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Non-Monotone Variational Inequalities

Sina Arefizadeh®, Angelia Nedi¢

Abstract— In this paper, we focus on deriving some sufficient
conditions for the existence of solutions to non-monotone
Variational Inequalities (VIs) based on inverse mapping theory.
We have obtained several widely applicable sufficient conditions
for this problem and have introduced a sufficient condition for
the existence of a Minty solution. We have shown that the extra-
gradient method converges to a solution of VI in the presence of
a Minty solution. Additionally, we have shown that, under some
extra assumption, the algorithm is efficient and approaches a
particular type of Minty solution. Interpreting these results in
an equivalent game theory problem, weak coupling conditions
will be obtained, stating that if the players’ cost functions are
sufficiently weakly coupled, the game has a pure quasi-Nash
equilibrium. Moreover, under the additional assumption of the
existence of Minty solutions, a pure Nash equilibrium exists for
the corresponding game.

Index Terms— Non-monotone VI; Nash equilibrium; Weak
Coupling

I. INTRODUCTION

The study of Variational Inequalities (VIs) has recently
become a topic of a wide interest. In particular, many
solution concepts in game theory are tightly connected with
solution concepts related to variational inequalities. The
use of variational inequalities in game theory, particularly
in equilibrium problems and their reformulations in the
variational inequality framework, has been widely discussed
in [1]. The role of Minty variational inequalities in studying
evolutionary games’ stable state in nonlinear population
games is investigated in [2]. Moreover, there is a line of
research, such as [3] and references therein, focusing on
stochastic variational inequalities to model the equilibrium
of stochastic games under uncertainty. Recently in [4], the
problem of guaranteeing the existence of Nash equilibrium
in a class of network games is studied under sufficient
conditions in the form of monotonicity of the game mapping.

The majority of research papers are devoted to designing
algorithms to find a solution to monotone variational inequal-
ities. Among these studies, one can refer to the first-order
projection methods, which were first developed by studies on
the gradient method by Sibony [5], the proximal method by
Martinent [6], the extra gradient method by Korpelevich [7]
and, later on, by studies such as modified forward-backward
[8], mirror-prox [9], dual exploration [10], hybrid proximal
extra gradient [11] methods etc.

More recently, studies have also been on developing
higher-order projection methods and determining their global
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convergence iteration complexities, such as in [12], [13], and
[14]. For non-monotone VlIs, there are studies focusing on
deriving algorithms converging to a solution of the VI based
on the existence of a Minty solution. The work in [15] and
the references therein are examples of such studies. The
study of sufficient conditions for the existence of a solution
to a non-monotone VI itself is an interesting question that
can shed some light on the problem of existence of a quasi
Nash equilibrium in game theory. In the Generalized Nash
Equilibrium Problem (GNEP), where the main goal is to
guarantee the existence of a pure Nash equilibrium for a
given game, there are three main assumptions that can be
relaxed and become a direction for further studies.

The literature considers the following directions for po-
tential relaxations:

a) Relaxation of the continuity of cost functions.

b) Relaxation of the compactness of action spaces.

c) Relaxation of the quasi-convexity of cost functions.
These three directions are not typically studied intensively
all at once. However, there are extensive studies dedicated
to each one individually. Among the studies on item a) in
the list as mentioned above, we can refer to [16]. This study
does not address items b) and c). For item b), which can be
alternatively studied through VIs by relaxing compactness
of the game mapping domain, a relevant study is [17]. In
this case for game mapping F extensive literature examines
the conditions under which a solution for the corresponding
variational inequality (VI) exists. Additionally, some papers
discuss potential relaxations of the action space’s compact-
ness, concluding with conditions on the compactness of
lower-level sets of the Nikaido-Isoda function of the game
[18], [17], [19]. Additionally, the quasi-convexity assump-
tion, item c), is considered an artificial addition extraneous
to the fundamental nature of the model, making its relaxation
a reasonable consideration. Due to the complexity of such
relaxation, the literature on this topic is limited. Among the
few studies available, [18] is noteworthy; however, it does
not address other types of relaxations.

Therefore, the main goals and contributions of this current
study are threefold. Firstly, to study both items b) and c) of
the above list simultaneously and to focus on the research
question concerning the conditions under which a solution
for a non-monotone VI in the presence of a nonempty closed
convex but potentially non compact domain exists. Secondly,
to guarantee the existence of a stronger version, a Minty
solution for such a problem. Finally, to obtain a solution for
non-monotone VIs numerically, which we accomplished by
considering the extra-gradient method.

The organization of the rest of the paper is as follows:
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Section II is devoted to notions and terminology. Section
IIT is dedicated to the main results of the paper regarding
non-monotone variational inequalities and how they can be
interpreted in game theory. Section IV considers Korpelevich
method under a set of assumptions introduced in the preced-
ing sections. Finally, Section V concludes the paper with a
summary of contributions.

II. NOTIONS AND TERMINOLOGY

In this section, we provide some definitions and termi-
nologies about the variational inequalities.

Definition 1 (Solution of VI [20]). Given a set K C R™ and
a mapping F : K — R™, the variational inequality problem,
denoted by VI(K, F), consists of determining a point x* € K
such that

(F(x*),x—=x"y>0  forall xeK.

A point x* satisfying the preceding inequality is referred
to as a (strong) solution to the variational inequality prob-
lem VI(K, F). The set of all such solutions is denoted by
SOL(K, F).

Another concept of a solution to a VI(K, F) exists, known
as weak or Minty solution, defined as follows.

Definition 2 (Minty Solution [21]). Given a VI(K,F), a
point x* € K such that

(F(x),x=x")>0  forallx ek,

is a Minty solution to VI(K, F).

The set of all Minty solutions to VI(K, F) is denoted by
MSOL(K, F).

A well-studied class of variational inequalities is mono-
tone VIs. The following definition introduces it formally.

Definition 3 (Strongly Monotone and Monotone mappings
[15]). Given a set K € R™ and a mapping F : K — R™,
the mapping F is strongly monotone if for some u > 0 and
for all x,y € K,

(F(x) = F(y),x = y) = plx = ylI*.
The mapping F is monotone if the preceding relation holds
with u = 0.
The following lemma gives a relation between these two

solution concepts.

Lemma 1 (Lemma 2.2 - Minty’s Lemma [15]). Let K € R™
be a non-empty closed convex set and let F : K — R™ be a
mapping. The following statements hold:

(a) IfF is continuous, then every Minty solution to VI(K, F)
is also a solution to VI(K, F), i.e.,

MSOL(K, F) C SOL(K, F).

(b) If F is monotone, then every solution to VI(K, F) is also
a Minty solution to VI(K, F), ie.,

SOL(K, F) C MSOL(K, F).

Proof. (a) Let us consider an x* € MSOL(K, F). Hence,

(F(x),x—x") =20 for all x € K. (1

For any arbitrary x € K, consider the point v = x* +¢(x —x*)
where ¢ € (0, 1]. Note that v € K since x,x* € K and K is
convex. Thus, by using v € K, from (1) we have

(F(x"+t(x —x")),t(x —x")) >0 forall xe K,re (0,1].
Since t > 0, it follows that

(F(x"+t(x—x")),x—x") >0 for all x € K,t € (0,1].

Letting ¢ go to zero and using the continuity of 7 we have
Hence, x* € SOL(K, F), implying that

MSOL(K, F) € SOL(K, F).

(b) Let x* be a solution to VI(K, F). By the monotonicity
of I, we have

(F(x) = F(x*),x —x*) > 0. 2)

Since x* € SOL(K, F) it follows that {F(x*),x —x*) > 0.
Therefore, from (2) it follows that (F(x),x —x*) > 0, thus
implying that x* € MSOL(K, F). O

Combining parts (a) and (b) of Lemma 1, we see that for
a continuous and monotone mapping F we have

MSOL(K, F) = SOL(K, F).

This result has been shown in Lemma 1.5 of [22], where both
monotonicity and continuity of the mapping F are assumed.
Our Lemma 1 considers these properties separately to gain a
deeper insight into the role of these properties in the relations
among the solutions and Minty solutions of a VI(K, F).

IIT. MAIN RESULTS

In this section, we provide some sufficient conditions for
the existence of solutions to a VI problem. In the sequel, we
will use the Inverse mapping Theorem, provided below. We
let VF(-) denote the Jacobian of a mapping F(-). We denote
the determinant of the Jacobian VF(x) by |VF(x)|.

Theorem 1 (Inverse Mapping Theorem [23]). Given a vector
a, let F(-) be a continuously differentiable mapping on some
open set containing the vector a. Suppose that |VF (a)| # 0.
Then, there is an open set V containing the vector a and an
open set W containing the vector F(a) such that F : V — W
has a continuous inverse mapping F~' : W — V, which is
continuously differentiable for all y € W.

Defining F(R™) := {F(x)|]x € R™}, in the rest of the
paper, we draw attention to the class of mappings F with
closed F(R™) and the class of continuous mappings and
study them. One example of mappings with F(R™) being a
closed set is the class of closed mappings as they are defined
in the sequel.

Definition 4 (Closed Mapping[24]). A mapping F : R™ —
R™ is closed if for every closed set C C R™, the image set
F(C) is closed, where F(C) ={F(x) | x € C}.
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In what follows, we use B,(x) to denote an open ball
centered at a point x € R™ with a radius r > 0. The
following result provides sufficient conditions guaranteeing
the existence of solution for VI(R™, F).

Theorem 2. Let F : R™ — R™ be a continuously differen-
tiable and F(R™) be closed such that |VF(x)| # 0 for every
x € R™ where F(x) # 0. Then, the VI(R™, F) has a solution.

Proof. Let b = infyerm [|F(x)|| and let {x*}3 be a se-
quence such that limy_ ||F(x¥)|| = b. To arrive at a
contradiction, assume that b > 0.

Since [|[F(x¥)|| — b, it follows that {F(xk)};":l is
bounded and has a convergent sub-sequence {F (x*i) }i2, with
lim;_eo F(xX) = F, where ||F|| = b. Since F € F(R™) and
F(R™) is closed, there is some % € R™ such that F(X) = F.
Since ||F|| = b and b > 0, we have that F(¥) # 0. By the
assumption of the theorem, it follows that |VF(X)| # 0.

By the Inverse mapping Theorem 1, if [VF(X)| # 0, then
there exist open balls B,(X) and B, (F(x)), and a local
inverse mapping F;'(-) : By (F(¥)) — B,(X) such that
FZ'(v) = u for all v € B, (F(X)) and u € B,(X), where
F(u) = v. Therefore, there exists a € (0, 1] such that

(1-a@)F(X) € By (F(X)) .

Thus, by the inverse mapping theorem, we have that
Fx_l ((1 = a)F(x)) = z for some z € B, (x), such that

F()=F (F{' (1 - )F (2)) = (1 - ) F(3).

Hence 0 < ||[F(2)|| < ||[F(%)|| = b with z € R™ — a
contradiction in view of b = infycrm ||F(x)||. Therefore,
b =0 and F (%) =0, implying that X € SOL(R™, F). O

The next two lemmas provide sufficient conditions for
[VF(x)| # 0. In what follows, we use [m] to denote the set
{L,2,...,m} for an integer m > 1. Also, we use Vy, f(x) to
denote the partial derivative of a function f with respect to
variable x;.

Lemma 2 (Weak Coupling Condition). Let F : R — R™
be a mapping given by F = (F|,F»,...,Fy), where F; :
R™ — R is the i-th component of the mapping F for all
i € [m]. If at a given point x it holds

m
|Vxl.Fl-(x)| > Z |ijFl-(x)| for every i € [m],
=1
then |VF(x)| £ 0.

Proof. Denoting M;; as the ij-th element of the square
matrix M of dimension m, let us define the Gershgorin disk

C; (Mii, Z;”:l |M,-j| C C for the matrix M as a disk centered
J#
at M;; with the radius of Z?:I,j;ti ‘Ml-j|. By Gershgorin circle

Theorem [25], every eigenvalue of the Jacobian VF (x) lies in
one of the Gershgorin disks C; |V, Fi(x), Z;.":I |ij F; (x)‘ ,

J#i
i € [m]. Under the weak coupling condition, it follows that O

is not in any of Gershgorin disks. Thus, 0 is not an eigenvalue
of VF(x), implying that |VF(x)| # 0. O

The following lemma shows that a wide range of non-
monotone VIs have a solution in the unconstrained case.

Lemma 3. Let F : R™ — R™. Then, for any x € R™, we
have |VF(x)| # 0 if and only if the matrix VF(x)VF (x)T is
positive definite.

Proof. We have that |[VF(x)[> = |[VF(x)VF(x)T].
Thus, the determinant |VF(x)|> is zero if and only if
|[VF(x)VF(x)T| = 0. So, alternatively we can consider the
matrix VF(x)VF(x)?, which is symmetric. Hence, all the
eigenvalues of VF(x)VF(x)? are real and the matrix is
positive semi-definite due to its form. Therefore, |[VF(x)| # 0
is equivalent to VF(x)VF (x)T being positive definite. O

We have the following result as an immediate consequence
of Theorem 2 and Lemma 3. In the result, we use / to denote
the identity mapping.

Corollary 1. If VF(x)™! = VF(x)T for all x € R™ (orthogo-
nal mapping F) and F(R™) is closed, then VF (x)VF (x)T =
I and the VI(R™, F) has a solution.

In some applications, we might be interested in finding a
solution for the constrained VI problem, i.e., VI(K, F)) where
K is a nonempty, closed, and convex set but not necessarily
bounded. To proceed with such scenarios, we will use an
alternative representation of the VI(K, F) problem to relate
it to finding a zero of a suitably defined mapping. The natural
mapping associated with a VI(K, F) plays a key role in the
reformulation, which is defined as follows:

FE'(v)=v-Hg [v-F(v)] for all v € R™,

where F : K — R™ and Ik [-] is the Euclidean projection on
the closed convex set K € R, i.e., [Ix[z] = argmin, . g [[x—
z|I>. The following theorem relates the solutions of a VI
problem with the zeros of its associated natural mapping.

Theorem 3 (Proposition 1.5.8 [20]). Let F : K — R™ be a
mapping defined on a set K C R™ which is nonempty, closed
and convex. Then, we have

[x" € SOL(K,F)] < [Fg"(x*)=0]. 3)

Depending on the set K, the mapping Fp*(-) may not
be differentiable. However, due to the non-expansiveness
property of the projection mapping, we can see that Fg'(-)
is Lipschitz continuous whenever F is Lipschitz continuious.
Therefore, to obtain an alternative to Theorem 1 where
the mapping differentiability assumption is relaxed, we will
assume the Lipschitz continuity of F. To develop such a
theorem, we first define several concepts in the sequel.

Definition 5 (Generalized Jacobian, Definition 1 [26]). The
generalized Jacobian of a mapping F at point xo € R,
denoted by OF (xg), is the convex hull of all matrices M of
the form of
M = lim VF(x;), 4
i—00
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where lim; . x; = xo and F is differentiable at x; for all i.
We use the following result for the generalized Jacobian.

Theorem 4 (Proposition 1 [26]). Let mapping F be Lipschitz
continuous in a neighborhood of a point xy € R™. Then, the
generalized Jacobian OF (xo) is a nonempty, compact, and
convex set.

Definition 6 (Definition 2 [26]). A generalized Jacobian
OF (xo) is said to be of maximal rank if every matrix M
in the definition of 0F (xy) (see (4)) has a full rank.

The following theorem, known as the Clark inverse map-
ping Theorem, is the key to extending our Theorem 2.

Theorem 5 (Clark Inverse mapping - Theorem 1, [26]). Let
F :R™ — R™ be a mapping. Let OF (x9) be of a maximal
rank for some xo € R™. Then, there exist neighborhoods
U and V of xo and F(xg), respectively, and a Lipschitz
continuous mapping G : V. — R™ such that

a) G (F(u)) =u for every u € U,

b) F(G(v)) =v for every v eV.

The following corollary gives a sufficient condition to have
a solution for VI(K, F).

Corollary 2. Let set K € R be nonempty closed convex and
let FE'(R™) be a closed set. Also, assume that OF "' (x)
has a maximal rank for every x € R™ where F*'(x) # 0.
Then, the VI(K, F) has a solution.

Proof. The proof follows from steps similar to that of the
proof of Theorem 2, where we consider F 1’;‘” (x) instead of
F(x) and use the Clark inverse mapping theorem instead of
the inverse mapping theorem. Also, we use the connection
between the zeros of the natural mapping FZ“(-) and the
solutions of the VI(K, F) as given in Theorem 3. O

Using Definition 4 of a closed mapping, we can not
immediately make a conclusion regarding the closedness of
a mapping Fg*' given the fact that F is a closed mapping,
even closeness of F(R™) may not directly guarantee the
closeness of F4(R™). In the sequel, we will explore sole
continuity as an alternative to the closed mappings which can
be guaranteed for the natural mapping of a given mapping
considering non-expansive property of projection mapping.
A continuous mapping need not be closed in the sense of
Definition 4.

To obtain an alternative to Theorem 2 focusing only on
its continuity, we need an additional assumption, as stated
below.

Assumption 1. Let F : R™ — R™ be such that, for every
sequence {x*} c R™, if {||[F(x*)||} is bounded, then {||x*||}
is also bounded.

Remark. Assumption 1 is met when ||F(x)|| is a coercive
function of x, i.e., lim)y||—e [|F (x)]| = +0c0.

Now, we have the following theorem.

Theorem 6. Let F : R™ — R™ be continuously dif-
ferentiable. Also, let Assumption 1 hold and assume that
[VF(x)| # O for every x € R™ where F(x) # 0. Then, the
VI(R™, F) has a solution.

Proof. Let b = infyepm ||F(x)|| and let {x*}* be a se-
quence such that limy_., ||F(x*)|| = b. Thus, the sequence
{F (xk)}Z’:] is bounded and has a convergent sub-sequence
{F(xki)ye, with lim;e F(x*) = F, where ||F|| = b.
Moreover, by Assumption 1, the sequence {xki};’i1 is also
bounded and, consequently, has a sub-sequence converging
to some X. Along this sub-sequence, the mapping values
F(xki) are also converging to F. Without loss of generality,
we may assume that lim;_,, x* = ¥ and lim,;_,, F(xX) = F.
By the continuity of F it follows that F(¥) = F, where
IF|l = b.

To arrive at a contradiction, we assume that b > 0. By the
Inverse mapping Theorem (Theorem 1), since |VF(x)| # 0,
there are open balls B,(x) and B,  (F(X)), and a locally
invertible mapping Fg '(v) (for the mapping F) such that
F:'(v) = u for all v € B, (F(¥)) and u € B,(X), where
F(u) = v. From now onward, the proof follows the same line
of analysis as that of Theorem 2, leading to a contradiction
that 0 < [|F(2)|| < ||[F(X)|| = b for some z € R™. Therefore,
we must have b = 0 and F(X) = F = 0, implying that ¥ is a
solution of the VI(R™, F). ]

The following theorem provides sufficient conditions for
the existence of a Minty solution to VI(K, F'). We note that a
VI(K, F) with a closed convex set K and strongly monotone
mapping F always has a unique solution (Theorem 2.3.3 in
[20]).

Theorem 7. Let set K € R™ be nonempty, closed, and
convex, and let ¢ : K — R™ be a strongly monotone mapping
with ¥ € SOL(K, ¢). Assume that ||¢(x) — F(x)|| < d|lx—X||
for some d < p, and for all x € K, where u, is the strong
monotonicity constant of the mapping . Then, X is a Minty

solution to VI(K, F).

Proof. By the strong monotonicity of ¢ and ¥ € SOL(K, ¢),
we have

(p(x),x = %) = pyllx - 3|2 for all x € K. (5)

By the assumption that ||¢(x) — F(x)|| < d|lx — X|| for all

x € K, it follows that
(p(x) — F(x),x —%) < d|lx-x||> forall x € K.

Let L.(X) = {x € K | (F(x),x —X) < 0}, and assume that
L. (%) is nonempty. Then, we have for all x € L. (%),

(p(x),x = %) < dllx = £ < pylx = %1%,

which contradicts relation (5) since L.(%¥) € K. Thus, we
must have L. (%) = @, implying that
(F(x),x-%)>0 for all x € K.

Hence, ¥ € MSOL(K, F). O
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Remark. In [19], in the context of game theory for strongly
convex cost functions in terms of the decision variable of the
agents, in particular, where the Jacobian matrix is strictly
diagonally dominant, it is proved that Nash equilibrium
exists. This case can be considered as a particular case of
Theorem 7, where the mapping of the game is, in particular,
strongly monotone, and the Jacobian has a strictly diagonally
dominant structure.

IV. EXTRA-GRADIENT METHOD

In this section, we consider the extra-gradient method (aka
Korpelevich method) [7] for the particular problem setup in
the preceding section. Specifically, while this method have
been studied for monotone Vs, its convergence behavior for
non-monotone VIs has not been thoroughly investigated. In
our study, we use the following assumptions.

Assumption 2. Let K € R be a nonempty closed convex
set, and let the mapping F K — R™ be Lipschitz
continuous, i.e., there exists a constant L such that ||F(x) —
F(y)|| € L||x = y|| for all x,y € K.

The extra-gradient method is given by: for all k > 0,

yE =g [xF - aF(xN)],

=TIk [xF - aF (y9)], (6)

where a > 0 is a stepsize, and x°, y° € K are arbitrary initial
points. The following theorem shows that, having a Minty
solution to VI(K, F), the extra-gradient method generates a
bounded sequence {x*} with accumulation points in the set
SOL(K, F), for a suitable selection of the stepize.

Theorem 8 (Extra Gradient Method [7]). Let Assumption 2
hold. Assume that the VI(K, F) has a Minty solution, i.e.,
there is ¥ € MSOL(K, F). Then, the sequence {x* o
generated by the extra-gradient method (6), with the stepsize
O<a< % is bounded and every of its accumulation points
X is a solution to VI(K, F).

Proof. Using the properties of the projection, from the
definition of the iterate x**! we have that for all k > 0
and any x € K,

T =X <l = @ F (V) = xI1? = " = aF () =212
=[x = xll? = ek = P 4 20 (F (F), 2 = 2.

)

Letting x = %, where ¥ is a Minty solution, since yk e K,
we have (F(y¥),% — y*) <0 for all k > 0. Therefore,

<F(yk)755 —xk+1> = (F(yk),f - yk> + <F(yk)7yk _xk+1>
< (F(y5), yF = x*1). (8)

Using (8) in (7), where x = X, we can write
e e [ e
+20(F (y%), y* = x**)
=l = E 12 = 1 =y I =y = P
—2(xk — yk yk Ry 00 (F(yR), yK - xkH Ty
=l = E I = 1l =y NP =y = P

+2(xF —aF(y*) — yF XM =k, 9)

We can estimate the last term in (9) in the following form
using the Cauchy inequality
Ok = aF (y%) = yk, xk+1 _ yky
—(xk = aF(xk) = yk, xk+1 _ yky
+a(F(x*) = F(y*), " = %)
Sa(F(x*) = F(y), &1 = y5)

<al|F () = FOOII = 8, (10)

where the first inequality is obtained using the fact that (x* —
aF (x})—yk, x**1—y¥) < 0 which follows from the projection
inequality (z — g [z],x — TIx[z]) < O for all z € R™ and
x € K, the definition of y*, and x**! € K. Combining (9)
and (10), and using the Lipschitz continuity of the mapping
F, we obtain the following relation

22 ik =12 ik oK (2 ok _ k2
R e el [ e il [ [ |
Kk _ okl ok
+2aLlx™ =yl = yo

k ~112 k k2 k
S =7 = I = yEIE = ly
k+1 k2
A [

_xk+l||2

(1)

+ L2k = yM )17 + |l
where in the last inequality in (11) we use
2arL||x* = yHIIIAT =y < L2 = yR P T = R
From (11) it follows that for all k > 0,
et = &P <l =77 = (1= a?L7) |1 - y¥|2

Therefore, for a < %, we see that ||x* — y*|| — 0 and ||x* —
#||* converges, and, hence, {xk}];"’:0 is bounded. As a result,
for every convergent subsequence {x*}%  with lim;_ x* =
X, the limit point X is in the set K since K is closed. From
the definition of yk, we have that

Y% =Kl = Tk [x* = @ F ()] = 4]I.

Since ||x* — y¥|| — 0, it follows that ||TIx [x* — aF(x*)] —
xK|| = 0. Thus, for any convergent subsequence {xk'f}‘i’i1
with lim;_. x% = £, it follows that ||TIx [x* — aF (x*)] -
x¥|| = 0, implying that £ = TTx [£—F (£)]. Hence, F*' (£) =
0 and by Theorem 3, we have that £ € SOL(K, F). O

We note that the assumption of Theorem 8 that VI(K, F)
has a Minty solution together with the assumption that the
mapping F is Lipschitz continuous implies that VI(K, F) has
a solution by Lemma 1(a).

We next provide a condition under which the iterates of
the extra-gradient method converge to a Minty solution.
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Assumption 3. Let ¢ : K — R™ be a strongly monotone
mapping with ¥ € SOL(K, ¢). Assume that ||p(x) — F(x)|| <
d||x — X|| for some d < u, and for all x € K, where i, is
the strong monotonicity constant of the mapping .

The following theorem shows that, under the assumptions
of this section and a suitable choice of the stepize, the extra-
gradient method converges to a Minty solution of VI(K, F).

Theorem 9. Let Assumptions 2 and 3 hold. Consider the

method (6) with a stepsize 0 < a < % Then, {xk}z’:0 and

{yk}:’=0 converge to the unique solution ¥ € SOL(K, p),
which is a Minty solution to VI(K, F).

Proof. Assumptions 2 and 3 imply that the unique solution
X to the VI(K,¢) is a Minty solution to VI(K,F) by
Theorem 7. Using relation (7) with x = X, we obtain

K+l _ 2 k_ 22 k _ k12
[l = %7 <[l = £ = [l =2l

+2a(F(y%), & — x**1y. (12)

By Assumption 3, we have for all x € K,
(p(x) = F(x),x = %) < llo(x) = F)||llx = 2| < dllx — .

Since ¥ € SOL(K, ¢), we have {¢(%),x — %) > 0. Thus, we
can write

(p(0),x = %) < (F(x),x = %) + (p(®),x = %) +dlx - 3|,
Re-arranging the terms in the preceding relation, we obtain

(p(x) = (%), x = %) = dllx = %I < (F(x),x = %).  (13)

Lower bounding the left hand side of (13) by the strong
monotonicity of ¢ we have for all x € K,

(fy — d)llx = %> < (F(x),x - %). (14)

Therefore, we have (F(yX), % — y*) < —(u, — d)|ly* - %
Now, we estimate the inner product in (12), as follows:

(F(y5), & = x**1y =(F(y%), & = y*y + (F (%), y* — x*1y
<(F (%), y* =)

— (uy = Dly* = 7% (15)

Using (15) in (12) we obtain

[l = 21 <k - ®)1 = k- xR
+20(F(y%), y* = ") = 20 (py — d)|Iy* - %I
=l = £ 12 = [l = YRR =y =
_ 2<xk _ yk’yk _xk+l> + 2@’<F(yk),yk _xk+l>
- 2a(py - d)|ly* - 5|
=l = £ 12 = [l = YR =y xR
20 —aF (yh) - y5 2 =y

—2a(uy - d)|ly* - %1% (16)

Next, we estimate the inner product term in (16), as follows
<)Ck _ aF(yk) _ yk’xk+l _ yk>
=<)Ck _ aF(xk) _ yk’xk+1 _ yk>
+a(F(x*) = F(y*), x*! = yk)
<a(F(x*) = F(y%),x*" = y%)

<a||F(x*) = FORH I = ¥, (17)

where the first inequality follows from (x* — aF(x*) —
yk, xk*+1 — yky < 0, which is due to the definition of yk,
the projection inequality (z — ITg [z],x — Ik [z]) < O for all
z € R™ and x € K, and the fact that x**! € K.

Using the Lipschitz continuity of the mapping F, and
combining (16) and (17), we have the following relation

e et R Pl M e (o
+2a LIl = YA =
—2a(uy - )y - %I1?
= B e E Al R A
+02L2||Xk _ yk”Z + ||xk+1 _ yk”2

—2a(uy — d)|ly* - %1%, (18)

where the last inequality in (18) follows from
2arL|lx* = yHII =y < @ L2 =y )P+ T = R,
Thus, from (18) we obtain

[t — 22 <l = 2117 - (1= a?L2) 1" =y

= 2a(u, - d)lly* - %1%

The preceding relation holds for all £ > 0. Since 0 < & < %
and d < p,, we can see that [|x*—yk|| — 0 and ||y*-%|| — 0,
implying that ||x¥—%||> — 0. converges, ||x*—y*||, Therefore,
{x*} and {y*} converge to %. O

V. CONCLUSIONS

In this paper, we studied non-constrained non-monotone
VIs through the inverse mapping theorem and obtained some
conditions for the existence of solutions to such VIs. We
showed that mappings with orthogonal structures or those
mappings satisfying our weak coupling criteria meet this
set of conditions, guaranteeing a solution exists to the VI.
We stepped forward and extended these results for the
case of constrained non-monotone VIs where the domain
is nonempty closed convex but not necessarily compact.
Moreover, we derived some conditions that guarantee there
exists a Minty solution given the fact that at least one
solution exists for a related VI. Finally, we showed that the
extra-gradient method can converge to one of the solutions
under some suitable assumptions. In the context of game
theory, these results can be interpreted and lead to obtaining
sufficient conditions to guarantee the existence of a quasi-
Nash or Nash equilibrium in the corresponding games, which
we will explore in the future. Hence, the extra gradient
method can be efficient in obtaining a quasi-Nash or a Nash
equilibrium for the class of games satisfying our conditions.
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