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Geometric locality is an important theoretical and practical factor for quantum low-density parity-check
(gLDPC) codes that affects code performance and ease of physical realization. For device architectures
restricted to two-dimensional (2D) local gates, naively implementing the high-rate codes suitable for low-
overhead fault-tolerant quantum computing incurs prohibitive overhead. In this work, we present an error-
correction protocol built on a bilayer architecture that aims to reduce operational overheads when restricted
to 2D local gates by measuring some generators less frequently than others. We investigate the family of
bivariate-bicycle QqLDPC codes and show that they are well suited for a parallel syndrome-measurement
scheme using fast routing with local operations and classical communication (LOCC). Through circuit-
level simulations, we find that in some parameter regimes, bivariate-bicycle codes implemented with this

protocol have logical error rates comparable to the surface code while using fewer physical qubits.
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L. INTRODUCTION

The surface code, despite showing promising theoreti-
cal and experimental performance [1-6], is poorly suited
to large-scale fault-tolerant quantum computation due to
its large qubit overhead [4,7,8]. As a result, there has
been much effort on the development of high-rate quan-
tum low-density parity-check (QLDPC) codes [9]. As these
codes can encode multiple logical qubits, the required
space resources are reduced, in some instances, to a
constant [10].

One of the main drawbacks of these high-rate qLDPC
codes is that many long-range connections are needed
to implement their syndrome-extraction circuits [11-14].
This is a pressing issue for architectures such as supercon-
ducting qubits. There, many of the current designs only
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allow two-qubit gates to be performed between qubits that
are two-dimensional (2D) nearest neighbors, in which case
implementing these long-range entangling gates incurs sig-
nificant overhead [15,16]. Several recent proposals have
attempted to alleviate this overhead by taking advantage
of more complex electrical wiring of the superconducting
circuits [17,18], employing code concatenation [19,20] or
using bosonic cat qubits [21]. Implementing these long-
range connections is less problematic in architectures such
as neutral atoms, ion traps, or semiconductor spin qubits
that can implement long-range gates through qubit move-
ment [22—28]. However, since movement adds additional
complications associated with qubit decoherence, heating,
and loss, it is worthwhile to consider schemes that limit
the amount of movement. In the extreme case, one can
consider qubits that are fixed in space and solely use local
interactions to perform entangling gates. Such studies pro-
vide additional insight into the trade-offs associated with
engineering long-range connectivity through qubit motion
or more complex electrical wiring.

In this paper, we present an approach to qLDPC codes
that works without qubit motion or long-range couplers,
inspired by the so-called stacked model [13,29]. In this

Published by the American Physical Society
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model, we assume that the high-rate qLDPC codes of
interest have the property that after embedding the code
into Z?, the majority of the stabilizer generators are local;
i.e., their qubits are contained within a ball of constant
radius. We claim that most of the work required to per-
form the syndrome-extraction circuit with 2D local gates
comes from measuring the few nonlocal generators, so
measuring these generators less frequently has the poten-
tial to significantly reduce the time overhead, ideally at
only a minor cost to the error-correction performance of
the code. It has been shown in Ref. [29] that, for quan-
tum expander codes [30], neglecting to measure a large
percentage of generators could be reasonably tolerated;
however, the model considered in that work was nar-
row in scope, considering only a phenomenological noise
model and neglecting the problem of embedding the codes.
It is therefore unclear whether such codes lend them-
selves well to physical implementations. Nonetheless, the
authors’ results on partial error correction were optimistic
and have motivated the investigation of the more realistic
architecture developed in this work.

We propose and benchmark a realistic bilayer archi-
tecture suited for near- to medium-term superconducting
devices and other platforms with restricted qubit move-
ment. We find that the recently introduced bivariate-
bicycle (BB) qLDPC codes [18], coming from the larger
family of generalized bicycle qLDPC codes [31], are well
suited for both the stacked model and the bilayer archi-
tecture. These codes have natural embeddings into Z2
where the generators have a repeated structure, and in
some instances, a majority of the generators are geomet-
rically small. The first property makes them amenable
to a parallel syndrome-measurement scheme using rout-
ing with fast local operations and classical communication
(LOCC) and the second property makes them good candi-
dates for reducing overhead using the stacked model. More
generally, we develop bounds on how quickly syndrome
extraction can be performed in this manner and provide
an algorithm to do so. Overall, we find that over multiple
rounds of decoding, BB codes implemented in this archi-
tecture have error-correction performance comparable to
that of the standard (rotated) surface code, albeit only when
the parameters in the error model lie in certain regimes.

Our work stands as an alternative architecture that may
be more practical for near-term quantum computers with-
out the ability to move qubits. As such, it is not comparable
to schemes such as Ref. [23,24], which allow for qubit
movement. Several recent works have also proposed lay-
ered architectures [17,18]; however, their motivation is
in minimizing the number of crossings in the two-qubit
gate connectivity. They achieve this through the use of
long-range connections, the elimination of which is the
main imposed constraint of our work. References [19,20]
have presented asymptotically well-performing concate-
nated schemes that use only local connectivity; however,

the required overheads likely make them infeasible for
near- and medium-term quantum computers. In particular,
in Ref. [20], it is estimated that approximately 600 physi-
cal qubits would be needed per each logical qubit, which
is an order of magnitude more than what our architec-
ture needs to implement the [144, 12, 12]] Gross code [18],
with approximately 48 physical qubits per logical qubit.
Most closely comparable to our work is Ref. [15], which
has aimed to implement quantum expander codes with
local connectivity by using a similar teleportation-based
scheme. Whereas the authors arrived at a negative result,
the innovations in code choice, partial error correction, and
syndrome extraction using entanglement purification pre-
sented here allow us to obtain more favorable performance.
In general, our approach may be easier to implement, as
it only requires a bilayer architecture, local connectivity,
and relatively few qubits. Of course, it also comes with
challenges, which we discuss later.

The paper is structured as follows. In Sec. II, we give
the necessary background on quantum error correction and
introduce the architecture and routing assumptions that we
consider throughout the work. We also review the stacked
model and motivate the use of masking. In Sec. III, we
develop lower bounds on the routing time for our spe-
cific routing model and provide a greedy algorithm to
use in implementations. In Sec. IV, we develop an error-
correction protocol built on a bilayer architecture and then
culminate with circuit-level simulations comparing the
performance with the rotated surface code. We conclude
in Sec. V with a discussion.

II. BACKGROUND

A. Quantum error correction

Quantum error-correcting codes [32] are believed to be
necessary in order to run high-fidelity computations on
noisy quantum computers. Without them, errors would
accumulate throughout the course of a circuit and render
the output unreliable. At a high level, quantum error-
correcting codes allow us to redundantly encode quan-
tum information in a subspace of the full 2”-dimensional
Hilbert space and occasionally check to see if errors have
caused the information to leave this logical subspace.

Stabilizer codes [33,34] are a class of quantum error-
correcting codes defined by their stabilizer, an Abelian
subgroup of the Pauli group on n qubits that leaves the code
space invariant. Equivalently, the code space of a stabilizer
code is the joint 41 eigenspace of the generators of the sta-
bilizer § = (S§1,52,...,8;). For a quantum [[n, k,d]] code
with n physical qubits, k logical qubits, and distance d, the
number of linearly independent generatorsisr =n — k. A
stabilizer code is considered to be a quantum low-density
parity-check (qQLDPC) code if each qubit is in the support
of at most ¢ stabilizer generators and each generator has
weight at most ¢, where ¢ is a constant independent of n.
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FIG. 1. Circuits for measuring the eigenvalue of an X -type
generator (blue) and a Z-type generator (yellow). The Z-type
measurement presented here is a variation from the standard
circuit that uses controlled-Z (CZ) gates.

A stabilizer code is said to be a Calderbank-Shor-Steane
(CSS) code [35,36] if each generator is a tensor product of
X and 7 or a tensor product of Z and /. Although the sur-
face code is LDPC, the encoding rate k/n vanishes in the
limit as n — 00, contributing to its high overhead. Alterna-
tive qLDPC codes have asymptotically constant encoding
rates while maintaining or improving the ® (4/n) distance
scaling of the surface code [37—43].

From a stabilizer description of a quantum error correct-
ing code, one can define its Tanner graph T(S) = (V, U
Vs, E). There is a vertex g € ¥, for each data qubit and a
vertex s € Vs for each stabilizer generator. Two vertices
q € V,,s € Vg share an edge (g,s) € E if the generator s
acts nontrivially on qubit g. The Tanner graph of a qLDPC
code has degree at most a constant c.

To determine whether the encoded quantum information
has left the logical subspace, the eigenvalues of the stabi-
lizer generators are measured. There are several ways to
do this. The circuits depicted in Fig. 1 provide one of the
most straightforward approaches, which we use through-
out the paper. As the n data qubits are assumed to be in a
code state, we expect a +1 result when the ancillary check
qubit is measured. A —1 result indicates an error that anti-
commutes with that specific generator. These measurement
results constitute a classical syndrome that is then used as
input to a decoding algorithm to correct the errors.

B. Architecture

In this work, we consider an architecture in which qubits
are located on the vertices of an M x M grid, where M =
©(4/n). As is natural for current superconducting quantum
computing platforms, we assume that two-qubit gates can
only be performed between neighboring qubits on the grid.
Any two-qubit gate that interacts qubits that are not neigh-
boring is considered a long-range gate. Circuits that do not
have access to long-range gates are called 2D local circuits
and architectures that are restricted to these circuits are
called 2D local architectures. This definition generalizes
to architectures based on graphs other than the grid: given
a connectivity graph G = (¥, E) with data qubits located
on the vertices, the only allowed two-qubit gates are those
between qubits u,v € ¥V that share an edge (u,v) € E.
Similar restrictions arise if we disallow the slow move-
ment of atoms in neutral-atom devices, in which case the

only available two-qubit gates are those performed through
Rydberg-Rydberg interactions. This leads to an architec-
ture that can perform entangling gates on qubits that are
some distance R away, where R depends on the capabili-
ties of the device. We do not investigate this ability in this
work but we discuss it in Sec. V.

Implementing general quantum circuits on real archi-
tectures requires compilation into a form that respects the
connectivity constraints of the device. For the 2D local
architecture that we consider here, performing two-qubit
operations on qubits that are not adjacent requires permut-
ing them to be so. Doing this with SWAP gates requires
a circuit depth proportional to the distance between the
qubits. To implement stabilizer-generator measurements
such as those shown in Fig. 1, this means that each data
qubit must be moved to a position at which it can interact
with the check qubit, so one must wait for these permuta-
tions to complete before the eigenvalue can be measured.
This somewhat defeats the purpose of using qLDPC codes,
since a single syndrome can no longer be extracted with a
constant-depth circuit. As such, it is infeasible to perform
long-range stabilizer-generator measurements in this way
and we instead focus on an alternative method.

C. Teleportation routing

Routing is the task of permuting packets of information,
or tokens, on the vertices of a graph, using only interac-
tions on edges of the graph. In quantum routing, the tokens
are qubits and the graph is specified by the connectiv-
ity constraints of the architecture. Classical approaches to
routing are typically built from SWAP gates [44-46], which
can also be applied naturally to routing quantum data
[47,48]. However, more general quantum operations can
enable faster routing. In particular, measurement and clas-
sical feedback enable the use of entanglement swapping
to distribute entanglement and perform quantum teleporta-
tion, which can achieve speed-ups over SWAP-based rout-
ing for many permutations and underlying graphs [49-51],
with applications including error correction [52].

We assume the LOCC routing model described by
Devulapalli et al. [49], in which arbitrary single-qubit and
disjoint two-qubit quantum gates can be implemented in
a single time step, and we have access to fast single-
qubit midcircuit measurements and fast classical control
of single-qubit gates. Additionally, there are a constant
number of ancillary qubits for each data and check qubit,
connected as attached ancillas [53,54] or through stacked
vertical layers (see Sec. [V B). In LOCC routing, we can
perform protocols such as entanglement swapping [55] and
teleportation in constant depth. A specialization of LOCC
routing that focuses on qubit and gate teleportation [56]
is teleportation routing. During a single round of telepor-
tation, we perform parallel entanglement swapping along
multiple teleportation paths. Each vertex can be involved

010306-3



NOAH BERTHUSEN et al.

PRX QUANTUM 6, 010306 (2025)

in at most a constant number of paths, as we allow a con-
stant number of ancillary qubits per vertex. In this work,
we assume only one ancilla per data qubit and use the
stacked-vertical-layers model. This model allows direct
implementation of gates between ancillas and their corre-
sponding data qubits, as well as between ancillas the data
qubits of which are also directly connected [see Fig. 2(b)].

To perform long-range two-qubit gates, it is not neces-
sary to actually teleport the participating qubits to adjacent
locations; instead, it suffices to use the teleportation paths
to implement a long-range gate with gate teleportation. The
circuit shown in Fig. 2(a) allows us to implement arbitrar-
ily long CNOT gates in constant quantum depth, avoiding
the depth overhead of SWAP routing and any need to reverse
the operation. At the cost of utilizing ancillary qubits, this
lets us extract the syndrome of a single nonlocal generator
using only a constant-depth circuit.

D. Stacked model

The stacked model has recently been introduced as a
potential avenue to reduce overhead when implementing
qLDPC codes in architectures restricted to 2D local gates
[13,29]. In the stacked model, the stabilizer generators of
a quantum error-correcting code are partitioned into sev-
eral layers depending on the size of the ball containing
the qubits in its support. The lowest layer of the stack
contains generators that are local and the higher layers con-
tain nonlocal generators the interaction radius of which is
some function of the system size. For certain codes, most
of the generators are located at the bottom of the stack,
i.e., are mostly local, whereas only a small fraction are
large. When restricted to 2D local gates, the set of non-
local generators takes much longer to route and measure
than the local generators. Measuring the nonlocal genera-
tors less frequently than the local ones could significantly
shorten the syndrome-extraction time, at the cost of poten-
tially reduced error-correction capabilities. Note that the
layers in the stack do not correspond to physical layers
on hardware; instead, they are a conceptual tool for par-
titioning the generators into sets based on their geometric
size.

The concept of masking [29,57] formalizes using an
incomplete set of generators to perform error correction.
Measuring a subset of stabilizer generators corresponds
to choosing a subgroup of the stabilizer 7 C § and the
stabilizer generators that are not measured, S\7, are con-
sidered to be masked. Error-correction performance may
be degraded since the resulting syndrome may have less
information about the error than would be available by
measuring the full set of generators. During a circuit with
t=1,...,t error-correction rounds, we specify a sub-
group T; € § for each round; or, equivalently, we specify
the generators of S\7; that are masked. For generators
that were previously masked, unmasking them adds them

into the current subgroup and their eigenvalues are able
to be measured. A single generator may be masked and
subsequently unmasked many times over the course of a
circuit.

An important consideration for this model is the spe-
cific assignment of physical qubits in the architecture to
data and check qubits in the code, which can be consid-
ered a type of qubit placement [58] or qubit allocation [59].
This assignment can be thought of as an embedding of
the Tanner graph of the code in the architecture, where an
embedding for a graph G = (V,E) isamap n: V — ZP.
As an example, the Tanner graph for the surface code has
a natural embedding into Z? that allows for all of its gen-
erators to act on qubits within a constant radius; however,
one could instead assign data and check qubits to physical
qubits randomly, yielding generators that still have weight
4 but are no longer local. The difficulty of implementing
syndrome-extraction circuits is closely related to the cho-
sen embedding. In Sec. IV A, we discuss the embedding
problem for a specific class of codes.

To study the impact of nonlocality on the cost of
performing syndrome measurements, we must quantify
the notion of generator size and size frequency. We
parametrize the size of a given generator as M?, where 0 <
y < 1 and M is the linear size of the grid. For local gen-
erators, MY = O(1) implies a constant interaction radius,
while the largest generators can have interaction radii

gM € (M) (i.e., y = 1). For stabilizer codes, the num-
ber of independent stabilizer generators r is related to
the number of physical and logical qubits in the code as
n — r = k. For constant-rate codes, there are thus O(n) =
O(M?) independent generators, which can be parametrized
like M?#, with 0 < B < 1. With B = 1, we are considering
the problem of measuring every generator and with 8 < 1
we only consider some subset. We can describe the set
of generators as a whole by defining a function f (y) to
characterize the distribution of generators having size M7
The only constraint on f () is that it is a valid probabil-
ity distribution over the domain of y, fol fy)y =1.1n
practice, f () will depend on the architecture, embedding,
and parameters of the code family of interest [13,14].

A rough estimate of the amount of work required to per-
form the syndrome-extraction circuits for a given set of
generators is simply to count the two-qubit gates, which
in many cases is the leading contributor to the error bud-
get. In our routing model, this value is proportional to the
total length of the teleportation paths when implementing
long-range CNOT gates, which can be approximated as

1
total path length ~ M? ﬂ f(y)M"dy. (1)

Here, the M? factor comes from the fact that there are
O(M?) generators to measure in total and a single genera-
tor of size y requires a path length of M. If we choose to
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(a) The circuit to teleport a controlled-NOT (CNOT) gate through a chain of n qubits using only 2D local gates. The depth of

the circuit is constant regardless of the length of the chain. (b) The proposed architecture to implement nonlocal high-rate QqLDPC codes
using only 2D local gates. The architecture consists of two qubit layers: the bottom layer contains the data qubits and ancilla qubits
allocated to perform syndrome measurements, while the top layer contains extra ancilla qubits used to perform long-range CNOT gates.
Each layer has only 2D local connections and the only connections between the layers are between qubits that are vertically adjacent.
To perform a CNOT gate on two spatially distant qubits, the circuit from (a) is used along the paths of qubits highlighted in red. Multiple
long-range CNOT gates may be performed in parallel, as long as the paths act on disjoint sets of qubits. (c) An example of the embedding
for a [[42, 12, 2] BB (error-detecting) code constructed with £ = 7,m = 3 and by matrices 4 = 1 +y2 4+ y, B = 1 + x> + x. The check
structure, which is identical for all checks of both types up to mirroring, translation, and boundary conditions, is highlighted in gray.

only measure generators below a certain size y’, this corre-
sponds to simply evaluating the integral up to y’. We might
also want to consider measuring the smallest x% of gener-

ators, in which case one can solve x = 100 foy’f (y)dy to
find the appropriate value of ¥’ and then proceed in the
same way.

III. ROUTING BOUNDS

Previous work by Delfosse ef al. [15] has developed
lower bounds on the depth of Clifford circuits required
to measure commuting Pauli operators. In this section,
we derive similar bounds, taking advantage of additional
information about the geometric size of the operators.
These bounds do not hold in general, but are instead
specific to the teleportation routing model discussed in
Sec. [I C. We assume that there is a fixed layout of the data
and check qubits that gives rise to a specific generator-size
distribution f" (). This is to avoid scenarios such as scram-
bled surface codes, where the difficulty of implementing
the syndrome-extraction circuits could be greatly reduced
by permuting the qubits.

Claim 1. Let C be a 2D local circuit measuring M?#
commuting Pauli operators the radii of which are greater
than M7 after embedding them in an M x M grid. Then,
for teleportation routing,

depth(C) = Q (M*#+7=2). ()

Proof. In our routing model, the maximum total length
of the teleportation paths in a single time step is O(M?),
since only a constant number of ancillary qubits per data
qubit are allowed, and there are ® (M?) edges in the grid
graph. The cost of measuring an operator of size 2(M?7)
is dominated by implementing the long-range CNOT gate
between its two furthest qubits. Although this can be
done in constant depth using a dynamic circuit [Fig. 2(a)],
it requires a teleportation path of length Q(MY). Con-
sequently, routing and measuring this one operator uses
2 (M?) edges of the O(M?) available edges. Measuring all
M? operators thus requires Q (M?#+7) edges. In the best
case, we utilize all available edges in each circuit layer,
giving a circuit depth of Q(M28+v-2), |

In practice, it will often be the case that the edges are
not optimally used, as illustrated in Fig. 3. We can extend
this idea to the general case of an arbitrary distribution of
generator sizes.

Claim 2. Let C be a 2D local circuit measuring M?#
commuting Pauli operators the radii of which follow a
probability distribution f (y) after embedding them in an
M x M grid. Then, for teleportation routing,

1
depth(C) = Q (M23—2 fo f(y)M”dy). (3)

Proof. Just as in Claim 1, we can lower bound the cir-
cuit depth by summing the lengths of the teleportation
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FIG. 3. The depth from greedy routing versus 2.5 times the
theoretical optimal depth to route the X -type generators using
a single layer of ancillary qubits. The code examples are drawn
randomly from the family of BB qLDPC codes (see Sec. IV A).

paths required to measure the set of operators. We now
have operators of different sizes, where the fraction of
operators of a certain size is determined by the probability
distribution f ().

Thus, for a given y, there are a number of opera-
tors proportional to f (y)M?# that each require M” edges
to measure. Since 0 < y < 1, the total teleportation path
length needed to route and measure every operator is

1
M* ﬁ F M7 dy. )

Since we again have O(M?) edges in the grid available in
each layer of the circuit, the total circuit depth is lower
bounded as in Eq. (3), as desired. |

A. Greedy routing

SWAP routing is a straightforward approach to compil-
ing circuits for quantum hardware with interaction con-
straints. In practice, this can be done using an algorithm
that tries to perform the circuit using as few SWAP gates
as possible [47,60-62]. As midcircuit measurement and
long-range entanglement generation become more reli-
able [63], teleportation routing may become a more viable
option to move qubits and perform long-range gates. Here,
we present a simple greedy algorithm to route an arbi-
trary set of operators under the routing and architecture
assumptions of Secs. I C and II B, respectively. An oper-
ator consisting of a tensor product of single-qubit Paulis,
such as a stabilizer generator, can only be measured once
each qubit in its support has been routed. That is, a telepor-
tation path is prepared and a long-range entangling gate
is applied between the qubit and a readout ancilla qubit.
Once all required gates have been applied, the operator is
said to have completed routing and the readout qubit can
be measured to obtain the eigenvalue of the operator. The
algorithm is described below in Algorithm 1.

ALGORITHM 1. Greedy routing.

1: while there are still operators to measure do
Sort the operators in decreasing order according to
how many of their qubits have completed routing.
3: for incomplete operator 0; = 1,2,... do

4: for qubits 7 = 1,2, ... of operator o; do

5: Use breadth-first search to find a teleportation
path for qubit 7 to the corresponding readout ancilla
qubit.

6: If no path exists, continue.

7: end for

8: end for

9: Perform long-range entangling gates on qubits that

found a teleportation path.

10: Measure the readout qubit of operators that have com-
pleted routing.

11: end while

The circuit operations of a single iteration can be
executed in parallel, so each iteration performs only a
constant-depth circuit. Therefore, the total circuit depth of
the routing procedure is proportional to the number of iter-
ations. Instead of minimizing the gate count, the intent of
this algorithm is to minimize the circuit depth—and sat-
urate the bound of Claim 2—by maximizing the usage
of teleportation paths. This is only possible if the par-
tial measurements between iterations commute, such as
when measuring the generators of a single type in a CSS
code, in the standard surface-code syndrome-extraction
circuit [64] or in the depth-7 BB-code measurement cir-
cuit [18]. The syndrome-extraction circuits that we use
route every Z-type check and then route every X-type
check.

To benchmark the performance of the algorithm, we
draw random examples of BB codes (see Sec. [V A) and
route the X -type generators while restricted to a single
layer of ancillary qubits. For comparison, we compute the
optimal routing depth according to Claim 2. In Fig. 3, we
show the results of these simulations, providing evidence
that the greedy routing algorithm nearly saturates Eq. (3).
To obtain the constant multiple in Fig. 3, we consider the
smallest eight code instances and perform a fit between
the asymptotic lower bound and the depth returned from
the greedy routing algorithm. This constant times the the-
ory lower bound matches closely with the routing time
of small code instances; however, we begin to see the
algorithm routing depth deviating as we increase the
block length, indicating nonoptimal performance. For code
sizes of practical interest, this algorithm may be a viable
option to optimize teleportation routing. Certain codes,
such as the BB codes that we discuss in Sec. IV, have
additional structure that allows us to manually find rout-
ing schedules that outperform those found by the greedy
algorithm.
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IV. BILAYER ARCHITECTURE

A. Bivariate-bicycle codes

In this work, we investigate the recently introduced BB
qLDPC codes [18], which come from the wider family
of generalized bicycle codes [31]. Let I; be the £ x £
identity matrix and let Sy be the £ x £ cyclic permutation
matrix, which is obtained by shifting the columns of Ty one
position to the right. Also let

x=8®L, and y=1I0 QS (5

for integers £, m. We then define two matrices,

A=A1+A4A2+43 and B=B +B+ B3, (6)
where A; and B; are powers of x or y. Here, we perform all
arithmetic over Z,. Using 4 and B, we can construct the
CSS-type BB code QC(4, B) with X - and Z-parity checks
that, respectively, take the form

Hy =[A|B] and Hz =[B"|4"]. (7

To define a valid stabilizer code, we require that all X -type
checks commute with all Z-type checks, which translates
to the condition Hy - Hg = AB + BA = 0. Since [x,y] =
0, this condition is satisfied.

For certain choices of 4; and B;, the resulting BB code
has an embedding into Z? that yields checks that act on
four nearest-neighbor qubits and two distant qubits (see
Appendix A). Another useful property of generalized bicy-
cle codes is the repeated parity-check structure: given one
check, other checks of the same type can be obtained with
vertical and horizontal shifts on the grid, up to periodic
boundary conditions. Opposite-type checks are obtained
by mirroring and again performing horizontal and vertical
shifts. In Fig. 2(c), we show an example of an embedding
for a [[42,12,2]] code constructed with £ =7 and m = 3
and by matrices A = 1 +y? +y and B =14 x> 4+ x. The
check structure for the weight-6 X - and Z-type generators
is indicated by the gray outline.

These natural embeddings make it straightforward to
search for codes where the check structure is geometrically
small. While the checks are not entirely local due to the two
nonlocal qubits in their support, appropriately choosing £
and m can make the periodic boundary conditions induce
generators that are comparatively much larger. This can
be done by letting £ > m, as illustrated in Fig. 10. In the
resulting generator distribution, the majority of the checks
are geometrically small. In the context of the stacked
model, the generators that are induced by the boundary
conditions are those that are measured less frequently.

Table I lists BB codes found by computer search which,
through simulations similar to those of Ref. [29], display
good numerical performance. For each code, every valid

embedding has been simulated in a simplified version of
the protocol in Sec. IV D in order to find the embedding
that yields the best masked error-correction performance.
Choosing an embedding has determined the percentage of
generators induced by the long boundary. This percentage
is listed in Table I in the “Mask percentage” column. To
our knowledge, the codes presented here are new, with
the exception of the [144, 12, 12]] code, which has been
reported in Ref. [18].

B. Syndrome-extraction circuits

As detailed in Sec. 11 B, the main difficulty in imple-
menting nonlocal qLDPC codes on 2D local architectures
is the need to perform nonlocal two-qubit operations. To
address this issue, we propose a physical implementa-
tion based on the teleportation-routing model described in
Sec. II C. The architecture, as depicted in Fig. 2(b), con-
sists of two layers of qubits. The bottom layer contains
the data qubits and ancillary qubits to perform syndrome
measurements (check qubits), laid out using an embedding
that maximizes the decoding performance while minimiz-
ing the number of long-range generators. The top layer
contains ancilla qubits to aid in the implementation of
long-range CNOT gates. In each layer, the only allowed
two-qubit operations are between neighboring qubits and
operations between layers are only allowed between qubits
that are vertically adjacent, i.e., at the same (x, y) location.

A bilayer architecture is a feasible design requirement
for several types of quantum computers. As discussed in
Ref. [18], it is difficult, yet not unreasonably so, to modify
the current generation of superconducting hardware to sup-
port a second layer. In movement-restricted neutral-atom
devices, one option is to use dual-species Rydberg arrays
[66—68], where the data layer is made up of one species
and the ancilla layer is made up of the other. Alternatively,
for single-species arrays, it may be practical to store mul-
tiple qubits per atom, using a combination of nuclear and
electronic [69,70] or motional qubits [71].

To implement a CNOT gate between a data qubit and
a distant check qubit, we use the constant-depth circuit
shown in Fig. 2(a). A number of ancilla qubits equal to
the length of the CNOT gate are needed and so qubits from
the upper layer are utilized, as illustrated in Fig. 2(b). Mul-
tiple long-range CNOT gates may be performed in parallel
as long as the paths act on disjoint sets of qubits. Given a
set of CNOT gates to perform, an order that attempts to min-
imize the total depth of the circuits can be found using the
greedy routing algorithm introduced in Sec. [I1 A. Alterna-
tively, we can utilize the repeated check structure of the BB
codes to manually come up with highly parallelized order-
ings; Fig. 4 shows an example of how the Bell pairs needed
for the long-range CNOT gates (red highlighted paths) can
be implemented in parallel (see also Fig. 9). The “Routing
steps” column in Table I indicates the number of routing
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TABLE 1. Examples of BB qLDPC codes found through a computer search. The code distances have been computed using the
QDistRnd GAP package [65], with 1000 information sets and MINDIST = 0 to obtain the actual distance. The “Embedding” column
reports the specific embedding into Z?2 used for that code (see Appendix A). The “Mask percentage” column denotes the percentage
of generators that are “large,” i.e., induced by the long boundary and masked during a portion of the error-correction rounds. The
“Routing steps” column indicates the number of routing rounds required to route, purify, and measure the short-range and long-range
generators, respectively. Algorithm 1 has not been used to determine the circuits; instead, the repeated generator structure of the BB
codes has allowed us to find circuits by hand. The actual circuit depth is 11 times greater due to the Bell-pair generation (depth 6),

purification (depth 2), and implementation of the long-range CNOT gate (depth 3).

[, &, d] &Lm A B Embedding Mask percentage (%) Routing steps
[72,8,6] 12,3 x4yl 4y? 14x! 4 x! (4247, B, BY) 25 11,6
90,8, 6] 9,5 XBytty Py x4 X7 (4243 ,B2B7) 22.22 9,5
[120,8,8] 12,5 x4yt 4y 14+x4x? (4245 ,B1B,) 25 11,6
[150,8,8] 15,5 xS 4+y?4y? 2 4 x7 4 x6 (4,4 ,BlB%_} 26.66 11,6
[144,12,12] 12,6 x4y 4y? 3 4 x+x? (4247,B1B;) 33.33 12,8
[196,12,8] 14,7 x84 5 46 14x*4xB (4245,B18B;) 3571 16,15

rounds required to route, purify, and measure the short-
range and long-range generators, respectively, for these
hand-designed orderings. This repeated parity-check struc-
ture is also useful for implementing generalized bicycle
codes with reconfigurable atom arrays [24] and bosonic cat
qubits [21].

Remote CNOT gates implemented in this way have an
error rate proportional to the length of the chain. For
short distances, the resulting error rate is not much worse
than the native two-qubit CNOT error rate; however, larger
chains will be prohibitively noisy. To remedy this, we can
apply entanglement purification [72,73] to the noisy Bell
pairs in the ancilla layer. In Fig. 4, we outline the origi-
nal purification scheme as proposed by Bennett ef al. [72].
The protocol uses additional “donor” Bell pairs (pink high-
lighted paths) to create “source” Bell pairs (red highlighted
paths) with higher fidelity. This is done by performing
CNOT gates between the ends of the source and donor pairs,
measuring the ends of the donor pairs in the computational

(a)

Do

IT—GH['—@H['—E

FIG. 4. Implementing multiple long-range Bell pairs in paral-
lel for a BB code. The “source” red highlighted Bell pairs are
purified using the Bennett protocol [72]. (a) CNOT gates are per-
formed between each end of the source and the pink “donor”
Bell pairs. (b) Each end of the donor Bell pair is measured and
the results are compared classically. If the measurements agree,
the source Bell pair is kept and used; otherwise, it is discarded.

basis, and then comparing the measurement results clas-
sically. If the results agree, the source Bell pair is kept;
otherwise, it is discarded. Averaging over cases in which
the source Bell pair is kept, it has a higher fidelity than
an unpurified pair; however, in the cases in which it is
discarded, the corresponding long-range CNOT gate cannot
be performed. We have the option of either reattempt-
ing the purification process, implementing the long-range
CNOT with the flawed Bell pair, or giving up on the
long-range CNOT gate (and ultimately the corresponding
generator-syndrome measurement) altogether. Since we
already intend not to measure every generator at every
error-correction round, this last option is most appropriate.
In the context of the bilayer architecture, both donor and
source Bell pairs are routed through the ancilla layer. In
practice, this means that fewer long-range CNOT gates can
be implemented in parallel, since the purification process
uses additional teleportation paths.

Although we now have a way to implement long-
range CNOT gates, measuring every stabilizer generator in
this manner incurs additional overhead (see Sec. [V D).
Instead, we can reduce the time overhead by applying the
stacked model and choosing to measure the costly large
generators less frequently than the smaller ones. The fre-
quency with which the long-range generators are measured
can be tuned, with more frequent measurements potentially
correcting more errors but increasing the time needed to
implement error correction.

In the phenomenological noise model, depolarizing
errors are introduced with probability p only at the begin-
ning of each error-correction round. The syndrome is then
noiselessly computed using the parity-check matrix and the
randomly drawn errors. Additional errors may be intro-
duced to the syndrome to represent measurement errors.
To correct the qubit errors, the syndrome is given as input
to a decoder that attempts to deduce the most likely error.
Decoding is considered a success if the guessed error is
equivalent to the actual error up to a stabilizer element.
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In reality, errors may occur at any operation in the
syndrome-extraction circuit, including qubit initialization,
single- and two-qubit gates, measurements, and idle loca-
tions. To model this, we instead consider the standard
circuit-based depolarizing-noise model [3], where for each
operation in the circuit, an error is introduced with some
probability p. For example, an error arising from a CNOT
gate is the gate followed by one of the possible 15 non-
identity two-qubit Pauli products on the control and target
qubits. Although it is possible to decode circuit-level noise
using the same method as for phenomenological noise,
it has been shown to be advantageous to instead use a
space-time circuit-level decoder [23,74]. Here, the goal is
to guess the error at specific locations in the syndrome-
extraction circuit. Decoding is considered a success if
the guessed errors have the same effect on the logical
observables as the actual error.

The input to the space-time decoder is not the syndrome
of the error but, rather, the parities of the syndrome mea-
surements between error-correction rounds. In the absence
of errors, the syndrome between rounds should be con-
stant, i.e., have parity of zero. A parity of one indicates that
an error has occurred at some point in the previous error-
correction round. Following the notation of STIM [75,76],
we define the ith defector at time f to be the parity of the
syndrome of the current and previous rounds D = ¢* @
0}((—1), where O'i(t) is the ith bit of the syndrome at time .
However, in the stacked model, we have the possibility of
neglecting to measure certain generators for some num-
ber of rounds, f,. As such, detectors for these generators
must compare the parities of the corresponding syndromes
t,, rounds apart, D = o @ ¢~ . Each detector allows
us to determine whether errors have occurred in a specific
detecting region [76] of the circuit. In Fig. 5(a), we show
a simple example of a classical repetition-code circuit with
its associated detectors and highlighted detecting regions.

C. Space-time decoder

To correct for errors in the circuit-level model, we relate
the detectors with errors in the circuit by constructing a
bipartite graph. Let the detectors over T rounds be the
check nodes and let every possible single- and two-qubit
error over the circuit make up the bit nodes. A detector
and error are connected by an edge if the error causes
the detector to activate. As a practical note, many errors
have the same action on the detectors and logical observ-
ables, so they can be consolidated into a single node. Since
each error in this set has the same action on the final
logical observables, one can choose an arbitrary repre-
sentative when checking for decoding success. Similarly,
some errors will have no effect on the detectors or logi-
cal observables and as such are not included as a node in
the bipartite graph. This bipartite graph can be considered
the Tanner graph of a classical code and can be decoded

FIG. 5. (a) The detectors for a portion of a bit-flip repetition
code. The highlighted regions represent the detecting region [76]
of a detector, the set of errors that would cause the detector to
be triggered. The corresponding detectors are then the parities
of the measurements in that region. Since syndrome j has been
masked for a round, the detector now represents the parities of
the measurements in the region that spans three rounds. (b) The
bipartite space-time decoding graph of the circuit. The check
nodes of this graph are the detectors and the bit nodes are pos-
sible errors during the execution of the circuit. A detector and
error are connected by an edge if the error causes the detector
to be activated. Errors on the boundary of two detecting regions
cause both detectors to trigger.

by any appropriate decoder to deduce the errors that have
occurred. In Fig. 5(b), we show the bipartite-decoding
graph corresponding to the circuit of Fig. 5(a). The classes
of equivalent errors from each detecting region constitute
the bit nodes of the graph and are connected by edges to
the appropriate detectors. For a more detailed discussion
of the circuit-level noise decoding process, see Ref. [18].

D. Circuit-level simulations

We now present the results of circuit-level error-
correction simulations using the class of BB quantum
LDPC codes and the architecture defined in Sec. 11 B. Pre-
vious simulations of BB codes have shown that they have
greatly outperformed surface codes in terms of overhead
under specific architecture assumptions [18,24]. Here, we
show that BB codes implemented with 2D local gates in
the proposed bilayer architecture have comparable per-
formance to surface codes that encode the same number
of logical qubits and have roughly the same number of
physical qubits.

For the following simulations, we use STIM [75] to con-
struct the circuits and build the space-time bipartite graph
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used for decoding. As such, we consider a circuit-level
noise model in which errors occur independently on dif-
ferent circuit operations. For a physical error rate p—in
this work, we consider p = 0.1%—single-qubit gates have
probability p/10 of experiencing the single-qubit depo-
larizing channel; two-qubit gates have probability p of
experiencing the two-qubit depolarizing channel; measure-
ment results have probability p of being flipped; qubit
reset operations have probability p/10 of preparing the
[1) state instead of the |0) state; and idle qubits experi-
ence a depolarizing channel with probability p/50. The
assumed single-qubit, two-qubit, and measurement error
rates are comparable to the performance of current ion-trap
[26,77,78] and superconducting [79] quantum computers.
However, this last condition on the idle-qubit error rate is
somewhat optimistic and is around an order of magnitude
better than the idle error seen on production devices. We
comment on this assumption in Sec. V.

For ease of implementation, we first separately perform
circuit-level simulations of the entanglement-purification
protocol. The simulation consists of implementing two
noisy long-range Bell pairs using a circuit similar to
that depicted in Fig. 2(a) and then performing the
entanglement-purification protocol of Bennett ef al. on the
two pairs. In this simplest version of the protocol, failures
are not reattempted and only a single donor Bell pair is
used. Simulating the protocol many times allows us to esti-
mate the probability that the purification protocol succeeds
and, if so, the fidelity of the purified Bell pair. In Fig. 6(a),
we display the results of these simulations for long-range
Bell pairs of different lengths under the circuit-level error
model described above.

During syndrome extraction, if the entanglement purifi-
cation protocol for any of the long-range CNOT gates fails,
we mask the corresponding generator instead of reattempt-
ing the purifications. We can then estimate the probability
that the syndrome of a generator is available, i.e., all
the required purifications for that generator succeed. If the
purifications do succeed, then we can also estimate the
error rate of the resulting long-range CNOT gate from
the fidelity of the Bell pair. In the full circuit, we then
implement a direct CNOT with this error rate to represent
the entire procedure. In Fig. 6(b), we illustrate what this
means in practice: assuming that the long-range generators
are unmasked every five rounds, the first four rounds have
these long-range generators masked (hatched fill). Addi-
tionally, due to failures of the entanglement-purification
protocol, some short-range generators are also masked,
even though we had planned for them to always be avail-
able. We note that these random failures are not expected
to greatly impact the performance of the code, as it is
unlikely that one generator will fail several rounds in a
row. Thus, even if there are missed errors, they will likely
be corrected when the generator does succeed in routing.
In the fifth round, the long-range generators are unmasked
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FIG. 6. (a) The results of circuit-level simulations of the

entanglement-purification protocol of Ref. [72] for Bell pairs of
increasing length. Two long-range Bell pairs are created using
a noisy circuit similar to that of Fig. 2(a) and then purified
with the noisy circuit depicted in Fig. 4. The success probabil-
ity of the purification and the resulting Bell purity if successful
is shown for 100000 samples. (b) An example depiction of
generator masking (indicated by a hatched fill) over several error-
correction rounds being affected by the entanglement-purification
protocol failing. In this example, the long-range generators are
unmasked after five rounds.

and attempts are made to measure them, but it is only if
purifications succeed that can we actually obtain their syn-
dromes. Note that with this simple purification scheme, the
long-range generators are less likely to succeed, since the
necessary Bell pairs are between more distant qubits and
more prone to failure.

For the full error-correction protocol, we begin each
circuit with a single noiseless round to initialize the log-
ical subspace. We then perform f noisy error-correction
rounds using the syndrome-extraction circuits defined in
Sec. IV B. As the short-range generators are easier to mea-
sure, we attempt to measure them every round, whereas the
costly long-range generators are unmasked and attempted
every five rounds. As described above, we additionally
mask both the short- and long-range generators with a
probability equal to that of at least one of the required
purifications failing. In the cases in which all purifications
for a single generator succeed, we apply the two-qubit
depolarizing channel after each CNOT gate with an error
rate equal to that of a long-range CNOT gate performed
using a Bell pair of the appropriate distance. 1dling error
rates are estimated using the number of steps needed to
route and purify the source and donor Bell pairs for a
given set of generators (see Fig. 9 and Table I). As each
step consists of Bell pair generation (depth 6), purifica-
tion (depth 2), and implementation of the long-range CNOT
gate (depth 3), the actual circuit depth is 11x greater. To
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represent idling errors, a depolarizing channel is applied
at the beginning of each error-correction round to every
qubit with probability equal to the total circuit depth times
the idle error rate. Additionally, a depolarizing channel is
applied to every qubit with probability p = 0.1% at the
beginning of each round. Before measuring the logical
observables, we noiselessly extract the full syndrome one
last time. The corresponding space-time bipartite graph is
then generated and the errors are sampled and decoded.

In this work, we use a decoder based on belief prop-
agation and ordered-statistics decoding (BP OSD) [80—
82], which consists of the min-sum BP decoder followed
by an order-10 combination-sweep OSD postprocessing
step. Performing real-time decoding using BP and higher-
order OSD postprocessing may be infeasible within the
fast cycle time of superconducting quantum computers;
however, it has been shown that good decoding perfor-
mance for BB codes can be achieved while using less
computationally expensive OSD parameters [83].

In Table Il and Figs. 11(a) and 11(b), we show the results
of these simulations for several codes listed in Table 1.
As a comparison, we perform the same simulations with
the rotated surface code, which has parameters [[dz, 1.d].
To decode, we follow the same process as described in
Sec. IV C but instead use the minimum-weight perfect-
matching decoder [84]. As the BB codes encode multiple
logical qubits in a single block, multiple copies of the sur-
face code must be used to achieve the same number of
logical qubits. If psc is the logical error rate of simulating
a single rotated surface code for ¢ error-correction rounds,
then k copies of the surface code have a logical error rate

psck =1 — (1 = psc)*. (8)

In addition to the logical error rate, another important per-
formance metric is the number of qubits used to achieve
it. For the BB codes and the bilayer architecture, this
includes the ancillary check qubits as well as the entire
routing layer, which for an [[n, k,d]] code uses 4n qubits
in total. The rotated surface code uses d*> — 1 additional
check qubits, which brings the total number of qubits to
2d” — 1 for each copy. The total number of qubits used is
listed together with the code parameters in Fig. 11. The
error bars on the data points are calculated using the stan-
dard error when sampling from a binomial distribution
Plog(1 — prog) /N, where N is the number of collected
samples. Due to the large number of shots taken, N ~ 103,
the error bars in Figs. 11 and 12 are nearly invisible.
Additionally, we plot a fit of

Plog=1—(1—ep) 9

for both the surface and the BB codes, from which we can
extract the logical error rate per round, €.

TABLE II. The code parameters, the total number of qubits
used, and ¢; as extracted from Eq. (9) for the simulations
described in Sec. IV D. The code parameters shown in bold cor-
respond to BB-code instances. The code parameters not in bold
correspond to copies of the rotated surface code.

[n, &, d] Qubits €r

[128,8,4] 248 14x1034+12x 107
[72,8,6] 288 1.6 x 1073 +£3.0 x 1073
[90.8, 6] 360 89 x107*4+2.0x 1073
[200,8,5] 392 20x 10744+ 6.5 x 1077
[120,8,8] 480 12x 1074 4+2.0x 10~
[288,8,6] 568 9.5x 1075 +£25x%x 1077
[150,8,8] 600 53x1054+13x10°°
[392,8,71 776 20x 1075 +£1.5x 1077
[144,12,12] 576 1.6 x 107 4.6 x 10~
[[300,12,5] 588 30x 1074 4+98 x 1077
[196,12,8] 784 79 x 1075423 x 107
[432,12,6] 852 14 x 1074 4£3.7 x 1077
[588,12,7] 1164 29x 1075 4+£23 x 1077

The smallest BB codes encoding k = 8 logical qubits
are outperformed by surface codes that use fewer phys-
ical qubits. However, increasing the block length yields
BB codes that surpass the performance of similarly sized
surface codes. This is illustrated in Fig. 7, where we see
the BB codes achieving a lower logical error rate per
round than the surface code while utilizing fewer qubits.
Increasing the number of logical qubits to kK = 12, the BB
codes and the proposed architecture immediately outper-
form the surface codes in terms of logical error rate and
space overhead. Compared to 12 patches of a [[36, 1, 6]
rotated surface code using a total of 852 physical qubits
and a logical error rate per round of ¢; = 1.43 x 107, we
find a [144, 12, 12] BB code using 576 qubits that matches
the performance, with e, = 1.56 x 10~4. Additionally, we
find a [196, 12, 8] code using 784 qubits that outperforms
it with ¢, = 7.89 x 10~2. At this scale, the improvements
are not so drastic but we expect to see greater overhead
benefits as the block length and number of logical qubits
increase.

We now vary the interval at which the long-range gen-
erators are measured, the results of which are also shown
in Fig. 11(c). For the [90, 8, 6] code, there are 44 (not nec-
essarily independent) generators of a single type. Using a
routing schedule that has been found by hand, all 35 short-
range generators of a single type can be routed, purified,
and measured in nine steps; whereas it takes five steps to
route, purify, and measure the remaining ten long-range
generators of the same type. Measuring the 35 short-
range and ten long-range generators of the opposite type
requires an additional nine and five steps, respectively.
This means that measuring the long-range generators every
five error-correction rounds requires a circuit depth that
is 28.5% shorter than if the long-range generators were
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FIG. 7. The extracted logical error rate per round, ¢, as a func-
tion of the total number of qubits used (data qubits plus all ancilla
qubits) for several BB- and surface-code instances. The data are
tabulated in Table II. We also include simulation results in the
no-idle error regime, as indicated by the black lines; these results
are tabulated in Table III.

measured every round (4-2-942- (5 +9) = 100 steps
versus 5 - 2+ (5 4+ 9) = 140 steps), at a negligible increase
in the logical error rate per round from ¢, = 8.41 x
10~* to 8.92 x 10~*. Increasing the size of the code to
[196, 12, 8], we again see negligible differences in logical
error per round performance between the two measure-
ment schedules, from ¢; = 7.41 x 10~ to 7.89 x 102,
with the additional benefit of a 32.0% decrease in the depth
of the syndrome-extraction circuit when measured every
five rounds. The two codes consist of 22.22% and 35.71%
long-range generators, respectively, yet both remain con-
sistent between long-range measurement intervals. As the
block length increases, so does the discrepancy between
the measurement times of the short- and long-range gen-
erators, increasing the circuit-depth savings. Additionally,
this discrepancy would disproportionately introduce more

TABLE III. The code parameters, the total number of qubits
used, and ¢; as extracted from Eq. (9) for the simulations
described in Sec. IV D, albeit with no idle error. The code param-
eters shown in bold correspond to BB-code instances. The code
parameters not in bold correspond to copies of the rotated surface
code.

[, &, d] Qubits €r

[72,8,6] 288 36x 1074 4£49 x 107
[90.8, 6] 360 20x 1074 £33 x 107
[200,8,5] 392 20x 1074 £ 6.5 x 1077
[120,8,8] 480 1.3x 1075 4£82 x 1077
[288,8,6] 568 9.5x 105 £25x 1077
[150,8,8] 600 59x10764+24 x 1077
[392,8,71 776 20x 105 £ 1.5 x 1077
[512,8,8] 1016 75x 1076443 x 1078
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FIG. 8. The percentage change in the circuit depth, compared
to a circuit that always measures every generator, as a function
of the number of rounds that have elapsed between long-range
generator measurements. The horizontal solid red lines indicate
the potential maximum reduction in the circuit depth for the two
BB-code instances. The gray vertical line highlights the depth
savings achieved by measuring the long-range generators every
five error-correction rounds, as done in Figs. 11(a), 11(b), and 12.

errors during the long-range measurement rounds, poten-
tially making it more efficient to measure these large
generators even less frequently. However, this behavior is
highly dependent on the idle error rate and changing the
idle error rate may cause the two curves to deviate.

Achieving more significant reductions in the circuit
depth requires measuring the long-range generators much
less frequently, as shown in Fig. 8. We display the poten-
tial circuit-depth savings for two BB-code instances as
a function of how many error-correction rounds elapse
between measurements of the long-range generators. The
horizontal red lines indicate the maximum potential sav-
ings, corresponding to a schedule where the long-range
generators are only measured once at the end of the cir-
cuit. For example, the [[144,12,12] BB code requires
16 (15) steps to measure the short- (long-) range gen-
erators of a single type, which gives a maximum depth
saving of 48.4%. When measuring every five rounds, as
in Figs. 11(a), 11(b) and 12, we see circuit-depth savings
of 38.7%, indicated by the vertical gray line. Measuring
the long-range generators very infrequently will signifi-
cantly degrade the error-correction performance and may
not be worth the reduced circuit depth. Instead, it may
be more advantageous to measure the long-range gener-
ators relatively frequently, e.g., every two to five rounds;
in that regime, we still see considerable circuit-depth sav-
ings (50—80% of the theoretical maximum) but the impact
on the logical error rate is negligible.

Even with the reduced idle error rate that we consider
here, idle errors are a significant source of error, especially
on rounds where the long-range generators are measured.
In Table III and Fig. 12, we perform the same simulations
as described above but do not apply idling errors. Due to
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their short syndrome-extraction circuit depths, the surface
codes are unaffected by the decrease in the idle error. How-
ever, we now find that all BB-code instances achieve better
logical error rates than surface codes while using fewer
physical qubits, as shown in Fig. 7. Indeed, the [150, 8, 8]
code using 600 physical qubits sees an 8.8 x improvement
in the logical error rate per round, from ¢, = 5.31 x 1073
to 5.9 x 1075, and now outperforms eight patches of a
[64, 1, 8] rotated surface code using 1016 physical qubits
with ey = 7.5 x 1076, Achieving negligible idle error rates
may not be feasible but this illustrates the regime in which
our protocol performs best.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a bilayer architec-
ture for implementing nonlocal qLDPC codes on quantum
devices that are restricted to 2D local gates. We have
shown that BB codes are well suited for such an archi-
tecture and we have described a parallelizable syndrome-
measurement scheme that makes use of the geometric
parity-check structure of the codes. Through circuit-level
simulations of a multiround decoding protocol, we have
found that BB codes attain comparable logical error rates
to that of the rotated surface code while using fewer phys-
ical qubits. Furthermore, by applying the stacked model
and masking, we have achieved a significant decrease in
syndrome-extraction time with a negligible impact on the
error-correction performance.

However, there are a number of challenges that must be
considered in a physical implementation of this protocol.
Perhaps the most notable issue is the depth of the circuit
required to perform even a single syndrome extraction.
Implementing a single long-range CNOT gate requires con-
structing the long-range Bell pair, purifying it, and using
it to implement a CNOT between a data qubit and check
qubit. Although several CNOT gates can be implemented in
parallel, doing this for the entire set of generators requires
tens of routing steps, translating to a physical circuit with
depth in the hundreds. One consequence of the depth of
the circuit is that our protocol only performs well in the
regime of low idle error rate. Furthermore, per Claim 2,
as the block length increases, so too does the required
routing time and, consequently, the physical circuit depth.
This is in stark contrast to the implementation in Ref.
[18], where the entire set of generators can be measured
with a circuit of depth 7, albeit with the use of long-
range connections. These long-range connections are a
significant engineering challenge and it is unclear whether
implementing high-fidelity gates in this way is feasible.

We do find BB codes where the same parity-check struc-
ture is shared between codes of increasing block length.
For code families with this property, the number of steps
in the syndrome-extraction circuit is constant, so the noise
per syndrome-extraction cycle coming from idle error does

not increase. However, this also means that the percent-
age of long-range generators and, by extension, the amount
of nonlocality in the code, decreases. In Refs. [13,14],
the authors have shown that it is impossible to beat the
asymptotic scaling of the surface-code parameters without
increasing the amount of nonlocality. Increasing the block
length will yield larger k and d but the asymptotic scaling
of these codes will approach that of the surface code; how-
ever, for finite sizes, we would still expect to see significant
space-overhead savings compared to alternative lower-rate
codes. Even for BB codes with increasing generator shape,
it is feasible that the increased error-correction capabili-
ties will outpace the increase in idle error. In particular,
in Fig. 3, we show a power-law relationship between the
block length and the routing depth. Assuming that the
code is operating below threshold, the exponential sup-
pression in the logical error should be sufficient to handle
the increased effective idle error.

Another challenge is that the simple purification pro-
tocol presented here does not scale well, as increasing
the block length would lead to low-fidelity Bell pairs
and a high purification failure rate. Although there are
many entanglement-purification protocols that improve the
resulting Bell fidelity [85—88], using them would further
increase the depth of the syndrome-extraction circuits or
require additional ancillary qubits. The one potential sav-
ing factor is that the vast majority of the work is done by
the upper routing layer to construct and purify the Bell
pairs and the two layers interact in fewer than 1/10 of
the circuit steps. If it were possible to sufficiently iso-
late the data layer, akin to what is done in ion traps or
reconfigurable atom arrays, it might be possible to achieve
the low idling error rates that would greatly improve the
performance of the protocol.

If the aforementioned issues can be solved, then scal-
ing up should increase the advantage of qLDPC codes
over the surface code. One potential solution is to improve
the circuit depth of the protocol. An architectural fea-
ture that could accomplish this is the ability to perform
two-qubit gates on qubits that are some distance R apart
[19]. This is a natural operation on neutral-atom devices,
where Rydberg-Rydberg interactions, especially dipolar
ones [89], can be quite long range. Furthermore, Rydberg-
Rydberg interactions can help with syndrome extraction
by naturally realizing long-range generalized multicon-
trol multitarget CNOT gates [90]. At the same time, such
long-range Rydberg-based gates may harm parallelism,
since only one such gate can be implemented within the
Rydberg-blockade radius at a time. Gates beyond the near-
est neighbor could also be feasible in superconducting
devices through the use of medium-range couplers or
photonic interconnects [91]. When R is a constant, the
asymptotic behavior will remain unchanged; however, in
practice this would mean that the short-range generators
would be much easier to implement. With an appropriate
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choice of R, it would then be possible to use the depth-7
circuit of Ref. [18] to measure the short-range generators,
in which case the only difficulty would be to measure the
long-range generators in the proposed manner. An alter-
native approach would be to add additional ancilla layers
to the architecture. Although this would further increase
the qubit overhead, it would allow for more parallelization
during the syndrome measurement, decreasing the total
circuit depth.
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APPENDIX: BIVARIATE-BICYCLE-CODE
EMBEDDINGS

Here, we briefly describe the conditions for embedding
BB codes in a 2D grid (for a more complete discussion, see
Ref. [18]).

Definition Al (Definition 1 in Ref. [18]). A code
QC(A, B) has a toric layout if its Tanner graph has a span-
ning subgraph isomorphic to the Cayley graph of Z,, x
Z;, for some integers w and A.

This is to say that codes with a toric layout have checks
that act on the four nearest-neighbor qubits, and potentially
on additional nonlocal qubits. The four nearest-neighbor
qubits can be measured using a standard surface-code
syndrome-extraction circuit [64], whereas the nonlocal
qubits are measured using the proposed protocol. In the
following, the order of an element ord(M) of a multiplica-
tive matrix group is the smallest positive integer such that
MM — T where I is the identity matrix of the same
dimension as M.

A BB code QC(4, B) depends on choices of matrices 4
and B, as in Eq. (6), the terms of which are powers of x
or y, defined in Eq. (5). The matrices x and y depend on
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FIG. 12. The logical error rate of performing ¢ rounds of error
correction with BB codes with k£ = 8 logical qubits on the pro-
posed bilayer architecture. For this plot, we consider the case in
which the idle error rate is zero. The logical error rate of k copies
of the rotated surface code, calculated using Eq. (8), as well as the
total number of physical qubits used, is again plotted as a com-
parison. A fit of Eq. (9) is also shown, from which we extract the
logical error rate per round, €;.
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choices of positive integers £ and m, and they correspond
to the dimensions of the grid in which the code QC(4, B)
is embedded should it satisfy Lemma Al. The x and A
of Definition Al are £ and m, respectively. In this toric
layout, qubits and checks can be labeled by M, which can
be considered to be a list of integers Zg,, = {0, 1,...,fm —
1} that represent locations on the 2D grid.

Lemma Al (Lemma 4 in Ref. [18]). A code QC(4, B)
has a toric layout on a 2€ x 2m grid if there existi,j, g, h €
{1,2, 3} such that

(1) (447, BBy = M
(2) ord(4:A]) ord(B,B}) = tm

Here, (A;AJT, B,Bl') indicates the group generated by
AI-AJ,? and B,BI. The matrices AI-AJ,? and B,B! then corre-
spond to horizontal and vertical translations, respectively,
on the grid. To have a toric layout, these translations must
visit the £m X - and Z-type checks, as well as the two sets
of £m data qubits. In practice, this can be checked by mul-
tiplying (B, B})?(4;4]) for 0 < b < ord(B,B}), 0 <a <
ord(A,-AjT ) with a basis vector of IF%’" and seeing whether
the other £m — 1 basis vectors can be obtained. Satisfying
this is equivalent to satisfying condition (1). For a given
choice of A = Ay + A, + A3 and B = B} + B, + Bj, there
might not be assignments of i, , g, h such that Lemma Al
is satisfied. There may also be several satisfying assign-
ments. Each satisfying assignment yields an embedding
with a defined generator shape, which in turn determines
the fraction of generators that cross the long boundary con-
dition. Thus, the embedding controls the routing schedule
and number of masked generators, both of which affect the
overall error-correction performance of the code.
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