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Optimal function estimation with photonic quantum sensor networks
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The problem of optimally measuring an analytic function of unknown local parameters each linearly coupled
to a qubit sensor is well understood, with applications ranging from field interpolation to noise characterization.
Here we resolve a number of open questions that arise when extending this framework to Mach-Zehnder
interferometers and quadrature displacement sensing. In particular, we derive lower bounds on the achievable
mean square error in estimating a linear function of either local phase shifts or quadrature displacements. In
the case of local phase shifts, these results prove, and somewhat generalize, a conjecture by Proctor et al.
[arXiv:1702.04271]. For quadrature displacements, we extend proofs of lower bounds to the case of arbitrary
linear functions. We provide optimal protocols achieving these bounds up to small (multiplicative) constants
and describe an algebraic approach to deriving new optimal protocols, possibly subject to additional constraints.
Using this approach, we prove necessary conditions for the amount of entanglement needed for any optimal
protocol for both local phase and displacement sensing.
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I. INTRODUCTION

In quantummetrology, entangled states of quantum sensors
are used to try to obtain a performance advantage in estimating
an unknown parameter or parameters (e.g., field amplitudes)
coupled to the sensors. In addition to this practical advantage
of quantum sensing, the theory of the ultimate performance
limits for parameter estimation tasks is deeply related to a
number of topics of theoretical interest in quantum informa-
tion science, such as resource theories [1], the geometry of
quantum state space [2], quantum speed limits [3–5], and
quantum control theory [4].

Initial experimental and theoretical work on quantum sens-
ing focused on optimizing the estimation of a single unknown
parameter (see, e.g., Ref. [6] for a review). More recently,
the problem of distributed quantum sensing has become an
area of particular interest [7]. Here one considers a network
of quantum sensors, each coupled to a local unknown pa-
rameter. The prototypical task in this setting is to measure
some function or functions of these parameters. In this con-
text, the task of optimally measuring a single linear function
q(θ) of d independent local parameters θ = (θ1, . . . , θd )T is
particularly well studied both theoretically [8–21] and exper-
imentally [22–25]. In addition to its independent utility (i.e.,
for measuring an average of local fields in some region), linear
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function estimation serves as a key subtask of more general
metrological tasks, such as measuring an analytic function of
the unknown parameters [26], measuring an analytic function
of dependent parameters [27,28], or measuring multiple func-
tions [29,30].

For qubit sensors, the asymptotic limits on performance for
these function estimation tasks are rigorously understood, and
techniques for generating optimal protocols subject to various
constraints, such as limited entanglement between sensors, are
known [18]. However, despite extensive theoretical and exper-
imental research on distributed quantum sensing for photonic
quantum sensors (see, e.g., [7,31] for reviews), the asymptotic
performance limits for function estimation are not yet rigor-
ously established. Here we close this gap, proving an ultimate
bound on asymptotic performance, as measured by the mean
square error of the estimator, for measuring a linear function
of unknown parameters each coupled to a different photonic
mode via either (1) the number operator n̂ or (2) a field-
quadrature operator, chosen without loss of generality to be
the momentum quadrature p̂ := i(â† − â)/2. That is, we are
interested in determining a function of either unknown local
phase shifts or unknown quadrature displacements. For case
(1), our primary focus, we derive this bound subject to a strict
constraint on photon number, proving a long-standing conjec-
ture appearing in Ref. [8]. In case (2), we derive our bound
subject to a constraint on the average photon number, which
is more natural in this setting as quadrature displacements are
not photon-number conserving. Here our results are consistent
with existing bounds in the literature [13], but, for complete-
ness, we include derivations in this setting using an equivalent
mathematical framework to the number operator case and the
qubit sensor case [18]. This allows for a natural comparison
of the various performance limits and resource requirements
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of function estimation in quantum sensor networks and opens
the door to designing new, information-theoretically optimal
protocols in the asymptotic limit of sufficient data.

The rest of the paper proceeds as follows. In Sec. II we
formally set up the problem of interest and provide useful
notation. In Sec. III we prove lower bounds on the mean
squared error of an estimator for arbitrary linear functions for
both number operator and displacement operator generators.
We then study protocols that saturate these bounds in Sec. IV.
Finally, we discuss other entanglement-restricted optimal pro-
tocols in Sec. V.

II. PROBLEM SETUP

Consider a sensor network of d optical modes each coupled
to an unknown parameter θ j for j ∈ {1, . . . , d} via

Ĥ (s) =
d∑
j=1

θ j ĝ j + Ĥc(s) =: θ · ĝ+ Ĥc(s), (1)

where ĝ j is the local coupling Hamiltonian and boldface de-
notes vectors. Here we consider the following two cases:

ĝ j := n̂ j = â†j â j, (2a)

ĝ j := p̂ j = i

2
(â†j − â j ), (2b)

where â†j , â j are the bosonic creation and annihilation oper-
ators acting on mode j, n̂ j is the number operator acting on
mode j, and p̂ j is the momentum- (p̂-) quadrature on mode
j. The choice of p̂ quadrature is, of course, arbitrary. All
results apply equally well for coupling to any quadrature. The
θ-independent, time-dependent Hamiltonian Ĥc(s) is a con-
trol Hamiltonian, possibly including coupling to an arbitrary
number of ancilla modes. Here s ∈ [0, t], where t is the total
sensing time.

In either case, our task is to measure a linear function
q(θ) = α · θ of the local field amplitudes θ where α ∈ Qd is
a vector of rational coefficients. (The restriction to rational
coefficients is due to the discreteness of the resources—the
number of photons—available in this problem; in the case we
are interested in—large photon numbers—this is only a tech-
nical point.) To accomplish this task, we consider probe states
with either fixed photon number N or fixed average photon
number N . Given such probe states, we consider encoding the
unknown parameters into the state via the unitary evolution
generated by the Hamiltonian in Eq. (1).

We will consider both an unrestricted control Hamiltonian
and a control Hamiltonian fixed to have the form

Ĥc(s) = ĥc(s)δ(s − j�t ), (3)

where ĥc(s) is a (unitless) Hermitian operator, δ(s) is the
Dirac delta function, �t := t/M is the time for a single ap-
plication of the encoding unitary exp(−iH�t ). The index
j ∈ {1, . . . ,M} indexes these applications, where M is the
total number of applications. This construction is motivated
by the fact that typical physical implementations of a number
operator coupling, e.g., in a Mach-Zehnder interferometer,
and displacement operator coupling, e.g., via an electro-
optical modulator (EOM), often do not allow for intermediate

controls at arbitrary times. Therefore, when we fix our control
Hamiltonians to be described by Eq. (3), we have limited
any controls to be applied between each pass through these
optical elements; for simplicity, we have assumed that these
control operations can be implemented on a timescale much
shorter than the timescale of phase accumulation. Without loss
of generality, we will let �t = 1 for the rest of this paper,
implying that (in this setting) t = M. Therefore, the parameter
encoding procedure for the photon number coupling is done
via the unitary

U = U (M )VU (M−1)V · · ·U (1)V =
M∏

m=1

(U (m)V ), (4)

whereV := exp(−iĝ · θ) andU (m) for m ∈ {1, . . . ,M} denote
the unitaries applied between passes. Here, by pass, we mean
a single application of the unitary V . We use the convention
that the product operation left multiplies.

In both settings, it is worth emphasizing that, while our
information-theoretic results lower bounding the asymptot-
ically achievable mean square error of an estimate q̃ of q
will apply to any protocol within the framework(s) described
above, the explicit protocols we will develop will use finite
ancillary modes and finite controls.

III. LOWER BOUNDS

Following the approach of Refs. [10,18], we compute
lower bounds on the mean square error M of an estimator
q̃ of q by rewriting the Hamiltonian in Eq. (1) as

H (s) =
d∑
j=1

(α( j) · θ)(β( j) · ĝ) + Ĥc(s), (5)

for some (time-independent) choice of basis vectors {α( j)}dj=1,

where α(1) := α and {β( j)}dj=1 is a dual basis such that α(i) ·
β( j) = δi j . The vectors {α( j)}dj=1 are associated with a change
of basis θ → q where q j := α( j) · θ such that q1 = q; that is,
α(1) =: α with corresponding dual vector β(1) =: β. Then we
can define a β-parameterized generator of translations with
respect to the quantity q as

ĝq,β := min
q(2),··· ,q(d )

∂Ĥ

∂q

∣∣∣∣∣
q(2),··· ,q(d )

= β · ĝ. (6)

Armed with Eq. (6), we can write a bound on M in terms
of a single-parameter quantum Cramér-Rao bound [31–33]

M � 1

μF (q|β) , (7)

where F (q|β) is the quantum Fisher information with respect
to q, given some choice of fixing the extra d − 1 degrees of
freedom in our problem, as specified by the vector β ∈ Rd

such that α · β = 1. Any such single-parameter bound is a
valid lower bound as fixing extra degrees of freedom can
only give us more information about the parameter q (see
below for mathematical details). μ is the number of experi-
mental repetitions. This bound holds for an unbiased estimator
q̃. When deriving our bounds, we will restrict ourselves to
single-shot Fisher information and set μ = 1 [34]. Quantum
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Fisher information is maximized for pure states, so restricting
ourselves to pure states and unitary encoding of the unknown
parameters into the state we can write

F (q|β) � 4t2 max
ρ

[(�ĝq,β )ρ]
2, (8)

where ĝq,β is the β-parameterized generator of transla-
tions with respect to the unknown function q. The variance
[�(ĝq,β )ρ]2 is taken with respect to a pure probe state ρ =
|ψ 〉〈ψ |.

Ultimately, we seek a choice of new basis that yields the
tightest possible bound on the quantum Fisher information
F (q). This choice is determined by the solution to [35]

min
β

max
ρ

[�(β · ĝ)ρ]2, subject to α · β = 1. (9)

Let (β∗, ρ∗) be a solution for this optimization problem. Then
we can rewrite the single-shot version of Eq. (7) as

M � 1

4t2[�(β∗ · ĝ)ρ∗ ]2
. (10)

This bound can be understood as corresponding to the optimal
choice of an imaginary single parameter scenario, where we
have fixed d − 1 of the d parameters controlling the evolution
of the state, leaving only the parameter of interest q free to
vary. While this requires giving ourselves information that
we do not have, additional information can only reduce M,
and, therefore, any such choice provides a lower bound on
M (via single-parameter bounds) when we do not have such
information. While not guaranteed by this method of deriva-
tion, we shall see that such bounds are saturable, up to small
multiplicative constants.

Constraints can be placed on the probe state ρ depend-
ing on the physical generators coupled to the parameters of
interest: as previously discussed, in this work we consider
the constraints of fixed photon number N for the generator
n̂ j and fixed average photon number N for the generator p̂ j .
The rationale behind these constraints is as follows. p̂ does
not conserve photon number, hence it does not make sense
to restrict to a fixed photon number sector when coupling to
quadrature operators, and, thus, average photon number is the
natural constraint. For n̂, on the other hand, we must work in
the fixed photon sector, as using fixed average photon num-
ber allows for the construction of pathological probe states
enabling arbitrarily precise sensing. In particular, consider the
state

|ψa〉 =
√
a − 1

a
|0〉 +
√
1

a

∣∣aN 〉. (11)

It is easy to see that |ψa〉 has mean photon number N and
variance (a − 1)N

2
. Hence, even for fixed N , letting a get

arbitrarily large allows for an arbitrarily large variance, and
hence arbitrarily precise sensing.

Leaving the details of the calculation to Appendix A, solv-
ing the above optimization problem for ĝ j = n̂ j restricted to
probe states with exactly N photons yields

M �
max
{‖α‖21,P , ‖α‖21,N

}
N2t2

, (12)

where P := { j | α j � 0} andN := { j | α j < 0}. In the second
line, we use the notation

‖α‖1,S :=
∑
i∈S

|αi|, (13)

where S ∈ {P,N }. For the rest of the paper, we assume with-
out loss of generality that we are in the case that ‖α‖1,P �
‖α‖1,N to simplify our expressions. In the special case where
α possesses only positive coefficients (i.e., N = ∅),

M � ‖α‖21
N2t2

, (14)

proving a long-standing conjecture from Ref. [8] that this is
the minimum attainable variance for α ∈ Qd with α � 0 and
Nα ∈ Nd . This is our primary result.

Similarly, for the case of local quadrature displacements
restricted to probe states with average photon number N , we
obtain the following bound:

M � ‖α‖22
4Nt2

− O

(
d‖α‖22
N

2
t2

)
. (15)

Equation (15) is a minor generalization of the results in
Refs. [7,13], extended to allow for negative coefficients and
for arbitrary non-Gaussian probe states. Therefore, for com-
pleteness, we include a reminder of the arguments from
Refs. [7,13] along with our more general derivation in Ap-
pendix B.

We can compare the bounds in Eqs. (12) and (15) to the
corresponding bounds on the mean square error obtainable
by separable protocols—that is, those using separable probe
states such that each parameter θi is measured individually
using an optimized partition of the available photons, and
then these estimates are used to compute q. In particular, for
number operator coupling and fixed photon number states,

using η j = |α′
j |

‖α′ ‖1N photons (α′
j := α

2/3
j ) in mode j, it holds

that [8]

Msep �
‖α′ ‖22/3
N2t2

, (16)

where ‖ · ‖2/3 denotes the Schatten p function

‖v‖p =
(∑

i

v
p
i

)1/p
(17)

with p = 2/3. When p ∈ [1,∞], this function is a norm, but
for p ∈ (0, 1) it is not, as it does not satisfy the property
of absolute homogeneity, but it still provides a convenient
notational shorthand.

Performing a similar optimization for the case of displace-
ment coupling and fixed average photon number, one obtains

Msep �
‖α‖21
4Nt2

+ O

(
1

N
2
t2

)
, (18)

where the optimum division of photons is given by using η j =
|α j |
‖α‖1N photons in mode j. A non-closed-form version of this

bound can be found in Ref. [12] in the case where N is finite.
One recovers our result in the asymptotic in N limit.
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Consequently, in both the phase and displacement sens-
ing settings, the achievable advantage due to entanglement
between modes is fully characterized by the difference be-
tween the vector p norm of α with p = 2

3 , 1 or p = 1, 2,
respectively. By generalized Hölder’s inequality, ‖α‖22/3 �
d‖α‖21 and ‖α‖21 � d‖α‖22. Both inequalities are saturated for
any “average-like” function with |α| ∝ (1, 1, . . . , 1)T . In both
cases, we obtain a O(1/d ) improvement in precision due to
entanglement, consistent with the so-called Heisenberg scal-
ing in the number of sensors d . This is consistent with results
for qubits in Ref. [10], where the best improvement between
the separable and entangled bounds occurs when measuring
an average-like function. For the case of phase sensing, the
optimal performance, including constants, is obtained when
‖α‖21,P = ‖α‖21,N = ‖α‖1/2 (which occurs when the vector
α is half positive ones and half negative ones).

IV. PROTOCOLS

A. Existing protocols

The bounds established in the previous section are all sat-
urable, up to small multiplicative constants, using protocols
that exist in the literature, or slight variations thereof. In par-
ticular, Refs. [8,11] present a protocol for estimating a linear
function of local phase shifts with positive coefficients (i.e.,
α � 0) which achieves the bound in Eq. (12) up to a small
multiplicative constant. This protocol makes use of a so-called
proportionally weighted N00N state over d + 1 modes,

|ψ 〉 ∝
∣∣∣∣N α1

‖α‖1
, . . . ,N

αd

‖α‖1
, 0

〉
+ |0, . . . , 0,N〉, (19)

where we have expressed the state in an occupation number
basis over d + 1 modes and have dropped the normalization
for concision. The last mode serves as a reference mode.
Observe that, for this state to be well defined, it is essential that
α/‖α‖1 ∈ Qd and that N is sufficiently large that the resulting
occupation numbers are integers. Details of how protocols
using this probe state work and how they generalize to the
case of negative coefficients are provided in Appendix D. A
description of how to achieve the separable bound in Eq. (16)
is provided in Appendix B.

Similarly, in the case of measuring a linear function of
displacements using states with fixed average photon number,
Ref. [12] provides a protocol that, up to small multiplicative
constants, saturates the bound in Eq. (15), and a separable
protocol that, again up to small constants, achieves the bound
in Eq. (18). Interestingly, these protocols require only Gaus-
sian probe states, indicating that these states are optimal. In
particular, these protocols make use of an initial single-mode
squeezed state, followed by a properly constructed beam-
splitter array to prepare a multimode entangled probe state
with the appropriate sensitivity to quadrature displacements
in each mode. Homodyne measurements on each mode can
then be used to extract the function of interest. Consistent with
this fact, our separable lower bound matches the Gaussian
state-restricted bound obtained in Ref. [12] and the bound for
arbitrary states derived in Ref. [13] for the particular case of
measuring an average.

B. Algebraic conditions for new protocols

Other protocols are possible and can be derived via a
simple set of algebraic conditions. In particular, for a probe
state to exist saturating the bound in Eq. (10), or its specific
versions in Eqs. (12) and (15), we require the existence of
an optimal choice of basis transformation θ → q such that
knowing q j for j > 1 yields no information about q = q1.
Mathematically, this means that the quantum Fisher informa-
tion matrix [36] with respect to the parameters q must have
the following properties:

F (q)11 = 4t2[�(β∗ · ĝ)ρ∗ ]2, (20a)

F (q)1i = F (q)i1 = 0 (∀ i 
= 1), (20b)

Recall that (β∗, ρ∗) are the solution to the minimax prob-
lem in Eq. (9). We can reexpress these conditions in terms of
the quantum Fisher information matrix with respect to θ as

(β∗)TF (θ)β∗ = 4t2[�(β∗ · ĝ)ρ∗ ]2, (21a)

(β∗)TF (θ)β(i) = (β(i) )TF (θ)β∗ = 0 (∀ i 
= 1). (21b)

Then, using α(i) · β( j) = δi j , we obtain the condition

F (θ)β∗ = 4t2[�(β∗ · ĝ)ρ∗ ]2α. (22)

Matrix elements of F (θ) for pure probe states and unitary
evolution are given via

F (θ)i j = 4
[
1
2 〈{Hi,H j}〉 − 〈Hi〉〈H j〉

]
, (23)

where Hi = −iU †∂iU with ∂i := ∂/∂θi,U is the unitary gen-
erated by Eq. (1) and the expectation values are taken with
respect to the initial probe state [36].

We refer to protocols that make use of probe states and
controls so that Eq. (22) is satisfied as optimal. However,
we caution that the existence of an optimal probe state does
not imply the existence of measurements on this state that
allow one to extract an estimate of the parameter q satu-
rating the lower bounds we have derived. This issue of the
optimal measurements to extract parameters is also discussed
extensively in, e.g., Ref. [37], with some convenient, nearly
optimal, protocols presented in Refs. [38–40]. Such methods
are the origin of the “small multiplicative constants” that arise
in the explicit protocols above. In fact, lower bounds derived
via the quantum Cramér-Rao bound can be obtained only up to
a constant �π2 [41]. See Appendix G for a brief explanation
of these ideas.

For the particular cases considered in this paper, β∗ has
been explicitly calculated (see Appendices A and B), so
Eq. (22) can be expressed in a more meaningful form. For
number operator coupling, we obtain the condition∑

i∈P
F (θ)i j = N2t2

‖α‖1,P
α j, (24)

for all j. Similarly, for the quadrature coupling, an optimal
protocol requires

F (θ)α ∼ 4Nt2α, (25)

where ∼ denotes asymptotically in N . Equations (24) and (25)
provide a generic route to finding new protocols: consider
a set of parameterized families of probe states T that one
can coherently switch between using available controls Ĥc(t )

013246-4



OPTIMAL FUNCTION ESTIMATION WITH PHOTONIC … PHYSICAL REVIEW RESEARCH 6, 013246 (2024)

(here a “family” of states refers to a particular superposition
of Fock states with an arbitrary relative phase). One can then
calculateF (θ) via Eq. (23) and allocate the time spent in a par-
ticular family of states such that the associated quantum Fisher
information condition is achieved. As a limiting case, one
could consider |T | = 1, removing the necessity of coherent
control; the protocols considered in the previous section are
of this sort (and, in Appendix D, we show that these protocols
do, indeed, achieve the saturability conditions).

The possible choices for families of states T that allow for
such a solution are actually quite limited, even given access to
arbitrary control Hamiltonians and ancilla modes. In particu-
lar, we prove the following in the case where ĝ j := n̂ j :

Lemma 1. Any optimal protocol using N photons and M
passes through interferometers with a coupling as in Eq. (1)
with ĝ j = n̂ j requires that, for every pass m, the probe state
|ψm〉 be of the form

|ψm〉 ∝ |N(m)〉P |0〉NR + eiϕm |0〉P
∣∣N′(m)
〉
NR, (26)

where P ,N , andR represent the modes with α j � 0, α j < 0,
and the (arbitrary number of) reference modes, respectively,
N(m) and N′(m) are strings of occupation numbers such that
|N(m)| = |N′(m)| = N for all passes m. ϕm is an arbitrary
phase.

The proof follows straightforwardly from an explicit
calculation of the Fisher information matrix for ĝ j = n̂ j ,
but is somewhat algebraically tedious so we relegate it to
Appendix E.

Lemma 1 suggests a particular choice of T from which we
can pick an optimal protocol for function estimation in the
ĝ j = n̂ j case. In particular, define a set of vectors

W :={ω ∈ Zd
∣∣ ‖ω‖1,P = N, ‖ω‖1,N � N, ω jα j � 0 ∀ j

}
.

(27)

Further, consider the restriction ω|P ∈ Zd with components

(ω|P ) j =
{
ω j, j ∈ P
0, otherwise,

(28)

and the restriction ω|N , defined similarly. Armed with these
vectors, we can define a particular choice T of one-parameter
families of probe states in an occupation number basis where
each |ψ (ω;ϕ)〉 ∈ T is labeled by a particular choice of ω such
that

|ψ (ω;ϕ)〉 ∝ |ω|P 〉|0〉 + eiϕ |−ω|N 〉|N − ‖ω|N ‖1〉, (29)

where ϕ ∈ R is an arbitrary parameter and the last mode is a
reference mode. It should be clear that these families of states
are of the form specified by Lemma 1. Furthermore, note that
the proportionally weighted N00N state in Eq. (19) is also of
this form.

Our protocols proceed as follows: starting in a state
|ψ (ω; 0)〉, after any given pass through the interferometers we
use control unitaries to coherently switch between families of
probe states such that the relative phase between the branches
is preserved (that is, we change ω, but not ϕ). The fact that an
optimal protocol must coherently map between such states is
proven in Lemma 5 in Appendix E. We stay in the family of
states |ψ (ωn;ϕ)〉 for a fraction pn of the passes where pn = rn

M

for rn ∈ {0, 1, . . . ,M} such that
∑

n pn = 1. Here n indexes
some enumeration of the families of states in T .

The value of the component ω j in a given probe state
determines the contribution of the parameter θ j coupled to
sensor j to the relative phase between the two branches of
the probe state during a single pass. In particular, in a single
pass with a probe state in the family |ψ (ω;ϕ)〉, the relative
phase between the two branches of the probe state becomes
ω · θ + ϕ. Assuming an initial probe state with ϕ = 0 and
summing over all passes we obtain a total relative phase

ϕtot = M
∑
n

pn(ωn · θ) (30)

=: (W r) · θ. (31)

In the second line, we implicitly definedW as a matrix whose
columns are the vectors ωn ∈ W and r := Mp ∈ Z|T |. Ex-
plicitly computing the Fisher information matrix for these
states demonstrates that the optimality condition in Eq. (24)
is satisfied if

W r = NM
α

‖α‖1,P
; (32)

see Appendix D for details. Consequently, any integer solution
r to Eq. (32) such that

‖r‖1 = M,

r � 0, (33)

yields an optimal protocol. The protocols of Ref. [8],
described above and generalized in Appendix D, are a particu-
larly simple case within this class withM = 1 and ω = Nα

‖α‖1,P ,
i.e., we select out only a single column of W .

Solutions to Eqs. (32) and (33) are not guaranteed to exist
for all N,M. In particular, we require that

NM
α

‖α‖1,P
∈ Zd . (34)

For α ∈ Q and sufficiently large N orM this hold true. Setting
up the system of equations in Eqs. (32) and (33) that must
be solved to pick out explicit protocols requires identifying
the set of vectors W defined in Eq. (27). While computation-
ally straightforward, if expensive, to construct and enumerate
this set, the number of states is extremely large, yielding a
correspondingly large set of linear Diophantine equations in
Eq. (32). Consequently, it is reasonable to place further, exper-
imentally motivated constraints to limit this set of states and
pick out advantageous protocols. For instance, one such con-
straint is to limit the amount of entanglement between modes
on any given pass. We consider this case in the following
section.

It is also important to note that integer linear programming
is NP-hard [42], so finding a particular solution once we
add additional constraints is not a computationally easy task.
Regardless, in applications one can apply standard (possibly
heuristic) algorithms for integer linear programming to seek
solutions. If a solution is found, it is known to be optimal.
Consequently, proving the existence or lack thereof of a solu-
tion with certain additional constraints may be intractable for
large problem instances.

Similar arguments to those that go into proving Lemma 1
allow us to show that, for quadrature sensing, the condition in
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TABLE I. Comparison of the lower bounds on the mean square error and entanglement requirements for an (asymptotically) optimal
protocol obeying the corresponding conditions on the quantum Fisher information for the task of estimating a linear function q = α · θ with
qubit, phase sensing, and displacement-sensing quantum sensor networks.

Qubit phase sensing Phase sensing Displacement sensing

Parameter coupling 1
2 σ̂

z
i θi n̂iθi

i
2 (â

†
i − âi )θi

Resources Qubit number, d Photon number, N Avg. photon number,

sensing time, t sensing time, t N sensing time, t

MSE (separable) � ‖α‖22
t2

[10] � ‖α‖22/3
N2t2

[8] � ‖α‖21
4Nt2

MSE (entangled) � ‖α‖2∞
t2

[10] � ‖α‖21,P
N2t2

� ‖α‖22
4Nt2

[13]

Entanglement needed (discrete controls) k � max{� ‖α‖1
‖α‖∞

�, � ‖α‖0
M �} k > � ‖α‖0

M � k � � ‖α‖0
M �

Entanglement needed (arbitrary controls) ‖α‖1
‖α‖∞

∈ (k − 1, k] [18] k = 2 No entanglement

k-partite entanglement protocol always exists? Yes [18] No Yes

Eq. (25) can be reduced to the condition that

F (θ)i j ∼ 4Nt2

‖α‖22
αiα j, (35)

which is proven in Appendix F. However, there is not a clearly
interesting family of states that can be leveraged to achieve
this quantum Fisher information, as in the case of number
operator coupling or qubit sensors [18]. However, the exist-
ing optimal protocols described above do obey this condition
asymptotically in average photon number N .

V. ENTANGLEMENT REQUIREMENTS

The remaining flexibility in the choice of optimal probe
states enabled by some control also allows us to impose
further experimentally relevant constraints. One reasonable
constraint is the amount of intermode entanglement required
during the sensing process. This was considered in Ref. [18]
for the case of qubit sensors.

The answer to the entanglement question in the current
context depends crucially on the sorts of control operations
we allow. In the number operator case, with arbitrary time-
dependent control, only two-mode entanglement is needed
at any given time, as one can simply prepare a N00N state
between the reference and one of the sensing modes and
coherently switch which sensing mode is entangled with
the reference mode such that the time spent entangled with
mode j is given by t j = |α j |t/‖α‖1. For similar reasons, no
entanglement is needed for displacement sensing; here no ref-
erence mode is needed and one can simply sequentially apply
displacement operators for a time t j = |α j |t/‖α‖1 on a single-
mode squeezed state, followed by a homodyne measurement.
When control operations to change the probe state are allowed
only at M discrete time intervals, as described by Eq. (3), the
problem becomes more interesting. For number operator cou-
pling, subject to a fixed photon number constraint, any optimal
protocol requires at least (�‖α‖0/M� + 1)-mode entangle-
ment. This bound is fairly trivial: it merely states that one must
be entangled with each nontrivial mode for at least one pass.
For displacement operator coupling, subject to a fixed average
photon number constraint, an essentially identical argument
allows us to prove that any optimal protocol requires at least
�‖α‖0/M�-mode entanglement. The difference of one is be-
cause, unlike displacement sensing, phase sensing generally

requires entanglement with a reference mode. In theM → ∞
limit, we recover the continuous control case, so these trivial
bounds can be tight. This triviality is in contrast to the qubit
case, where results analogous to Lemma 1 lead to significantly
tighter constraints on the minimum amount of necessary en-
tanglement for optimal protocols [18]. This discrepancy arises
due to the fact that, unlike with photonic resources which
must be distributed in a zero-sum way between modes, for
qubit sensors one can be maximally sensitive to all coupled
parameters simultaneously.

VI. CONCLUSION AND OUTLOOK

We have determined the fundamental achievable perfor-
mance limits for phase sensing and have extended proofs
of lower bounds for displacement sensing beyond just an
average to arbitrary functions. In the process, we proved a
long-standing conjecture regarding function estimation with
number operator coupling [8] and showed that some of the
protocols that exist in the literature [8,11,12] are, in fact,
optimal in the asymptotic limit. By considering different im-
plementations of a quantum sensor network within a single
framework, we reveal the role of entanglement and controls
as they relate to the type of coupling and whether the relevant
resource is “parallel” (as in qubit sensor networks, where all
parameters can simultaneously be measured to maximal preci-
sion) or “sequential” (as in photonic sensor networks, where
the photons must be optimally distributed between modes).
Our approach to proving our bounds also enables an algebraic
framework for developing further optimal protocols, subject
to various constraints. Here we considered the particular case
of entanglement-based constraints, enabling comparison to
similar work in the case of qubit sensors [18]. These results,
and how they fit into the landscape of known results for quan-
tum sensor networks, are summarized in Table I. How other
constraints impact the existence of and control requirements
for optimal protocols remains an interesting open question
deserving of further study.
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APPENDIX A: BOUND FOR LOCAL PHASE SHIFTS

In this Appendix, we derive lower bounds for the mean
square error of measuring a linear function q(θ) = α · θ of lo-
cal phase shifts, generated via coupling to the number operator
n̂ j , as specified by the Hamiltonian in Eq. (1) and Eq. (2a).

In particular, we seek to solve the optimization problem in
Eq. (9), restated here for convenience:

min
β

max
ρ

[�(β · ĝ)ρ]2, subject to α · β = 1. (A1)

Here ĝ = n̂ = (n̂1, n̂2, . . . , n̂d )T . For fixed particle number N ,
the Hilbert space on which possible probe states ρ are defined
is finite dimensional, and it holds that [33]

[�(β · n̂)ρ]2 �
‖β · n̂‖2s,N

4
, (A2)

where ‖β · n̂‖s,N is the Fock-space-restricted seminorm of
β · n̂ (defined as the difference between the maximum and
minimum eigenvalues of β · n̂ restricted to the N-photon
subspace). As we want to maximize the quantum Fisher infor-
mation with respect to the choice of probe state ρ, and because
Eq. (A2) is saturable when ρ is an equal superposition of the
eigenstates of β · n̂with maximum and minimum eigenvalues,
we can consider the following optimization problem:

minimize (w.r.t. β) ‖β · n̂‖s,N ,

subject to α · β = 1. (A3)

To begin, note that the largest eigenvalue of β · n̂ in the N-
particle subspace is given by

λmax(β · n̂) = N max
{
max

j
β j, 0
} =: Nβmax, (A4)

where we have implicitly defined βmax. This largest eigenvalue
corresponds to the eigenstate that consists of placing all pho-
tons in the mode corresponding to the largest positive β j . If all
β j � 0, the largest eigenvalue is zero, obtained by any state
with no particles in the sensor modes. Note that this requires
the use of an extra mode (an ancilla or so-called “reference
mode”) to “store” these photons, as we fix the total photon
number of our state to be N .

Similarly, the smallest eigenvalue of β · n̂ in the N-particle
subspace is given by

λmin(β · n̂) = N min
{
min

j
β j, 0
} =: Nβmin, (A5)

where we have implicitly defined βmin.
Using the facts above about the maximum and minimum

eigenvalues of β · n̂ in the N-particle subspace we can rewrite

the optimization problem in Eq. (9) as

minimize N (βmax − βmin),

subject to α · β = 1. (A6)

As in the main text, define P := { j | α j � 0} and N :=
{ j | α j < 0}. We then have the following lemma.

Lemma 2. The solution β∗ to Eq. (A6) is such that β∗
j � 0

for all j ∈ P , and β∗
j � 0 for all j ∈ N . That is, α jβ

∗
j � 0 for

all j.
Proof. We proceed by contradiction. LetJ− = { j | α jβ

∗
j <

0} and J+ = { j | α jβ
∗
j � 0}. Suppose the solution vector β∗

to Eq. (A6) has J− 
= ∅. We can construct an alternative
candidate solution vector β′ as follows: First, let β′ = β∗.
Then set β ′

j = 0 for all j ∈ J−. In order to still satisfy the
constraint α · β′ = 1, we must reduce the values of some other
components in β′. In particular, it is simple to calculate that a
valid solution is, for j ∈ J+,

β ′
j = β∗

j∑
j∈J+ α jβ

∗
j

= β∗
j

1 −∑ j∈J− α jβ
∗
j

. (A7)

Again, when j ∈ J−, β ′
j = 0.

Let β ′
max:=max{max j β

′
j, 0} and β ′

min:=max{min j β
′
j, 0}.

By construction, β ′
max � β∗

max and 0 = β ′
min � β∗

min. Conse-
quently, β′ yields a smaller solution candidate than β∗. This
contradicts the fact that β∗ is the optimal solution. The lemma
statement follows as an immediate consequence. �

Lemma 2 allows us to rewrite the minimization problem in
Eq. (A6) once again as

minimize N
[
max
j∈P

β j − min
j∈N

β j
]
,

where β j � 0 ∀ j ∈ P,

β j � 0 ∀ j ∈ N ,

subject to α · β = 1. (A8)

In the above, we define max j∈P β j (min j∈N β j) to be zero
if P = ∅ (N = ∅). A further simplification is enabled by
another lemma.

Lemma 3. The solution vector β∗ to Eq. (A8) is such that
β∗
j = β∗

max for all j ∈ P and β∗
j = β∗

min for all j ∈ N .
Proof. We proceed by contradiction. Suppose the solu-

tion vector β∗ is such that β∗
i 
= β∗

j for some i, j ∈ P . Then
we could consider an alternative candidate solution vector
β′ where β ′

k =
∑

l∈P αlβ
∗
l∑

l∈P αl
for all k ∈ P . Similarly, if β∗

i 
= β∗
j

for some i, j ∈ N we could consider β ′
k =
∑

l∈N αlβ
∗
l∑

l∈N αl
for all

k ∈ N . Clearly, β′ still satisfies the constraint

α · β′ =
∑
m∈P

αm

(∑
l∈P αlβ

∗
l∑

l∈P αl

)
+
∑
m∈N

αm

(∑
l∈N αlβ

∗
l∑

l∈N αl

)

= α · β∗ = 1. (A9)

Additionally, β ′ also clearly still has β ′
j � 0 when j ∈ P

and β ′
j � 0 when j ∈ N . But, by construction (because the

weighted average of a set is less than its maximum element),

N
[
max
j∈P

β ′
j − min

j∈N
β ′
j

]
< N
[
max
j∈P

β∗
j − min

j∈N
β∗
j

]
. (A10)
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So β∗ is not the solution vector and we have arrived at a
contradiction. �

As a direct consequence of Lemma 3 we can rewrite the
optimization problem in Eq. (A8) one last time as

minimize (w.r.t. βmin, βmax) N[βmax − βmin], (A11)

subject to βmax � 0, βmin � 0, (A12)

βmax

∑
j∈P

α j + βmin

∑
j∈N

α j = 1. (A13)

Because this is a linear objective function, the opti-
mal solution will be one of the two boundary solutions:
βmax = 1∑

i∈P αi
, βmin = 0 or βmin = 1∑

i∈N αi
, βmax = 0. Mini-

mizing over these two candidate solutions, we obtain the final
result

‖ĝq‖2s,N = N2

max
(∑

i∈P αi,
∑

i∈N αi
)2 . (A14)

Consequently, via the quantum Cramér-Rao bound, Eq. (10),

M � max
{∑

i∈P αi,
∑

i∈N αi
}2

N2t2

=:
max
{‖α‖21,P , ‖α‖21,N

}
N2t2

, (A15)

which is Eq. (12), and where ||α||1,P and ||α||1,N are the
one-norm restricted to positive and negative values, respec-
tively, of α. In the special case of all positive coefficients (i.e.,
N = ∅), this reduces to

M � ‖α‖21
N2t2

, (A16)

which, as described in the main text, proves a conjecture from
Ref. [8] that this is the minimum attainable variance for α ∈
Qd with α � 0.

APPENDIX B: BOUND FOR LOCAL DISPLACEMENTS

In this Appendix, we derive Eq. (15) for the mean square
error attainable for measuring a linear function of local dis-
placements, restricting to probe states with fixed average
photon number N .

1. Separable bound

To begin, it is helpful to present the bound for the more
restricted case where we use separable input states. Begin by
considering the lower bound on the variance of measuring a
displacement ϕ coupled to a single mode via H = ϕ p̂, fol-
lowing the proof sketched in Ref. [7]. The quantum Fisher
information is given by

F (ϕ) = 4[�( p̂)ρ]
2, (B1)

where ρ is the probe state, which is restricted to have an
average photon number N . An initial displacement does
not enhance precision [7], so we can consider zero-mean

displacement input states. For such probe states,

(� p̂)2 = − 1
4 〈(â† − â)2〉

= − 1
4 (〈â†â†〉 − 〈â†â〉 − 〈ââ†〉 + 〈ââ〉), (B2)

(�x̂)2 = 1
4 〈(â† + â)2〉

= 1
4 (〈â†â†〉 + 〈â†â〉 + 〈ââ†〉 + 〈ââ〉), (B3)

so that

N = 〈â†â〉 = (� p̂)2 + (�x̂)2 − 1
2 , (B4)

where we used that ââ† = â†â + 1. We can then use the un-
certainty principle

(� p̂)2(�x̂)2 � 1
16 , (B5)

which follows from our definition of the quadrature operators
as x̂ = (â† + â)/2 and p̂ = i(â† − â)/2. Therefore,

ξ
(
N − ξ + 1

2

)
� 1

16 , (B6)

where we let ξ := (�p̂)2. Then

−16ξ 2 + (16N + 8)ξ − 1 � 0. (B7)

To maximize ξ , this inequality must be saturated, so we can
solve the corresponding quadratic to obtain the solution

ξ = −8(2N + 1) +
√
64(2N + 1)2 − 64

−32

⇒ 4ξ = (
√
N +
√
N + 1)2 ∼ 4N . (B8)

It is worth noting that the O(N ) asymptotic behavior of the
maximum variance of p̂ could have been obtained with no cal-
culation just from examining the constraint in Eq. (B4) under
the assumption that (�x̂)2 can be made negligibly small.

Putting everything back together, we have found that, op-
timizing over states with fixed average photon number N , the
following holds:

[�(ϕ̃)]2 � 1

F � 1

t2(
√
N +
√
N + 1)2

= 1

4t2N
+ O

(
1

t2N
2

)
.

(B9)

Working in the asymptotic in N limit, we can use Eq. (B9)
to obtain a bound on performance for estimating a linear
function q(θ) = α · θ with an unentangled protocol as

(�q̃)2 � 1

t2
min
{N j}

d∑
j=1

|α j |2
4N j

+ O

⎛
⎝ 1

N
2
j

⎞
⎠, (B10)

where N j = 〈â†j â j〉 is the average number of photons used in

mode j and
∑

j N j = N . Assume without loss of generality
that |α j | > 0 for all j (that is, no α j = 0) and indepen-
dent of N . Then we can optimize (at leading order in 1

N
)

the distribution of photons amongst the modes using the
Lagrangian

L =
d∑
j=1

|α j |2
4N j

+ γ

⎛
⎝ d∑

j=1

N j − N

⎞
⎠, (B11)
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where γ is a Lagrange multiplier. A bit of algebra yields that

∂L
∂N j

= 0 ⇒ N j = |α j |
2
√

γ
. (B12)

This further implies that

N =
d∑
j=1

N j = ‖α‖1
2
√

γ
, (B13)

allowing us to obtain the optimal division of photons as

N j = |α j |
‖α‖1

N . (B14)

We note that this solution is clearly the desired minimum of
the Lagrangian, as maximizing the objective would lead to
setting any N j to 0. Plugging this back into Eq. (B10) we
obtain the (asymptotic in N) separable bound

[�q̃]2 � ‖α‖21
4Nt2

+ O

(
1

N
2

)
. (B15)

This bound can be achieved by using the single-mode
protocols in Ref. [7] for each mode and then computing the
function of interest classically as a linear combination of the
individual estimators.

2. General function estimation bound

In this subsection, we turn to our primary task: deriving
Eq. (15) for the mean square error attainable for measuring
a linear function of local displacements, restricting to probe
states with fixed average photon number N .

To derive this bound, we must solve the optimization prob-
lem in Eq. (9) for ĝ j = p̂ j :

min
β

max
ρ

[�(β · p̂)ρ]2, subject to α · β = 1. (B16)

We can write

[�(β · p̂)]2 =
d∑

i, j=1

βiβ jCov( p̂i, p̂ j )

�
d∑

i, j=1

βiβ j

√
(�p̂i )2(�p̂ j )

2

=
⎡
⎣ d∑

j=1

β j�p̂ j

⎤
⎦

2

� ‖β‖22
d∑
j=1

(�p̂ j )
2, (B17)

where we applied the Cauchy-Schwarz inequality twice. Us-
ing the same assumption of zero-displacement states we made
in the previous section, we can further bound

∑
j (�p̂ j )2 using

the constraint on average photon number

d∑
j=1

[(�p̂ j )
2 + (�x̂ j )

2] − d

2
=

d∑
j=1

〈a†j a j〉 = N, (B18)

implying that

d∑
j=1

(� p̂ j )
2 � N + d

2
. (B19)

Equation (B19) is tight when (�x̂ j )2 = 0 for all j. This is, of
course, impossible to achieve, but can be approached asymp-
totically with increasing N (N � d). Furthermore, using the
fact that α is dual to β and the Cauchy-Schwarz inequality, it
holds that

1 = α · β � ‖β‖2‖α‖2. (B20)

As we want to minimize with respect to β, we consider the
case where this inequality is saturated (i.e. β∗ = α

‖α‖22 ). There-

fore, ‖β∗‖2 = 1
‖α‖2 , and we obtain

[�(β · p̂)]2 � N

‖α‖22
+ O

(
d

‖α‖22

)
. (B21)

This yields the final bound

M � ‖α‖22
4Nt2

− O

(
d‖α‖22
N

2
t2

)
. (B22)

From the derivation alone, it is not obvious that this bound can
be saturated, but the existence of protocols that achieve it [12]
indicate that this bound is, indeed, tight asymptotically in N .

APPENDIX C: QUANTUM FISHER INFORMATION
MATRIX ELEMENTS

In this Appendix, we derive the matrix elements of the
quantum Fisher information matrix for generators n̂ j and p̂ j

under the unitary evolution Eq. (4). For number operator cou-
pling ĝ j = n̂ j ,

H j = −iU †∂ jU = −
M∑

m=1

(
m−1∏
l=1

U (l )V

)†
n̂ j

(
m−1∏
l=1

U (l )V

)

=: −
M∑

m=1

n̂ j (m), (C1)

where in the second line we implicitly defined n̂ j (m). Con-
sequently, we can compute the quantum Fisher information
matrix elements via Eq. (23) to be

F (θ)i j = 4

[
M∑
l=1

M∑
m=1

1

2
〈{n̂i(l ), n̂ j (m)}〉

−
(

M∑
m=1

〈n̂i(m)〉
)(

M∑
m=1

〈n̂ j (m)〉
)]

. (C2)

When Û ( j) = I for all j, this reduces to

F (θ)i j = 4M2[〈n̂in̂ j〉 − 〈n̂i〉〈n̂ j〉]. (C3)
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For quadrature operator coupling ĝ j = p̂ j , essentially iden-
tical manipulations yield

F (θ)i j = 4

[
M∑
l=1

M∑
m=1

1

2
〈{ p̂i(l ), p̂ j (m)}〉

−
(

M∑
m=1

〈p̂i(m)〉
)(

M∑
m=1

〈p̂ j (m)〉
)]

, (C4)

where p̂ j (l ) is defined as in Eq. (C1) with n̂ j → p̂ j .

APPENDIX D: PROTOCOLS FOR LOCAL PHASE SHIFTS

In this Appendix, we elaborate on the families of optimal
protocols for measuring a linear function of phase shifts that
we described in Sec. IV.

1. An optimal protocol for functions with positive coefficients

We begin by reviewing a protocol from Ref. [8] for the
special case of a linear function with positive coefficients (i.e.,
α � 0). Our results in Appendix A show that, as those authors
conjectured, this protocol is optimal. In particular, consider
using as the probe state a so-called proportionally weighted
N00N state over d + 1 modes:

|ψ 〉 ∝
∣∣∣∣N α1

‖α‖1
, . . . ,N

αd

‖α‖1
, 0

〉
+ |0, . . . , 0,N〉, (D1)

where we have expressed the state in an occupation number
basis over d + 1 modes and have dropped the normalization
for concision. The last mode serves as a reference mode.
Observe that, for this state to be well defined, it is essential
that α

‖α‖1 ∈ Qd and that N is such that the resulting occupation
numbers are integers, which may require that N be large.

Following imprinting of the parameters θ onto the probe
state via M passes through the interferometers, one obtains

|ψM 〉 = e−iMn̂·θ|ψ 〉 ∝
∣∣∣∣N α1

‖α‖1
, . . . ,N

αd

‖α‖1
, 0

〉

+ eiα·θ NM
‖α‖1 |0, . . . , 0,N〉. (D2)

This process allows us to saturate the bound in Eq. (14). In
particular, using Eq. (C2) [which reduces to Eq. (C3) because
there is no control required], it is straightforward to calculate
that the quantum Fisher information matrix for the probe state
is

F (θ) = (MN )2

‖α‖21
ααT , (D3)

which clearly satisfies the condition in Eq. (24) (recalling
that ||α||1 = ||α||1,P here because we have assumed all coef-
ficients are non-negative, and also recalling that �t = 1 such
that M = t).

While the conditions on the quantum Fisher information
matrix for an optimal protocol are met, a full protocol requires
a description of the measurements used to extract the quantity
of interest from the relative phase between the branches of
|ψM 〉. As described in the main text, this can be done via
the robust phase estimation protocols of Refs. [38–40] with a
small multiplicative constant overhead relative to the quantum

Cramér-Rao bound (we also briefly discuss the idea behind
robust phase estimation in Appendix G). The details of im-
plementing the necessary parity measurements for N00N-like
states are discussed in detail in Appendix A of Ref. [40] and
Ref. [43].

2. Extending the optimal protocol to negative coefficients

While not explicitly considered in Ref. [8], it is straight-
forward to extend the above protocol to the situation where
N 
= ∅, which we do here. Without loss of generality, assume
the coefficients are ordered so that α1 � α2 � · · · � αd . Us-
ing our standard assumption that ‖α‖1,P � ‖α‖1,N , we claim
that the following probe state is optimal:

|ψ 〉 ∝
⊗
j∈P

∣∣∣∣N α j

‖α‖1,P

〉
|0〉⊗|N ||0〉

+ |0〉⊗|P|⊗
j∈N

∣∣∣∣N |α j |
‖α‖1,P

〉∣∣∣∣N − N
‖α‖1,N
‖α‖1,P

〉
, (D4)

where, again, the last mode is a reference mode, and we have
dropped the normalization of the state. Interestingly, observe
that, if ‖α‖1,P = ‖α‖1,N , the reference mode factors out and
is unnecessary. Similar to the α � 0 case, for this state to
be well defined, we require that N |α j |/‖α‖1,P ∈ N for all j,
which is always true for some sufficiently large N provided
α ∈ Qd .

Consider applying the encoding unitary for M passes
through the interferometers. For ‖α‖1,P � ‖α‖1,N , this
yields

|ψM 〉 ∝
⊗
j∈P

∣∣∣∣N α j

‖α‖1,P

〉
|0〉⊗|N ||0〉

+ e
iα·θ NM

‖α‖1,P |0〉⊗|P|⊗
j∈N

∣∣∣∣N |α j |
‖α‖1,P

〉∣∣∣∣N−N
‖α‖1,N
‖α‖1,P

〉
.

(D5)

This probe state is optimal in the sense of satisfying the
Fisher information condition in Eq. (24). In the main text, we
described an even more general family of protocols. Within
this more general framework, we will prove this optimality.

3. A family of optimal protocols

Finally, we describe a family of optimal protocols that sat-
isfy the conditions on the quantum Fisher information matrix
given in Eq. (24). In the main text, we defined a family of
optimal protocols in terms of vectors from the set

W := {ω ∈ Zd | ‖ω‖1,P = N, ‖ω‖1,N � N, ω jα j � 0 ∀ j}.
(D6)

In particular, from these vectors, we defined a set T of one-
parameter families of probe states in an occupation number
basis where each |ψ (ω;ϕ)〉 ∈ T is labeled by a particular
choice of ω such that

|ψ (ω;ϕ)〉 ∝ |ω|P 〉|0〉 + eiϕ |−ω|N 〉|N − ‖ω|N ‖1〉, (D7)

where ϕ ∈ R is an arbitrary parameter and the last mode is a
reference mode. Recall also that ωP and ωN are defined in
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Eq. (28) as the restriction of ω to j ∈ P and N , respectively
(for j not in the correct set, the value is set to 0). Note that
such states are of the form of those in Lemma 1. We claimed
that, by explicitly computing the Fisher information matrix
for these states, one could demonstrate that the optimality
condition in Eq. (24) is satisfied for a protocol such that

W r = NM
α

‖α‖1,P
, (D8)

where r ∈ Z|T | is as defined in the main text and must obey
the conditions

‖r‖1 = M,

r � 0. (D9)

Recall that W is a matrix whose columns are the vectors
ωn ∈ W .

Here we explicitly demonstrate this. We can easily evaluate

〈n̂ j (m)〉 = 〈ψ (ω(m);ϕ)|n̂ j |ψ (ω(m);ϕ)〉 =
∣∣ω(m)

j

∣∣
2

(D10)

and

〈n̂i(l )n̂ j (m)〉
= 〈ψ (ω(l );ϕ)|n̂iU (m ↔ l )n̂ j |ψ (ω(m);ϕ)〉

=
∣∣ω(l )

i ω
(m)
j

∣∣
2

〈ψl (ω
(l );ϕ)|U (m ↔ l )|ψm(ω

(m);ϕ)〉,
(D11)

where n̂ j (m) are defined as in Eq. (C1), and

U (m ↔ l ) =
{∏l−1

k=mU
(k)V, if l � m∏m−1

k=l (U
(k)V )†, otherwise,

(D12)

i.e., it is the unitary that converts between the mth and lth
probe states. Additionally, ω(m) refers to the vector associated
to the mth probe state; correspondingly |ψl (ω(l );ϕ)〉 is the
branch of |ψ (ω(l );ϕ)〉 with nonzero occupation number on
mode l and |ψm(ω(m);ϕ)〉 is the branch of |ψ (ω(m);ϕ)〉 with
nonzero occupation number on mode m. For an optimal pro-
tocol,U (m ↔ l ) coherently maps the first (second) branch of
|ψ (ω(l );ϕ)〉 to the first (second) branch of |ψ (ω(m);ϕ)〉; there-
fore, we have that the matrix element 〈ψl (ω(l );ϕ)|U (m ↔
l )|ψm(ω(m);ϕ)〉 is nonzero if and only if the branches with
nonzero occupation on modes l and m are the same. So we
have that

〈n̂i(l )n̂ j (m)〉 =
∣∣ω(l )

i ω
(m)
j

∣∣
2

ξi j, (D13)

where

ξi j :=
{
1, if i, j ∈ P or i, j ∈ N
0, otherwise.

(D14)

Putting everything together we obtain that

F (θ)i j = (−1)ξi j+1

(
M∑

m=1

∣∣ω(m)
i

∣∣)( M∑
m=1

∣∣ω(m)
j

∣∣). (D15)

To prove the protocols work, we need to show that this
Fisher information matrix obeys the condition in Eq. (24).

Without loss of generality, consider the case that ‖α‖1,P �
‖α‖1,N . We have that

∑
j∈P

F (θ)i j = sgn(αi )

(
M∑

m=1

∣∣ω(m)
i

∣∣)MN, (D16)

where we used that ‖ω‖1,P = N . So, to obey the condition in
Eq. (24), we require that

M∑
m=1

∣∣ω(m)
i

∣∣ = MN
|αi|

‖α‖1,P
. (D17)

Or, in vector form:

M∑
m=1

|ω(m)| = MN
|α|

‖α‖1,P
. (D18)

Protocols in our family satisfy this condition by construction
as, for any valid protocol,

M∑
m=1

|ω(m)| = |W |r, (D19)

where |W | denotes taking the element-wise absolute value
of the elements ofW . Consequently, noting that sgn(ω(m)

j ) =
sgn(α j ) for all m, we require

W r = MN
α

‖α‖1,P
, (D20)

which is Eq. (D8).

APPENDIX E: PROOF OF LEMMA 1

Here we provide a proof of Lemma 1 in the main text,
restated here for convenience.

Lemma 4. Any optimal protocol using N photons and M
passes through interferometers with a coupling as in Eq. (1)
with ĝ j = n̂ j requires that, for every pass m, the probe state
|ψm〉 be of the form

|ψm〉 ∝ |N(m)〉P |0〉NR + eiϕm |0〉P
∣∣N′(m)
〉
NR, (E1)

where P ,N , andR represent the modes with α j � 0, α j < 0,
and the (arbitrary number of) reference modes, respectively,
N(m) and N′(m) are strings of occupation numbers such that
|N(m)| = |N′(m)| = N for all passes m. ϕm is an arbitrary
phase.

Proof. The quantum Fisher information matrix elements
for any protocol with ĝ j = n̂ j are given by

F (θ)i j = 4

[
M∑
l=1

M∑
m=1

1

2
〈{n̂i(l ), n̂ j (m)}〉

−
(

M∑
m=1

〈n̂i(m)〉
)(

M∑
m=1

〈n̂ j (m)〉
)]

= 4
M∑
l=1

M∑
m=1

Cov(n̂i(l ), n̂ j (m)), (E2)

where the expectation values are taken with respect to the
initial probe state, and n̂ j (m) are the number operators on the
jth mode in the Heisenberg picture prior to the mth pass, as
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specified in Eq. (C1). Without loss of generality, we make the
assumption that ‖α‖1,P � ‖α‖1,N . Summing over i, j ∈ P ,
we have that, for an optimal protocol,∑

i∈P

∑
j∈P

F (θ)i j =
∑
j∈P

(MN )2

‖α‖1,P
α j = (MN )2, (E3)

where we used the condition in Eq. (24) for an optimal proto-
col, and we recall that, for j ∈ P , all α j > 0. For convenience,
define

P̂(m) :=
∑
j∈P

n̂ j (m). (E4)

Armed with this definition, we can upper bound the sum over
i, j ∈ P in the explicit expression from Eq. (E2) as

∑
i∈P

∑
j∈P

F (θ)i j = 4
M∑
l=1

M∑
m=1

Cov(P̂(l ), P̂(m))

� 4
M∑
l=1

M∑
m=1

√
Var(P̂(l ))Var(P̂(m))

= 4

(
M∑
l=1

√
Var(P̂(l ))

)2

� 4

(
M∑
l=1

‖P̂(l )‖s,N
2

)2

� (NM )2, (E5)

where in the first line we use the Cauchy-Schwarz inequality,
in the second line we use that once restricted to the N-
particle subspace Var(A) � ‖A‖2s,N/4 (where, again, ‖A‖s,N
is the seminorm restricted to the N-particle subspace) for
any Hermitian operator A, and in the final line we use that
‖P̂(l )‖s,N � N . Comparing Eq. (E5) with Eq. (E3), we find
that, for any optimal protocol, all inequalities in Eq. (E5) must
be saturated. Specifically,

Cov(P̂(l ), P̂(m))2 = Var(P̂(l ))Var(P̂(m)), (E6)

Var(P̂(l )) = N2

4
. (E7)

The second condition, Eq. (E7), means that, at all times, the
state of our system must be of the form

|N(l )〉P |0〉NR + eiϕl |0〉P |N′(l )〉NR√
2

, (E8)

where we are using the simplifying notation from the state-
ment of the lemma. In particular, the subscripts P,N ,R refer
to the collection of all modes associated with α j � 0, α j < 0,
and the reference modes, respectively. Therefore, the state
|N〉P |0〉NR means that all photons are distributed (in some
potentially arbitrary way) among the modes with non-negative
α j , and there are no photons in the modes with negative α j or
in the reference modes. Contrastingly, |0〉P |N′(l )〉NR refers
to a state where there are N photons in the negative and
reference modes, and there are no photons in the non-negative
modes. We have also shifted to the Schrödinger picture where
we move the time dependence onto the state as opposed to the

operators. It is simple to verify that this state satisfies Eq. (E7),
and it is also simple to verify these are the most general states
that achieve this. Intuitively, |ψm〉 is a generalized N00N state
between the positive and negative/reference modes. �

In addition, we have the following useful characterization
of optimal protocols:

Lemma 5. Let |ψi〉 be a state of the form in Lemma 1.
Refer to the first and second parts of its superposition as,
respectively, the first and second or positive and nonpositive
branches. LetUm be the unitary that maps the initial state |ψ1〉
to the state just before the mth pass, |ψm〉, given by

Um =
{∏m−1

i=1 U (i)V, M + 1 � m � 2

I, m = 1.
(E9)

in agreement with Eq. (4). Then, if Um is part of an optimal
protocol, it coherently maps the first (second) branch of |ψ1〉
to the first (second) branch of |ψm〉.

Proof. We use the covariance equality in Eq. (E6). To
proceed, we evaluate the expectation value of P̂ in the initial
state. Here we will again use the Schrödinger picture.

〈ψ1|P̂(l )|ψ1〉 = 〈ψl |P̂|ψl 〉 (E10)

= 1

2
(〈N(l )|P〈0|NR + e−iϕl 〈0|P

〈
N′(l )
∣∣
NR)

× P̂(|N(l )〉P |0〉NR + eiϕl |0〉P
∣∣N′(l )
〉
NR)

(E11)

= 1

2
(〈N(l )|P〈0|NR + e−iϕl 〈0|P

〈
N′(l )
∣∣
NR)

×N (|N(l )〉P |0〉NR) (E12)

= N

2
. (E13)

We next evaluate the covariance:

Cov(P̂(l ), P̂(m))

= 〈ψ1|P̂(l )P̂(m)|ψ1〉
− 〈ψ1|P̂(l )|ψ1〉〈ψ1|P̂(m)|ψ1〉 (E14)

= 〈ψl |P̂UlU
†
mP̂|ψm〉 − 〈ψl |P̂|ψl 〉〈ψm |P̂|ψm〉 (E15)

= N2

2
〈N(l )|P〈0|NRUlU

†
m|N(m)〉P |0〉NR − N2

4
, (E16)

where in the last line we have used the fact that P̂ gives a factor
of N when acting on the first branch of states |ψl 〉 and |ψm〉,
but it annihilates the second branch that has zero photons in
the positive modes.

In order for Eq. (E6) to be satisfied, and using Eq. (E7), we
therefore require that, for all pairs of passes l,m,

〈N(l )|P〈0|NRUlU
†
m|N(m)〉P |0〉NR = 1. (E17)

Choosing l = 1, this implies that we require that

U †
m|N(m)〉P |0〉NR = |N(0)〉P |0〉NR ≡ |ψ1〉P , (E18)

where we are defining |ψ1〉P , |ψ1〉NR such that |ψ0〉 ∝
|ψ1〉P + |ψ1〉NR in the obvious way. Moving the unitary onto
the right hand side of the equation yields

|ψm〉P = Um|ψ1〉P , (E19)
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which of course implies the corresponding equation for the
second branch by linearity. �

APPENDIX F: FISHER INFORMATION MATRIX
CONDITIONS FOR QUADRATURE DISPLACEMENTS

In this Appendix, we provide conditions on the quantum
Fisher information matrix for an optimal protocol in the case
of quadrature generators. This result yields a simpler form of
the saturability condition of Eq. (25), although the set of states
that it picks out is less clear than in the number operator case.
This issue is compounded by the fact that the bound is not
actually saturable (it can only be approached asymptotically
as N → ∞). Regardless, it allows us to bring quadrature
displacements into our general formalism and suggests a route
towards designing additional optimal protocols beyond those
already in the literature.

In particular, starting with the definition of p̂i(l ) from
Eq. (C4), we can bound the sum over the quantum Fisher
information matrix elements as

d∑
i=1, j=1

F (θ)i j

=
d∑

i=1, j=1

4
M∑
l=1

M∑
m=1

Cov( p̂i(l ), p̂ j (m)) (F1)

� 4
M∑
l=1

M∑
m=1

√√√√Var
(

d∑
i=1

p̂i(l )

)
Var

(
d∑
i=1

p̂ j (m)

)

(F2)

= 4

⎛
⎜⎝ M∑

l=1

√√√√Var
(

d∑
i=1

p̂i(l )

)⎞⎟⎠
2

(F3)

� 4

(
M∑
l=1

√
N − d

2

)2
= 4M2

(
N − d

2

)
∼ 4M2N .

(F4)

Above, in Eq. (F2), we used the Cauchy-Schwarz inequality;
in Eq. (F4), we used the uncertainty relation in Eq. (B19).
Consistent with the rest of the paper, the ∼ symbol denotes
asymptotically in N (for N � d).

The saturability condition in Eq. (25) states that, for an
optimal protocol (asymptotically in N), it must hold that α

is an eigenvector of F (θ) with eigenvalue 4M2N . Thus, for an
optimal protocol,

Tr(F ) =
d∑
j=1

λ j � 4M2N, (F5)

where λ j are the eigenvalues of F . This implies that the
chain of inequalities leading to Eq. (F4) must be saturated
(asymptotically in N) for an optimal protocol and that the
largest eigenvalue of F must be λ1 ∼ 4m2N with all other
eigenvalues zero. It immediately follows that the saturability
condition for quadrature displacements can be written as

F (θ)i j ∼ 4M2N

‖α‖22
αiα j . (F6)

APPENDIX G: APPROACHING THE SINGLE-SHOT
LIMIT AND ROBUST PHASE ESTIMATION

As pointed out in the footnote preceding Eq. (8) and in
the discussion of what defines an information-theoretically
optimal protocol in Sec. IVB, it is not, in practice, possi-
ble to construct an unbiased estimator achieving the single
shot (μ = 1) quantum Cramér-Rao bound that we analyze in
this paper, as the quantum Cramér-Rao bound is only guar-
anteed to be achievable in the limit of asymptotically large
amounts of data (μ → ∞). Resolving this tension while still
achieving asymptotic Heisenberg scaling in the total amount
of resources (here, μN photons) requires carefully designed
protocols. In particular, extracting a relative phase from the
probe states considered in the protocols in this paper requires
a proper division of resources so that, asymptotically, the
single-shot bound is achieved up to a small constant.

At best, this constant can be reduced to π2 [41], but the
nonadaptive robust phase estimation scheme of Refs. [38–40]
provides a relatively simple-to-implement approach with a
multiplicative overhead of (24.26π )2. In brief, these protocols
work by dividing the protocol into K stages where in stage j
one uses Nj photons (or N j average photons for displacement
sensing). In each stage, one imprints the unknown function
into the phase between two branches of a catlike state of Nj

photons and then performs a measurement, as described in the
main text. The experiment is performed ν j times, allowing one
to obtain an estimate of the unknown phase. This estimate is
refined over the course of the K stages, with more photons
used in each additional stage such that the total photon re-
sources are

N =
K∑
j=1

ν jNj . (G1)

An optimal choice of ν j and Nj ensures that, asymptot-
ically, NK = �(N ) and νK = O(1), and, thus, the asymptotic
scaling of the single-shot bound is obtained up to a multiplica-
tive constant that depends on the details of the optimization.
The proof of this and the associated optimization are detailed
in Refs. [38–40].
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