture involving 𝑑 layers of diagonal gates

In this work, we consider noisy implementations of the diagonal portion of the IQP circuit, where independent Pauli
noise channels are introduced on each qubit after each diagonal gate. Each interspersed Pauli noise channel can be expressed
in the general form,

N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
(𝜌) = 𝑝𝐼 𝜌 + 𝑝𝑋𝑋𝜌𝑋 + 𝑝𝑌𝑌𝜌𝑌 + 𝑝𝑍𝑍𝜌𝑍(2.1)

where 𝑝𝐼 , 𝑝𝑋, 𝑝𝑌 , 𝑝𝑍 are non-negative probabilities that sum to 1, and it can be assumed that 𝑝𝐼 ≥ 0.5. We will often use N
to refer to a Pauli noise channel of this form when the parameters are not relevant.

A (potentially noisy) IQP circuit 𝐶 on qubits 1, . . . , 𝑛 is specified by a list of diagonal unitary channels (gates) and/or
Pauli noise channels of known parameters that act on qubits in 1, . . . , 𝑛 in a fixed temporal order. Note we do not include
Hadamard gates (or noise channels after the Hadamard gate) in the description of an IQP circuit — instead, they are considered
part of the ‘Hadamard-basis’ measurement which occurs after the circuit 𝐶 is applied. We use Φ𝐶 to denote the CPTP map
representing the action of (potentially noisy) circuit 𝐶 and 𝑃𝐶 to denote the output distribution over length-𝑛 bitstrings
obtained by Hadamard-basis measurement on the state Φ𝐶 ( |+⟩⟨+|⊗𝑛). That is, for a bitstring 𝑏 ∈ {0, 1}𝑛, we have:

P𝑋∼𝑃𝐶
(𝑋 = 𝑏) = tr

[
𝐻⊗𝑛 |𝑏⟩⟨𝑏 | 𝐻⊗𝑛Φ𝐶 ( |+⟩⟨+|⊗𝑛)

]
.

We also use subscripts on channels and density matrices to indicate which subsystems they apply to. In the case that
the density matrix refers to a larger system, then we use the subscript to refer to the reduced density matrix on the substem
indicated by the subscript (e.g. 𝜌𝐴 = tr𝐴(𝜌)).

3 Classical Simulation of Noisy IQP circuits above Critical Depth
Theorem 3.1. Suppose 𝐶 is an IQP circuit containing 𝑘-local diagonal gates of depth 𝑑 on 𝑛 qubits. Let 𝐶̃ denote the noisy
implementation of 𝐶, where each layer is interspersed with identical Pauli noise channels N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍

on every qubit. Let
𝑝 = 𝑝𝑍 +min(𝑝𝑋, 𝑝𝑌 ). There exists a constant depth threshold 𝑑𝑐 ≤ 𝑂 (𝑝−1 log

(
𝑘 𝑝−1)) such that when 𝑑 ≥ 𝑑𝑐, there exists

a randomized classical algorithm that exactly samples from 𝑃𝐶̃ with random runtime 𝑇 of expected value,

E[𝑇] ≤ 𝑂 (𝑑𝑛5).

Using standard techniques, we can convert the above ‘Las Vegas’ algorithm into a ‘Monte Carlo’ algorithm, which approximates
the output distribution with a guaranteed worst-case runtime:

Corollary 3.1. Using the same notation as Theorem 3.1, there exists a constant depth threshold 𝑑∗ ≤ 𝑂 (𝑝−1 log
(
𝑘 𝑝−1)),

such that, when 𝑑 > 𝑑∗,𝑝 = Ω(1) and 𝑘 = 𝑂 (1), there exists a randomized classical algorithm that samples from 𝑄̃𝐶̃ , such
that ∥𝑄̃𝐶̃ − 𝑃𝐶̃ ∥𝑇𝑉𝐷 ≤ 𝜖 for any 𝜖 > 0, with worst-case runtime 𝑇 ≤ 𝑂 (𝑑 poly(𝑛/𝜖)).

Importantly, we note that the above algorithms allow us to sample efficiently for models of Pauli noise including dephasing
and depolarizing noise. However, the dependency on 𝑝 = 𝑝𝑍 +min(𝑝𝑋, 𝑝𝑌 ) implies our algorithm fails in the specific case
that every noise channel is of the form N𝑝𝑋 ,0,0 or of the form N0, 𝑝𝑌 ,0 (when 𝑝 = 0).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1039

D
ow

nl
oa

de
d 

05
/2

4/
25

 to
 1

28
.8

.1
20

.3
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



The constants hidden in the big-O notation are relatively small in practice, and the scaling of runtime with 𝑛 is a very
loose upper bound. The main practical bottleneck for these algorithms is the scaling of depth thresholds 𝑑∗ and 𝑑𝑐 with 𝑝.
We provide exact analytic expressions that relate 𝑑∗ and 𝑑𝑐 to noise parameters in the appendix, but as they are cumbersome
to use, we plot them in fig. 2 for different values of 𝑝 for 𝑘 = 2. We expect that similar analytic expressions for 𝑑𝑐 and 𝑑∗ can
be found even if the noise channels are non-identical, but we omit discussion of this case for clarity.
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Exact Simulation is Hard

Figure 2: A plot of the depth thresholds for approximate sampling (𝑑∗) and exact sampling (𝑑𝑐). We also include the depth
threshold for hardness of exact sampling, which we obtain in section 4

3.1 Motivation for the Classical Simulation Algorithm The key idea behind the algorithm is that noise has the effect of
removing entanglement that builds up in the circuit, and thus where noise appears, we can “disentangle” these parts of the
circuit and simulate them classically.

Figure 3: The graph on the left shows the interaction graph of a particular circuit, where the qubits are vertices and two
vertices are joined by an edge if there is an entangling gate acting between them in the circuit. On the right, the red vertices
indicate qubits which have been hit with noise. The effect of the noise is essentially to remove all interactions with this qubit
from the larger circuit. The circuit can then effectively be simulated by considering only the connected components which are
much smaller.

In particular, for an IQP circuit 𝐶, we can define a corresponding interaction graph 𝐺𝐶 (𝑉, 𝐸), where the qubits are
vertices and two vertices are joined by an edge if there is an entangling gate acting between them in the circuit. We will
show that whenever a qubit receives an error, the edges of its corresponding vertex can be essentially “removed” from the
interaction graph and its interactions become classically simulatable using a randomized classical algorithm. See fig. 3 as
an example. It is thus possible to simulate the noisy circuit by sampling a configuration of errors in the circuit, removing
entangling gates acting on qubits that are affected by errors, and classically simulating each subcircuit corresponding to the
remaining connected components independently using standard circuit simulation techniques. We will show these remaining
subcircuits are sufficiently small that classically simulating them is efficient.
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3.1.1 Sampling Completely Dephasing Errors to Reduce Entanglement Our algorithm takes advantage of the fact that
Pauli noise channels can be viewed as applying a completely dephasing error (N0,0,1/2 channel) with some fixed probability,
along with correlated 𝑋-error or 𝑌 -error channels. This is shown in the following lemma which we prove in appendix A.

Lemma 3.1. For any Pauli noise channel N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
, define 𝑝 = 𝑝𝑍 +min(𝑝𝑋, 𝑝𝑌 ), define N1 = N |𝑝𝑋−𝑝𝑌 |

1−2𝑝 ,0,0 if 𝑝𝑋 ≥ 𝑝𝑌 or
N1 = N0, |𝑝𝑋−𝑝𝑌 |1−2𝑝 ,0 otherwise, and define N2 = Nmin(𝑝𝑋,𝑝𝑌 )

𝑝
,0,0. Then, for any single-qubit state 𝜌,

N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
(𝜌) = (1 − 2𝑝)N1 (𝜌) + 2𝑝N2 ◦ N0,0,1/2 (𝜌).

The advantage of sampling completely dephasing errors is that they have very simple behavior in IQP circuits. In particular,
one can show that the error can be commuted through to the beginning of the circuit, such that the effect of the error can be
replicated by replacing the initial |+⟩ state of the qubit the error acts on with a random computational basis state. This is
summarized in the following lemma, proven in appendix A.

Lemma 3.2. Let 𝐶̃ be an IQP circuit with Pauli noise. Let the initial state be |+⟩⟨+|⊗𝑛. Let 𝐶̃′ be the circuit 𝐶̃ where there is
a single completely dephasing error (N0,0,1/2 channel) on qubit 𝑣 ∈ {1, . . . 𝑛} occurring at any point in 𝐶̃. Then,

Φ𝐶̃′ ( |+⟩⟨+|
⊗𝑛) = E𝑏∼𝑈 ({0,1})

[
Φ𝐶̃ ( |+⟩⟨+|

⊗(𝑣−1) ⊗ |𝑏⟩⟨𝑏 | ⊗ |+⟩⟨+|⊗(𝑛−𝑣) )
]

(3.2)

The above lemma shows that dephasing errors force qubits to act classically in IQP circuits. Next we show that diagonal gates
in 𝐶̃ acting on computational basis states introduce no entanglement with the computational basis state.

Lemma 3.3. Let 𝐴 and 𝐵 be subsystems of qubits and D be any diagonal gate acting across these subsystems. Suppose
subsystem 𝐴 is in computational basis state |𝑏⟩⟨𝑏 |, and 𝜌 is the state of subsystem 𝐵. Define 𝐷′ = tr𝐴(( |𝑏⟩⟨𝑏 |𝐴 ⊗ 𝐼𝐵)𝐷).
Then,

D(|𝑏⟩⟨𝑏 |𝐴 ⊗ 𝜌𝐵) = |𝑏⟩⟨𝑏 |𝐴 ⊗ D′ (𝜌𝐵)(3.3)

Thus, when a qubit receives a completely dephasing error in an IQP circuit 𝐶, the edges of its corresponding vertex in the
interaction graph 𝐺𝐶 (𝑉, 𝐸) are essentially “removed” from the graph, because the circuit’s diagonal gates no longer introduce
entanglement with the decohered qubit. The probability of a vertex being hit with noise and thus having its edges removed is
1 − (1 − 2𝑝)𝑑 and is independent of noise on other vertices.

3.1.2 Phase Transition in Circuit Connectivity We now want to examine the largest connected component of the IQP
graph once edges are removed due to noise. The phenomenon of removing edges from randomly chosen vertices of a graph is
well-studied in percolation theory as ‘vertex percolation,’ and exactly corresponds to our setting. It is known that there is a
phase transition after which all connected components are of 𝑂 (log(𝑛)) size, as shown in the following lemma.

Lemma 3.4. (Informal) Let 𝐺 = (𝑉, 𝐸) be a graph of maximum degree Δ on n vertices. Construct 𝐺′ = (𝑉, 𝐸 ′) as follows.
Start with 𝐸 ′ = 𝐸 . For each 𝑣 ∈ 𝑉 , with probability 1 − 𝑞, remove all edges incident to 𝑣 from 𝐸 ′. If 𝑞 < 1

Δ
, then whp all

connected components of 𝐺′ are of size 𝑂 (log 𝑛).

In our setting, if an IQP circuit 𝐶 of depth 𝑑 is constructed using 𝑘-local gates, then the max degree of the interaction graph
𝐺𝐶 is upper bounded by Δ ≤ 𝑑 (𝑘 − 1) since a qubit can be acted on by at most 𝑑 gates, each of which entangles it with at
most 𝑘 − 1 other qubits. The algorithm takes advantage of the fact that the probability of a qubit being included in a subcircuit
decays inverse exponentially with depth, 𝑞 = (1 − 2𝑝)𝑑 , while the probability required for percolation decays inverse linearly
with depth, 𝑞 ≤ 1/(𝑘 − 1)𝑑. Thus, there is a constant depth 𝑑∗ after which percolation into 𝑂 (log(𝑛))-size subcircuits, which
can be simulated tractably, occurs with high probability.

3.2 The Classical Simulation Algorithm Here we give the classical simulation algorithm used to sample from a noisy
IQC circuit. We leave the proof of runtime to appendix C, but prove correctness below in lemma 3.5.

Algorithm 3.1. (Sampler for Noisy IQP Circuits) Let 𝐶, 𝐶̃,N𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝑝, 𝑛, 𝑑, 𝑘 be defined as in Theorem 3.1. Let
N1,N2 be defined as in lemma 3.1.
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The algorithm stores and updates a classical description of the initial state of the IQP circuit as a list of 𝑛 characters
𝑏 = (𝑏1, . . . , 𝑏𝑛) where each 𝑏𝑖 ∈ {0, 1,‘+’} for 𝑖 ∈ {1, . . . , 𝑛} represents the initial state of qubit 𝑖 being one of {|0⟩ , |1⟩ , |+⟩}
respectively. At the start of the algorithm, each 𝑏𝑖 = ‘+’. We use |𝑏⟩ to refer to the quantum state that 𝑏 describes, i.e.
|𝑏⟩ =

⊗
𝑖 |𝑏𝑖⟩. The algorithm outputs a list of 𝑛 measurement outcomes 𝑠 = (𝑠1, . . . , 𝑠𝑛), where each 𝑠𝑖 ∈ {0, 1} for

𝑖 ∈ {1, . . . , 𝑛} represents the outcome of measurement on qubit 𝑖. The algorithm proceeds by modifying 𝐶̃ in stages
𝐶̃ → 𝐶̃1 → 𝐶̃2 → 𝐶̃3, until Φ𝐶̃3

( |𝑏⟩⟨𝑏 |) can be simulated using state vector methods.

1. Start with 𝐶̃1 = 𝐶̃. For each single qubit channel N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
, simulate N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍

by replacing N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
→

N2 ◦ N0,0,1/2 with probability 2𝑝, and N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
→ N1 otherwise.

2. Start with 𝐶̃2 = 𝐶̃1. For each 𝑖 ∈ 1, . . . , 𝑛, if qubit 𝑖 receives a N0,0,1/2 error in 𝐶̃2, update 𝑏𝑖 ∼ 𝑈 ({0, 1}. Remove all
N0,0,1/2 channels from 𝐶̃2.

3. Start with 𝐶̃3 empty. Iterate through each channel of 𝐶̃2 in the temporal order in which it is applied and perform the
following:

(a) For each diagonal gate D on qubits 𝐿 ⊆ {1, . . . , 𝑛}, define 𝐴 = {𝑖 : 𝑖 ∈ 𝐿 ∧ 𝑏𝑖 ∈ {0, 1}}, define
𝐷′ = tr𝐴((|𝑏⟩⟨𝑏 |𝐴 ⊗ 𝐼𝐿−𝐴)𝐷), and add the equivalent implementation D′𝐿−𝐴 (which acts only on 𝐿 − 𝐴

and leaves |𝑏⟩⟨𝑏 |𝐴 unchanged) to 𝐶̃3 .
(b) For each noise channel N𝑝′

𝑋
, 𝑝′

𝑌
, 𝑝′

𝑍
on qubit 𝑖 ∈ {1, . . . , 𝑛}, if 𝑏𝑖 ∈ {0, 1}, simulate this channel by updating

𝑏𝑖 ← 𝑏𝑖 ⊕ 1 with probability 𝑝′
𝑋
+ 𝑝′

𝑌
, and otherwise (if 𝑏𝑖 =‘+’) add the channel to 𝐶̃3

4. Construct a graph 𝐺𝐶̃3
(𝑉, 𝐸) where 𝑉 = {1, . . . , 𝑛} and (𝑣, 𝑤) ∈ 𝐸 iff there is a diagonal gate acting between qubits 𝑣

and 𝑤 in 𝐶̃3. Enumerate the connected components of 𝐺𝐶̃3
as 𝑉1, . . . , 𝑉𝑚.

5. Iterate through each 𝑗 ∈ 1, . . . , 𝑚. Suppose 𝑉 𝑗 = {𝑣1, . . . , 𝑣𝑙}. If |𝑉 𝑗 | = 1 and 𝑏𝑣1 ∈ {0, 1}, sample 𝑠𝑣1 ∼ 𝑈 ({0, 1}).
Otherwise, define the subcircuit 𝐶̃3, 𝑗 to include only those channels in 𝐶̃3, 𝑗 acting entirely on qubits of 𝑉 𝑗 , simulate the
action of 𝐶̃3, 𝑗 on qubits of 𝑉 𝑗 with state vector methods, and sample (𝑠𝑣1 , . . . , 𝑠𝑣𝑙 ) ∼ 𝑃𝐶̃3, 𝑗

.

𝑏1 = ‘+’
D1

N N
D5

N N
D9

N N 𝐻

𝑏2 = ‘+’ N
D3

N N
D7

N N
D11

N 𝐻

𝑏3 = ‘+’
D2

N N
D6

N N
D10

N N 𝐻

𝑏4 = ‘+’ N
D4

N N
D8

N N
D12

N 𝐻

𝑏5 = ‘+’ N N N N N N 𝐻

𝑏1 = ‘+’
D1

N1 N1

D5

N1 N1

D9

N1 N1 𝐻

𝑏2 = ‘+’ N1

D3

N1 N1

D7

N1 N1

D11

N1 𝐻

𝑏3 = 0
D2

N1 N2

D6

N1 N1

D10

N1 N1 𝐻

𝑏4 = 1 N1

D4

N1 N1

D8

N1 N2

D12

N1 𝐻

𝑏5 = ‘+’ N1 N1 N1 N1 N1 N1 𝐻

𝑏1 = ‘+’
D1

N1 N1

D5

N1 N1

D9

N1 N1 𝐻

𝑏2 = ‘+’ N1 D′3 N1 N1

D7

N1 N1

D11

N1 𝐻

𝑏3 = 1 N1

D10

N1 N1 𝐻

𝑏4 = 1
D8

N1 N2

D12

N1 𝐻

𝑏5 = ‘+’ N1 D′4 N1 N1 N1 N1 N1 𝐻

𝑏1 = ‘+’
D1

N1 N1

D5

N1 N1

D9

N1 N1 𝐻

𝑉1

𝑏2 = ‘+’ N1 D′3 N1 N1 D′7 N1 N1 D11′ N1 𝐻

𝑏3 = 1 𝐻 𝑉2

𝑏4 = 0 𝐻 𝑉3

𝑏5 = ‘+’ N1 D′4 N1 N1 D′8 N1 N1 D′12 N1 𝐻 𝑉4

Figure 4: In (a), we show an example of 𝐶̃ on 5 qubits, and the list of characters 𝑏 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5) which represents the
initial state. In (b), we show the circuit 𝐶̃2 constructed after steps 1 and 2. Certain noise channels, indicated in red, have been
sampled as N2 ◦ N0,0,1/2 (step 1), and after this, each N0,0,1/2 channel has been removed and its corresponding initial state in
𝑏 randomized, as 𝑏3 = 0, 𝑏4 = 1 (step 2). In (c), we show an intermediate layer of step 3, where the D′ channels, indicated in
blue, represent the replacements made in step 3a while 𝑏3 = 1 due to step 3b. In (d), we show the final circuit 𝐶̃3 and indicate
the disjoint subsets 𝑉1, 𝑉2, 𝑉3, 𝑉4 into which it is partitioned for independent state vector simulation (steps 4 and 5).

Lemma 3.5. For 𝐶̃ defined as in Theorem 3.1, let 𝑄𝐶̃ (𝑠) be the distribution over output strings 𝑠 produced by algorithm 3.1
on input 𝐶̃. Then, 𝑄𝐶̃ = 𝑃𝐶̃ .
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Proof. We check the steps of the algorithm to ensure correct sampling:

Step 1: Lemma 3.1 demonstrates that N𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 can be implemented by probabilistically implementing N2 ◦ N0,0,1/2 with
probability 2𝑝 and N1 otherwise. Hence the channel we sample from remains the same, that is,

Φ𝐶̃ = E𝐶̃1

[
Φ𝐶̃1

]
(3.4)

Step 2: Lemma 3.2 shows that whenever a qubit is hit by a completely dephasing error (N0,0,1/2) in an IQP circuit, this can be
simulated by replacing its initial state with a random computational basis state. Let 𝑏, 𝑏 (0) ∈ {0, 1,′ +′}𝑛, where 𝑏 (0)

denote the state of 𝑏 after step 2 of the algorithm. Then,

Φ𝐶̃1
( |+⟩⟨+|⊗𝑛) = Φ𝐶̃2

(
E𝑏 (0)

[��𝑏 (0) 〉〈𝑏 (0) ��] )(3.5)

Step 3: Observe the following,

(a) Lemma 3.3 shows that if a set of qubits 𝐴 is in a computational basis state, then all diagonal gates acting on 𝐴 and
another subsystem 𝐿 − 𝐴 can be replaced by diagonal gates acting only on qubits in 𝐿 − 𝐴:

D(|𝑏⟩⟨𝑏 |𝐴 ⊗ 𝜌𝐿−𝐴) = |𝑏⟩⟨𝑏 |𝐴 ⊗ D′ (𝜌𝐿−𝐴)

This leaves the state of the qubits in 𝐴 unchanged.
(b) This step probabilistically implements noise channels on qubits in computational basis states. This works because

𝑌 and 𝑋 errors act as bit-flip errors on |𝑏⟩ (because global phase introduced by 𝑌 can be ignored) while 𝐼 and 𝑍

errors act trivially. Thus, the channel N𝑝′
𝑋
, 𝑝′

𝑌
, 𝑝′

𝑍
acts on computational basis states by applying a bit-flip with

probability 𝑝′
𝑋
+ 𝑝′

𝑌
.

Let 𝑏 (𝑖) denote the state of 𝑏 after the 𝑖𝑡ℎ noise channel is encountered while iterating through the channels of 𝐶̃2. Note
that each randomly sampled ‘trajectory’ (𝑏 (0) , 𝑏 (1) , . . . , 𝑏 ( 𝑓 ) ) of 𝑏 defines how the diagonal gates of 𝐶̃3 are constructed
from the diagonal gates of 𝐶̃2, where we use 𝑏 ( 𝑓 ) to denote the final state of 𝑏. We have

Φ𝐶̃2

(��𝑏 (0) 〉〈𝑏 (0) ��) = E𝑏 (0) ,𝑏 (1) ,...,𝑏 ( 𝑓 )Φ𝐶̃3

(��𝑏 ( 𝑓 ) 〉〈𝑏 ( 𝑓 ) ��)(3.6)

Moreover, regardless of the trajectory, 𝐶̃3 contains no channels acting on qubits that are initialized in a computational
basis state in 𝑏 ( 𝑓 ) .

Step 4: This step partitions the qubits into subsets 𝑉1, . . . , 𝑉𝑚 such that 𝐶̃3 contains no diagonal gates crossing any partition.

Step 5: Due to step 4, we can iterate through each 𝑗 = 1, . . . , 𝑚 and simulate the portion of 𝐶̃3 acting on each 𝑉 𝑗 independently.
Qubits that are initialized in a computational basis state in 𝑏 ( 𝑓 ) correspond to isolated vertices in 𝐺𝐶̃3

, and their
connected components are of the form 𝑉 𝑗 = {𝑣} (size 1). The outcome of Hadamard-basis measurement on these qubits
is uniformly random. All other connected components involve qubits initialized in the |+⟩ state, which are simulated
exactly using state vector simulation.

3.3 Numerical Observation of Phase Transition at Constant Depth We observe the phase transition in classical
simulatability by numerically studying the size of the largest subcircuit that needs to be simulated in Algorithm 3.1 for
various depths and numbers of qubits. We average over randomly constructed IQP circuits with interspersed noise of strength
𝑝 = 0.05 and 𝑝 = 0.02 and 2-local gates (e.g. gate set {𝐶𝑆,𝑇}). Because our algorithm does not depend on the randomness
of the IQP circuits or the gate set used, we sample random 𝑑-regular graphs (which can always be implemented in either 𝑑 or
𝑑 + 1 layers by Vizing’s theorem [32]) and observe the size of the largest connected component when vertices are kept with
probability (1 − 2𝑝)𝑑 . The plots in fig. 5 show that a phase transition in the size of the largest subcircuit occurs at the same
depth 𝑑, regardless of the number of qubits to start with. Moreover, this depth is observed to correspond to the analytic value
of 𝑑∗, which shows our bound is reasonably tight.
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Figure 5: Using our analysis, the phase transition occurs at 𝑑∗ ≈ 33 for 𝑝 = 0.05 and 𝑑∗ = 117 for 𝑝 = 0.02. In the figures on
the left, we plot the size of the largest subcircuit (max𝑖 |𝑉𝑖 |) on a logarithmic scale against the depth of the circuit for different
values of 𝑛. Before percolation occurs, the size of the largest subcircuit should decay exponentially with depth, because the
number of non-decohered qubits decays as max𝑖 |𝑉𝑖 | ≤ (1 − 2𝑝)𝑑𝑛: this is observed in the early linear portion of the plot.
After the phase transition, the size should decay further to log(𝑛) which is observed in the later portion of the plot (note that
the y-axis values for each n, which were previously evenly spaced, get closer together). To directly observe the change in
scaling with 𝑛, in the figures on the right, we plot the size of the largest circuit against the number of qubits on a log-log scale
for different values of 𝑑. We see that depths below the phase transition show linear growth of the largest subcircuit with 𝑛

while depths above the phase transition show logarithmic growth of the largest subcircuit with 𝑛.

4 Hardness of Noisy IQP circuits below Critical Depth
So far we have demonstrated that noisy IQP circuits beyond an 𝑂 (𝑝−1 log 𝑝−1) depth can be efficiently sampled from. It
could be the case that this bound is not tight, and that there are other algorithms which are able to efficiently sample down to
depths of 𝑂 (𝑝−1), say. Here we demonstrate that this is not the case, by constructing a class of IQP circuits with interspersed
dephasing noise which are hard to exactly sample from, at depth Θ(𝑝−1 log 𝑝−1). This provides a lower bound on the regime
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in which our sampling algorithm can work efficiently, and demonstrates that our bound on the critical depth for classical
simulatability 𝑑∗ = 𝑂 (𝑝−1 log 𝑝−1) is asymptotically sharp in terms of 𝑝. This shows the existence of a sharp phase transition
in the computational complexity of noisy IQP circuits at constant depth.

We will construct an IQP circuit with interspersed dephasing noise. Note that this form of noise can be commuted to
the end of the circuit, where it becomes bit-flip errors on the output distribution (due to hadamard-basis measurements).
Therefore, we introduce the following notation.

Definition 4.1. (Noisy Circuit Sampling Distribution) For any noiseless IQP circuit 𝐶, we will use 𝑃𝐶 to denote the
output distribution of sampled bitstrings from 𝐶, and 𝑃𝐶,𝑞 to denote the output distribution of sampled bitstrings from 𝐶 with
independent bit-flips applied on every output bit with probability 𝑞.

Our proof makes use of three prior results, and we provide a brief exposition of each result in the appendix. The first,
from [30], is that there are noisy IQP circuits for which efficient exact sampling from the output collapses the polynomial
hierarchy. More formally:

Lemma 4.1. (from [30]) There exists a family of IQP circuits 𝐶 constructed from a single layer of 𝑒𝑖𝑍 𝜋/8 gates and 4 layers
of 𝑒𝑖𝑍𝑍 𝜋/4 gates such that it is hard classically to exactly sample from the distribution 𝑃𝐶,𝑝fail for 𝑝fail < 0.134, unless the
polynomial hierarchy collapses to the third level.

The high-level idea is to take this class of depth-5 circuits which are robust to low-level bit flip noise and construct noisy
IQP circuits of depth 𝑑, which have identical output. The fundamental problem here is that noise accumulates in deep circuits
and will exceed the 0.134 bound when 𝑑 > 𝑂 (𝑝−1), so we need some form of error mitigation. To tackle this, we use a
result from [27] which shows that IQP circuits can be made fault-tolerant to arbitrary strengths of bit-flip noise on the output
distribution, at the cost of non-locality in the gate set. The fundamental idea is that we can use a repetition code to repeat each
qubit and gate 𝑟 times, and then decode with high probability.

Lemma 4.2. (from [27]) Let 𝐶 be an arbitrary IQP circuit constructed of depth 𝑑 on 𝑛 qubits. Then, for any parameter
𝑟, there is an encoded IQP circuit 𝐶′ where every 𝑘-local gate in 𝐶 is encoded into a 𝑘𝑟-local gate in 𝐶′, and a decoding
algorithm 𝐴 such that,

𝐴(𝑃𝐶′ ,𝑞) = 𝑃𝐶,𝑝fail(4.7)

where 𝑝fail ≤ (4𝑞(1 − 𝑞))𝑟/2.

While lemma 4.2 results in an increase in the locality of the gates, we can reduce the locality of the gates to a constant at the
expense of greater circuit depth using the following lemma, also referenced in [27].

Lemma 4.3. (from [33] Let 𝐶 be an arbitrary IQP circuit constructed using gates of the form 𝑒𝑖𝑍
⊗𝑘 𝜋/8 for some 𝑘 a multiple

of 3, and gates of the form 𝑒𝑖𝑍
⊗𝑘′ 𝜋/4 for some 𝑘 ′ a multiple of 2. There exists an equivalent circuit 𝐶′, such that 𝑃𝐶′ = 𝑃𝐶 ,

where every 𝑒𝑖𝑍
⊗𝑘 𝜋/8 gate in 𝐶 is decomposed into 𝑘2/2 layers of 3-local gates in 𝐶′, and every 𝑒𝑖𝑍

⊗𝑘′ 𝜋/8 gate in 𝐶 is
decomposed into 𝑘 ′ layers of 2-local gates in 𝐶′.

We can then combine these results to show that there are deep circuits which survive the application of interspersed
dephasing noise right up until the depth at which Algorithm 3.1 becomes efficient.

Theorem 4.1. (Deep & Hard-to-Sample Circuits) There exist uniform families of noisy circuits of depth 𝑑 =

Θ(𝑝−1 log
(
𝑝−1)) with interspersed dephasing noise of strength 𝑝, for which, if there exists an efficient, exact sampling

algorithm for the output distribution, the polynomial hierarchy collapses to the third level.

Proof. From lemma 4.1, there exists a family of IQP circuits 𝐶 such that if we can exactly sample from 𝑃𝐶,𝑝fail when
𝑝fail < 0.134, the polynomial hierarchy collapses to the third level. For any parameter 𝑟 , applying lemma 4.2 to 𝐶 gives us a
new family of IQP circuits 𝐶′ acting on 𝑛𝑟 qubits which are robust to a higher level of output noise. 𝐶′ is a circuit consisting
of 1 layer of 𝑟-local gates 𝑒𝑖𝑍⊗𝑟 𝜋/8 and 4 layers of 2𝑟-local gates 𝑒𝑖𝑍⊗2𝑟 𝜋/4. Choosing 𝑟 to be a multiple of 3 and applying
lemma 4.3 to 𝐶′ gives us a new family of IQP circuits 𝐶′′, involving only 3-local gates on 𝑛𝑟 qubits, such that 𝑃𝐶′′ = 𝑃𝐶′ .
We can bound the depth of this circuit as 𝑑 ≤ 𝑟2/2 + 4(2𝑟) ≤ 𝑟2 (for sufficiently large 𝑟). Finally, consider the circuit family
𝐶̃′′, where 𝐶′′ is interspersed with dephasing channels of strength 𝑝. These dephasing channels commute through the circuit
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and become bit-flip errors 𝑁𝑝𝑋 ,0,0 on the output, where 𝑝𝑋 =
1−(1−2𝑝)𝑑

2 . Now, using decoder 𝐴, we can relate 𝑃𝐶′′ back to
the hard-to-sample distribution 𝑃𝐶 as follows,

𝐴(𝑃𝐶̃′′ ) = 𝐴

(
𝑃
𝐶′′ , 1−(1−2𝑝)𝑑

2

)
= 𝐴

(
𝑃
𝐶′ , 1−(1−2𝑝)𝑑

2

)
= 𝑃

𝐶,

(
4
(

1−(1−2𝑝)𝑑
2

) (
1+(1−2𝑝)𝑑

2

))√𝑑/2
As it is hard to sample from 𝑃𝐶,𝑝fail for 𝑝fail < 0.134, we can compute a sufficient condition for the hardness of exact sampling
from 𝑃𝐶̃′′ as, (

4
(
1 − (1 − 2𝑝)𝑑

2

) (
1 + (1 − 2𝑝)𝑑

2

))√𝑑/2
< 0.134(

1 − (1 − 2𝑝)2𝑑
)√𝑑/2

< 0.134

𝑒−(1−2𝑝)2𝑑
√
𝑑/2 < 0.134

(1 − 2𝑝)2𝑑
√
𝑑/2 > − log(0.134)

(1 − 2𝑝)4𝑑4𝑑 > 16(log(0.134))2

Using lemma B.2 (in appendix), this inequality is satisfied when 𝑑 < Θ(𝑝−1 log
(
𝑝−1)). Thus, we can construct noisy IQP

circuits of depth 𝑑 = Θ(𝑝−1 log
(
𝑝−1)) that are hard to exactly sample from.

5 Applications & Relation to Previous Work
5.1 Limitations of Fault-Tolerance in IQP Circuits Since our results allow classical simulation of the “worst-case” noisy
circuit past some depth (e.g. the most noise-robust circuit possible at that depth), this allows us to rule out some forms of fault
tolerance in IQP circuits in certain parameter regimes. Specifically, suppose there exists some fault-tolerance protocol 𝐴 that,
for any noise parameter 𝑝, encodes a noiseless ‘logical’ IQP circuit 𝐶 of 𝑘-local gates of depth 𝑑 on 𝑛 qubits into a ‘physical’
circuit IQP 𝐶′ of 𝑘-local gates of depth 𝑑′ ≥ 𝑑 on poly(𝑛) qubits with interspersed noise of strength 𝑝, such that one can
recover an additive approximation to 𝑃𝐶 using samples from 𝑃𝐶′ . Our results show that 𝐴 cannot be defined for physical
circuits of depth 𝑑′ ≥ 𝑑∗ (and therefore also for logical circuits of depth 𝑑 ≥ 𝑑∗), where 𝑑∗ ≤ 𝑂 (𝑝−1 log

(
𝑘 𝑝−1)), assuming

some complexity-theoretic conjectures.
The argument follows from [24] and [34], which show that there exist IQP circuits that are hard to sample from with

additive approximation error, assuming some complexity-theoretic conjectures. If a protocol 𝐴 existed and worked correctly,
we could take one of the encoded physical circuits, simulate it in polynomial time using Algorithm 3.1, and thus reproduce
this ‘hard’ distribution in polynomial time, thus causing complexity theoretic collapse.

Intuitively, our algorithm suggests that fault-tolerance protocols which remain within the IQP framework cannot correct
interspersed errors faster in depth than they build up (using only 𝑂 (1)-local operations), and so must fail after some constant
depth.

5.2 Anticoncentrated IQP Circuits and Classical Simulatibility It is interesting to consider how our classical simulation
algorithm relates to previous work on demonstrating quantum computational advantage using IQP circuits that have anti-
concentration behavior. In particular, [27] provide a classical algorithm that approximately samples from noisy IQP circuits
in quasi-polynomial time, assuming only anti-concentration of the output distribution (i.e. no requirements on circuit depth).
It has been shown ([34]) that certain families of IQP circuits anti-concentrate after only 4 layers. Such circuits are leading
candidates for quantum supremacy demonstrations, as this anti-concentration property is required in most proofs of hardness
of approximate sampling [24, 34, 9]. However, for small noise strengths, a noisy implementation of the circuit family of [34]
would be classically simulatable using [27]’s algorithm. In this regime, where one runs an anti-concentrated IQP circuit
without any fault-tolerant encoding, our algorithm does not improve on the algorithm of [27].

In light of the classical simulation result of [27], a natural thought might be to encode the “bare” anti-concentrated IQP
circuit into a noise-robust IQP circuit that is not anti-concentrated, and so cannot be simulated by the algorithm of [27].
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Indeed, this is exactly what [27] propose in the later portion of their work. Our simulation algorithm rules out scalable
quantum advantage with this idea, for any encoding scheme that remains within the IQP framework and requires a 𝜔(1)
depth overhead. For example, the encoding scheme described in [27] results in an Ω((log 𝑛)2) blowup in depth, which would
make the circuit simulatable using our techniques, or alternatively an Ω(log 𝑛) blowup in gate locality, which would make it
difficult to implement in practice.3

5.3 Computational Quantum-Classical Boundary of Noisy IQP Circuits We compare our results to work by Fujii et al.
[30], where they consider exact sampling from the output distribution of a family of fixed depth (e.g. depth-5) IQP circuits
on 𝑛 with a variable noise strength 𝑝. They show that for this family, there exists a threshold noise strength 𝑝1 such that
for 𝑝 < 𝑝1, exact sampling from this family is classically hard (unless the polynomial hierarchy collapses to the third level)
while there is a separate critical value 𝑝2 such that if 𝑝 > 𝑝2, there is an efficient classical simulation algorithm for exact
sampling. Our results extend their results, by providing an exact sampling algorithm for noisy IQP circuits at depths above
some critical depth 𝑑1, and a hardness result for noisy IQP circuits at depths below some critical depth 𝑑2, where 𝑑1 and 𝑑2
are asymptotically equivalent functions of the noise strength 𝑝. Thus, we exhibit a similar “Quantum-Classical Boundary” to
Fujii et al. [30] in depth rather than noise strength.

5.4 Depth Lower Bounds for QAOA The canonical QAOA circuit involves a tunable cost function Hamiltonian 𝐻𝑐,
typically implemented with 𝑅𝑍𝑍 (𝛾) gates, and a tunable mixer Hamiltonian 𝐻𝑚, typically this is the transverse-field mixer
implemented with 𝑅𝑋 (𝛽) gates on every qubit. These are alternatively applied in 𝑟 rounds on |+⟩ states, followed by
measurement in the computational basis. The final state is therefore

𝑟∏
𝑗=1

𝑒𝑖𝐻𝑚𝛽 𝑗 𝑒𝑖𝐻𝑐𝛾 𝑗 |+⟩⊗𝑛(5.8)

Our analysis applies to any QAOA circuit where the cost function is diagonal in the computational basis (i.e. the goal is to
approximate the ground state of a classical Hamiltonian). As an example, we can consider QAOA for the MAXCUT problem.

Lemma 5.1. Let 𝐺 be a graph with maximum degree Δ. The output distribution of a noisy 𝑟-round QAOA circuit to solve
MAXCUT on 𝐺 can be sampled from with additive approximation error when Δ > Δ∗, where Δ∗ is 𝑂 (𝑝−1 log

(
𝑟 𝑝−1)).

Proof. The key insight is that each round of QAOA resembles an IQP circuit. Suppose the depth 𝑑 required to implement 𝐻𝑐

is greater than the critical depth required for percolation to occur. Using the same sampling technique of Algorithm 3.1, the
resultant state vector can be classically stored as a set of decohered qubits, which are sampled as computational basis states,
and a set of 𝑂 (log 𝑛)-sized connected components of non-decohered qubits.

The non-trivial issue to resolve is that subsequent rounds of QAOA can entangle the 𝑂 (log(𝑛))-sized connected
components with each other, making the state vector simulation unmanageable. That is, a decohered qubit (in a computational
basis state) may be taken to some non-computational basis state by the application of 𝐻𝑚, after which the subsequent
application of 𝐻𝑐 may entangle it with other qubits. One way to avoid this is for each decohered qubit to receive a dephasing
error in every single round (between every 𝐻𝑚 application), thus keeping the decohered qubit in a computational basis state
throughout the circuit. The probability that an error occurs on the same qubit in every round is 1 − 𝑞 = (1 − (1 − 2𝑝)𝑑)𝑟 .
When 𝑞 < 1

Δ
, percolation will occur and the circuit will become classically simulatable. Because we are considering

implementations of 𝐻𝐶 involving 𝑅𝑍𝑍 gates, Δ ≤ 𝑑 (where 𝑑 is the depth of the circuit required to construct 𝐻𝐶 ). Therefore,
we have,

𝑞 = (1 − (1 − (1 − 2𝑝)𝑑)𝑟 ) ≤ (1 − 2𝑝)𝑑
[

𝑟∑︁
𝑖

(1 − (1 − 2𝑝)𝑑)𝑖
]
≤ (1 − 2𝑝)𝑑𝑟 ≤ (1 − 2𝑝)Δ𝑟

By lemma B.2 (in appendix), (1 − 2𝑝)Δ𝑟 < 1
Δ

will be satisfied at Δ > Δ∗ for some critical degree Δ∗ = 𝑂 (𝑝−1 log
(
𝑟 𝑝−1) . At

this point, percolation occurs with high probability, and therefore the circuit is classically simulatable.

3This can be seen by applying lemma 4.2 and lemma 4.3 with parameter 𝑟 ∝ log 𝑛
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6 Conclusion and Outlook
Our results show that dephasing and depolarizing noise make sampling from IQP circuits (at constant circuit depths) classically
easy, thus putting tighter bounds on the regime in which quantum supremacy can be achieved using IQP sampling. We also
show the hardness of exact sampling from noisy IQP circuits (at lower circuit depths). Can these results be improved, to
reduce the gap between the upper and lower bounds in Fig. 2? Such improvements could help close the gap between our
theory, and real experimental demonstrations of IQP sampling, especially at low noise levels (𝑝 ≪ 10−2).

On a theoretical level, our algorithm explicitly demonstrates how noise can remove quantum resources from a system to
make it classically simulatable. In particular, our algorithm takes advantage of the fact that noise reduces the coherence of the
initial state of the IQP circuit, and this, in turn, reduces the amount of entanglement that can be built up. The perspective of
circuit percolation under noise is quite different from the Fourier analytic approach used in other recent works [27, 28, 20].
We speculate that percolation may provide a framework for future classical simulation algorithms, both in IQP and more
general cases, such as random quantum circuits. For example, recent work [35] builds off our results to simulate noisy
linear-optical circuits.

We conjecture that the loss of quantum advantage at Ω(1) depths may be observed in a variety of NISQ circuits. (This is
consistent with the findings of [29] regarding optimization algorithms on noisy quantum devices.) In particular, we highlight
the fact that most existing classical simulation algorithms for NISQ circuits take advantage of the convergence of the output
distribution to the uniform distribution (due to noise or randomness of the circuit). This usually requires a depth that depends
on the system size. However, our results are an example of convergence to a classically simulatable distribution that occurs at
an Ω(1) depth which only depends on the noise strength. This is a common feature of graph percolation results — that the
onset of percolation is only determined by the local connectivity and the noise strength, but not the system size.

We also note the similarities of our results with the phase transition in the cross-entropy benchmark for the task for noisy
random circuit sampling observed in [36, 37]. Here the cross-entropy, which is used as a proxy for fidelity between the actual
device and the idealized case, demonstrates that for a noisy quantum computer the device achieves good fidelity with the ideal
quantum computer up to a sharp cut-off which depends on the circuit architecture.

Finally, we note that our results here suggest that any fault-tolerant scheme for IQP circuits (such as [31, 15, 27]) seems
to require intermediate circuit measurements, non-diagonal gates, or at least the ability to implement highly non-local gates.
In this sense, making an IQP circuit fault-tolerant (without leaving the IQP framework) seems to be qualitatively as hard as
making a generic, non-IQP circuit fault-tolerant.
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and Salvatore Mandrà. Establishing the quantum supremacy frontier with a 281 pflop/s simulation. Quantum Science and Technology,
5(3):034003, 2020.

[18] Ulysse Chabaud, Giulia Ferrini, Frédéric Grosshans, and Damian Markham. Classical simulation of gaussian quantum circuits with
non-gaussian input states. Physical Review Research, 3(3):033018, 2021.

[19] John C Napp, Rolando L La Placa, Alexander M Dalzell, Fernando GSL Brandao, and Aram W Harrow. Efficient classical simulation
of random shallow 2d quantum circuits. Physical Review X, 12(2):021021, 2022.

[20] Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani. A polynomial-time classical algorithm for noisy random
circuit sampling. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC ’23. ACM, June 2023.

[21] Dmitri Maslov, Sergey Bravyi, Felix Tripier, Andrii Maksymov, and Joe Latone. Fast classical simulation of harvard/quera iqp
circuits. arXiv preprint arXiv:2402.03211, 2024.

[22] Stephen P Jordan. Permutational quantum computing. arXiv preprint arXiv:0906.2508, 2009.
[23] Daniel James Shepherd. Quantum complexity: restrictions on algorithms and architectures. arXiv preprint arXiv:1005.1425, 2010.
[24] Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. Average-case complexity versus approximate simulation of commuting

quantum computations. Physical review letters, 117(8):080501, 2016.
[25] Xun Gao, Sheng-Tao Wang, and L-M Duan. Quantum supremacy for simulating a translation-invariant ising spin model. Physical

review letters, 118(4):040502, 2017.
[26] Juan Bermejo-Vega, Dominik Hangleiter, Martin Schwarz, Robert Raussendorf, and Jens Eisert. Architectures for quantum simulation

showing a quantum speedup. Physical Review X, 8(2):021010, 2018.
[27] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Achieving quantum supremacy with sparse and noisy commuting

quantum computations. Quantum, 1:8, April 2017.
[28] Xun Gao and Luming Duan. Efficient classical simulation of noisy quantum computation. arXiv preprint arXiv:1810.03176, 2018.
[29] Daniel Stilck França and Raul Garcı́a-Patrón. Limitations of optimization algorithms on noisy quantum devices. Nature Physics,

17(11):1221–1227, 2021.
[30] Keisuke Fujii and Shuhei Tamate. Computational quantum-classical boundary of noisy commuting quantum circuits. Scientific

Reports, 6(1):25598, May 2016.
[31] Louis Paletta, Anthony Leverrier, Alain Sarlette, Mazyar Mirrahimi, and Christophe Vuillot. Robust sparse IQP sampling in constant

depth. Quantum, 8:1337, May 2024.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1049

D
ow

nl
oa

de
d 

05
/2

4/
25

 to
 1

28
.8

.1
20

.3
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



[32] V. G. Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, 1965.
[33] Dan Shepherd. Binary matroids and quantum probability distributions. arXiv preprint arXiv:1005.1744, 2010.
[34] Dominik Hangleiter, Juan Bermejo-Vega, Martin Schwarz, and Jens Eisert. Anticoncentration theorems for schemes showing a

quantum speedup. Quantum, 2:65, May 2018.
[35] Changhun Oh. Classical simulability of constant-depth linear-optical circuits with noise arXiv preprint arXiv:2406.08086, 2024.
[36] Alexis Morvan, B Villalonga, X Mi, S Mandra, A Bengtsson, PV Klimov, Z Chen, S Hong, C Erickson, IK Drozdov, et al. Phase

transition in random circuit sampling. arXiv preprint arXiv:2304.11119, 2023.
[37] Brayden Ware, Abhinav Deshpande, Dominik Hangleiter, Pradeep Niroula, Bill Fefferman, Alexey V Gorshkov, and Michael J

Gullans. A sharp phase transition in linear cross-entropy benchmarking. arXiv preprint arXiv:2305.04954, 2023.
[38] Geoffrey Grimmett. Some Basic Techniques, pages 32–52. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
[39] Michael Krivelevich. The phase transition in site percolation on pseudo-random graphs. arXiv preprint arXiv:1404.5731, 2014.
[40] Ioannis Chatzigeorgiou. Bounds on the lambert function and their application to the outage analysis of user cooperation. IEEE

Communications Letters, 17(8):1505–1508, August 2013.
[41] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the lambertw function. Advances in Computational

Mathematics, 5(1):329–359, Dec 1996.
[42] Zsolt Baranyai. The edge-coloring of complete hypergraphs i. Journal of Combinatorial Theory, Series B, 26(3):276–294, 1979.

A Proofs of Noisy Circuit Lemmas
Lemma A.1. (Restatement of lemma 3.1) For any Pauli noise channel N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍

, define 𝑝 = 𝑝𝑍 +min(𝑝𝑋, 𝑝𝑌 ), define
N1 = N |𝑝𝑋−𝑝𝑌 |

1−2𝑝 ,0,0 if 𝑝𝑋 ≥ 𝑝𝑌 or N1 = N0, |𝑝𝑋−𝑝𝑌 |1−2𝑝 ,0 otherwise, and define N2 = Nmin(𝑝𝑋,𝑝𝑌 )
𝑝

,0,0. Then, for any single-qubit
state 𝜌,

N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
(𝜌) = (1 − 2𝑝)N1 (𝜌) + 2𝑝N2 ◦ N0,0,1/2 (𝜌).

Proof. Suppose 𝑝𝑋 ≥ 𝑝𝑌 . Then, 𝑝 = 𝑝𝑍 + 𝑝𝑌

N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍
(𝜌) = 𝑝𝐼 𝜌 + 𝑝𝑋𝑋𝜌𝑋 + 𝑝𝑌𝑌𝜌𝑌 + 𝑝𝑍𝑍𝜌𝑍

= (𝑝𝐼 − 𝑝𝑍 )𝜌 + 𝑝𝑍 (𝜌 + 𝑍𝜌𝑍) + (𝑝𝑋 − 𝑝𝑌 )𝑋𝜌𝑋 + 𝑝𝑌 (𝑋𝜌𝑋 + 𝑌𝜌𝑌 )
= (𝑝𝐼 − 𝑝𝑍 )𝜌 + 2𝑝𝑍N0,0,1/2 (𝜌) + (𝑝𝑋 − 𝑝𝑌 )𝑋𝜌𝑋 + 2𝑝𝑌 𝑋N0,0,1/2 (𝜌)𝑋
= (𝑝𝐼 − 𝑝𝑍 + 𝑝𝑋 − 𝑝𝑌 )N 𝑝𝑋−𝑝𝑌

(𝑝𝐼 −𝑝𝑍+𝑝𝑋−𝑝𝑌 )
,0,0 (𝜌) + 2(𝑝𝑌 + 𝑝𝑍 )N 𝑝𝑌

(𝑝𝑌 +𝑝𝑍 )
,0,0 ◦ N0,0,1/2 (𝜌)

= (1 − 2𝑝)N 𝑝𝑋−𝑝𝑌
1−2𝑝 ,0,0 (𝜌) + 2𝑝N 𝑝𝑌

𝑝
,0,0 ◦ N0,0,1/2 (𝜌)

where we have used that 𝑝𝐼 + 𝑝𝑋 + 𝑝𝑌 + 𝑝𝑍 = 1. The case when 𝑝𝑌 > 𝑝𝑋 follows using the same proof as above where we
flip the role of the 𝑋 and 𝑌 operators.

Lemma A.2. (Restatement of lemma 3.2) Let 𝐶̃ be an IQP circuit with Pauli noise. Let the initial state be |+⟩⟨+|𝑛. Let 𝐶̃′
be the circuit 𝐶̃ where there is a single completely dephasing error (N0,0,1/2 channel) on qubit 𝑣 ∈ {1, . . . 𝑛} occurring at any
point in 𝐶̃. Then,

Φ𝐶̃′ ( |+⟩⟨+|
𝑛) = E𝑏∼𝑈 ({0,1})

[
Φ𝐶̃ ( |+⟩⟨+|

𝑣−1 ⊗ |𝑏⟩⟨𝑏 | ⊗ |+⟩⟨+|𝑛−𝑣+1)
]

Proof. The completely dephasing error trivially commutes with diagonal gates in the circuit, and commutes with all Pauli
noise channels in the circuit because Pauli channels commute with each other (i.e. 𝜎𝑖𝜎𝑗 𝜌𝜎

†
𝑗
𝜎
†
𝑖
= 𝜎𝑗𝜎𝑖𝜌𝜎

†
𝑖
𝜎
†
𝑗
, for any Pauli

matrices 𝜎𝑖 , 𝜎𝑗 and density matrix 𝜌). Thus, it can be commuted to the beginning of the circuit where it acts on the initial
state as follows,

N0,0,1/2 (|+⟩⟨+|) =
1
2
|+⟩⟨+| + 1

2
𝑍 |+⟩⟨+| 𝑍† = 𝐼

2
= E𝑏 [|𝑏⟩⟨𝑏 |] .

Lemma A.3. (Restatement of lemma 3.3) Let 𝐴 and 𝐵 be subsystems of qubits and D be any diagonal gate acting across
these subsystems. Suppose subsystem 𝐴 is in computational basis state |𝑏⟩⟨𝑏 |, and 𝜌 is the state of subsystem 𝐵. Define
𝐷′ = tr𝐴(( |𝑏⟩⟨𝑏 |𝐴 ⊗ 𝐼𝐵)𝐷). Then,

D(|𝑏⟩⟨𝑏 |𝐴 ⊗ 𝜌𝐵) = |𝑏⟩⟨𝑏 |𝐴 ⊗ D′ (𝜌𝐵)(A.1)
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Proof. Any diagonal unitary matrix acting on subsystems 𝐴 and 𝐵 can be written in the following form

𝐷 =
∑︁

𝑖∈{0,1} |𝐴| , 𝑗∈{0,1} |𝐵|
𝑒𝑖 𝜃𝑖 𝑗 |𝑖 𝑗⟩⟨𝑖 𝑗 |(A.2)

where 𝜃𝑖 𝑗 are real numbers (phases). Therefore we have

D (|𝑏⟩⟨𝑏 |𝐴 ⊗ 𝜌𝐵) =
∑︁

𝑖,𝑖′∈{0,1} |𝐴| , 𝑗 , 𝑗′∈{0,1} |𝐵|
𝑒𝑖 𝜃𝑖 𝑗−𝑖 𝜃𝑖′ 𝑗′ |𝑖 𝑗⟩⟨𝑖 𝑗 | ( |𝑏⟩⟨𝑏 |𝐴 ⊗ 𝜌𝐵) |𝑖′ 𝑗 ′′⟩⟨𝑖′ 𝑗 ′′ |

= |𝑏⟩⟨𝑏 |𝐴 ⊗
∑︁

𝑗 , 𝑗′∈{0,1} |𝐵|
𝑒𝑖 𝜃𝑏 𝑗−𝑖 𝜃𝑏 𝑗′ | 𝑗⟩⟨ 𝑗 | 𝜌𝐵 | 𝑗 ′⟩⟨ 𝑗 ′ |

The lemma follows by observing that

tr𝐴(( |𝑏⟩⟨𝑏 |𝐴 ⊗ 𝐼𝐵)𝐷) = tr𝐴
©­«

∑︁
𝑗∈{0,1} |𝐵|

𝑒𝑖 𝜃𝑏 𝑗 |𝑏 𝑗⟩⟨𝑏 𝑗 |ª®¬
=

∑︁
𝑗∈{0,1} |𝐵|

𝑒𝑖 𝜃𝑏 𝑗 | 𝑗⟩⟨ 𝑗 |

and hence

D′ (𝜌𝐵) =
∑︁

𝑗 , 𝑗′∈{0,1} |𝐵|
𝑒𝑖 𝜃𝑏 𝑗−𝜃𝑏 𝑗′ | 𝑗⟩⟨ 𝑗 | 𝜌𝐵 | 𝑗 ′⟩⟨ 𝑗 ′ | .

B Proof of Percolation Bound
It is folklore that graphs exhibit a phase transition in connectivity (i.e. the graph splits into smaller connected components)
when elements of the graph are kept with probability which is low relative to the graph degree (see e.g. [38]). [39] explicitly
proves bounds on the size of components in this regime, and we adapt these results to our setting.

Lemma B.1. Let 𝐺 = (𝑉, 𝐸) be a graph of maximum degree Δ on n vertices. Construct 𝐺′ = (𝑉, 𝐸 ′) as follows. Start with
𝐸 ′ = 𝐸 . For each 𝑣 ∈ 𝑉 , with probability 1 − 𝑞, remove all edges incident to 𝑣 from 𝐸 ′. Let 𝑉1, . . . , 𝑉𝑚 be the connected
components of 𝐺′. If 𝑞 < 1

Δ
, then for each 𝑖 ∈ 1, . . . , 𝑚,

𝑃( |𝑉𝑖 | > 𝑥) ≤ 𝑒−𝑥 (1−𝑞Δ−log(𝑞Δ) )(B.3)

Proof. We describe a randomized algorithm (inspired from [39]) that constructs a random graph 𝐺′ that is sampled from the
probability distribution described in the statement of the lemma. The algorithm initializes 𝐺′ to be the empty graph. Then
it constructs a set 𝑆 through probabilistic ‘queries,’ which we define as follows. A query to vertex 𝑣 ∈ 𝑉 ‘succeeds’ with
probability 𝑞, in which case 𝑣 is added to 𝑆, or ‘fails’ otherwise, in which case 𝑣 is added to 𝐺′ (as an isolated vertex). At any
point in the process, we use 𝑁𝐺 (𝑆) to refer to the vertices not in 𝑆, that are connected to 𝑆 by edges in 𝐺. Whenever 𝑆 = ∅
(e.g. the beginning), the algorithm initializes 𝑆 by querying all unqueried vertices in 𝐺 until the first successful query. Then,
when 𝑆 ≠ ∅, the algorithm queries all unqueried vertices in 𝑁𝐺 (𝑆) (this process possibly increases the size of 𝑆, in which
case the algorithm repeats this process with the new 𝑆). Whenever the algorithm runs out of unqueried vertices to query in
𝑁𝐺 (𝑆), it adds 𝑆 and all of its edges (i.e. (𝑣, 𝑤) ∈ 𝐸 s.t 𝑣, 𝑤 ∈ 𝑆) to 𝐺′ and resets 𝑆 to be the empty set. At this point, the
algorithm again attempts to initialize 𝑆 by querying unqueried vertices in 𝐺, as described earlier. The algorithm finishes
when there are no more unqueried vertices in 𝐺.

If there is a connected component 𝑉𝑖 of size 𝑥 + 1 or higher, |𝑆 | must have reached 𝑥 + 1 at some intermediate point
during the above process. Consider 𝑆 at the moment it reaches a size of |𝑆 | = 𝑥 + 1. Suppose the most recent vertex added to
𝑆 is labeled 𝑣. To reach this stage, we could have made at most |𝑆 ∪ 𝑁𝐺 (𝑆 − 𝑣) | ≤ Δ( |𝑆 | − 1) = 𝑥Δ queries (as each vertex in
𝑆 − 𝑣 has at most Δ neighbors), and exactly 𝑥 + 1 of them have been successful. Thus the probability of forming an 𝑉𝑖 of size
𝑥 + 1 or higher:

𝑃( |𝑉𝑖 | > 𝑥) ≤ 𝑃(Bin(𝑥Δ, 𝑞) > 𝑥).
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where Bin(𝑥Δ, 𝑞) is the binomial distribution with 𝑥Δ trials and success probability 𝑞. The expected number of successes 𝜇 in
this distribution is 𝜇 = 𝑥Δ𝑞, which is less than 𝑥 when 𝑞 < 1/Δ. We can thus use Chernoff’s bound to bound the probability
that there are more than 𝑥 successes. Specifically, for any 𝛿 > 0, 𝑃(Bin(𝑥Δ, 𝑞) > (1 + 𝛿)𝜇) ≤

(
𝑒−𝛿

(1+𝛿 ) (1+𝛿) )
)𝜇

. In our case,
𝜇 = 𝑥Δ𝑞 and 1 + 𝛿 = 1

Δ𝑞
, so we have

𝑃( |𝑉𝑖 | > 𝑥) ≤ ©­« 𝑒
1− 1

Δ𝑞

( 1
Δ𝑞
)

1
Δ𝑞

)ª®¬
𝑥Δ𝑞

(B.4)

≤
(
𝑒Δ𝑞−1

𝑒
log

(
1
Δ𝑞

)
) 𝑥

(B.5)

≤ 𝑒−𝑥 (1−𝑞Δ−log(𝑞Δ) )(B.6)

Corollary B.1. Let 𝐶 be an IQP circuit containing 𝑘-local diagonal gates of depth 𝑑 on 𝑛 qubits, and let 𝐶̃ denote the
noisy implementation of 𝐶, where each layer is interspersed with identical Pauli noise channels N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍

on every qubit.
Denote 𝑝 = 𝑝𝑍 +min(𝑝𝑋, 𝑝𝑌 ). Suppose we use Algorithm 3.1 to sample from 𝑃𝐶̃ . Let 𝑉1, . . . , 𝑉𝑚 be the partition of qubits
into subsets in step 4. There exists a constant depth threshold 𝑑∗ ≤ 𝑂 (𝑝−1 log

(
𝑘 𝑝−1) , such that when 𝑑 > 𝑑∗, for each

𝑖 ∈ 1, . . . , 𝑚,

P( |𝑉𝑖 | > 𝑥) ≤ 𝑒−𝑥𝑐𝑝,𝑘 (𝑑)

where 𝑐𝑝,𝑘 (𝑑) = 1 − (𝑘 − 1)𝑑 (1 − 2𝑝)𝑑 − log
(
(𝑘 − 1)𝑑 (1 − 2𝑝)𝑑

)
is positive and increases with 𝑑 when 𝑑 > 𝑑∗

Proof. Suppose we define 𝐺𝐶̃ for 𝐶̃ similarly to how 𝐺𝐶̃3
is defined for 𝐶̃3 (vertices correspond to qubits and edges correspond

to entangling gates). In steps 1 and 2, each qubit remains in the |+⟩ state independently and with probability (1 − 2𝑝)𝑑 , and
otherwise, it is initialized to a computational basis state. Due to steps 3 and 4, the corresponding vertex of each qubit in a
computational basis state will have no edges in 𝐺𝐶̃3

. Thus, the random process which takes 𝐺𝐶̃ → 𝐺𝐶̃3
exactly corresponds

to the percolation process which takes 𝐺 → 𝐺′ in lemma B.1, where 𝑞 = (1 − 2𝑝)𝑑 . Note that the maximum degree of 𝐺𝐶̃ is
Δ ≤ (𝑘 − 1)𝑑, because each qubit is acted on by at most 𝑑 gates, each of which entangles with at most 𝑘 − 1 other qubits.
The result follows from lemma B.1 if we define 𝑑∗ as the depth at which (1 − 2𝑝)𝑑∗ = 1

(𝑘−1)𝑑∗ , i.e. the depth after which
percolation occurs with high probability (𝑞 = 1/Δ). By lemma B.2, 𝑑∗ = 𝑂 (𝑝−1 log

(
𝑘 𝑝−1)).

Lemma B.2. For small 𝑝 > 0, the integer value of 𝑑 > 0 which satisfies the equation (1 − 2𝑝)𝑑𝑑𝑐 = 1 for any constant 𝑐 > 0,
is 𝑑 = Θ(𝑝−1 log

(
𝑐𝑝−1))

Proof. We can simplify,

(1 − 2𝑝)𝑑𝑑𝑐 = 1(B.7)

=⇒ 𝑑 log(1 − 2𝑝)𝑒𝑑 log(1−2𝑝) = 𝑐−1 log(1 − 2𝑝)(B.8)

=⇒ 𝑑 =
𝑊−1 (𝑐−1 log(1 − 2𝑝))

log(1 − 2𝑝)(B.9)

where 𝑊−1 is the lambert 𝑊-function, i.e. 𝑦 = 𝑊−1 (𝑧) is defined as a solution to the equation 𝑒𝑦𝑦 = 𝑧. It is known that
𝑊−1 (−𝑧) = Θ(log(𝑧)) for small 𝑧 [40] [41]. In our case, −𝑐−1 log(1 − 2𝑝) is small when 𝑝 is small, and therefore,

𝑑 = Θ

(
log

(
−𝑐−1 log(1 − 2𝑝)

)
log(1 − 2𝑝)

)
≈ Θ(𝑝−1 log

(
𝑐𝑝−1

)
)(B.10)

where we have used the approximation log(1 − 2𝑝) ≈ −2𝑝 for small 𝑝
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C Proofs of Correctness for Sampling Algorithms
Theorem C.1. (Proof of Algorithm 3.1 Correctness) Suppose 𝐶 is an IQP circuit containing 𝑘-local diagonal gates
of depth 𝑑 on 𝑛 qubits. Let 𝐶̃ denote the noisy implementation of 𝐶, where each layer is interspersed with identical
Pauli noise channels N𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍

on every qubit. Let 𝑝 = 𝑝𝑍 + min(𝑝𝑋, 𝑝𝑌 ). There exists a constant depth threshold
𝑑𝑐 ≤ 𝑂 (𝑝−1 log

(
𝑘 𝑝−1)) such that when 𝑑 ≥ 𝑑𝑐, there exists a randomized classical algorithm that exactly samples from 𝑃𝐶̃

with random runtime 𝑇 of expected value,

E[𝑇] ≤ 𝑂 (𝑑𝑛5).

Proof. By lemma 3.5, the algorithm samples exactly from the output distribution. Now, to bound the runtime, observe that
the first 4 steps of the algorithm take runtime 𝑂 (𝑛𝑑) as it is simply processing the circuit description, which involves 𝑂 (𝑛𝑑)
channels. Step 5 is the costliest, and we will loosely bound its runtime in terms of the cost of simulating each subset of qubits
in {𝑉1, . . . 𝑉𝑚} (the partition of qubits into disjoint subsets found in step 4).

For each 𝑖 ∈ 1, . . . , 𝑚, the subcircuit corresponding to 𝑉𝑖 has at most |𝑉𝑖 |𝑑 ≤ 𝑛𝑑 gates and noise channels. Each Pauli
noise channel can be simulated by inserting a Pauli gate into the subcircuit with a probability specified by the channel
parameters. Each gate is an 𝑂 (1)-sparse unitary matrix acting on a 2 |𝑉𝑖 | -length state vector which involves 𝑂 (2 |𝑉𝑖 | ) arithmetic
operations (multiplication and addition). Each multiplication can be performed in 𝑂 (𝑛2) operations because the numbers can
range between 1 and ≥ 1/

√
2𝑛 which requires 𝑂 (𝑛) bits of precision. Therefore, the runtime of step 5 is

𝑇 ≤
𝑚∑︁
𝑖=1

𝑐𝑑𝑛32 |𝑉𝑖 |(C.11)

for some constant 𝑐 which arises from the state vector simulation subroutine. Now, using linearity of expectation, we compute
the expected runtime 𝑇 as,

E[𝑇] ≤
𝑚∑︁
𝑖=1

𝑐𝑑𝑛3
𝑛∑︁

𝑥=0
2𝑥P( |𝑉𝑖 | = 𝑥)

=

𝑚∑︁
𝑖=1

𝑛∑︁
𝑥=0

𝑐𝑑𝑛32𝑥 (P( |𝑉𝑖 | > 𝑥 − 1) − P( |𝑉𝑖 | > 𝑥))

=

𝑚∑︁
𝑖=1

𝑛−1∑︁
𝑥=0

𝑐𝑑𝑛3 (2𝑥+1 − 2𝑥)P( |𝑉𝑖 | > 𝑥)

=

𝑚∑︁
𝑖=1

𝑛−1∑︁
𝑥=0

𝑐𝑑𝑛32𝑥P( |𝑉𝑖 | > 𝑥)

≤
𝑚∑︁
𝑖=1

𝑛−1∑︁
𝑥=0

𝑐𝑑𝑛32𝑥𝑒−𝑥𝑐𝑝,𝑘 (𝑑)

≤
𝑛−1∑︁
𝑥=0

𝑐𝑑𝑛4𝑒−𝑥 (𝑐𝑝,𝑘 (𝑑)−log 2)

where we have used corollary B.1 in the second last step, and the fact that 𝑚 ≤ 𝑛 in the last step. We define 𝑑𝑐 to be the depth
at which 𝑐𝑝,𝑘 (𝑑𝑐) = log 2. Then when 𝑑 ≥ 𝑑𝑐, 𝑒−𝑥 (𝑐𝑝,𝑘 (𝑑)−log 2) ≤ 1, giving:

E[𝑇] ≤ 𝑐𝑑𝑛5(C.12)

We solve 𝑐𝑝,𝑘 (𝑑𝑐) = log 2 to find that 𝑑𝑐 is the depth at which (𝑘 − 1)𝑑𝑐 (1 − 2𝑝)𝑑𝑐 ≈ 0.855. The fact that
𝑑𝑐 = 𝑂 (𝑝−1 log

(
𝑘 𝑝−1)) follows from lemma B.2.

C.1 The Monte Carlo Algorithm Using standard techniques, we can turn the Las Vegas algorithm specified in Algorithm
3.1 into a Monte Carlo algorithm with bounded error.

Algorithm C.1. (Monte Carlo Sampler)
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1. Perform algorithm 3.1 up till step 4, where we have the sets {𝑉1, . . . , 𝑉𝑚}.

2. If:

max
𝑖
|𝑉𝑖 | ≤

log(𝑛/𝜖)
𝑐𝑝,𝑘 (𝑑)

then the algorithm continues to step 5 of algorithm 3.1 and returns a bit string. Otherwise, it samples a bit string from
the uniform distribution 𝑈 ({0, 1}𝑛) and returns this.

We now bound the error of Algorithm C.1 in the following corollary.

Corollary C.1. (Monte Carlo Algorithm Performance) Using the same notation as Theorem C.1, there exists a
constant depth threshold 𝑑∗ ≤ 𝑂 (𝑝−1 log

(
𝑘 𝑝−1)), such that, when 𝑑 > 𝑑∗,𝑝 = Ω(1) and 𝑘 = 𝑂 (1), there exists a

randomized classical algorithm that samples from 𝑄̃𝐶̃ , such that ∥𝑄̃𝐶̃ − 𝑃𝐶̃ ∥𝑇𝑉𝐷 ≤ 𝜖 for any 𝜖 > 0, with worst-case runtime
𝑇 ≤ 𝑂 (𝑑 poly(𝑛/𝜖))

Proof. First we show that the algorithm indeed results in an 𝜖-approximation to the output distribution. Using a union bound,
we can bound the probability that we have to output the uniform distribution as,

P
(
max
𝑖
|𝑉𝑖 | >

log(𝑛/𝜖)
𝑐𝑝,𝑘 (𝑑)

)
≤

𝑚∑︁
𝑖=1

P
(
|𝑉𝑖 | >

log(𝑛/𝜖)
𝑐𝑝,𝑘 (𝑑)

)
≤ 𝑛𝑒

− log(𝑛/𝜖 )
𝑐𝑝,𝑘 (𝑑)

𝑐𝑝,𝑘 (𝑑)

≤ 𝜖

where we have used the fact that 𝑚 ≤ 𝑛. Let 𝑄̃𝐶̃ (𝑠) be the output distribution of Algorithm C.1. Let 𝑄𝐶̃ be the output
distribution of Algorithm 3.1. Let 𝐸 be the event that max𝑖 |𝑉𝑖 | ≤ log(𝑛/𝜖 )

𝑐𝑝,𝑘 (𝑑) and 𝐸 ′ be its complement. We will separate 𝑄𝐶̃ (𝑠)
into two conditional distributions: 𝑄𝐶̃ (𝑠 |𝐸) and 𝑄𝐶̃ (𝑠 |𝐸 ′), where 𝑠 is the output string. We then write:

∥𝑄̃𝐶̃ − 𝑃𝐶̃ ∥𝑇𝑉𝐷 = ∥𝑄̃𝐶̃ −𝑄𝐶̃ ∥𝑇𝑉𝐷

= ∥𝑃(𝐸 ′) (𝑄̃𝐶̃ (𝑠 |𝐸 ′) −𝑄𝐶̃ (𝑠 |𝐸 ′))
+ 𝑃(𝐸) (𝑄̃𝐶̃ (𝑠 |𝐸) −𝑄𝐶̃ (𝑠 |𝐸))∥𝑇𝑉𝐷

≤ 𝜖 ∥𝑄̃𝐶̃ (𝑠 |𝐸 ′) −𝑄𝐶̃ (𝑠 |𝐸 ′)∥𝑇𝑉𝐷

+ (1 − 𝜖)∥𝑄̃𝐶̃ (𝑠 |𝐸) −𝑄𝐶̃ (𝑠 |𝐸)∥𝑇𝑉𝐷

≤ 𝜖 ∥𝑄̃𝐶̃ (𝑠 |𝐸 ′) −𝑄𝐶̃ (𝑠 |𝐸 ′)∥𝑇𝑉𝐷

≤ 𝜖

Now, using eq. (C.11), the fact that max𝑖 |𝑉𝑖 | ≤ log(𝑛/𝜖 )
𝑐𝑝,𝑘 (𝑑) , and the fact that 𝑚 ≤ 𝑛, we can bound the runtime as

𝑇 ≤ 𝑐𝑑𝑛42
log(𝑛/𝜖 )
𝑐𝑝,𝑘 (𝑑) = 𝑐𝑑𝑛4

(𝑛
𝜖

) log 2
𝑐𝑝,𝑘 (𝑑)(C.13)

for some constant 𝑐 which arises from the state vector simulation subroutine. Note that this is 𝑂 (𝑑 poly(𝑛/𝜖)) when
𝑐𝑝,𝑘 = Ω(1), which occurs when 𝑝 ∈ Ω(1) and 𝑘 ∈ 𝑂 (1).

D Proofs of Hardness Construction Lemmas
Lemma D.1. (from [30]) There exists a family of IQP circuits 𝐶 constructed from 𝑒𝑖𝑍 𝜋/8 and 𝑒𝑖𝑍𝑍 𝜋/4 gates of depth 5 such
that it is hard to exactly sample from 𝑃𝐶,𝑝fail for 𝑝fail < 0.134,

Proof. This can be shown by constructing topologically protected MBQC (Measurement Based Quantum Computing) circuits
that use cluster states as a resource. These circuits are hard to exactly sample from (assuming the PH doesn’t collapse), even if
they are exposed to a constant level of noise on each qubit in the cluster state, due to fault-tolerance techniques. In general,
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MBQC circuits include intermediate adaptive measurement steps, which fall out of the IQP framework. However, using the
added power of post-selection, one can simulate MBQC using samples from Hadamard-basis measurement outcomes on the
cluster state. This shows that it is hard to sample Hadamard-basis measurements on a cluster state, which exactly corresponds
to the short-depth IQP circuit described. Moreover, this hardness exhibits robustness to noise through an error detection
argument (we can post-select on error-free outcomes). For more details, refer to [30] 4.

Lemma D.2. (from [27]) Let 𝐶 be an arbitrary IQP circuit constructed of depth 𝑑 on 𝑛 qubits. Then, for any parameter 𝑟,
there is an encoded circuit 𝐶′ where every 𝑘-local gate in 𝐶 is encoded into a 𝑘𝑟-local gate in 𝐶′, and a decoding algorithm
𝐴 such that,

𝐴(𝑃𝐶′ ,𝑞) = 𝑃𝐶,𝑝fail(D.14)

where 𝑝fail ≤ (4𝑞(1 − 𝑞))𝑟/2

Proof. Consider the repetition code, which is given by an 𝑛 × 𝑛𝑟 generator matrix 𝑀 which is a concatenation of 𝑟 𝑛 × 𝑛
identity matrices in a row. For any bitstring 𝑖 ∈ {0, 1}𝑛, we will use 𝑍𝑖 ∈ {𝐼, 𝑍}𝑛 to denote a tensor product of 𝑍 and 𝐼 Pauli
matrices, where there is a 𝑍 in the location of every 1 in 𝑖 and an 𝐼 otherwise. [27] showed that any circuit 𝐶 on 𝑛 qubits can
be transformed into a more noise-robust circuit 𝐶′ on 𝑛𝑟 by transforming each gate as 𝑒𝑖𝑍𝑖 𝜋/8 → 𝑒𝑖𝑍𝑖𝑀 𝜋/8 (we use 𝑖𝑀 to
denote matrix multiplication between 𝑖 and 𝑀 , which results in the codeword corresponding to 𝑖).

Samples from 𝑃𝐶 can be recovered by taking a majority vote over each block of 𝑟 physical qubits in 𝑃𝐶′ . The probability
that a logical bit is decoded incorrectly is the same as the probability that more than r/2 bits are flipped, which is∑︁

𝑖>𝑟/2
𝑞𝑖 (1 − 𝑞)𝑟−𝑖 ≤ 2𝑟𝑞𝑟 (1 − 𝑞)𝑟 = (4𝑞(1 − 𝑞))𝑟/2(D.15)

These incorrectly decoded qubits are essentially bit-flip errors in the distribution of the logical output bits. For more details,
refer to [27] 5.

Lemma D.3. (from [33] Let 𝐶 be an arbitrary IQP circuit constructed using gates of the form 𝑒𝑖𝑍
⊗𝑘 𝜋/8 for some 𝑘 a multiple

of 3, and gates of the form 𝑒𝑖𝑍
⊗𝑘′ 𝜋/4 for some 𝑘 ′ a multiple of 2. There exists an equivalent circuit 𝐶′, such that 𝑃𝐶′ = 𝑃𝐶 ,

where every 𝑒𝑖𝑍
⊗𝑘 𝜋/8 gate in 𝐶 is decomposed into 𝑘2/2 layers of 3-local gates in 𝐶′, and every 𝑒𝑖𝑍

⊗𝑘′ 𝜋/8 gate in 𝐶 is
decomposed into 𝑘 ′ layers of 2-local gates in 𝐶′.

Proof. In [33], it was shown that gates of the form 𝑒𝑖𝑍
⊗𝑘 𝜋/8 can be simplified into 3-local gates as follows. We use |𝑖 | to

denote the hamming weight of bitstring 𝑖. For any bitstring 𝑖 ∈ {0, 1}𝑛, we use |1⟩⟨1|𝑖 ∈ {𝐼, |1⟩⟨1|}𝑛 to denote a tensor product
of of |1⟩⟨1| and 𝐼 matrices, where there is a |1⟩⟨1| in the location of every 1 in 𝑖 and an 𝐼 otherwise.

𝜋

8
𝑍⊗𝑘 =

𝜋

8
(𝐼 − 2 |1⟩⟨1|)⊗𝑘(D.16)

=
𝜋

8

∑︁
𝑖∈{0,1}𝑘

2 |𝑖 | |1⟩⟨1|𝑖(D.17)

�
𝜋

8

∑︁
𝑖∈{0,1}𝑘 : |𝑖 | ≤3

2 |𝑖 | |1⟩⟨1|𝑖(D.18)

=
𝜋

8

∑︁
𝑖∈{0,1}𝑘 : |𝑖 | ≤3

2 |𝑖 |
[
𝐼 − 𝑍

2

]
𝑖

(D.19)

where we have used the fact that rotation angles which are multiples of 2𝜋 are trivial. Note that the expansion of the final
equation involves only weight-1,2,3 𝑍 strings. Every possible weight-1 𝑍 string can be implemented in 1 layer of 1-local
diagonal gates. Every possible weight-2 𝑍 string can be implemented in 𝑘 layers of 2-local diagonal gates by Vizing’s

4The main idea of robustness to constant noise is captured in Theorem 1 and Corollary 2, while the particular circuit family and noise threshold are in
section “A Sharp CQC Boundary”

5See section “Fault-tolerance”
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theorem [32] (which states that a complete graph can be edge-colored with at most 𝑘 colors). Every possible weight-3 𝑍

string can be implemented in
(𝑘−1

2
)

layers of 3-local gates when 𝑘 is a multiple of 3 by Baranyai’s theorem [42] (which states
that every complete hypergraph, where each hyperedge is of size 𝑟, can be hyperedge-colored with

(𝑘−1
𝑟−1

)
colors). Thus, the

depth required to implement a gate of this form is ≤ (𝑘 − 1) (𝑘 − 2)/2 + 𝑘 + 1 ≤ 𝑘2/2. Similar analysis yields the fact that
𝑒𝑖𝑘

′ 𝜋/4 gates can be decomposed into
(𝑘′−1

1
)
+ 1 = 𝑘 ′ layers of 2-local gates when 𝑘 ′ is a multiple of 2. For more details, refer

to [33] 6.

6See section “Equivalence modulo 𝜃”
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