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ABSTRACT

Self-testing has been established as a major approach for quantum device certification based on experimental statistics with minimal
assumptions. However, despite more than 20 years of research effort, most of the self-testing protocols are restricted to spatial scenarios (Bell
scenarios), without many temporal generalizations known. Under the scenario of sequential measurements performed on a single quantum
system, semi-definite optimization-based techniques have been applied to bound sequential measurement inequalities. Building upon this for-
malism, we show that the optimizer matrix that saturates such sequential inequalities is unique and, moreover, this uniqueness is robust to
small deviations from the quantum bound. Furthermore, we consider a generalized scenario in the presence of quantum channels and high-
light analogies to the structure of Bell and sequential inequalities using the pseudo-density matrix formalism. These analogies allow us to
show a practical use of maximal violations of sequential inequalities in the form of certification of quantum channels up to isometries.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0235444

I. INTRODUCTION

Rapid development of quantum technologies has necessitated the
need for certification of the crucial building blocks. Such building
blocks could be logical qubits in a quantum computer or entangled
states and measurement schemes in a quantum communication net-
work. Among such certification tasks, quantum state and process certi-
fication hold an important place since most of such applications
require preparation of a resourceful quantum state and subsequent
manipulation via quantum processes. Techniques for state certification
vary in the amount of assumptions required and information gained,’
and full tomographic reconstruction is the most resource costly of
such certification schemes while providing tight confidence bounds on
the certified quantum state. On the other end of the spectrum exist
techniques such as self-testing that utilize properties unique to quan-
tum correlations while requiring weaker assumptions.

Entanglement of a spatially separated bipartite quantum state
allows for device-independent (DI) (i.e., requiring weak assumptions)
certification of the underlying state up to local degrees of freedom

owing to the Bell nonlocality of the quantum correlations obtained
from such a state. Since its inception in Ref. 2, self-testing’ has become
a prominent technique to certify quantum states and measurements in
the DI scenario” * by exploiting the properties of quantum realizations
that achieve maximal violations of Bell inequalities and their unique-
ness up to local isometries. Their scope has been extended to
semi-device independent’” "’ and single-party contextuality-based
scenarios.* '® Applications of self-testing in spatial scenarios have
been utilized for device-independent (DI) randomness generation, ” **
DI quantum cryptography via quantum key distribution,”” *® and del-
egated quantum computing,”” * among others.

Quantum correlations can also arise in a temporal setting where
correlations are considered between measurement outcomes per-
formed in a sequence.”’ ** In an analogy with spatial correlations,
sequential measurement scenario also allows for the interpretation of
such correlations as temporal correlations since measurements are
done on the same state at different times. If commuting, such sequen-
tial measurements form a context and hence can be used to construct
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non-contextuality inequalities.”” However, in general the constraint of
commuting sequential measurements can be lifted and such sequential
correlations can be used to construct another class of inequalities such
as the Leggett-Garg inequality.”” For the particular case of Leggett—
Garg inequality, the classical bound is obeyed by correlations that obey
the postulates of macro-realism. Authors in Ref. 37 proposed a semi-
definite programming (SDP)-based method to find quantum bounds
of sequential correlation-based inequalities. Temporal correlations, as
obtained in the sequential measurement scenarios, have yet to find
applications in quantum technologies save in a few cases such as™®
where authors show that genuine temporal correlations can be used to
certify the minimum dimension of the underlying quantum state. In
Ref. 39, authors consider the prepare-transform-measure scenario to
certify a single qubit preparation (state) and intermediate measure-
ments up to global unitary degree of freedom based on sequential
correlation-based witnesses. More recently, in Ref. 40, a sequential
measurement scenario has been considered where maximal violations
of temporal inequalities were used to certify arbitrary outcome mea-
surements under certain assumptions regarding the underlying state.
An extension of sequential measurements to Bell scenarios is consid-
ered in Ref. 41 where an infinite hierarchy of SDPs is shown to bound
the set of sequential correlations.

A unified framework to study spatio-temporal correlations for
measurement events described across space and time has been pro-
posed in Ref. 42 where the authors introduce the Pseudo-density
matrix (PDM) formalism. Using this approach, in Ref. 43, it was
shown how time evolution of a qubit can be viewed as temporal tele-
portation in analogy to the spatial teleportation protocol that utilizes
an entangled state as a resource.”* Furthermore, in Ref. 33, the PDM
formalism was utilized to characterize the geometry of spatio-temporal
correlations arising from Pauli measurements of a qubit.

In this work, we study correlations arising from sequential mea-
surements on a single-party system and its generalizations to scenarios
with quantum channels. Since such correlations cannot be used to cer-
tify the underlying state or measurements due to the single-system
isometries involved, we identify the correlation matrix itself as the can-
didate for certification. We start by reviewing in Sec. II the known
results and essential concepts upon which we build this work. In Sec.
[11, we utilize the SDP-based formulation to show that maximal viola-
tions of N-cycle sequential inequality leads to properties such as
uniqueness of the optimizer matrix and also show the robustness of
this uniqueness with small deviations from the maximal violation of
the inequality. Next, in Sec. IV, we consider a generalized scenario
where quantum channels act between the sequence of measurements.
Interestingly, it turns out that the SDP-based optimization methods do
not apply to this generalized scenario and to circumvent this hurdle we
use the PDM formalism to put spatial (Bell) and temporal (sequential)
inequality violations on the same footing. The PDM-based approach
enables us to formulate and prove results about the underlying chan-
nels along with highlighting some deeper connections between spatial
and temporal correlation-based scenarios. In Sec. V, we present some
physical implications of our main results along with applications.
Finally, we conclude with a discussion of our results and future outlook
in Sec. V1.

Il. PRE-REQUISITES

In this section, we briefly review some relevant concepts that
would be utilized later to elucidate our results.

ARTICLE pubs.aip.org/aip/aqs

A. Pseudo-density matrices

The density matrix of a system contains information of all possi-
ble Pauli observables acting on the system; thus, the density matrix has
information of all correlations between spatially separated subsystems.
The pseudo-density matrix (PDM) formalism was introduced in Ref.
42 by extending this analogy to account for causal correlations between
observables acting on the same subsystem at different time points.
That is to say, a PDM could be associated with any n-measurement
event with there being a one-to-one correspondence between the
n-measurement correlation values and the related PDM. The PDM of
an n-measurement event is defined as

3 3
R=gd e o 0
1=0 -

=0
where 6p =1 and g, for i € {1,2,3} are the familiar Pauli matrices.
Furthermore, {...} denotes a set of operators associated with the
n-measurement event and not to be confused with anti-commutator.
The sub-indices j go over all measurement events, which could be
done in a sequence on a single qubit, on spatially separated qubits or a
combination of both thus accounting for both spatial and causal corre-
lations arising due to the n-measurement events. The factor ({a; }] )
denotes the correlation term corresponding to the size-n measurement
events. Physically, it is the expectation value of the product of the n
Pauli observables where tensor structure is appropriately imposed
based on the spatial location of the measurement event. It should be
noted that regardless of whether the measurements are performed at
spatially separated qubits or not, the tensor structure is enforced on
the operator @7, ¢ attached to the correlation factor ({o;}7,). This
way of deﬁnmg PDMs gives them their unique features that we briefly
describe below. The properties retained by the PDM R are hermiticity
and unit trace. If all the measurement events are performed on distinct
qubits then R is positive semi-definite (PSD) and thus a valid density
matrix, however; in the presence of causal or temporal correlations, R
is not necessarily PSD with possible negative eigenvalues. As a measure
of causality, authors in Ref. 42 introduced f;,(R) = ||R||,, — 1. Let us
expound on PDMs using the following example:

Example: Consider a qubit system, initially in state |0), on which
2-measurement events E; and E, are made in a sequence. Next, on cal-
culating ({a;,, 0, }) associated with the 2 events, we observe that only
the following terms are non-zero:

(Hor,a1}) =1, {o2,02}) =1, ({o3,03}) =1,
(L1} =1, {os1}) =1, ({Los})=1

Intuitively, it is clear that since the two measurement events are per-
formed at the same qubit in a sequence, the set {a;,;} would have
perfect correlation giving ({oy,01}) =1 Vi. Subsequently, the
PDM R, for this sequence of 2 events on a single qubit system is

2

ZZ {6i,,0,})(0;, ® 7,)
i
1 0 0 0
0 0 1/2 0
“lo 12 0 ol
0 0 0 0
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with eigenvalues 0, 1,1, — 1. We see that R,, has a negative eigenvalue

since the 2 measurement events E; and E, are causally related by virtue
of acting on the same qubit system.

B. Semi-definite programming basics

An n x n matrix X is said to be positive semi-definite (PSD) if
and only if v"Xv > 0 for any v € R" denote PSD matrix X by X > 0.
It can be easily checked that the set of PSD matrices forms a convex
cone. Then, a semi-definite program (SDP) is an optimization problem
of the form

maximize : Tr(CX)
subjectto: Tr(A;X)=0b;, i=1,2,....m 3)
X=0,

where we note that the objective function Tr(CX) is linear in X and
the m linear equation constraints are given by m matrices Ay, ..., A,
and the m-vector b. If the optimal value for Tr(CX) exists and is finite,
then it is called the primal optimal value (p*) and it is attained at the
primal optimal solution (X*). Referring to the problem above as the
primal (P) SDP, we can define the dual of it as given below.

Semi-definite programming duality: The dual (D) problem (SDD)
of the above SDP is defined to be

m
minimize : yTb = E yibi,
i=1

" 4
subject to : ZyiA,- -C=S§,
=1

§=0.

If the optimal value for Z:ﬂ:l y;b; exists and is finite, then it is called
the dual optimal value (4*) and is attained at the dual optimal solution
(y*). Next, we summarize some relevant results from SDP duality
theory.

Theorem I1.1. Consider a pair of primal (P) and dual (D) SDPs.
The following holds:

e (Complementary slackness) Let X, (y,S) be a pair of primal-dual
feasible solutions for (P) and (D), respectively. Assuming that
p* = d* we have that X, (y,S) are primal-dual optimal if and only
if (X,S) =0.

* (Strong duality) Assume that d* > —oo (resp. p* < 400) and
that (D) [resp. (P)] is strictly feasible. Then p* = d* and further-
more, the primal (resp. dual) optimal value is attained.

Dual nondegeneracy: Let Z* be an optimal dual solution and let

M be any symmetric matrix. If the homogeneous linear system
MZ* =0, )
Tr(MA;) = 0 (Vi € [m]), (6)

only admits the trivial solution M = 0, then Z* is said to be dual non-
degenerate.

C. Bounding temporal correlations via SDP

Consider the scenario of sequential measurements performed on
a single qudit (of dimension d) state. Each of the measurement

pubs.aip.org/aip/aqs

observable {A;} gives a binary value outcome labeled by (*1).
Quantum bounds on linear expressions constructed from correlations
between sequential measurements of binary valued observables can be
obtained using a semi-definite programming (SDP)-based approaches
as shown in Ref. 37. For an expression C =} 2;Xj, where /; are
the coefficients corresponding to the term Xj; = (A;A;) . with

seq

(AiA)) % [Tr(pAiAj) + Tr(ijA,-)} 7)

seq —

the optimization problem is given by

maximize : Z £ Xij, (8)
i
subjectto : X = X'>0 and X;=1Vi. 9)

The constraint X > 0 follows from the fact that X is the real part
of matrix Y with Y; = Tr[p(A;A;)] and v"Yv > 0 for any real vector
v. The result of the optimization program is an optimizer matrix,
denoted by X', which achieves the maximum for > 4iXjj. Consider
a special case of the expression above which we call Sy, given by

SN = (AiAin)
i1

— (ANAY) (10)

seq S€q7
with N > 3. Sy has a classical bound N — 2, using which we can
define an N-cycle inequality as Sy < N — 2, which is obeyed by all
macro-realistic theories. Invoking the strong duality for the corre-
sponding SDP gives the quantum bound Sy < N cos (%) .7 In other
words, the primal optimal of the SDP being bounded implies that the
dual SDP is also feasible and moreover the primal and the dual optima
are equal (strong duality theorem).

Remark IL.1. Reinterpreting the correlation term X as an inner
product of unit vectors {x;}, we can write X;; = (x;,x;) thus obtain-
ing {x;} as the columns of the matrix \/X. As a consequence of this
reinterpretation, for every positive semi-definite matrix X one can
find a set {x;} and a set of binary (£1) outcome observables {A;}
such that

<AiAj>seq =Tr Bp(AiAj + A]'Ai):| = (%ir %) )

for all quantum states p. Thus, for every quantum state p, there exist
observables {A;} such that X;-pt = (AiAj) gy = Trlz p(AiAj + AjA)]
which maximally violate the N-cycle inequality Sy < N — 2.
Furthermore, in the qubit case, it can be seen that taking A; = a;.0
gives (AjA;j) . = @.aj, implying that the correlations do not depend on
the underlying quantum state.

One interesting aspect of this approach is the fact that in the tem-
poral scenario a single SDP suffices to find a tight upper bound in the
general case which is in contrast with the infinite (NPA) hierarchy of
SDPs required in the general case to tightly bound Bell inequalities in
the spatial correlation scenario as shown in Refs. 46 and 47. This sig-
nificant increase in complexity can be attributed to the fact that the
observables acting on the spatially separated halves of the entangled
state are required to commute, but no such restriction is placed on
observables acting on a single quantum system at distinct time points
in the sequential measurement scenario.

seq
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I1l. CERTIFICATION OF TEMPORAL CORRELATIONS
USING OPTIMIZER MATRIX

In this section, we build on the methodology outlined in Sec. 11 C
by proving results for the optimal correlation set that maximally viola-
tes the N-cycle inequality. Concretely, our first main result is regarding
the uniqueness of this optimal set and stated as,

Theorem IIL.1. The optimizer matrix X" that maximizes the
objective function Sy in (10) is unique for all N > 3.

In order to prove this result, we need to formulate the dual pro-
gram that exists for every primal semi-definite program and utilize rel-
evant results from SDP duality theory. The dual of the SDP in (9) with
the choice of objective function as Sy (10) is given by

min Z Vi

such that

N
> yiee] — A=0, (12)
i=1

where e; is an N x 1 column vector with 1 at the ith place and 0 else-
where and

N-1
A= —O.S(elef, + eNelT) + ZZO.S(eieiT+1 + ei+leiT).
=1

Moreover, the primal and the dual are both feasible with the primal
and dual optima being equal to N cos 3. Then, let us first prove the fol-
lowing intermediary result:

Lemma IIL1. The dual optimal solution for the dual program in
(12) is given by

N-1
7
Wy = cos (N) Iy + O.S(elef, + eNe{) - Z 0.5<eieiT+1 + eH.leiT),
i=1

(13)

where [y is an N X N identity matrix and e; is an N X 1 column vec-
tor with 1 at the ith place and 0 elsewhere.

Proof. Given the dual formulation in (12), we start by claiming
that the optimal choice of {y;} that achieves the dual optima N cos &
is such that

N
Zy,-e,-eiT — A=Wy =y =cos r Vi.
i=1 N

On comparing coefficients, we see that the choice above results in
> yi = Ncos(§), which agrees with the dual optimal value. It
remains to be shown that Wy is positive semi-definite for all N > 3.
We proceed by rewriting Wy as

pubs.aip.org/aip/aqs

where cy = cos %. Note that Wy is PSD if all eigenvalues of Ty are

greater than or equal to —2c¢y which is what we show next. In order to
find the eigenvalues of Ty, consider the determinant

-1 -1 -1
0 -1 -2 -1

‘TN - )HN| = : : : . . : . (15)
1 0 - o =1 —]

The matrix above is an ordinary tridiagonal matrix and the determi-
nant can be evaluated using the following formula™ involving multi-
plication of 2 x 2 matrices:

ap bl ce Co

(5] ay bz

bn R 7R B
= (=)™ by by + Car -+ 0)

a, —by_1cu1 a, —bic ar —buco
1 0 1 0 1 0

(16)

+ Tr

Plugging the values of matrix elements for our case gives

N
(+ )] o

Note that the matrix P= <_1/L _01) has eigenvalues

Ty — Aly| = (=D)N ' 2(=)N ) + Tr

po= A 32274 and ;. Also, P is not diagonalizable for 2 = 2, which is
an eigenvalue of Ty for odd N. However, Wy remains PSD in this

case.
For / # 2, we have

-5 —1\" v o1

1
‘TN—)HN|:2+,LLN+H7N (19)

giving

The expression above vanishes if (i + 1)*> = 0. The roots of uV
+1 = 0are pu = @ D7/N with m € 7. Thus,

0 -1 0 1
-1 0 -1 0 —A+ V2 -4 _ izt 1)n/N
0 -1 0 -1 --- 0 2 ’
Wy =oyy +05 S I (14) VIEZ 4= )4 2eiGm RN, (20)
J2 — 4= )2 4 4e2@miVA/N 4 g7 0i2mt1)/N
1 o 10 (2m+1) ’
m b b1
- - A =—-2cos ————>—2cos— Vm andall N> 3.
call this matrix Ty N N
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Therefore, Wy is PSD for all N > 3 concluding the proof of Lemma
1111 that the choice Wy leads to the dual optimal solution. ll
Lemma IIL.2. The only solution to the system of linear equations

XNWy =0

is Xy = 0, where Xy is a symmetric N x N matrix with diagonal ele-
ments equal to zero and Wy is the dual optimal solution given in (13).

Proof. The proof is trivial and follows from simple linear algebra.
There are N? linear equations where the maximum number of varia-
bles in a equation is three. Let us consider the equations with variables
corresponding to the first row of Xy. There are N such linear equa-
tions. Furthermore, there are three equations with number of variables
equal to two. These three equations fix the value of the variables
involved either equal to each other (one such equation) or a constant
times the other variable. Here, the constant is 2 cos §. Substituting
these constraints in the equations with three variables, we get new
equations with two variables. Following this approach, we get the value
of all the variables corresponding row 1 of Xy equal to zero as the only
self-consistent solution. Same argument applies for the variables in the
other rows. This completes the proof. ll

Lemma IIL.3. (taken from Ref. 49) Let Z* be a dual optimal and
non-degenerate solution of a semi-definite program. Then, there exists a
unique primal optimal solution for that SDP.

Using the lemmas above, the proof of Theorem IIL1 follows as

Proof. Lemmas IIL.1 and III.2 imply that the dual optimal Wy is
non-degenerate. Together with Lemma IIL3, this implies that the pri-
mal optimal for the SDP in (9) with objective function as in (10) is
unique. This completes the proof of Theorem IIL.1. H

We mentioned in Remark II.1 that the matrix X that is being
optimized over is PSD and gives us the set of unit vectors {x;} as the
columns of v/X; however, these {x;} vectors are not directly relatable
to any state or measurements. Noting that X is the real part of PSD
matrix Y, where Yj; = Tr(pA;A;) allows us to introduce set of unit vec-

tors {y;} as columns of /Y matrix. In the special case when
p = |¥) (Y] is a pure state, we can write y; = A;i}). For X, we thus
have X' = Tel} p (A, + A;A1)] = Re{TrpAA})} = Re{ (DIA,A[) |
= Re{(yi,7j)} where in the third step we have assumed that p is a
pure state, since X%' can be obtained using any quantum state and
suitable 2-outcome measurements. However, note that while defining
the set {y;};, we have a global isometry such that there could be
another set of wunit vectors {y/}; satisfying Re{(y;,y;)}

= Re{(UyQ7 ij’.)} with UUT = I. This leads to the following:

Corollary II1.4. For the optimizer matrix X" which maximizes

an N-cycle mequalzty of the kind (10), for every set {y;}; which satisfies

jp ‘ = Re{(yi,yj) }, we have a global isometry U and a reference set
{yi}; such that

Re{ ()71,)7])} = Re{ (Uy;, ij)} (21)

Furthermore, this implies the existence of reference measurements {A }
and pure state |\y) such that ; = A;| ).

Note that in Bell inequality-based self-testing scenarios unique-
ness up to local isometries of A;|y) implies self-test of the measure-
ment A;; however, in the temporal scenario due to the single-system
global isometry involved, we can only claim that uniqueness of X%

fixes Re{ (v, j) }-

ARTICLE
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Having established the uniqueness of the optimizer matrix, next
we ask how robust is this uniqueness property associated with X"
Precisely, let us imagine a scenario where one obtains the set of corre-
lations {(A;A;), } from an experimental setup and constructs a candi-
date matrix X st X; = (AjA)),,. From the set of sequential
correlations obtained experimentally, the value of the expression asso-
ciated with an objective function [such as (10)] can be calculated.
Assuming experimental imperfections, one can inquire how a small
deviation of the value thus calculated from the maximal value
(obtained using X°"') relates to the distance between the matrices X
and X°'. We formally define this notion as,

(€,7) robust certification of temporal correlations: Given 2 out-
come observables {A;}, and physical set of sequential correlations
{(Ai, Aj) s, } > they give an (e, r) certificate of reference temporal cor-
relations {{A;, A;)},; if the matrices X and X defined via X;; = (A;A;)
(similarly for X) are close in Frobenius-norm distance s.t.

X — X| < O(").

We will make use of the above definition as our metric for the proxim-
ity of two sets of sequential/temporal correlations in our certification
result. Let us first state the following useful lemma:

Lemma IIL5. (taken from Ref. 14) Consider a pair of primal/dual
SDPs (P) and (D), where the primal/dual values are equal and both are
attained. Furthermore, assume that the set of feasible solutions of (P) is
contained in some compact subset U C S". Let P be the set of primal
optimal solutions and d be the singularity degree of (P) defined (in Ref.
50) as the least number of facial reduction steps required to make (P)
strictly feasible, we have that

dist(X,P) < O( ),

for any primal feasible solution X with p* — ¢ < (C, X).

Now we are ready to establish our result concerning the robust
certification of temporal correlations:

Theorem IIL2. Robustness: Consider the SDP (9), given that
matrix X" achieves a near-optimal value for the objective function
C =2, 4Xij such that |} 2 Xapt D X’E"’| <€ and X% is
unique then it follows that the correlatzons makmg up X" give an
(€, 1) certificate of reference correlations making up X%, ie., we can
upper bound the Frobenius-norm distance between X' and X" as

|Xopt o Xreall < O(E) (22)

Proof. Since the identity matrix belongs to the strictly feasible set of
the SDP in (9), the singularity degree is 0. Once we substitute d = 0 in
the statement of Lemma III.5, we recover our robustness statement. ll

The multiplicative constant going with O(€) certification guaran-
tee in Theorem IIL.2 can be approximated by numerical SWAP-based
methods. Such SWAP-based techniques along with SDP-based meth-
ods were used to estimate constants in CHSH and CGLMP inequality-
based robust self-tests in Ref. 51. Also, analytical robust self-testing
bounds for certain Bell inequalities have been obtained in Refs. 52 and
53. The sequential measurement scenario considered here is closer in
spirit to the scenario considered in Ref. 16 where numerical SWAP-
based techniques were adapted for robust self-testing of a single quan-
tum system.

Corollary IIL6. It follows from Theorem IIl.1 and II1.2 that near-
maximal violation of the inequality Sy < N — 2, where Sy is the
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N-cycle expression from (10) with quantum bound f, = N cos %, by

the set {(Ai,AiH)qu},- such that

(Z <AiAi+l>seq - <ANA1>seq) - 'Bq

i=1

<e

is an (e, 1) certificate for the reference set {(A,A)) with

<Ai7 Aj)seq = Xtofr

IV. GENERALIZED SCENARIO WITH QUANTUM
CHANNELS

In this section, we generalize the sequential measurement sce-
nario considered in the previous part by introducing a quantum chan-
nel between the measurements of Alice and Bob as shown in Fig. 1. A
similar setup is studied in Ref. 54 by defining a framework in terms of
instrument moment matrices (IMMs), which are completely different
from our construction of sequential correlation matrix. Our construc-
tion is inspired by the semi-definite optimization-based formulation in
prior works such as Ref. 37. In the case of arbitrary channels &4 act-
ing in between the time points, the sequential correlation cannot be
calculated using expression (7). Consider the following sequential mea-
surement protocol (see Fig. 1):

seq}zj

e Step 1: Alice obtains a quantum state given by p,

e Step 2: Alice performs projective 2 outcome measurement A,, on
p4- Note that the choice of A,, is restricted to the set of measure-
ments {M;}. The post-measurement state p¥ with outcome
x==*1lis

P = TP,

* Step 3: Post-measurement state p7, is transferred to Bob via the
channel £,

Eap(py!) = Eap(TT, paIT,,).

e Step 4: Bob performs projective 2 outcome measurement
A, € {M;} on E,5(p},). The resulting sequential correlations are
given by

(AmAp)g = P(++ or — =) = P(+ — or — +)

= P(+5|+4)P(+a) + P(=5|=4)P(—4a)
= P(+8|=4)P(=4) — P(=5|+a)P(+4)

= Tr[[; Eap(TT,pATT)] + Tr[TL, E45(TT,, p4T1,)]
= Tr [T Eaip(T1,, pA L) | — T [IT, Ex5(IT, p, 1)

= Tr[(l’[: - H;)SA\B(H;/)AH;)]
— Tr[(I1} =TI, ) E4p(IT,, pA T, ) |

= Tr[AwE (T}, p4 1) | — Tr[AExs(IT,,p41T,,)]

= Tr €], (A (I, T, — T, p, 1)

A A
=Tr {SL‘B(An) (Anpat Patn) er Pa ’”)} :
where in the last line we switch the action of channel from &£ acting
on state to 51‘ p acting on observable A,. Similar to the previous case,
we can define the matrix X such that

pubs.aip.org/aip/aqs

Ay € {M;}i=123 Ap € {M;}iz123

. 5A|B(P§1)
—> Alice Bob

| !

x € {+1} y € {£1}

Fic. 1. In the generalized scenario, Alice obtains black box containing p, from
source and makes measurement A, € {M;} at time t4, and then, the black box
containing post-measured state pj, is sent via channel €45 to Bob who performs
measurement A, € {M;} at time fz.

1
Xinn = (AmAn) goq = ETr (Ampy + PAAM)SL\B(An)}

Unlike the previous case the matrix X defined via X,
= (AnA,) seq 15 1Ot generally PSD in this scenario. Hence, one cannot
use the SDP method described earlier in Sec. I C to bound sequential
measurement inequalities. The sequential measurement scenario can be
viewed from the perspective of pseudo-density matrix (PDM) formalism
(see Sec. II A for a review) by considering the measurement events in a
sequence and writing the corresponding PDM. The PDM formalism is
more general since it can also take into account time evolution (via quan-
tum channels) of the quantum state between the two sequential measure-
ment events. We will make use of this feature of PDMs to make progress
in the remaining part of this section. Consider a 2-dimensional quantum
state p, with sequential measurements being performed at time points
ta and tp, additionally the channel &, acts on the post-measured state
at A mapping operators from state space 14 at f4 to state space Hp at t3
(Fig. 1). Then, it can be shown that the PDM (R4p) for this scenario is
given by (see Ref. 33 for a derivation)

I 1
RAB:(IA®€AB){.DA®§75;6!'®JZ'}7 (23)

where Z4 is the identity superoperator and {A, B} := AB + BA. The
utility of the PDM formalism will be made clear via its role in proving
our main result in this scenario regarding channel certification (see
Theorem IV.1). To that end, let us first establish some useful lemmas.

Lemma IV.1. In the generalized scenario described above, we can
relate the sequential correlation to the relevant PDM as

(AmAn) s = Tr[(Am ® Ay)Rap).

seq

Proof. First let us define the Jamiolkowski isomorphic operator to £,
as

Eag =) (Za @ Ea) ()il @ Li)il),

ij

which acts on H4 @ Hp. Then, starting with RHS,

TI‘[(Am X An)RAB}

= Tr{ (An @A) KpA ®§) Eap+Eap <pA ®%>} } using (23)
:% [Tr((Amp @ An)Eap) +Tr((Am ® Au)Eap(p®1))]
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= [ZTr(Amp\i>Ul)Tr(AneA‘B(\ij)
ij

—|—ZTr(Am|i)(j|p)Tr(An5A\B(|J'><iD>}
T2

'ZWAmp+pAm>|i>Tr<AnsA\B<u><i|>)]
ij

- 'ZU|<Amp+pAm>|i>Tr(Ankauxiw;)
ij k

where { V} } are the Kraus ops. for

=2 [ 0lAwp + pAn) i) > vimvi]
ij k

:% _Z(j\(Amp+pAm) Z V;AndW}
L J k

1

=STr {Z u><f\<Amp+pAm>ZV;Anvk}
§ k

= %Tr [(Amp + ,DAm)gZ‘B(An)}

= <AmAn> (24)

seq”

|
Sequential inequalities in the general scenario: Let us consider the
sequential inequalities from Sec. I1]; however, being constructed out of
sequential correlations of the generalized scenario with the quantum
channel acting between the measurements. Having established a for-
mal connection of the PDM formalism with sequential correlations in
Lemma IV.1, we can put it to use to explore the maximal violation of
sequential inequalities in the generalized scenario and implication on
the underlying quantum channel. Recall the N-cycle sequential correla-
tion expression (10) and the associated inequality

N-1
Sy = Z (AiAit1)eq — (ANAL) g <N — 2.

i=1

Using Lemma IV.1, we can rewrite the above as

N-1
TrKZAi ® A — Ay ® A1>RAB} <N-2, ()

i=1

where it is interesting to note that (25) possesses a structure similar to
Bell inequalities under entanglement-based scenarios where the tensor
product appears due to spatially separated Hilbert spaces (see Sec. V).
Channel certification using N-cycle sequential inequality: Consider
the case of N-cycle inequality described above with N = 3, which takes

36

the form of the well-known Leggett-Garg inequality

53 = <A1A2>:eq + <A2A3>seq — <A3A1>seq <. (26)

We will consider maximal violation of this inequality in the presence
of channels. Throughout the draft we highlighted the various degrees
of freedom involved in obtaining correlations from sequential mea-
surements on a quantum system. We saw that in the simple case with-
out channels being present, sequential correlations depend only on the
angle between the observables and not on the particular direction of
the observable and not even on the underlying quantum state.

pubs.aip.org/aip/aqs

However, in the generalized scenario with channels, other isometries
also come into play thus allowing us to choose non-ideal angles to
obtain maximal violation of the 3-cycle sequential inequality (26).
Following this discussion, we do not base our self-testing statement on
certification of the quantum state or of the measurements but rather
on the quantum channel acting in between the sequence of measure-
ments. A protocol for channel certification has been previously
described in Ref. 55 where the physical channel was compared to a tar-
get reference channel via the action of the channel on the maximally
entangled state thus requiring the physical input state to be an
entangled one. On the contrary, our channel certification scheme does
not require entanglement but utilizes sequential correlations instead.

Theorem IV.1. Temporal certification statement: In a sequential
measurement setting with channel € yp acting between the sequence of
2-dim. measurements {A;} on 2-dim. state p, maximal violation of the
3-cycle sequential inequality (26) implies that E,p is a 1-qubit Pauli
channel with Kraus rank 1.

Proof. We first prove the following useful result:

Lemma IV.2. Consider the correlation (o107).,, in the generalized
scenario with channels with oy, as the Pauli observables and p, being
2-dimensional. Then,

2[00, TreEanlon)) + Te(oiEnp(o0)] . @)

<6kal>seq = 2

Proof.
<0k01)seq = Tr[(0x ® 61)Rap] using LemmalV.1

=Tr

I 1<
(oxk®01)(Za® 5AB){PA ®57 EZGi & Uz}

i=0

using (23) fromMT

(k@) (ZTa® SA\B)Z{pAv 0i} ® 0

1
=-Tr
4 i=0

1 3
= ZTr {;o’k{pf,, g} ® 615A|B((T,-):|

13
= ZZTT(G"'OAU" +010ip4) - Tr(01€45(04))

i=0
3

= iZTr(pA(aiak + 0107)) - Tr(01€45(03))

i=0

= |:(o—k>pATr(0’15AB(ao)) + ZéikTr(azé'AB(ai))]

[(ak>pATr(az€A‘B(ao)) + Tr(mg,,lB(ak))] .

|

Proceeding with the proof of Theorem IV.1, take p, = [0)(0|

since we expect maximal violation to be obtainable using a pure state

and rotational freedom of observables allows us to take it as an eigen-
state of .. Then, using Lemma IV.2, we get

Tr(o1€a15(0x))/2, fork = 1,2,
(0k01) g =

Tr(a1€ap(00) + 01€48(03)) /2, fork = 3. (28)

Furthermore, it has been established in Ref. 56 that all possible quan-
tum channels acting on 2-dim. states correspond to the convex closure
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of the maps parametrized in the Pauli basis {c;}, using the following
Kraus operators:

K  cos Yo + [sin Zsin
= |cos ~cos —|a sin —sin —| o
+ P P 0 P P 3
(29)
LU u , v . u
K_ = |sin —cos —| gy — i|cos —sin =| g,
S S = o S
with v € [0, 7], u € [0, 27]. Action of the channel £45(;) can be writ-
ten using these Kraus operators as
K,00K! + K_0oK' = g + sin(u) sin(v)os3,
Ki01K! + K_0,K" = cos(u)oy,
K+O'2K1 + K_0,K" = cos(v)a,

Ky 03K} + K_03KT = cos(u) cos(v)os.

(30)

Substituting (30) into (28) gives
(akm}wq = 0x1(01x cos u + dpx cos v + d3x cos(u — v)). (31)

Using (31) for S; along with the fact that for 2-dimensional observ-
ables A/, = d,,,.G, we can write (AmAn)seq =3 amkan,(akm>seq
gives

NE

S3 =) [(awkax + axas — asau)du

>

I

||
=

X (O1x cos u + Gy cos v + d3x cos(u — v))]
3
= Z [(alkazk + axkasi — asia)
k

-1
X (O1x cos u + Gy cos v + d3x cos(u — v))] . (32)

From (32), it can be seen that the maximal value achieved is 3/2
in the cases with {u =v =0}, {u=v=n}, {u=0,v=n}, and
{u = m,v = 0}, which correspond to special cases of the Pauli chan-
nel. However, note that the angle between the measurement choices
{A;} would depend on the particular case of the channel £,5. Hence,
taking a convex combination of channels corresponding to the cases

ARTICLE pubs.aip.org/aip/aqs

above will not give maximal violation for a particular choice of three
measurements {A;},_;,;. This result again highlights the unitary
degree of freedom in choosing the channel as described in (33).
Interestingly, the four channels corresponding to the cases above also
correspond to the 4 “pseudo-Bell states”

1
R%:ZU+X®X+Y®Y+Z®Q,
1
ng:Z(I+X®X—Y®Y—Z®Z)7
1
R%:ZUfX®X+Y®YfZ®D,

1
R = - X0X-YeY+Z62),
which were used for showing temporal evolution as an analogue of
spatial teleportation in Ref. 43. |

V. PHYSICAL IMPLICATIONS AND APPLICATIONS

Next, we provide some physical implications of our main results
followed by some potential applications of the main theorems.

Unique set of correlations: We establish in Theorems IIL.1 and
1.2 that for the N-cycle inequality in the sequential measurement
setup the set of correlations {A;A;},,,, encoded via the matrix X, that
achieve the quantum bound are unique and the uniqueness is robust
to small deviations from the maximal value. Since the underlying
single-system isometries do not allow us to self-test the state or the
measurement POVMs, we phrase our results in terms of the unique-
ness of the set of correlations that maximally violate the inequality.
Such a unique set of correlations for {A;A;},,, uniquely restricts the
relationship between the measurements performed on the quantum
system. For example, in the single qubit case with N = 3, the succes-
sive measurement vectors on the Bloch sphere must be at 60° to
achieve maximal violation. This physical restriction carries over to
higher values of N as well. We contrast our certification scheme with
the entanglement-based self-testing formalism in Table I.

Pseudo-density matrix as a unified formalism: Consider the spatial
analog of inequality (25) with N = 4 where the measurement events
are performed on spatially separated qubits (i.e., the CHSH inequality).

TasLe I. Comparison of our temporal correlation-based certification scheme with entanglement-based self-testing scheme for state and measurement certification.

Certification of temporal correlations

Entanglement-based self-testing

e Based on non-classical temporal correlations

o Such correlations cannot be explained by models that obey the
assumptions of macro-realism

e Under the SDP formulation, we show uniqueness of optimizer
matrix for the N-cycle temporal inequality; however, this does not
self-test the underlying state or measurements due to single-system
isometries involved. Instead, we obtain a unique set of correlations
that restricts the relationship between measurement operators.

e Furthermore, considering the generalized scenario with quantum
channels we show that maximal violation of 3-cycle inequality certi-
fies channel type and its Kraus rank. In the PDM formalism, the
channels achieving this maximal violation correspond to the
“pseudo-Bell” states."”’

e Based on non-local spatial correlations
e Such correlations cannot be explained by local hidden variable
models
e Maximal violation of Bell inequalities self-tests underlying
entangled state and measurements’ with robust extensions known
in certain scenarios.'”

e SDP formulations can also be constructed for Bell scenarios.”’
Uniqueness of the optimizer matrix, if it holds as is the case for
the CHSH inequality, corresponds to a self-test of the underlying
state (Bell state for the CHSH case) and measurements.
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We can infer that the PDMs maximally violating the inequality (with
N = 4) are the familiar maximally entangled Bell states, which are
valid density matrices. This example highlights an important feature of
the PDM formalism as the one that can unite both spatial and tempo-
ral correlation-based inequalities. If we restrict the PDM to be a valid
density matrix by constraining it to be positive semi-definite (which in
turn enforces the measurements to be performed on spatially separated
qubits as described in Sec. I A), we recover results from Bell scenarios.
However, lifting the constraint of positive semi-definiteness of PDMs
also allows for dealing with sequential inequalities of the generalized
scenario.

Local isometry in time: As a follow-up to the proof of Lemma
IV.1, one can note that the tensor structure introduced between
observables A,, and A,, allows for certain local isometries to act in the
temporal sense. See that

Tr[(Am ®An)RAB]

=Tr

(Am®An)(IA®5A\B {pA® ZO—Z®O—I}

=Tr

(A, ®A,) Z {,OA,Ui}®5AB(f7i)]

1 3

1 3
:EZTr VA VI (Vp,ViIVa Vi 4 Ve VIvp, V]

(paGi+0ipa)|Tr[AnEap(0i)]

xTr[UAnUTE'A‘B(VJiVT)}
f—ZTr

m(PaGi+0; PA)]Tr [A EA\B((-I):|

=Tr

- 11
(VAmV*®UAnU*)(IA®5A|B){VpAV*®E,EZo—,~®o,} ;
i=0

(33)

+ - o+ -

p A1 |—14:

+ - + -
p — 4 |—'|Ai+1|

+ - + -
» {7 m
Experimental runs: Acquiring {(4;A;41)seq} requires
measurements scaling as O(N)

Near max.
violation

. Robust certificate for the set {<AiAi)seq}Vi'j
scaling as O(N?)

ARTICLE pubs.aip.org/aip/aqs

where € s has transformed Kraus operators as {K;} — {UK;V'}, U
is a unitary operator acting at time point ¢tz and V, acting at ty, is
restricted to V € {X,Y,Z} such that applying the transformation
Va; VT conserves the elements of the set o; € {I,X,Y,Z}. Note that
we make this particular choice for V just to highlight the local isometry
in time, there exist other choices for V such as the Clifford group that
would also conserve the set of Pauli matrices. Thus, the transformation
of the channel €, p’s Kraus operators along with corresponding rota-
tion of observables at times ¢4 and ¢z does not change the correlation
value. This local isometry in time is reminiscent of the local isometries
present in the scenario with spatially separated entangled states and
observables.

Applications: We start by noting as the foremost application that
obtaining an (e, 1) certificate on the full set of correlations only
requires experimentally obtaining a subset of the correlations (for
which 2j; # 0). For example, in the case of N-cycle objective function
(10), one only needs to measure the cyclic correlations {(A;A; 1)}
scaling as O(N). Near-optimal value of this subset gives a robust guar-
antee on all pairs of correlations {(A;4;)} Vi,j, which scales as O(N?)
(see Fig. 2).

The full set of correlations thus obtained can be utilized for vari-
ous applications such as dimension witnesses;">”* under assumption
of dimension of state being 2, they can be used for lower bounding
purity.”” However, both these applications have been proposed for
generalized measurements. Other applications that could be formu-
lated for projective measurements are measurement device certifica-
tion in semi-device-independent scenario.””"’ In particular, we can
utilize (and also implement experimentally) the temporal inequalities
proposed in Ref. 40 to certify measurement devices under the assump-
tion that the initially prepared state is maximally mixed.

Coming to the channel certification result, previous schemes’” for
quantum channel certification utilized entanglement as a resource
where the channel was certified via its action on one half of a Bell state.
Our scheme circumvents this requirement by utilizing sequential cor-
relations on a single system. Second, our result can also be utilized for
certifying building blocks for quantum circuits and computing archi-
tectures. Since such architectures have been proposed to incorporate
qubits, we can work under the assumption of 2-dim. states and utilize

Fic. 2. Our theorems allow an experimenter to obtain guarantees on all possible correlations of sequential measurements by measuring only a subset of sequential correlations,

given that the measured correlations obtain near-maximal violation.
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Theorem IV.1 to certify the unitarity of single qubit gates modeled as
channels (this requires establishing the robustness properties of chan-
nel certification). Furthermore, certain proposals’’ for quantum pro-
cess tomography work under the assumption of unitarity of the
underlying CPTP process. Working under this assumption they show
improvements in number of elements required for characterizing the
unitary channel. Our channel certification scheme could be used as a
pre-cursor to guarantee the unitarity of the quantum channel.

VI. DISCUSSION

In this work, we study correlations arising in 2-outcome sequen-
tial measurement scenarios. Unlike spatial correlations obtained in
entanglement-based scenarios, such sequential/temporal correlations
have not seen many applications in the literature. Motivated by the
SDP-based formulations for bounding temporal correlations, we
showed uniqueness of the optimizer matrix as well as establish robust-
ness of this uniqueness property. Since the optimizer matrix is made
up of sequential correlations between all pairs of measurements {A;},
it follows as a consequence of our results that near-maximal violation
of temporal correlation-based inequalities can be used to obtain robust
certificates of the set of sequential correlations {(A;, A;),,}. As an
application of this result, we highlight that any temporal inequality can
be mapped to a cost function in the SDP formulation. Thus, near-
maximal violation of such an inequality requires experimentally mea-
suring a subset of correlations usually scaling as O(N), where N is the
number of distinct 2-outcome measurements. However, by virtue of
our result the certification of the full optimizer matrix certifies the full
set of correlations scaling as O(N?).

Next, we considered the generalized scenario with quantum
channels acting in between the sequence of measurements to transfer
the quantum state between two parties. We connected sequential cor-
relations obtained in this scenario with pseudo-density matrices
(PDMs) via Lemma IV.1. This connection allows us to establish analo-
gies between the structure of spatial and temporal inequalities along
with local isometries involved. Furthermore, we show that maximal
violation of sequential inequality (10) Sy < N — 2 with N = 3 in the
generalized scenario implies unitarity of the channel (Pauli channel
with Kraus rank 1). This result could prove to be useful in implement-
ing quantum process tomography protocols,””*' which make the
assumption of working with unitary channels.

In the present work, our channel certification result is exact since
it requires exact maximal violation to certify the channel. However, to
be experimentally testable we require a robust version of our result, i.e.,
future work could explore if near-maximal violation [O(¢)] of the
inequality (26) certifies the near-unitarity of the Pauli channel with
small error [O(e'/")]. Furthermore, we focus on 2-dim. states and
measurements in our channel certification result owing to the fact that
all possible quantum channels in this scenario admit a parametrization
as a convex closure in the Pauli basis (29). It would be interesting to
see if such parametrizations could be found for the general case of d-
dim. states and measurements. This would pave the way for certifying
quantum channels in the general case.
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