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Hydrodynamic theory of scrambling in chaotic long-range interacting systems
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The Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation provides a mean-field theory of out-of-time-
ordered commutators in locally interacting quantum chaotic systems at high energy density. In systems with
power-law interactions, the corresponding fractional-derivative FKPP equation provides an analogous mean-field
theory. However, the fractional FKPP description is potentially subject to strong quantum fluctuation effects, so
it is not clear a priori if it provides a suitable effective description for generic chaotic systems with power-law
interactions. Here we study this problem using a model of coupled quantum dots with interactions decaying as
1/rα , where each dot hosts N degrees of freedom. The large-N limit corresponds to the mean-field description,
while quantum fluctuations contributing to the OTOC can be modeled by 1/N corrections consisting of a cutoff
function and noise. Within this framework, we show that the parameters of the effective theory can be chosen to
reproduce the butterfly light cone scalings previously found for N = 1 and generic finite N . In order to reproduce
these scalings, the fractional index μ in the FKPP equation needs to be shifted from the naïve value of μ =
2α − 1 to a renormalized value μ = 2α − 2. We provide supporting analytic evidence for the cutoff model and
numerical confirmation for the full fractional FKPP equation with cutoff and noise.

DOI: 10.1103/PhysRevB.107.014201

I. INTRODUCTION

Unitary dynamics in chaotic many-body systems scramble
quantum information, which can then no longer be accessed
by local measurements. Recent interest in this physics was
stimulated by work on scrambling in black holes [1], which
turn out to be the fastest scramblers [2] with all degrees
of freedom strongly interacting with each other. Scrambling
there takes the form of exponential growth, resembling the
Lyapunov behavior characteristic of classical chaos. The same
phenomenology can also be observed in other solvable all-to-
all interacting systems such as the Sachdev-Ye-Kitaev model
[3,4]. When the spatial structure is present, the locality of the
interaction can limit the spreading to have a finite speed, so
that the scrambling time required to spread quantum infor-
mation to a remote location may be extensive in the (linear)
system size. Intuitively, scrambling can be understood as a
classical epidemic spreading process in space [5–12].

A convenient tool to quantify operator spreading is the out-
of-time-ordered commutator. On a lattice, it is defined by the
formula

C(x, t ) = tr([W (t ),V ]†[W (t ),V ])/tr(I). (1)

*tzhou13@mit.edu
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HereW (t ) is a time-evolved operator initially located at site 0,
and V is an operator located at x which probes the component
of W (t ) at that site. Unlike the conventional time-ordered
correlators appearing in response theory, the OTOC has two
forward and two backward evolving contours, sharing more
resemblance with information theoretical quantities such as
the Rényi entanglement entropy. The interacting Hamiltonian
evolves the operator W such that its support gradually in-
creases to reach that of V , creating a nonzero value for the
commutator. Although the OTOC is dramatically different
from conventional time-ordered correlators, the research on
quantum chaos in the past few years has brought us new
tools and viewpoints to understand the operator spreading
and quantitatively compute the OTOC. In the following, we
first review these tools and viewpoints in systems with local
interactions.

A. Viewpoints for local systems

One powerful perspective—the stochastic approach—is to
treat the operator spreading as a classical stochastic spreading
process. Earlier works justified the mapping to the stochastic
process at high temperature or high energy density by solving
for the randomly averaged value ofC(x, t ) for evolution made
of random unitary gates [5,6], or Hamiltonians with noisy
interactions [7–10]. When the system has local interactions,
the spreading process for the average profile of C(x, t ) has
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FIG. 1. Schematic picture for a large N quantum dot model. Each
dot hosts N spins. Spins at different dots interact through a power-law
decaying interaction.

a linear propagation speed vB, which is called the butterfly
velocity owning to its chaos interpretation.

An alternative large-N approach is to view the profile of
C(x, t ) as a propagating wave. In a condensed matter setup,
the parameter N can be the number of fermion flavors, and
the path integral action will be dominated by a saddle point
proportional to N (mean field), while systematic quantum
fluctuation corresponds to 1/N corrections. In the same spirit,
the associated wave equation (for systems with local interac-
tions) is the (noisy) Fisher-Kolmogorov-Petrovsky-Piskunov
(FKPP) equation [13,14] (for a recent review, see Ref. [15])

∂t h =D�h + γ h(1 − h) + η

√
γ h(1 − h)

N
. (2)

In this equation, the height variable h(x, t ) is proportional to
C(x, t ) (to be defined in Sec. II), � is the Laplacian operator
modeling diffusion, γ is the reaction strength and η(x, t ) is the
standard Gaussian noise with correlation 〈η(x, t )η(x′, t ′)〉 =
δ(x − x′)δ(t − t ′). The parameter N is assumed to be large
(but finite) and can be identified as the number of degrees of
freedom on each lattice site (see each quantum dot in Fig. 1).
The FKPP equation with a diffusion term for the OTOC has
been (heuristically) derived for a variety of models, including
electrons with various interactions via augmented Keldysh
formalism and random averaging over quantum circuits or
noisy evolution [5,6,9,16–18]. With the 1/N noise, the FKPP
equation in Eq. (2) is believed to hold for OTOCs of generic
quantum systems with many (but finite) local degrees of free-
dom [7,9,19].

In the mean-field limit (N = ∞), the deterministic terms
contains diffusion (with constant D) and local growth (with
strength γ ), which combine to create a bilaterally propagating
wave with constant front velocity vB [13–15,20]. At finite
N , the term with spacetime Gaussian noise η(x, t ) models
the 1/N fluctuations. It generates diffusively broadened wave
fronts. Thus the noisy FKPP equation reproduces the phe-
nomenology observed in the N = 1 case described by the
stochastic approach [5,9,16,19].

B. Generalization to long-range systems with finite N

There have been many proposals and experiments to mea-
sure the dynamical behaviors of OTOCs [21–30] on various
quantum simulators. Most analog quantum simulators, such
as the Rydberg atom arrays [31], nuclear magnetic resonance
(NMR [27–29]), and trapped ions [30,32,33] have long-range
power-law decaying interaction 1/rα . In these systems with
a wider range of interactions between the constituent degrees
of freedom, scrambling is no longer bounded by a character-
istic velocity and can achieve superballistic spreading. Also,
the number of degrees N per site can be much greater than

TABLE I. The sizes of the (butterfly) light cones in terms of the
d-dimensional quantum dot model at N = 1, see Fig. 2 for more
details.

α butterfly light cone scaling

( d2 , d ) exp(tη )

(d, d + 1
2 ) t

1
ζ

(d + 1
2 ,∞) t

1, depending on the material and its fine structure used for
engineering the spins. For instance, recent experiments have
measured OTOCs in NMR systems on solid adamantane with
N = 16 [28,29]. The correlated-spin-cluster size has reached
103 or even 104, requiring a many-body analysis.

A minimal model to study scrambling in these systems is
a quantum dot model where each site has N spins and the
interaction decays as 1/rα shown in Fig. 1. The key phe-
nomenology in the spreading with long-range interaction is
the scaling of the butterfly light cone, which is defined to be
the spacetime contour of C(x, t ) at a small fixed threshold ε.

In our previous work [7], we analytically solve the average
values of the OTOC in a noisy-interacting spin model (using
the stochastic approach) with N = 1, whose light cone scal-
ings are displayed in Table I. In the direction of increasing α

starting from d/2, we have light cones with shapes that are
logarithmic (spatial size proportional to a stretched exponen-
tial), power-law and linear functions of x.

Generalizing to experimentally relevant finite-N cases has
two routes. Continuing the arguments from the stochastic
model [7], we can group N neighboring spins to form a special
finite-N model of block spins. This model has light-cone
scalings identical to the N = 1 case (although the nonuniver-
sal constants in the precise scaling of the contours may be
N-dependent). This fact hints that the results in Table I also
apply to N > 1.

On the other hand, one can also approach the problem from
the infinite-N limit, and then add back the finite-N correction.
At infinite N , the OTOC obeys a mean-field equation

∂t h = Dμ�
μ

2 h + γ h(1 − h). (3)

Here �
μ

2 is a fractional derivative, generalizing the diffusion
term in Eq. (2). It has a −|kμ| kernel in the momentum space
[see the precise real-space definition in Eq. (13)]. This is the
fractional FKPP equation. At the infinite-N limit, numerics
in Ref. [9] show that Eq. (3) has an asymptotic logarithmic
light cone (causal region exponentially large in t) even for
arbitrarily large exponent α, and that there is no linear-light-
cone regime.

The discrepancy between the N = ∞ results and predic-
tions from N = 1 theory for finite N suggests that a 1/N
correction should play a crucial role in determining the op-
erator spreading phenomenology. And, since it will need to
change the light-cone phase diagrams away from the N = ∞
case, the 1/N correction will not merely be perturbative. In
fact, the 1/N correction is expected to be a relevant perturba-
tion that completely changes the N = ∞ light cone scaling.

As such, we may ask the question, how can we incorporate
the 1/N fluctuation in Eq. (3)? Conventional wisdom suggests
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TABLE II. Structure of this paper. We tabulate various FKPP
theories and their abilities to predict the OTOC phenomenology for
α > 1. In the last row, ≈ means that the theory can approximately
reproduce the results of N = 1 in numerics.

Theories Lightcone Wavefront
scalings broadening

Exact mapping (Sec. II) identical to N = 1 unknown
Fokker-Planck
perturbation (Sec. III)

✗ ✗

FKPP + cutoff +
renormalized μ (Sec. IV)

√
✗

FKPP + cutoff +
renormalized μ + local
noise (Sec. V)

√
✗

FKPP + cutoff +
renormalized μ +
long-range noise (Sec. V)

√
(almost) ≈

two ways. First, we note that the variable h thus constructed
for the problem of OTOC (and other problems leading to
the FKPP equation, more details in Sec. II) is discrete as an
integer multiple of 1/N . Instances with h < 1

N on a given site
actually have no activity at that site. This justifies modifying
the dynamics to cut off h below 1/N . This is a O( 1

N ) cor-
rection. Another way is to add a 1/N noise term similar to
the one in Eq. (2). The noise naturally models the statistical
fluctuations in each instance of the stochastic process. In the
quantum OTOC problem, these fluctuations represent quan-
tum fluctuations of the size of the operator W (t ).

C. Main results

In this work, we provide a noisy hydrodynamic equa-
tion that incorporates both 1/N corrections, which under a
certain identification of α and μ qualitatively matches the
phenomenology of the small-N model for the power-law and
linear light cone regimes. We tabulate various theories consid-
ered in Table I C.

First, we find that the butterfly light cone of the finite-N
coupled quantum dots is the same as the N = 1 case (Table I
and Fig. 2). We prove this result by squeezing it with the
known N = 1 light cone scalings (Sec. II).

Then we investigate how to properly incorporate the finite-
N corrections in the mean-field FKPP equation. In Sec. III,
we introduce a cutoff term and noise term derived from the
leading O( 1

N ) corrections. The relation between the superdif-
fusive index μ and the long-range interaction exponent α

is μ = 2α − 1 at this order. In Sec. IV, we solve for the
light-cone structures of Eq. (39) without noise (analytically
for γ → ∞ and numerically when γ is finite), and show
that only the renormalized value μ = 2α − 2 gives consistent
results with the N = 1 theory. The renormalization of the
superdiffusive index μ (and thereby the propagator, Dmu�μ/2)
is a significant effect of the 1/N noise. In Sec. V, we study the
effects of various forms of the noise term, including spatially
local and long-ranged noise. The long-range noise reproduces
the wavefront broadening with a slightly smaller broadening
exponent. In some choices of long-range noise, the critical
point separating the linear and power-law light cone is slightly

Model 1

x

h
1
0

x

h
1
0

1
r2α

r

(a)

Model N

x

h
1
0

x

h
1
0

hi(1−hj)
r2α

r

(b)

FIG. 2. The effective stochastic height growth model for the op-
erator spreading in a coupled quantum dot model. Figures show the
transition rate in terms of the height configurations. Height h � 1 and
h � 0. (a) Model 1 when N = 1, h is a binary variable. (b) Model N
for general N . h is an integer multiple of 1/N . The height growth in
each step is 1/N(blue).

shifted for the noise obtained from the mean-field calculation.
The final form of the equation that partly reproduces the
operator spreading phenomenology is Eq. (39) (Sec. VII),
where we use two different exponents to model the power-law
decay of the superdiffusion kernel and strength of the noise.
We discuss the origin of the renormalized relation (Sec. VI),
different noise forms, and further directions (Sec. VII).

Our results on the noisy fractional FKPP equation may also
be of independent interest [34–39], as the equation describes a
large class of superdiffusive reaction processes. Our analytical
results on the cutoff theory and the numerical simulation with
the noise term establish a power-law light cone regime that
was not explored previously [36,39].

II. OTOC WITH FINITE N

In this section, we first review our previous result on the
N = 1 quantum dot model [7] and deduce the asymptotic light
cone scalings for N > 1.

In our previous works [7–9], the unitary time evolution of
the OTOC is modeled as a stochastic height growth model. We
substantiate this proposal by modeling the (power-law) inter-
actions as independent Brownian motions. Then the dynamics
of the OTOC is exactly a stochastic height growth process and
we obtain the master equation. The phase diagram for N = 1
is solved and shown in Fig. 2. Although the randomness is
put by hand, we argue that the dephasing effect caused by
quantum chaos can supply sufficient pseudorandomness such
that the classical stochastic model is valid in an asymptotic
long time. The light cone scalings of the N = 1 model have
been numerically checked for a long-range Hamiltonian spin
model in Ref. [7].
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FIG. 3. The phase diagrams of the (butterfly) light cones for
long-range coupled quantum dot at N = 1 (reproduction from Fig. 1
of Ref. [7], also see Refs. [40] and [41]). Critical values of α in one
dimension are labeled on the α axis, with d-dimensional results in
the parenthesis.

The stochastic height model for general N is defined as
follows. There is a reduced height variable h, defined on each
site that takes discrete values among {0, 1

N , 2
N , · · · , 1} (we

could have defined the height to have integer values from 0
to N , but the reduced height is more convenient in the contin-
uum description below). A single site operator (nonidentity)
corresponds to an initial configuration with height 1 at site 0
and height 0 elsewhere. The time evolution with long-range
interaction performs the following. At each time slice, site
i contributes a rate of 3

4Nhi(1 − h j )Di j (no summation on
i, j) to increase the height of site j by 1/N , and a rate of
1
4Nhih jDi j (no summation) to decrease the height by 1/N .
The coefficients Di j decays as 1

|i− j|2α . This is illustrated in
Fig. 3. Microscopically, such a stochastic model can be de-
rived exactly from the unitary Brownian circuit by random
averaging [8,9].

We denote the model for N = 1 as model 1 and more
generally as model N . In model N , the height takes N + 1
discrete values between 0 and 1, while the height for model 1
is binary. Their transition rates are also different.

The model can be motivated by the operator growth of
the time evolved operators. The Heisenberg evolution equa-
tion tells us that only the commutator with the interaction
terms can extend the support of the operator to a new spin
(or retreat from that spin). The numerical coefficients 3

4 and 1
4

in the transition rates above is a feature of the spin- 1
2 degrees

of freedom—there are three Pauli matrices and one identity
operator, so the rate to increase the height is 3 times the
rate to decrease the height. If we were to take q-dimensional
spins, then the numerical value would be (1 − 1

q2 ) and 1
q2 ,

respectively. The light cone structure for different values of q
only differs by nonuniversal constants in the scaling functions.
Hence we can take q → ∞, meaning only taking the rate for
height increase, and write down the master equation for the
height probability distribution f (h, t ):

∂t f (h, t ) =
∑
i

N

[
hi − 1

N
+

∑
j 	=i

Di jh j

](
1 − hi + 1

N

)

× f

(
h − 1

N
ei, t

)
− N

[
hi +

∑
j

Di jh j

]
(1 − hi )

× f (h, t ), (4)

where Di j describes the (super)diffusion between different
sites,

Di j =

⎧⎪⎨
⎪⎩

δi±1, j nearest-neighbor interaction

1

|i − j|2α
long-range interaction

. (5)

The equation is almost self-explanatory. The coefficient (hi −
1
N )(1 − hi + 1

N ) and (
∑

j 	=i Di jh j )(1 − hi + 1
N ) in front of

f (h − 1
N ei, t ) correspond to the rate of increasing the heights

at the same and different sites. The other term with f (h, t )
serves to conserve the total probability.

The OTOC will typically behave as the average height on
each site with respect to this height distribution. The height
profile of h = 1 generally expands. Thus the locus h(xLC(t ), t )
defines the light-cone structure.

For long-range interacting systems, several different light-
cone scalings occur, depending on the exponent α in the
interaction. In Ref. [7], we worked out the exact phase dia-
gram for the light cone scaling of model 1, see Fig. 2 (also see
Refs. [40] and [41] in the language of long-range dispersal
and percolation).

For general N , schematically we have

model 1 � model N � Nmodel 1. (6)

This series of inequalities denotes that model N spreads faster
than model 1, while spreads comparatively slower if we in-
crease the rate of model 1 by a factor N . These bounds are
intuitively clear if we compare their rates. The lower bound
is simpler. We restrict model N so that the height can only
take values of 0 and 1/N . This gives a much smaller transition
rate which meanwhile is exactly the rate of model 1. Hence
model N must spreads faster than model 1. To obtain the upper
bound, we modify the rule of model N , so that whenever a
height change occurs, the height is increased by 1 rather than
1/N . This modification apparently speeds up the spreading,
and the rate is exactly N times the rate of model 1. With
both the upper and lower bounds, the light cone scalings of
model N will be identical to model 1 as long as N is finite,
although the nonuniversal coefficients in front of the scaling
could depend on N .

This argument does not directly address the broadening of
the front in the regime of the linear light cone, but we expect
the N 
 1 to behave similarly. Specifically, in one spatial
dimension (d = 1), the broadening has the form

broadening =

⎧⎪⎨
⎪⎩

1

t2α−2
α ∈ (1.5, 2)

t
1
2 α ∈ [2,∞)

. (7)

The diffusive broadening has been verified in model 1 [9]. The
1

t2α−2 broadening for α ∈ (1.5, 2) gives an appealing mecha-
nism to generate the power-law light cone, i.e., the broadening
itself becomes superlinear when α > 1.5. We thus believe it
should continue to hold for model N .

We numerically verify the phase diagram by a Monte Carlo
simulation of model N , see Figs. 4 and 5. We sample a few
αs spanning the power-law and linear-light-cone regimes. In
Fig. 4, we show that the light cone has a power-law scaling
t

1
2α−2 = t1.25 (or x0.8) for α = 1.4. In Fig. 5, we show that there
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(a)

(b)

FIG. 4. The light cone scalings of model N (the Brownian cir-
cuit) at α = 1.4. (a) The power-law fit of the light cone. (b) The tail
of the height (i.e., the OTOC) has reached a form 1/x2α , similar to
the N = 1, indicating its convergence.

is a linear light cone for both α = 1.8 and α = 2.2. While α =
2.2 has a diffusive broadening, the wave front for α = 1.8 has
a superdiffusive broadening, although the measured exponent
0.8 is slightly different from the theoretical prediction 1

ζ
=

1
2α−2 = 1

1.6 = 0.625 for N = 1.

III. THE MEAN-FIELD DERIVATION

A convenient way to understand a large N stochastic prob-
lem is to first solve the mean-field limit (N = ∞) and then
incorporate the fluctuations resulting from the 1/N correc-
tions.

For the operator spreading problem, the mean-field equa-
tion is the FKPP equation [13,14], with the diffusion term
for local interactions and superdiffusion terms for long-
range interactions. We call the latter the fractional FKPP
equation [36,39,42]. As alluded to in the introduction, the
fluctuation plays a significant role to reduce the mean-field
exponential size light cone of the fractional FKPP equation to
the various light cones shapes for N = 1 (Fig. 3).

In the following, we follow the standard approach and de-
rive a mean-field equation with 1/N corrections. In Sec. III A,
we review how this is done for the (local) FKPP equa-
tions and then in Sec. III B we generalize to the long-range
case. The correction consists of the cutoff terms following the

(a)

(b)

FIG. 5. Data collapses of model N (the Brownian circuit) for the
linear-light-cone regimes (α > 1.5) (a) α = 1.8, fitted broadening
t0.8 (b) α = 2.2, fitted broadening t

1
2 .

conventional wisdom in Sec. III A and a nonlocal noise term
from the 1/N expansion of the master equation. We will study
the effects of the cutoff term and noise term separately in
Secs. IV and V.

A. Fluctuations in the local FKPP equation

The FKPP equation [13,14] can model a wide range of
dynamical processes, during which a stable phase of h = 1
can erode the other unstable phase h = 0. The equation has
the form1

∂t h = �h + γ (1 − h)h, (8)

where � is the Laplacian. The height variable h can be viewed
as the density of a biological species or a certain kind of parti-
cle in other context, which diffuses and has chain reactions
to proliferate. Consequently, the equation contains a linear
diffusion term and a logistic type reaction term with reaction
rate γ . Through linearization and other means (e.g. duality
relation), one can show that there is a traveling wave solution,
where the phase of h = 1 moves with a constant speed v

1When the operator spreading is local, the diffusion term has the
form (1 − h)�h, numerical results show that the difference does not
affect the scalings.
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towards the phase of h = 0 [20]. These dynamics are usually
called the pulled dynamics since the velocity of the wave is
selected by the particular form of the decay of the wavefront
[20]. In particular, the FKPP equation has an exponential
tail stretching between h = 1 and h = 0, and the velocity is
determined by the exponent of the decay [13–15,20,35].

There are multiple routes to model the fluctuations. In
the stochastic process, height is a random variable and has
fluctuations. Calculating the mean and variance of this random

variable brings in a white-noise term with strength
√

1
N , and

Eq. (8) becomes the noisy FKPP equation (2) appeared in the
introduction:

∂t h =�h + γ (1 − h)h +
√

(1 − h)h

N
η. (9)

In the context of OTOC, the noise represents the quantum
fluctuations in the dynamics.

There is another potentially more important source of
fluctuation—the discreteness of the height. The height can
only take values in an integer multiple of 1/N , which means
there should be no reaction term below this cutoff. In prin-
ciple, it could be hidden in the 1

N2 or even higher order
corrections. But an intuitive way to implement this is to study
the cutoff theory

∂t h = �h + γ (1 − h)hθ

(
h − 1

N

)
. (10)

Here the θ function implements the constraints by completely
suppressing the reaction below 1/N . Using this trick, Ref. [35]
successfully obtained the finite-N correction that slows down
the mean-field velocity.

A theory that takes both of these finite-N effects into ac-
count should therefore contain both terms,

∂t h = �h + γ (1 − h)hθ

(
h − 1

N

)
+

√
γ (1 − h)h

N
η.

(11)

Reference [34] took this point of view and developed a phe-
nomenological theory in which the noise gives a pulse-like
disturbance to the (tail of the) front. The disturbance increases
the velocity and gives rise to a diffusive broadening of the
wavefront, due to the sample-to-sample velocity fluctuation
around its mean value.

To summarize, the finite-N effects introduce fluctuations
of the wavefront, which are taken care of by a combination
of the cutoff scheme and noise terms in Eq. (11). This theory
correctly reproduces the OTOC phenomenology in systems
with local interaction: we observe a traveling wave whose
front is broadened as

√
t .

B. Fluctuations in the long-range FKPP equation

A natural generalization of Eq. (8) to the long-range inter-
actions is the fractional FKPP equation

∂t h =�μ/2h + γ h(1 − h), (12)

where �μ/2 is the fractional derivative given by

∂

∂|x|μ f (x) ∝ −
∫ ∞

∞

f (x) − f (y)

|x − y|1+μ
dy (13)

in real space and |k|μ in the momentum space. 0 < μ < 2
models the long-range interaction, while μ = 2 reduces to the
regular Laplacian. The fractional FKPP equation is a min-
imal model for many superdiffusive stochastic processes at
the mean-field limit. It is known that this equation produces
an exponentially accelerating wavefront, while a direct nu-
merical simulation of the underlying stochastic process can
produce linearly growing light cones. The discrepancy is due
to missing fluctuation effects when h is small. To account for
the fluctuation, Ref. [39] includes both cutoff approximation
and noise in the mean-field equation, similar to the short-range
case

∂t h = �μ/2h + γ h(1 − h)θ (h − 1/N )

+
√

1

N
γ h(1 − h)η(x, t ). (14)

They found that the cutoff approximation alone stops the
wavefront from exponentially accelerating and leads to a finite
velocity of the front dynamics for 1 < μ < 2. The velocity
scales with the cutoff as N1/μ. To determine whether Eq. (14)
can reproduce the operator dynamics in the long-range
Brownian circuit, one needs to extend the study in Ref. [39]
to the regime 0 < μ < 1 as well as investigate the role of the
noise term.

C. Microscopic derivation of FKPP-like equation

Before studying Eq. (14) in detail, it is instructive to see
how such an equation can arise from the microscopic master
equation Eq. (4). For clarity, define

gi(h) = (1 − hi )

[
hi +

∑
j 	=i

Di jh j

]
(15)

so that the discrete space master equation can be written as

∂t f (h, t ) =
∑
i

−N

[
gi(h) f (h, t ) − gi

(
h − ei

N

)

× f

(
h − ei

N
, t

)]
, (16)

which manifestly conserves the total probability
∑

h f . In
the continuum height limit, the 1/N expansion leads to the
Fokker-Planck equation

∂t f (h, t ) =
∑
i

−∂hi (gi f ) + 1

2

1

N
∂2
hi (gi f ). (17)

From the standard relation between the Langevin and the
Fokker-Plank equations, the probability distribution f (h, t )
truncated to order 1/N can be generated by the solutions of
the stochastic equation

∂t hi = gi +
√
gi
N

ηi(t ), (18)

where ηi(t ) are independent Gaussian noise at each site obey-
ing 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′).
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When the interaction is long-ranged, i.e., Di j = 1/|i −
j|2α , the spatial continuum limit gives

∂t h = (1 − h)�
μ

2 h + γ (1 − h)h

+
√

(1 − h)�
μ

2 h + γ (1 − h)h

N
η, (19)

where μ = 2α − 1. To account for the discreteness of the
on-site operator weight, we further implement the cutoff ap-
proximation by replacing h on the right hand side of the
equation with h̃ = hθ (h − 1/N ), which is set to zero below a
hard cutoff 1/N . Equation (19) shares many key features with
the conventional fractional FKPP equation in Eq. (14), includ-
ing the superdiffusion kernel and local growth term. The (1 −
h) factor in front of the superdiffusion kernel is negligible at
h 
 1, a regime that determines the pulled front dynamics.
The main difference between the two equations is that now the
noise term also includes the superdiffusion kernel. (Another
way to justify the factor (1 − h) in the superdiffusion term is
that it is necessary to keep the noise real). We call this form
of the noise in Eq. (19) the long-range noise and the noise
in Eq. (14) as the local noise. These different forms of noise
raise the question of how the noise affects the front dynamics
and whether the long-range noise is necessary to produce the
observed phenomenology of the OTOC operator dynamics at
small N , including the phase diagram of the light cone shape
and the front broadening.

Before proceeding, we note that the continuum limit is
valid for μ < 2 or α < 1.5. When μ > 2, there is also a
normal diffusion term �h in the continuum limit in addition to
the subleading �μ/2. One can also directly study the discrete
long-range FKPP equation in Eq. (18). It is found in Ref. [10]
the light cone given by ∂t hi = gi without the cutoff approx-
imation and noise is always exponential (x ∼ e#t ) even for
arbitrarily large α, in contrast with the phase diagram in Fig. 2.
This indicates the essential role of fluctuation beyond the
mean-field description, which we approximate by introducing
the cutoff and the noise.

In the next two sections, we will first study the cutoff
approximation of Eq. (14) and Eq. (19) without the noise
and determine the phase diagram of the light cone. Then
we will discuss the role of the noise on top of the cutoff
approximation.

IV. LINEAR AND POWER-LAW LIGHT CONES IN
THE CUTOFF THEORY

In this section, we inspect and analyze the light cone struc-
ture of the cutoff theory, namely setting η = 0 in Eq. (14),
neglecting its noise. In deriving and displaying the results,
we set aside the OTOC interpretation and solve the phase
diagrams in terms of the FKPP parameter μ rather than the
interaction parameter α from the OTOC problem. We analyt-
ically find a critical point μ = 1 that separates the power-law
and linear light cones on its two sides.

A. An effective model of the cutoff theory

The cutoff theory takes account of the discreteness of the
height variable in the regime h ∼ 1/N via a cut-off function

x

h

1
N

FIG. 6. The two-step iterative process as the γ = ∞ limit of the
cutoff theory. We start with a semi-infinite domain (black), which
will be formed automatically in a long time. Step 1 (green): evolve
the height by the superdiffusion kernel for time �t . Step 2 (red): set
h > 1

N to be 1.

θ (h − 1/N ). Due to the cutoff, when below 1/N , the height
variable can only be grown by the superdiffusion term (the
long-range hopping from other sites), not from the on-site
reaction term. Such a mechanism can significantly delay the
wavefront propagation because the height variable starting
with 0 has to wait for sufficient hopping from other sites to
exceed h = 1/N before proliferation.

On the level of cutoff approximation, Eqs. (14) and (19)
(with η = 0) are quite similar. They are equivalent when
h ∼ 1/N , a regime that is important to determine the front
dynamics. The factor (1 − h) in front of the superdiffusion
kernel in Eq. (19) only becomes significant at h ∼ 1, which
we expect cannot qualitatively affect the front dynamics.

To estimate the light cone structure of this cutoff theory in
the asymptotic limit, we take a further simplification in the
wavefront dynamics. The basic idea is to replace the broad
wavefront (the green curve in Fig. 6) with a fully filled sharp
front (the red curve) above 1/N . This can be realized if γ

is large so that the reaction time to form h = 1
N to reach a

maximal height is negligible (more precisely independent of
system size and time). Hence starting from a semi-infinite
domain, the propagation of the wavefront in time �t is
approximately an iteration of the following two steps (see
Fig. 6):

(1) The superdiffusion kernel evolves the profile for �t . It
produces the green profile (in the first step) in Fig. 6.2

(2) The reaction term sets all heights with h > 1
N to be 1

(red curve in Fig. 6).
To match the continuous process of Eq. (10), the time

interval �t should roughly be the local scrambling time. It is
proportional to 1

γ
lnN , which is finite (and independent of sys-

tem size and time) when N is fixed. In principle, the iteration
and the process in Eq. (10) are strictly identical when γ → ∞
and �t → 0. When we take finite �t , we ignore the fact that
the two steps in the iteration actually occur simultaneously,
and we ignore the superdiffusion that occurs in the region
below the cutoff. However, we believe these differences are
immaterial: we expect to get the same light cone scalings even
when they are ignored.

2According to the equation, the height increment should also be
multiplied by (1 − h), but due to the instant growth in the second
step, the factor (1 − h) only changes the regime where h < 1

N . It
is then in the interval of (1 − 1

N , 1]). Hence approximate it to be 1
everywhere.
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With these assumptions, we can quantitatively compute
the light cone scalings of the simplified dynamics. It is clear
that the increment of height for the region below the cutoff
is the same for each superdiffusion process since we always
evolve a semi-infinite domain. The increment brought by the
superdiffusion is proportional to

−
∫ 0

−∞

h(x) − h(y)

|x − y|1+μ
dy = −

∫ 0

−∞

0 − 1

|x − y|1+μ
dy

∝ 1

xμ
for x > 0 (20)

for a site with an initial distance x to the h = 1 domain.
For the sake of the light cone scalings, we can conveniently

take the proportionality constant to be 1. We monitor the
location with threshold height h = 1

N to trace the light cone.
The phase diagram of the light cone scalings is shown in
Fig. 7. We perform an analytic derivation in what follows. Let
these locations at discrete time step t to be �(t ). The height at
position x in t steps is

h(x, t ) =
t∑

τ=1

1

(x − �(τ ))μ
�t . (21)

We use h(�(t + 1), t ) = 1
N to solve �(t + 1), which generates

a recursive relation
t∑

τ=1

1

(�(t + 1) − �(τ ))μ
= 1

�tN
= constant (22)

The light cone scaling functions are thus self-consistent solu-
tions of Eq. (22).

We first try the linear light cone ansatz: �(t ) = vt :
t∑

τ=1

1

(�(t + 1) − �(t ))μ
= 1

vμ

t∑
τ=1

1

(t + 1 − τ )μ

∼ 1

vμ

∫ t

0

1

(t + 1 − τ )μ
dτ. (23)

The integral is convergent and of order 1 so long as μ > 1.
Therefore we have a linear light cone when μ > 1.

In regions with 0 < μ < 1, the light cone expands faster,
and it is reasonable to try a power-function ansatz �(t ) ∼ Atβ :

t∑
τ=1

1

(�(t + 1) − �(τ ))μ
= 1

Aμ

∫ t

0

1

((t + 1)β − τβ )μ
dτ

= 1

Aμ

t

tβμ

∫ 1

0

1((
1 + 1

t

)β − τβ
)μ

dτ.

(24)

The factor t/tβμ enforces βμ = 1 so that the result remains
finite in the long-time limit. One can further check that the
integral converges when 0 < μ < 1. Therefore, in this regime,
we have a power-law light cone t

1
μ .

At μ = 1, a separate analysis is required. In the continuum
limit, both the integrals in Eqs. (23) and (24) converge. How-
ever, if we interchange the limit, taking μ → 1+ first, then
the integral in Eq. (23) diverges. This means that the scaling
function at μ = 1 should be parametrically faster (in terms
of light cone expansion) than a linear function. On the other
hand, the expression in Eq. (24) approaches zero if we take

μ

t

1

t ln t tt
1
μ

FIG. 7. The light cone phase diagrams for the two-step iterative
process and the cutoff theory. Dashed line represents a timescale

of e
1

|μ−1| , below which the light cone is dominated by the marginal
scaling t ln t at μ = 1. Above this timescale, the light cone scalings
on both sides of μ = 1 will converge to power-law and linear shapes,
respectively.

β > 1 for μ → 1+. Hence the scaling function is also slower
than a power function. The consistent solution is �(t ) = t ln t ,
see more detailed derivations in Appendix.

The regime close to μ = 1 has different scaling behaviors
for short and long times. Both integrals in Eqs. (23) and (24)
contains a factor of 1

μ−1 after the integration. When μ → 1,
the scaling functions on both sides approaches t

|1−μ| . The
asymptotic linear and power-law scalings are only visible
when t

|1−μ| 
 t ln t . This sets a crossover timescale e
1

|μ−1| be-
low which we can only observe the marginal light cone scaling
t ln t when μ is close but not exactly at 1. We confirm this
scaling by numerically solving �(t ) in the two-step iterative
process. We choose the constant in Eq. (22) to be 1/2. Given
�(τ ) for τ up to t , we search x starting from �(t ) + 1 in
Eq. (21). We first double the increment until it overshoot and
then use binary search within an interval of x. In this way, we
find �(t + 1).

The results are shown in Fig. 8. We fit �(t ) with Atβ and
find β ≈ 1 for μ > 1 [Fig. 8(b)] and β ≈ 1

μ
for 0 < μ < 1

[Fig. 8(a)]. At μ = 1, the fit Atβ ln t gives β ≈ 1.
In the two-step iterative process, we keep the tail generated

by the superdiffusion in each step below height 1/N . It is ob-
vious that if we set the tail to zero in each step, we would end
up with a linear light cone for all μ > 0. By keeping the tail,
we see that it speeds up the propagation of the wavefront and
give rise to a power-law light cone structure for 0 < μ < 1.
This type of the 1/N correction thus plays a dominant rule in
the power-law light cone regime.

The iterative process assumes an infinite γ . We also numer-
ically solve Eqs. (14) and (19) for finite γ and obtain the same
scalings. As expected, the additional (1 − h) factor in Eq. (19)
only modifies the velocity but does not change the scaling.

B. Matching of the light cones phase diagram

In Sec. III, the Fokker-Plank equation (with leading order
1/N corrections) gives the relation μ = 2α − 1 that connects
the OTOC physics and the FKPP equation. However, this is
not compatible with our existing results. The critical point
in 1d that separates the linear and power-law light cones
is at α = 1.5 (Table I). This translates to μ = 2 on the
FKPP side, which contradicts the μ = 1 found in Sec. IV A.
After inspecting the existing results, we propose that a more
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FIG. 8. The numerical solutions �(t ) in the two-step iterative pro-
cess. �(t ) labels the furthest point where h = 1. The long time data
is fitted to Atβ . (a) Power-law light cone regime when 0 < μ < 1.
(b) Linear-light-cone regime when μ > 1. μ = 1 is fitted to Atβ ln t .

plausible relation should be a renormalized one μ = 2α − 2.
There are further evidence that suggest this relation.

One evidence is the power-law dependence of the linear
velocity vB w.r.t. parameter N , the other is the marginal ln t
scaling of velocity close to the critical point at μ = 1. We
compare the results of the cutoff theory (solutions for the
effective model) and numerical results of model N . Both
accept the renormalized relation μ = 2α − 2.

These two quantities also provide us with practical checks
when the noisy effect is considered in Sec. V.

1. Velocity N dependence

In the linear-light-cone regime (μ > 1), previous literature
[39] had derived a scaling relation between the linear velocity
vB and N . We repeat the argument here. Assuming at time t ,
h(x0, t ) = 1

N . Since there is no reaction term below the cutoff,
the height increment at x0 + �x is given completely by the
superdiffusion,

�t
∫ x0

−∞

1

(x − �x − x0)1+μ
dx ∼ �t

1

�xμ
; (25)

when this is equal to 1/N , we have �x = vB�t . From this, we
have

vB ∼ N
1
μ . (26)

As we argue in Sec. II, model N < N model 1. This means
that if there is a linear velocity vB(N ) for model N , it will be
less than (or equal to, in the limiting process) to N times the

101

102

103

101 102 103

N

vB(N) shifted and rescaled

µ = 1.2
µ = 1.4
µ = 1.6
µ = 1.8
µ = 2

FIG. 9. A numerical verification of the velocity N dependence

for Eq. (10). We fit the velocity as v = aN
1
μ + b and plot the rescaled

and shifted velocity (v − b)/a.

velocity of model 1. Thus the velocity N-dependence can not
be larger than a linear dependence in N . Therefore transition
between linear and power-law light cone should occur at μ =
1. This result alone rejects μ = 2α − 1 but accepts μ = 2α −
2, since the transition point in model N is α = 1.5.

We numerically verify this velocity N-dependence in
the cutoff theory. Assuming a linear relation v(μ,N ) =
a(μ)N

1
μ + b(μ), we plot the rescaled and shifted velocity

(v − b)/a), see Fig. 9. This reproduces the result in Ref. [39].
The numerical verification of vB ∼ N

1
2α−2 in model N (the

Brownian circuit) is more challenging. The Monte Carlo ap-
proach to simulate model N is inherently easier for small N
rather than large N , as larger N means larger velocity and
larger system size to accommodate before it converges. As
such, we are unable to produce as many data points as in
Fig. 9. Nevertheless, we are able to confirm the results for
α = 2, for which the velocity scaling is close to

√
N .

2. The marginal scaling

At the end of Sec. IV A, we discussed the parameter
regimes μ → 1. Below a timescale e

1
|μ−1| , the light cone scal-

ing is dominated by the one at μ = 1, i.e., t ln t . In practice,
the light cone will start off from t ln t and transit to the asymp-
totic light cones (linear for μ > 1, power-law for μ < 1) when
t 
 e

1
|μ−1| . On the side of μ > 1, the velocity will initially

grow as ln t and eventually crosses over to a constant value.
These marginal scalings help us to mitigate the finite size

effect and extract the transition point from power-law to linear
light cones from relatively short timescales.

We numerically calculate the velocity scaling for model
N (Brownian circuit), see Fig. 10. The velocity does have a ln t
short-time scaling when α is close to the critical point at 1.5.

This confirms that the cutoff theory (or the effective model)
has captured not only the critical point but also the short-time
dynamics surrounding that regime. This evidences further
suggest to link the neighborhood of α = 1.5 to μ = 1, which
is compatible with the renormalized relation μ = 2α − 2.

V. EFFECTS OF NOISE

In Sec. IV, we showed that the cutoff theory of the FKPP
equation has a transition between a power-law light cone
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(a)

(b)

FIG. 10. Velocity v(t ) vs t on the semi-log scale in model
N (Brownian-circuit model). Here v(t ) ≡ dxLC/dt . xLC and t is de-
termined through h(x, t ) = N/2. When α = 1.5 (a), we observe v(t )
grows logarithmic in time. When α > 1.5 (b), especially in the case
of α = 1.8, we observe that v(t ) first grows logarithmically in time
and then bends down as time evolves. We expect that it will saturate
to a constant at late time. In both plots, we take a domain wall initial
condition in the calculation.

and a linear light cone at μ = 1. The transition matches
the scaling of the OTOC in long-range systems under the
identification μ = 2α − 2, as opposed to the naïve scal-
ing μ = 2α − 1. Nevertheless, the statistical features of the
wavefront—specifically its broadening in time—are missing
in the deterministic cutoff equation.

Simulation of the small-N Brownian circuit in the linear-
light-cone regime suggests that the wavefront of the OTOC
can collapse into a scaling function of a single variable
(x − vBt )/t ξ . When 1.5 < α < 2, the broadening exponent
ξ equals 1/(2α − 2), implying superdiffusive broadening,
whereas the case where α > 2 has diffusive broadening with
ξ = 1

2 . The mapping μ = 2α − 2 therefore suggests that the
FKPP equation should have superdiffusive broadening with
ξ = 1

μ
for 1 < μ < 2, and diffusive broadening ξ = 1

2 for
μ > 2.

To connect to the small-N Brownian-circuit picture and
capture the fluctuation of the wavefront, it is necessary to
include a noise term in the FKPP equation. Indeed, in short-
range systems, it has been shown that the FKPP equation with
a local-noise term successfully reproduces the diffusive broad-
ening of the wavefront [43]. For the long-range case, our
expectation for the noise term is that it can produce a superdif-

fusively broadened wavefront for 1 < μ < 2. In the following
subsections, we experiment with different noise terms.

A. Local noise and diffusive wavefront broadening

The simplest choice is to use the noise term that leads
to diffusive broadening in short-range interacting systems
[Eq. (11)]: √

1

N
γ h(1 − h)η(x, t ), (27)

where γ is the reaction strength and η is the standard Gaussian
noise. We call Eq. (27) the “local noise” term and note that
while it is suppressed by 1/N , when h ∼ 1

N , the noise is
comparable with h itself. Hence, the noise is crucial at the
wavefront, where h ∼ 1

N .
To investigate the effect of the local-noise term in Eq. (27)

on the front dynamics, we perform large-scale numerical of
simulations Eq. (14) on a lattice, given by

∂t hi =
∑
j 	=i

�
μ/2
i j h j + γ hi(1 − hi )θ

(
hi − 1

N

)
(28)

+
√

1

N
γ hi(1 − hi )θ

(
hi − 1

N

)
ηi(t ), (29)

�
μ/2
i j =1/|i − j|μ+1 −

∑
k

1/|i − k|μ+1δi j, (30)

where �
μ/2
i j is the discrete superdiffusion kernel. In practice,

we find that it is necessary to introduce the cutoff in the
noise term as well. Otherwise, the noise term would lead to
unphysical growth far ahead of the front and destroy the front
dynamics. We integrate the differential equation for about 400
realizations and average the results to get the mean hi(t ).
The convergence of hi(t ) to its asymptotic form becomes
slow when μ � 1.2. We use system sizes as large as 106 to
mitigate the effect of finite time, and N is set to 100 for all the
simulations.

We first check the marginal scaling of the velocity v(t ) in
the vicinity of μ = 1. The results after averaging over 400
noise realizations are shown in Fig. 11(a). We find that the
noise term in general increases the numerical value of the
velocity, although the scaling of the velocity still matches
the prediction from the cutoff theory. In particular, we find
that v(t ) ∼ ln(t ) at μ = 1. This demonstrates that the local
noise does not change the critical μ separating the linear and
power-law light cones.

To extract the front broadening ξ , we calculate the standard
deviation of the front position xLC(t ) for each noise realiza-
tion, which is expected to scale as std(xLC) ∼ t ξ . We pick
two values of μ: μ = 1.4 and μ = 2.2, and plot std(xLC) as
a function of time in Fig. 11(b). The straight lines on the
log-log scale confirm the power-law scaling of std(xLC) and
demonstrate that the noise term indeed induces wavefront
broadening. However, the slopes of the lines imply diffu-
sive broadening (ξ ∼ 0.5) for both μ = 1.4 and 2.2, even
though we expect μ = 1.4 to broaden superdiffusively with a
broadening exponent ξ close to 1

1.4 ≈ 0.71. This result sug-
gests that the local-noise term is not able to reproduce the
superdiffusive broadening from the small-N analysis.
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(a)

(b)

FIG. 11. (a) Velocity marginal scaling for the fractional FKPP
equation with cutoff and local noise [Eq. (39)]. The data are averaged
over 400 noise realizations. The velocities of different μ are shifted
and rescaled as ṽ = av + b for comparison on the same scale. The
shifting and rescaling do not change the behavior as a function
of t . The linear dashed line is for comparison. (b) The wavefront
broadening of hr (t ) at μ = 1.4 and 2.2 both show broadening close
to diffusion, while superdiffusion at μ = 1.4 is expected from small
N analysis.

B. Long-range noise and superdiffusive wavefront broadening

Superdiffusive broadening indicates larger fluctuations
than a diffusive wavefront. We therefore turn to the long-range
noise that arises from the microscopic large N limit of the
master equation in Sec. III C, i.e., a noise term√

(1 − h)�
μ

2 + γ (1 − h)h

N
η(x, t ) (31)

in Eq. (19).
Numerically, we solve the discrete stochastic FKPP equa-

tion on a lattice in Eq. (18) with the cutoff approximation

∂t hi = g̃i +
√
g̃i
N

ηi(t ), (32)

g̃i = (1 − hi )

[
γ hiθ

(
hi − 1

N

)
+

∑
j 	=i

�
μ/2
i j h jθ

(
h j − 1

N

)]
.

(33)

where the superdiffusive kernel �
μ/2
i j is given in Eq. (28). The

noise term requires g̃ to be positive and thus γ >
∑
|i|>1

1/|i|μ+1.

(a)

(b)

FIG. 12. Cutoff + Non − local noise. Velocity marginal scaling
for naïve theory [fractional FKPP with cutoff and nonlocal noise,
see Eq. (19)]. The data are averaged over 400 noise realizations. The
velocity is shifted and rescaled by the best linear fit against ln t for
the first ten data points. The critical point is close to μ = 1.1.

In parallel with the study on the local noise, we first ex-
amine the marginal ln t scalings proposed in Sec. IV B in the
vicinity of μ = 1. The results are shown in Fig. 12.

Recall that the effective model (cutoff theory) without
noise predicts a critical point of μ = 1 separating linear and
power-law light and that at the critical μ the velocity should
grow as a logarithmic function of time indefinitely. By in-
specting the curves in Fig. 12(a), the critical point is in the
range 1 < μ < 1.1. It is slightly different from the effective
model prediction of μ = 1, suggesting the nonlocal noise
slightly shifts the critical point.

Now we explore the broadening effect induced by the
long-range noise. Figure 12(b) plots std(xLC(t )) on a log-log
scale for both μ = 1.4 and μ = 2.2, similar to Fig. 11(b).
In sharp contrast with the local-noise case, the data clearly
demonstrates that the broadening exponent is superdiffusive
for μ = 1.4 and is diffusive for μ = 2.2. However, the broad-
ening exponent ξ ∼ 0.6 is smaller than the expected value
1/μ ∼ 0.7.

In summary, the local noise model in Eq. (28) has the same
critical μ = 1 as the noiseless model, and has diffusive broad-
ening for μ > 1. On the other hand, the long-range noise
model in Eq. (32) has slightly shifted critical μ and exhibits
both superdiffusive broadening and diffusive broadening de-
pending on the value of μ, thus qualitatively capturing the
phenomenology from the small N analysis. However, the pre-
cise value of the broadening exponent is different.
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FIG. 13. Plots of the marginal scaling of the (rescaled) velocity ṽ as a function of time for the noisy effective model with (a) μ2 = μ1,
(b) μ2 = μ1 + 1

2 , and (c) μ2 = μ1 + 1. For μ1 = μ2, the critical point when the marginal scaling of ṽ becomes linear (ṽ ∝ ln t) is when
μ1 = 1.1 (yellow curve). For μ2 = μ1 + 1

2 and μ2 = μ1 + 1, the critical point returns to μ1 = 1 (red curve).

C. Noisy effective model

Our studies on both the local noise and long-range noise
demonstrate that the wavefront broadening is tied to the form
of the noise. Furthermore, the noise may even affect the value
of critical μ separating the linear light cone and power-law
light cone. When μ is close to 1, our numerical simulation
is largely constrained by the system size and the number
of time steps required to determine the light-cone contour.
Therefore we return to the effective model with an additional
noise term to explore the effects of different types of noise in
the fractional FKPP equation.

In Sec. IV A, we simplify the cutoff theory by taking
γ → ∞. Recall that the effective model considers the dy-
namics to be an iterative process with two steps: the operator
spreads in space for a time �t and then all sites where the
height function exceeds 1/N are set to 1. To account for the
effects of noise, we add an additional action after the first step
(evolving the profile by the superdiffusion kernel �

μ1
2 for time

�t): suppose the height increase from h to h + �h, then we
randomly change the height further to h + �h + √

�h/Nr,
where r is a standard Gaussian random variable with zero
mean and variance 1. If the noise results in h < 0 for a given
site, then we set h to 0. Here we deliberately choose two
distinct indices—setting μ = μ1 for the deterministic term
and (in general different) μ2 for the noise—to independently
adjust the range of the noise.

For this noisy effective model, we numerically determined
the critical point as well as the wavefront broadening for
multiple values of μ1 and μ2. In fig. 13, we simulate the noisy
effective model for up to 5000 steps and average over ∼1000
samples. When μ1 = μ2 [which is the case for Eq. (19)], we
find that the critical point is close to μ1 = 1.1. When we adjust
μ2 = μ1 + 1

2 and μ2 = μ1 + 1, however, the critical point
comes back to μ1 = 1. This result suggests that using different
exponents in the superdiffusion kernel for the deterministic
and noise terms could potentially restore the critical point in
the renormalized theory.

We then examine the broadening of the wavefront. As
shown in fig. 14, the wavefront broadening is superdiffusive
for μ1 = μ2 = 1.4 and diffusive for μ1 = μ2 = 2.2, which
matches the small-N prediction. But, as with the fractional
FKPP equation with long-range noise (cf. fig. 12), the noisy

effective model gives ξ ≈ 0.57 for μ1 = 1.4, which is slightly
smaller than ξ = 1/μ1 ≈ 0.71 from the model N prediction.
Similar phenomenology is observed for μ2 = μ1 + 1

2 and
μ2 = μ1 + 1, namely there are superdiffusive broadening, but
ξ is generally smaller than 1/μ1.

Taken in totality, the results suggest that the use of
long-range noise terms with a different exponent μ2 can
restore the critical point to μ = μ1 = 1, and at the same
time demonstrate superdiffusive broadening for 1 < μ1 < 2.
Nevertheless, the observed broadening exponent ξ is smaller
than 1/μ1.

VI. DISCUSSION REGARDING THE RENORMALIZED
RELATION

The renormalized relation μ = 2α − 2 reflects the collec-
tive effect of the finite-N corrections, as contrast to the naïve
relation μ = 2α − 1 in the leading order derivation of the 1/N
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FIG. 14. Plot of the wavefront broadening exponents for the
noisy effective model with μ1 = μ2 = 1.4 (blue) and μ1 = μ2 = 2.2
(red) in log-log scale. The dashed lines denote the best linear fit
to the curves and show that the wavefront broadening is superdif-
fusive for μ1 = μ2 = 1.4 and diffusive for μ1 = μ2 = 2.2. While
this qualitative behavior matches the small-N phenomenology, the
superdiffusive broadening exponent for μ = 1.4 does not obey the
exact ξ ∼ 1/μ scaling expected from the small-N prediction.

014201-12



HYDRODYNAMIC THEORY OF SCRAMBLING IN CHAOTIC … PHYSICAL REVIEW B 107, 014201 (2023)

ij

FIG. 15. Schematic picture of model 1+ .

correction. To understand why the naïve relation μ = 2α − 1
fails, let us consider model N , the stochastic process in �t
produces a change of height at a site r distance away (assum-
ing semi-infinite initial condition) with probabilities

dh =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

N
w.p.

�t

|r|2α−1

0 w.p.

(
1 − 1

|r|2α−1
�t

) . (34)

This is a very skewed distribution with a small probability to
increase the height by 1/N and a large probability to remain
the same. Among those instances in which the height actually
reaches 1/N , the strong local reaction can increase the height
exponentially to 1 in O(1) time, and the front can be pushed
further forward. In the continuum equation, this physical noise
is replaced by a Gaussian noise. In the approximation, the
mean value of height growth is 1

N
�t

|r|2α−1 , the standard deviation

is roughly 1
N

√
�t

|r|2α−1 . As such, the original height growth of

1/N is roughly
√

|r|2α−1

�t away from the Gaussian noise average,
so the Gaussian approximation significantly underestimates
the probability for the height to increase by 1/N . For fixed
r, the central limit theorem can justify the Gaussian-noise
approximation with enough repetitions of the noise process
in Eq. (34). However, with increasing r, the distribution in
Eq. (34) becomes more and more skewed, and the number
of repetitions for a good Gaussian approximation increases
for larger r. Hence there are rare cases in which the noise in
Eq. (34) increases a distant site to have height 1/N , while the
Gaussian noise approximation only produces a height much
smaller than 1. Because of the strong reaction combined with
the superdiffusion, these instances can travel much faster than
the average and quantitatively change the light cone scaling.
In summary, the combination of the non-Gaussian noise and
the long-range process makes model N (the Brownian circuit)
much faster than the naïve theory.

We give a heuristic argument about why the renormalized
value of μ is 2α − 2. For the sake of presentation, we intro-
duce model 1+ , which is a variant of model 1 that played an
important role in our treatment of the N = 1 case in Ref. [7].
In model 1, when a transition is made the height of another un-
occupied site is increased from zero to one [Fig. 3(a)]. model
1+ follows the same rule for the transition rate, but whenever
the height of the site is increased to 1, we simultaneously
increase the heights to one for all the sites on its left, see a
schematic display in Fig. 15. Models 1 and 1+ have the same
light cone structure for α > 1. In fact, model 1+ can be a good
approximation when the reaction rate γ is large. In this case,

once a site has a height 1, it can quickly spread and fill all the
sites to its left.

Now in model 1+ , the height reaches 1 whenever itself
or any site on its right is occupied. The rate generated by a
semi-infinite domain is therefore∑

x�0,y�0

1

|(i − x) − ( j + y)|2α
∼ 1

|i − j|2α−2
. (35)

Hence, effectively we have

μ = 2α − 2 (36)

in a speculative long wavelength theory of model 1+ . This is
indeed the renormalized relation between μ and α.

We can generalize the renormalized relation to higher di-
mensions. In d spatial dimension, the fractional derivative
can also be defined in Fourier space (cf. Eq. (13), Sec. 2 of
Ref. [44]):

∂

∂|x|μ f (x) ∝−
∫
Rd

|k|μ f̃ (k)eik·xddk ∝
∫

Rd

f (x) − f (y)

|x − y|μ+d
ddy,

(37)

where f̃ (k) is the Fourier transform of the square integrable
function f (x). By comparing with the mean field derivation,
we would identify 2α = μ + d , i.e., μ = 2α − d .

The tail generated at a distance r from the center is 1
rμ . Thus

we can similarly establish an effective model in the radial di-
rection. The two transition points—from power-law light cone
to linear light cone and from power-law broadening to lin-
ear broadening—are at μ = 1 and μ = 2 respectively, which
should correspond to α = d + 1

2 and α = d + 1 in the N = 1
solution. Thus only a renormalized relation μ = 2α − 2d is
consistent. This can be alternatively understood by writing the
jump probability in d dimensions [cf. Eq. (35)]:∑

|x0|�R,|y0|<R

1

|(x − x0) − (y − y0)|2α
∼ 1

|x − y|2α−2d
. (38)

This supports our choice of μ = 2α − 2d as the renormalized
exponent of the tail. In summary, we predict that the renor-
malization of μ in higher dimensions is strong enough that it
shifts 2α − d to 2α − 2d .

VII. CONCLUSIONS

In this paper, we study the large-N scrambling physics
in generic long-range interacting systems, where N is the
number of degrees of freedom on each spatial site. We first
generalize the stochastic height model established for the N =
1 problem in our previous work [7–9] to large (but finite) N ,
and conclude that the phase diagrams of the OTOC light-cone
structures are the same (Fig. 2). Controlled by the power-law
exponent α in the interaction, the system can have logarithmic,
power-law and linear light cones.

At the other limit, the mean-field theory at N = ∞ is given
by a fractional FKPP equation. The equation only gives a
logarithmic light cone (i.e., causal regions that extend ex-
ponentially in space) for any superdiffusive index μ in the
equation. Therefore 1/N corrections are necessary to deter-
mine the correct light-cone structures.
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TABLE III. Critical points separating linear and power-law cone
and wavefront broadening exponents for different types of noise
terms.

Model critical point ξ for 1 < μ < 2

FKPP + local noise μ = 1 1
2

FKPP + long-range noise 1 < μ < 1.1 1
2 < ξ < 1

μ

effective, μ1 = μ2 μ = 1.1 1
2 < ξ < 1

μ

effective, μ2 > μ1 μ = 1 1
2 < ξ < 1

μ

Conventionally, for an FKPP equation with a diffusive
�h term, the 1/N corrections come from a cut-off term,
mimicking the discreteness of the underlying variable, as well
as from a 1/N noise. We therefore put in a cutoff function
by hand and derive the noise term from the Fokker-Plank
equation. Here, the leading perturbative result suggests setting
the superdiffusive index μ in the fractional FKPP equation to
be 2α − 1.

We analytically study the cutoff theory without noise.
Through a series of comparisons, we proposed that the rela-
tion between μ and α should be corrected to μ = 2α − 2, in
order to match the physics on the two sides for α > 1. This
results in μ = 1 (α = 1.5) being the critical point separating
the linear and power-law light cones. We verify this proposal
by numerically simulating the cutoff theory in Eq. (10). In
the linear-light-cone regime, v scales as N

1
μ (N

1
2α−2 ), and the

short-time marginal scaling of velocity is ln t for μ close to
μ = 1 (α = 1.5).

Finally, we experiment with different forms of noise to
reproduce the broadening of the wavefront. We simulate the
following equation in an effective model:

∂t h = (1 − h)Dμ�
μ

2 h + γ h(1 − h)θ

(
h − 1

N

)

+
√

γ h(1 − h) + (1 − h)Dμ2�
μ2
2 h

N
η. (39)

Here θ is the step function. We choose two parameters μ = μ1

and μ2 to model potentially different decaying exponent of
the superdiffusion kernel and the noise. The results are sum-
marized in Table III.

The best fit to the small-N numerics seems to require
long-range noise with index μ2 > μ1. That way, both a criti-
cal point of μ1 = 1 and superdiffusive broadening when 1 <

μ1 < 2 are simultaneously obtained, although the broadening
exponent ξ is still smaller than the theoretical value of 1

μ1
.

We conclude that the fractional FKPP equation with cutoff
and noise terms reproduces part of the phenomenology of the
scrambling physics at finite-N . Some aspects it reproduces
with exact quantitative precision—for example, the critical
points of the light cones of the cut-off theory once we identify
μ = 2α − 2—but others it does so only approximately. As
example of the latter, the equation misses the phase diagram in
the range of 0 < α < 1, has a slight shift of the critical point
from the theoretical value of μ = 1 to μ = 1.1 with some
forms of noise, and slightly underestimates the broadening

exponent. For d > 1, we propose μ = 2α − 2d as the natural
generalization for the renormalized exponent.

Barring finite-size and finite-time effects that are always
present in numerics, one possible explanation for the dis-
crepancy between our theory and the phenomenology is that
the non-Gaussian nature of the noise in model N [Eq. (34)]
cannot be accounted for by the renormalized relation μ =
2α − 2 alone. These are collectively higher-order effects in
1/N that may not be fully captured by a noise term and
cutoff function. We have defined the FKPP equation with
two indices μ1 and μ2, one representing the index for the
deterministic term and the other for the long-range noise. It
would be interesting to study the phase diagram and broad-
ening in the full parameter range of μ1 and μ2, rather than
fixing μ1 = μ2 = 2α − 2 upfront. We leave these as future
works.

Finally, we list a few more open questions. The first one
would be to verify that the phase diagram generalizes to
higher dimensions, where we predict that the renormalized
exponent μ = 2α − 2 generalizes to μ = 2α − 2d . Second,
in the literature on the fractional FKPP equation, the tails of
the front play important roles in the pulled dynamics. It would
be interesting to understand from that point of view how that
noise changes the tail scaling, thus leading to the change
of the light cone structures. Finally, we have not addressed
the question of the short-time dynamics of the OTOCs. In
experiments, limited coherence times may not permit one to
observe the asymptotic scalings predicted in this paper. In
future works, we hope to address the timescales that separate
the asymptotic-time and short-time regimes.
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APPENDIX: CONSISTENT SOLUTIONS OF THE
EFFECTIVE MODEL AT μ = 1

In this Appendix, we prove that the consistent solution to
Eq. (22) at μ = 1 is �(t ). In other words, we will show that

lim
t→∞

t∑
τ=1

1

(t + 1) ln(t + 1) − τ ln τ
(A1)

exists and is a positive real number. We pull out a factor of t
and convert it into an integral

T∑
τ=1

1

(t + 1) ln(t + 1) − τ ln τ

=
t∑

τ=1

1

t

1(
1 + 1

t

)
ln(t + 1) − τ

t ln τ
t t

≈
∫ 1

0

1(
1 + 1

t

)
ln(t + 1) − τ ln τ t

dτ. (A2)

We replace the lower limit of 1
t by 0 because it only introduces

errors of order O( 1
t ). The possible singular point is at τ = 1.

To have a clearer view, we make a change τ → 1 − τ ; the
integral becomes∫ 1

0

1(
1 + 1

t

)
ln(t + 1) − (1 − τ ) ln(1 − τ )t

dτ. (A3)

The denominator at small τ with the large t limit is(
1 + 1

t

)
ln t +

(
1 + 1

t

)
ln

(
1 + 1

t

)
− ln t + τ (ln t + 1)

= ln t

t
+ τ (ln t + 1) + O

(
1

t

)
. (A4)

The integration around t = 0 will give

− 1

ln t + 1
ln

(
ln t

t
+ O

(
1

t

))
→ 1 when t → ∞.

(A5)
Hence the sum converges when �(t ) ∼ t ln t .
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