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Hypergraph product codes are a promis-
ing avenue to achieving fault-tolerant
quantum computation with constant over-
head. When embedding these and other
constant-rate qLDPC codes into 2D, a sig-
nificant number of nonlocal connections
are required, posing difficulties for some
quantum computing architectures. In
this work, we introduce a fault-tolerance
scheme that aims to alleviate the effects of
implementing this nonlocality by measur-
ing generators acting on spatially distant
qubits less frequently than those which do
not. We investigate the performance of
a simplified version of this scheme, where
the measured generators are randomly se-
lected. When applied to hypergraph prod-
uct codes and a modified small-set-flip de-
coding algorithm, we prove that for a suf-
ficiently high percentage of generators be-
ing measured, a threshold still exists. We
also find numerical evidence that the log-
ical error rate is exponentially suppressed
even when a large constant fraction of gen-
erators are not measured.

1 Introduction

Quantum computers have the theoretical poten-
tial to solve problems intractable for classical
computers. However, realizing this potential re-
quires dealing with the noise inherent in near-
and far-term devices. One way of doing this is
to redundantly encode the quantum information
in a quantum error-correcting code (QECC) and
manipulate the encoded states to do computa-
The threshold theorem [1-3] guarantees
that such a procedure can work for arbitrarily
long circuits as long as the noise rate of the sys-
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tem is below some threshold. Although polylog-
arithmic overhead is needed in the general case,
it was later shown that the use of asymptotically
good quantum low-density parity-check (qLDPC)
codes could reduce the overhead to a constant [4].
The question of whether such codes existed was
unanswered until recently [5-8|; however, these
constructions are currently more theoretical than
practical.

When implementing QECCs on hardware it
is especially advantageous to use one that is
qLDPC, as its stabilizer generators act on a con-
stant number of qubits, and its qubits are in-
volved in a constant number of stabilizer genera-
tors. For certain architectures, such as nuclear
magnetic resonance or superconducting qubits,
another desirable code property is locality. A
code is considered local in Z? if, when embed-
ded in a grid of size y/n X y/n, its generators
act on qubits within a ball of constant radius.
Recently, a popular choice when implementing a
code family with these properties has been the
surface code and its variations [9, 10]. While it
has local, weight-four generators and a favorable
©(y/n) distance scaling, the surface code has a
rate, k/n, which tends to zero as n approaches
infinity. A qLDPC code family that avoids this
issue is hypergraph product (HGP) codes [11].
This construction has the same O(y/n) distance
scaling, but now with a constant rate; the trade-
off, however, is that the stabilizer generators of
HPG codes are very nonlocal. It was shown in
Refs. [12, 13| that there is an intimate relation-
ship between locality and the corresponding code
parameters. In particular, the distance d for a lo-
cal code in Z? is bounded above by O(y/n), and
the number of logical qubits k& obeys the relation
kd?> = O(n). As such, the surface code saturates
these bounds. Later work [14, 15] more precisely
quantified the amount of nonlocality required to
surpass them.
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Figure 1: Overview of the stacked model. (a) After embedding a quantum code into Z2, each stabilizer generator

has a parameter ~ that denotes the radius of the ball containing the qubits in its support.

(b) Two possible

distributions of ~ over the set of generators. The most advantageous distributions for this scheme are those where
the relative frequency decays exponentially with increasing v (red curve). (c) An example schedule for the generator
measurements. The syndrome extraction circuits for the smaller generators are able to be prepared quickly, and so
their syndromes are available during every round of error correction (red dashed lines). The larger generators require
more time to build their syndrome extraction circuits, so this is done over a period of time that may stretch over
several error correction rounds. More practically, priority is given to the smaller generators, and after completing
them, the larger generators are worked on using any remaining time before an error correction round.

In this paper, we show through analytic and
numerical evidence that repeated quantum error
correction with HGP codes still provides a thresh-
old even when a constant fraction of generators
are measured only after many rounds of error cor-
rection. This result suggests that it may be pos-
sible to build a fault-tolerant quantum computer
with nonlocal qLDPC codes on architectures re-
stricted to 2D local gates with a procedure based
on the stacked model [14]. After embedding a
QECC in a grid of size /n x /n, the stabilizer
generators are partitioned into a stack of layers
based on the radius of the ball containing the
qubits they act on. The bottom layer of the stack
contains local generators, and as we move up the
stack, the interaction radius increases while the
number of generators of that size decreases. Ide-
ally, we can use codes which when embedded into
7? have the property that the number of gener-
ators decreases exponentially with increasing ra-
dius; that is, a (large) constant fraction of the
generators act on qubits within a support of con-
stant radius. It was also shown in Ref. [14] that
any code constrained to the above model has a
distance that is bounded by O(n?/®) and obeys
the relation k3d* = O(n®). HGP codes satisfy
this trade-off. !

The stacked model has a natural application
when performing fault-tolerant quantum compu-

15() is a variant of big O notation that ignores log
factors. f(n) € O(h(n)) is equivalent to 3k : f(n) €
O(h(n)log"® n).

tations. To convert a quantum circuit into a
fault-tolerant version, the qubits are first encoded
in some QECC, and then each operation in the
original circuit is replaced with a fault-tolerant
gadget. Errors may still occur in the individ-
ual gates, so after each time step of the circuit,
a round of fault-tolerant error correction is per-
formed. To do this, the eigenvalues of the stabi-
lizer generators of the code are measured to learn
the syndrome, which is then used by a decoder
to deduce and correct the error. Measurement of
the generators at the bottom of the stack takes
constant time, since they are local. The cor-
responding syndrome information is then avail-
able during every round of error correction. As
we move up the stack, the interaction radius in-
creases. The important distinction to make is
that while the generators are nonlocal, we are still
measuring them with only 2D local gates, and so
extracting these syndromes takes longer than for
local generators. These nonlocal generators are
measured less frequently than those lower in the
stack, and their syndrome is not always available.
This scheme is depicted in Fig. 1.

Several recent works have provided evidence
against the possibility of doing error correction
on architectures restricted to 2D local gates.
Delfosse et al. [16] investigated the problem of
performing syndrome extraction circuits of HGP
codes using 2D local gates and classical com-
munication and presented numerical simulations
suggesting that the resulting overhead was pro-
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hibitive. However, when considering the same
problem in the context of the stacked model, it
is possible that significant reductions in overhead
could be gained by not measuring the generators
with a large interaction radius every error correc-
tion cycle, since most of the work required is due
to these very nonlocal generators.

We can roughly approximate the amount of
work required to perform syndrome measurement
using 2D local gates by estimating the number
of SWAP gates in the extraction circuits. For
a generator with interaction radius =, the total
number of SWAP gates needed to perform the
syndrome measurement is proportional to v. As
a concrete example, consider a qLDPC code on
n = 100,000 qubits which when embedded into
7? results in a generator distribution where the
number of generators decays exponentially with
increasing . Drawing O(n) generators from this
distribution and summing the radii of the small-
est 90% is ~ 3% of the total sum across all genera-
tors. Thus, we can estimate that the syndrome of
these smallest 90% of generators can be obtained
using only ~ 3% of the SWAP gates required to
perform all of the syndrome measurements. Ob-
taining the remaining 10% of the syndromes re-
quires the majority of the work, but these circuits
are built up over time (see Fig. 1(c)), allowing
for a significant portion of the full error correc-
tion capabilities to be available during each error
correction round. Although the resulting logical
error rates will be strictly larger than when using
a full syndrome, the reductions in overhead may
outweigh the increases in the logical error rate. A
rigorous investigation of this question is the focus
of further research [17].

Baspin et al. [18] provide further evidence
against 2D local implementations of qLDPC
codes by deriving bounds on the amount of over-
head needed to perform error correction at a given
logical error rate. They show that the restric-
tion to 2D local gates incurs polynomial overhead.
However, they also note that their definition of
error rate is very restrictive and that computa-
tions not satisfying this definition might not obey
the overhead bound. It therefore remains possi-
ble that the stacked model could be used to per-
form these computations with constant overhead.
Apart from this brief discussion, we do not rig-
orously prove the feasibility of the stacked model
as a whole or refute the claims put forth by these

authors. This work only addresses the question
of partial syndromes and their effect on perform-
ing error correction in the phenomenological noise
model.

The remainder of the work is structured as fol-
lows. In Section 2 we give a brief review of classi-
cal and quantum coding theory and introduce the
families of codes relevant to this work. Section 3
introduces the idea of masking and contextualizes
it with respect to the stacked model. In Section 4,
we apply previous results to provide some analyt-
ical bounds on using masking during multi-round
error correction. Section 5 provides empirical ev-
idence to suggest that the analytical thresholds
are better in practice. Finally, we conclude in
Section 6 with a summary and discussion of the
remaining problems.

2 Background

2.1 Classical and Quantum Codes

An [n, k,d] binary linear code C encodes k clas-
sical bits in a k-dimensional subspace of the n
bit, n-dimensional space, 5. Codewords are the
binary vectors v € [3 that satisfy the equation
H -v =0, where H is a full rank binary matrix
of size (n — k) x n called the parity check matriz.
The distance d of a linear code is the minimum
Hamming weight of a nonzero codeword. We can
also represent the code C with its Tanner graph,
a bipartite graph G = (V U C, E') whose biadja-
cency matrix is H.

An [[n, k,d]] quantum error correcting code Q
encodes k logical qubits into a 2F-dimensional
subspace of the n qubit, 2"”-dimensional Hilbert
space, (C2)®" = C?". A commonly used class of
QECCs are stabilizer codes [19, 20]. A stabilizer
code is defined by its stabilizer S, consisting of
elements of the Pauli group

Pn = {1, X,Y, Z}*" x {£1, +i}, (1)

whose action is the identity on the codewords of
Q. To have a codespace at all, we require that
—I ¢ S and that S forms an abelian subgroup
of P,. Denote by N(S) the normalizer of S, the
set of Paulis that commute with everything in the
stabilizer, N(S) = {N € P, | [N, M] =0VM €
S}. The distance d of Q is then defined to be
the minimum weight of an operator in N(S)\ S.
S is generated by m = n — k independent sta-
bilizer generators S = (Si,...,Sm), which when
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measured provide an error syndrome of length m
used to deduce the error. We note that the syn-
drome labels the 2™ cosets of P,,/N(S).

The binary symplectic representation of a Pauli
P € P, /{£1,+i} is a bitstring consisting of two
n-bit binary vectors, (z|z) € F3". The ith compo-
nent of z is 0 if P acts on qubit ¢ with I or Z and
1 if P acts on qubit ¢ with X or Y. Similarly, the
ith component of z is 0 if P acts on qubit ¢ with
I or X and 1 if P acts on qubit ¢ with Z or Y.
This transformation allows us to use techniques
from classical coding theory on QECCs. In par-
ticular, we can represent the stabilizer generators
as a m X 2n binary parity check matrix, H. If we
consider then some error £ = (z|z) € F2", the
corresponding syndrome is o(E) = H - E, where
multiplication and addition are performed over
Fs.

CSS codes [21] are a subclass of stabilizer codes
where the stabilizer generators consist entirely of
tensor products of X and I or Z and I. As such,
these codes have parity check matrices of the sym-
plectic form H = (7 ), with Hy - HY =
Hx -H % = 0 to enforce the abelian structure of
S. In this form, it can be seen that decoding CSS
codes can be broken down into decoding the two
classical codes with parity check matrices Hz and
Hx separately, where Hz corrects bit-flip errors
and Hy corrects phase-flip errors. In this case,

separate syndromes are needed to decode an error
E = (z|2),

o(E)=(oz(x),0x(2))=(Hz -xz,Hx -2). (2)

In this work, it may be unclear with respect to
which stabilizer generators a syndrome is mea-
sured. Where clarification is needed, we slightly
abuse notation and write a syndrome taken from
a subset of the stabilizer U C S as oy (F). Us-
ing this notation, we do not explicitly specify the
type of error we are measuring, but in all cases
we will only consider one type. We let the Tanner
graph of a CSS code, G = (V UCx UCyz, E), to
be the bipartite graph defined by its parity check
matrix in symplectic form. The two disjoint sets
of check nodes, Cx,Cyz, correspond to the X —
and Z—type stabilizer generators, respectively.
A classical or quantum code is considered a low
density parity check code if the weights of the
rows and columns of its parity check matrix are
bounded by a constant. Specifically, an [[n, k, d]]
stabilizer code is considered a (Ay, A¢)—qLDPC

code if, for some constants Ay and Ag, each
qubit is involved in at most Ay stabilizer gen-
erators and each generator measures at most A¢
qubits. We can equivalently say that the Tanner
graph has bit node degree bounded by Ay and
check node degree bounded by A¢.

2.2 Quantum Expander Codes

Hypergraph product (HGP) codes [11]| are CSS
type codes made by taking the graph prod-
uct of two classical codes Ci,Co. When C :=
C1 = (s is a binary linear code with parame-
ters [n, k,d] and a full-rank parity check matrix,
the parameters of the resulting hypergraph prod-
uct code are [[n? 4+ (n — k)2,k%,d]]. If the in-
put code is (Ay,Ac)—LDPC with Ay < Ag,
then the resulting quantum code is (2A¢, Ay +
A¢)—qLDPC. Furthermore, when the base code
is replaced with a classical expander code [22],
the resulting quantum code is deemed a quantum
expander code and is equipped with a linear time
decoding algorithm which we now describe.

The small-set flip (SSF) decoding algorithm
[23] aims to imitate the classical flip decoding al-
gorithm used to decode classical expander codes.
Let F be the set of powersets of qubits in X —type
generators and let E be the initial X —type er-
ror. A single round takes as input a guessed er-
ror F; and the syndrome of the remaining error
o; = Uz(E@EZ‘). The decoder then goes through
all ‘small-sets” f € F and finds the one that
when flipped maximizes the decrease in syndrome
weight, which is then applied to the guessed error
for the next round. The algorithm succeeds if the
final error has zero syndrome and is not a logi-
cal operation; otherwise, it fails. In other words,
decoding is considered a success if the guessed er-
ror F is equivalent to the actual error F, that is
EaE belongs to the stabilizer group. The suc-
cess of the decoder is guaranteed for errors of size
less than the distance, as well as random errors of
linear size [24| provided the underlying classical
codes are sufficiently expanding.

The complete decoding procedure is listed as
pseudo-code in Algorithm 1. It takes as input a
tuple (E, D), where E C V is an X —type error,
and D C Uy is a potential syndrome error—that
is the algorithm runs instead on the syndrome
where some values have been flipped, oz (E)® D.
We make one small change to the algorithm for
the purposes of using it in the context of the
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Algorithm 1: Small-set flip decoding al-
gorithm [23]
Require: (E, D)

while 3F € F : |o;| — |o; ® oz(F)| > 0 do

F; = maxper |oi] |U|z1§3|ffz( )

En=EoF
oir1 = 0, ® oz(F;)
1=14+1

end while

A

return FE;

stacked model. Specifically, we exchange using
the full syndrome for one taken from some subset
of the stabilizer generators U C S. We still search
through every opposite type generator when look-
ing for small-sets F' to flip; however, the effect of
flipping will only be visible on the restricted set
of generators oy (F). We overload the meaning
of having the input (E, D) when D C Cy is in-
terpreted as a mask, in which case the available
syndrome is op(F'). The chosen interpretation
will be clear from context.

2.3 Fault-Tolerance

A quantum circuit is considered fault-tolerant if
it prevents errors from propagating throughout
the circuit; in this way, it keeps the size of the
error manageable for the QECC. We can convert
a circuit into a fault-tolerant version by replacing
each element of the original circuit with a fault-
tolerant gadget performing an equivalent opera-
tion on the encoded state. Fault-tolerant circuits
can be naturally broken down into time steps,
where a single time step consists of gadgets ap-
plied in parallel followed by error correction.

To investigate how an error propagates
throughout a fault-tolerant circuit, we abstract
the above model and instead work with the proce-
dure described in Algorithm 2. For the purposes
of analysis and simulation, we condense all gad-
gets, except error correction, into a single event
that has an error with probability ppnys. We also
assume that the error correction itself is ideal and
that there is no syndrome error, except the arti-
ficially imposed error coming from the generators
that have been masked with probability pmask,
which we now define. We later discuss how to

Algorithm 2: A
tolerance scheme

simplified fault-

Apply a mask D with probability pmask

fort =1, ..., 7 do
Generate an error F; with probability ppnys
and apply F; to the current error:

E:=F,®E;,

Run Algorithm 1 on the input (E;, D) and
correct using the decoded error Fj:

E,:=E| ¢ E;
end for

Generate an error F; with probability ppnys
and apply to the current error:

E;=F- @& E

Run Algorithm 1 on the input (Er, @)

make this scheme more realistic, but for the pur-
poses of determining the effects of performing er-
ror correction with partial syndromes this simpli-
fied model is sufficient.

3 Syndrome masking

The notion of masking has recently been intro-
duced as a way of describing fault-tolerant proto-
cols for space-time codes [25]. We use the same
idea here, although in a different context. An
element of the stabilizer is considered masked if
we cannot measure its eigenvalue during an error
correction round. We follow the definition from
[25] and define two subgroups of the stabilizer, U
and T, where U C T C S. The always unmasked
subgroup, U, are the stabilizers whose eigenvalues
can be measured in a constant number of rounds,
whereas the temporarily unmasked subgroup, T,
are the stabilizers whose eigenvalues can be mea-
sured in a number of rounds that can scale with
the size of the code, n. In general, it could be the
case that T' C S where the set S\T contains stabi-
lizers that cannot be measured on any time scale.
In this work, we consider the case U C T = S.
The subgroups form valid stabilizer codes, and as
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such can be described by their parameters. Defin-
ing k for these codes has no real meaning since
logical information is not being stored in the sub-
space; however, we can define the corresponding
distances, where

dy = min [N(U)\ S| dr = min|N(T)\ S|. (3)

In other words, dy (dr) is the weight of the small-
est Pauli operator outside of the full group that
has zero syndrome when measuring only the sta-
bilizer generators of U (T'). We call dyy and dr
masked distances, whereas d is the unmasked dis-
tance. Note that dy < dr <d.

Since not every generator is measured, the
resulting syndrome may have less information
about the error than would otherwise be avail-
able if the full set of stabilizer generators were
measured. For any number of masked generators,
there is a set of invisible errors that have zero syn-
drome on the generators of U (or T') while hav-
ing a nonzero syndrome in S. In particular, the
new normalizer N(U) contains N(S) as well as
all cosets of P, /N(S) labeled with undetectable
error syndromes. Furthermore, errors that were
previously correctable may no longer be uniquely
identifiable with the syndrome of U or 1. Note
that errors with a zero syndrome for U do not im-
mediately cause logical errors, unlike errors with
a zero syndrome for all of S. If an error has a
nonzero syndrome for 7T, it will eventually be de-
tected, once the generators of T\U are unmasked.
The risk is that such errors will accumulate over
time and become logical errors before they can be
corrected.

3.1 Masking and the Stacked Model

Identifying which layers of the stack are available
during an error correction round corresponds to
specifying the temporarily unmasked subgroup,
T, at each time step in the circuit, t = 1,..., 7.
The always unmasked subgroup, U C T3, is static
over the execution of the circuit and so can be
specified at the beginning. This set contains all
local generators, as their eigenvalues can be mea-
sured in constant time. T; will contain U as well
as any additional layers that have completed syn-
drome extraction between time t—1 and ¢. Since,
in general, we want to measure all generators
throughout the course of the circuit, |, 13 = S;
however, it may not be the case that any one time
step has all generators available.

An equivalent interpretation is to specify S\ T,
the set of generators whose eigenvalues are not
available during time step ¢. For the remainder
of the work, we consider ‘applying’ a mask D to
be specifying this set, S\ T;.

4 Analytic results

In this section, we consider previous results on
HGP codes and the SSF decoder in the context
of masking in a multi-round error correction pro-
cedure. We consider qubit errors and syndrome
masks that follow a local stochastic noise model.

Definition 1. (Local stochastic error model).
We say that an error (E, D) is local stochastic if
there are error parameters (Pphys, Psynd) such that

forany F and L, Pr[F C E,L C D] < p';,iLSPLgLJLd-

HGP codes in conjunction with the SSF de-
coder have several desirable properties that make
them a strong contender for fault-tolerance with
constant overhead. Most relevant to us is the
fact that they can tolerate random qubit errors
and syndrome errors of linear size, as stated in
the following theorem.

Theorem 1. (modified from Fawzi, Grospellier,
Leverrier [26]). There exists a non-zero constant
po > 0 such that the following holds. Suppose
that the error (E, D) each satisfy a local stochas-
tic noise model with parameters pphys and Psynd
where pprys < po and psynqg < po- 1If we run Al-
gorithm 1 on the input (E, D) then there exists
a random variable Ej; TV with a local stochas-
tic distribution with parameter p;s = pgz(i‘)i such
that:

Pr [Els and E® E are not equivalent] < e~V
(4)

In the analysis for the above theorem, Fawzi
et al. consider an error D in the syndrome to
be a subset of the stabilizer generators whose
measurement results have been flipped. Very
briefly, the argument requires that the syndrome
error does not form clusters on the syndrome
adjacency graph [4] for it to be tolerable. As
such, pp must be below the percolation thresh-
old of the syndrome adjacency graph of Q. This
value is a constant that depends only on Ay
and Ac of the code. We can turn the result
of a masked measurement into the above form
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by randomly assigning measurement outcomes to
the generators included in the mask. Thus, in
this context, we can say that Theorem 1 holds
when a mask—turned syndrome error—D satis-
fies a local stochastic noise model with parameter
Pmask < Po-

The above analysis is sufficient in the case
where we do a single round of masked error cor-
rection; however, when we use the same mask
over several rounds, we have to be more care-
ful about accounting for the correlations between
Following the notation of Algo-
rithm 2, in each round ¢ we have the syndrome
error from the mask D, any error that was not
fully corrected in the previous round F;_1, and a
new error Fy. When considered individually, all
three error sources are local stochastic described
by parameters pmask, Pres, and pphys, respectively.
When looked at together, the new error and the
syndrome error are bounded by

€ITror sources.

PI‘[F CFEFand L C D] < p‘p}}i‘yspﬁisk (5)

and similarly for the residual error and the new
error, as per the definition of a locally stochastic
error. However, we would expect to see correla-
tions arise between the residual error and the syn-
drome error over the rounds, and so together they
no longer obey a local stochastic noise model. In-
stead, they are bounded by:

Pr[F C E and L C D] < min{p|’] plﬂsk (6)

res?

When max{pres, Pmask} < Po, the threshold from
Theorem 1, we can say that the probability of
clustering is at most e O(WN) by plugging the er-
ror bound in Eq. (6) into Theorem 17 ([24]). With
this, we can apply Lemma 26 (|26]) to bound the
probability of the residual error obeying a local
stochastic distribution, Pr[S C Ejs]. Besides the
requirement that £ U D forms clusters with low
probability, we need that Pr[L C D] < plrﬂsk.
Since we assumed that the mask was chosen ac-
cording to a local stochastic error model, this
statement is satisfied for all rounds ¢ < 7. We
are then able to apply Theorem 1 in an iterative
manner, yielding the following result.

Theorem 2. (Grospellier [27]). Let po be the
threshold of Theorem 1, and let ppask and pphys
be such that:

Po

Q1) Do
Pmask < (?) and Pphys < ? (7)

Then Algorithm 2 fails with probability at most
(T +1)e OV,

If the conditions for Theorem 2 are satisfied,
then we can make the failure probability for the
procedure arbitrarily small by using larger codes.
This result is perhaps surprising given the follow-
ing two claims:

Claim 1. Applying a random mask D with pa-
rameter pmask t0 a qLDPC code Q results in a
code Q" = Q(S\D) whose Tanner graph has the

following degree distribution:

Pr(deg( ‘lv) = ’L) = (deg(igv)>p(::§§]gglv)(1_pmask)i
(8)

Here, we use the notation deg((|,) to mean the
degree of node v in Q. Since we assume Q to be
LDPC, deg(v) is bounded by a constant Ay for
all v, but the values may differ between vertices.

Corollary 1. Randomly masking o constant
fraction of generators results in a masked dis-
tance of dyy = 1 whp.

Proof. Applying Claim 1 with ppask =
O(1) gives a degree distribution where
Pr(Degree of qubit v = 0) = piffs(l?‘”) = Q(1) for

all qubits. In this case, an error on such a qubit
has zero syndrome on the remaining unmasked
generators, U. As this error would not be an
element of the stabilizer, diy = 1. ]

Although the always unmasked subgroup U has
a bad distance diy with high probability, it is ca-
pable of performing enough error correction in the
intermediate steps to prevent the accumulation of
errors. When the full set of stabilizer generators
are unmasked at the end of the multi-round de-
coding procedure, it is then likely able to correct
any residual errors. As we will now show, we
see similar behavior at masking percentages well
above what is guaranteed analytically.

5 Numerical simulations

In this section, we report on the results of numer-
ical simulations of a multi-round decoding proto-
col as described in Section 2.3. Previous work
has investigated the single-round performance of
HGP codes using a variety of decoders [28-31]
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Figure 2: (a) Semilog plot of logical error rate as a func-
tion of the number of rounds for a [[3904, 64, 16]] code
and the simple unmasking schedule. (b) Logical error
rate as a function of rounds across the (12,11)-qLDPC
code family with fixed pmask = 10% and the simple un-
masking schedule. Both panels include fits of Eq. (9),
for which we only include data with ¢ > 300.

and gives evidence for thresholds at near-state-
of-the-art error rates. Here, we provide alterna-
tive evidence of exponential error suppression in
both masked and unmasked cases following the
methodology of Ref. [32].

We investigate a family of HGP codes con-
structed from a single classical expander code
family and decode them using the small-set flip
decoding algorithm. HGP codes—being CSS
codes—can have bit- and phase-flip errors de-
coded independently. Furthermore, HGP codes
constructed from a single base code have equiv-
alent parity check matrices Hx, Hz, and there-
fore, without loss of generality, we focus on the
problem of decoding X —type errors. The specific
quantum code family considered is constructed
from a base (5, 6)-LDPC code family, resulting in
(12, 11)-qLDPC codes. These codes have a rate
of 1/61 ~ 0.016. The results presented here cor-
respond to a specific (un)masking schedule, which
is a potential modification of Algorithm 2 and a
way of specifying when and by how much to ap-
ply a mask to the syndrome. In particular, we
study the following two models:

e Simple scheduling. Apply a mask D with a
masking percentage of ppask to use for all
T error correction rounds. After 7 rounds,
remove the mask completely and perform
one error correction round with the fully un-
masked syndrome.

e [terative scheduling. Apply a mask D with
masking percentage ppask. After a mul-
tiple of 10°~! rounds, for t > 0, remove
1—10~¢=1D9% of the mask. For each of these
instances, remove the same portion of the
mask each time. On rounds 10°~! + 1, all
generators that were temporarily unmasked
in the previous round are re-masked until
another 10~! rounds have passed. After 7
rounds, again remove the mask completely
and perform one round of error correction.

In Fig. 2(a) we show the logical error rate,
Dlog; as a function of the number of rounds for
a [[3904,64,16]] code and the simple unmask-
ing schedule. Data is obtained by running Al-
gorithm 2 for a fixed number of rounds with an
error rate of p = 0.001 while varying the masking
percentage, Pmask, and then recording the per-
centage of samples that end with a logical error.
A sample is considered to end with a logical error
if the final state is not equal to the initial state,
up to stabilizer elements. We extract the logical
error per round, ey, by fitting the data to the
exponential

Plog = 1- (1 - EL)t' (9)

The error bars on the fits are taken from the stan-
dard error of sampling a binomial distribution,

V/Prog(1 = Prog) /N
In the bottom panel of Fig. 2, we now fix

Pmask = 0.1 and show the performance of the sim-
ple unmasking schedule across the code family.
The codes are labelled with their parameters as
described in Section 2.2. While finding the dis-
tance of a code is generally hard, we are able to
exhaustively search through the codewords of the
base classical code to determine the distance of
it, as well as the corresponding HGP code. Here,
we observe even spacing between curves on the
semilog plot showing exponential error suppres-
sion with code size. This behavior is more eas-
ily seen as the linear downwards trend in Fig. 3,
which we now more precisely quantify.
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Figure 3: (a) Semilog plot of logical error rate per round, €, as a function of code distance for the simple unmasking
schedule and an error rate of p = 0.001. The fits are of a linearized Eq. (10) with log €z. (b) Similar results for
iterative scheduling. Note that we do not include 0% masking in this case because it is equivalent to the simple
schedule. Panels (c)-(f) plot the same data from panels (a)-(b) and provide easier comparisons between the simple
(dot markers) and iterative (x markers) scheduling for pmask = {10%, 20%, 30%, 50%}, respectively. The shaded

region for all panels indicates error bars for C' and A.

Pmask Simple Iterative
scheduling scheduling

0% | 1.820 + 0.046 -

10% | 1.782+ 0.019 | 1.794 £ 0.010

20% | 1.490 + 0.026 | 1.579 + 0.026

30% | 1.193 + 0.015 | 1.314 + 0.018

40% | 1.038 + 0.007 | 1.161 + 0.015

50% | 0.956 + 0.014 | 1.044 + 0.009

Table 1: Extracted values of A for different masking

percentages and schedules.

We can relate a code family and values for logi-
cal error per round with an exponential error sup-
pression factor A. For simple models, the equa-
tion

C

€L = Ald+1)/2° (10)

where C is a fitting constant and d is the distance
of the code, heuristically describes this relation-
ship well. In Fig. 3(a) and (b), we show the logical
error per round as a function of code distance for
the simple and iterative schedules, respectively.
For each masking percentage, we fit a linearized
Eq. (10) with log e, to obtain A. These values
are listed in Table 1. A value of A > 1 is a clear
indication of operating below the threshold, as
increasing the code size gives an exponential de-

crease in the logical error rate per round. For
simple scheduling, we find that for masking per-
centages below 50%, A is in this regime. Increas-
Ing pmask decreases A, and between 40% and 50%
we see a transition where A < 1. In this case, it is
no longer advantageous to increase the code size,
as it actually causes more logical errors to occur.

The results of the iterative unmasking sched-
ule are shown in Fig. 3(b), where we find that
it outperforms the simple schedule. For smaller
masking percentages, it is not as advantageous
to use a schedule with more unmasking, as there
is less difference in performance between small
masking percentages and completely unmasking
(see Fig. 2(a)). However, larger masking percent-
ages appear to benefit more from using a more
frequent unmasking schedule. In fact, with it-
erative scheduling, it is now the case that 50%
masked is back in the A < 1 regime, although
with very little error suppression. Fig. 3(c)-(f),
highlights this difference between schedules.

In both cases, we find that the results exceed
the guarantees provided by Theorem 2. We find
that the percolation threshold of this family of
(12,10)—qLDPC codes is around 2%; however,
we see exponential error suppression at error rates
up to ~ 50%, well above this threshold.
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5.1 2D Hyperbolic Surface Codes

As a comparison, we benchmark the perfor-
mance of a 2D hyperbolic surface code on the
multi-round decoding protocol. Although codes
based on tilings of closed hyperbolic surfaces
have a comparatively poor asymptotic distance,
d = O(logn), they have a constant encod-
ing rate. These parameters violate the Bravyi-
Poulin-Terhal bounds [13], and therefore embed-
ding these codes in 2D Euclidean space is not
possible without nonlocal connections. How-
ever, they are in some sense close to being lo-
cal, and so they make a good candidate for the
stacked model. For the construction and thresh-
old simulations of these codes, we point the in-
terested reader to Ref. [33]. As the SSF decoder
is not known to work for 2D hyperbolic surface
codes, we instead use the minimum-weight per-
fect matching (MWPM) decoder [34]. While we
no longer have the guarantees of Theorem 2, the
MWPM decoder can be modified to work with
masked stabilizer generators. To do this, we set
the nodes corresponding to masked generators as
boundaries in the matching graph and set the cor-
responding syndrome bits to zero. Decoding nor-
mally, it is then possible to match unpaired syn-
drome nodes to the boundary. Note that the stan-
dard solution to decoding with syndrome noise of
building a 3D matching graph with a time dimen-
sion does not work since the mask is fixed from
round to round, and the repeated measurements
provide no additional information.

The code we investigate comes from a family of
{5,4}-codes with an asymptotic rate of 1/10 and
has parameters [[360,38,8]]. In Fig. 4 we show
the results of running Algorithm 2 with this code
and an error rate of p = 0.003 for several iter-
ative unmasking schedules. We compare com-
pletely unmasked decoding (blue markers) with
a schedule that alternates between performing no
error correction and 0% masked each round (yel-
low markers) and one where the masking percent-
age alternates between 10% and 0% masked each
round (red markers). For these codes and de-
coder, we find that it is actually better to do noth-
ing and let the errors accumulate rather than try
to correct the errors with the partial syndrome.
We note that we did not observe this behavior for
HGP codes, even at the higher error rate. This
result is interesting as it seems to imply that the
masking behavior for HPG codes is non-trivial.
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g

©

- -3

5 107° 4

&
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Figure 4: Semilog plot of logical error rate as a func-
tion of the number of rounds for a [[360, 25, 8]] 2D hy-
perbolic surface code and an error rate of p = 0.003.
We compare fully unmasked decoding performance (blue
markers) with two iterative unmasking schedules. Yel-
low markers denote a schedule consisting of alternating
between a round where no error correction is performed
and a round where the entire syndrome is available. Red
markers denote a schedule where masks of 10% and 0%
are used to decode, alternating each round. Fits are of

Eq. (9).

One possible explanation for the difference is
the single-shot [35, 36] property of the SSF de-
coder, a property not found in the MWPM de-
coder. Intuitively, this means that the syndrome
has redundancies that make it more resilient to
syndrome errors and masks. Over a multi-round
decoding procedure, the single-shot property also
ensures that the size of any residual error is pro-
portional to the size of the syndrome error. Con-
sequently, misdiagnosing an error cannot have im-
mediate effects throughout the system, since the
size of the resulting error is bounded. This is not
the case with the MWPM decoder, where a well-
placed syndrome error could result in a long error
chain across the lattice.

6 Discussion

In this paper, we investigated the feasibility
of performing error correction with partial syn-
dromes and found reasonable performance while
masking a large constant fraction of the genera-
tors. With these results, we have motivated a new
practical protocol based on the stacked model for
implementing nonlocal qLDPC codes on quan-
tum hardware restricted to 2D local gates. We
note that while this limitation has been the main
motivation for this work, it is possible that ar-
chitectures where connectivity is not as much of
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a constraint might still benefit from such a pro-
tocol. Even for architectures like neutral atoms
or trapped ions with effectively all-to-all connec-
tivity, nonlocal gates are still costly in the sense
that transport of the qubits is required to perform
them. Limiting the number of these operations
could provide overhead improvements. There are
a number of questions that need to be answered
to determine whether this procedure is feasible in
general.

o What families of codes are amenable to the
stacked model? Theoretically, the parame-
ters for HGP codes built from classical ex-
pander codes are allowable in this model.
In the preparation of this work, some ef-
fort was given to find specific embeddings in
Z? that yielded good generator size distri-
butions; however, the resulting distributions
instead often favored mid-sized generators.
The consequence of this is that the largest
Pmask 70 of generators take roughly pmask % of
the work to measure. To take full advantage
of the stacked model, we would instead want
those largest generators to take > prag%
of the work to measure. It is possible that
other code families fit better into this model.
One option are codes based on tessellations
of closed, 4D hyperbolic manifolds [37] which
are equipped with an efficient, single-shot de-
coder [38, 39|. Another option are general-
ized bicycle codes 40, 41|, which might have
favorable embeddings.

o What do the syndrome extraction circuits
look like for the stacked model? The central
idea of the stacked model is that the nonlo-
cal generators are being prepared while the
local generators are being used for decoding.
Careful thought has to be put into the syn-
drome extraction circuit to ensure that we do
not fall into the same pitfall of accumulating
too many errors while the nonlocal genera-
tors are being prepared. A naive syndrome
extraction circuit consisting of SWAP gates
will take w(1) time to prepare generators of
size w(1), which is prohibitively long. Alter-
natively, one could use the syndrome extrac-
tion circuits of Ref. [16]; this method solves
the scaling issue by utilizing ancilla qubits to
perform long-range CNOT gates in constant
depth. Remaining technicalities include the

use of entanglement distillation [42, 43| to
ensure the resulting long-range CNOT gates
are of high enough fidelity.

e How long does it take to perform a set of
masked syndrome measurements? As dis-
cussed in the previous question, performing
the syndrome extraction of a single generator
can be accomplished in constant time. How-
ever, when restricted to O(n) ancilla qubits,
the same cannot be said for a growing num-
ber of nonlocal generators. Bounds on the
depth of 2D local circuits needed to mea-
sure the full syndrome of a stabilizer code
were developed in Ref. [16]. Extending these
bounds to include specifying generator size
distributions will help inform explicit un-
masking schedules, which may provide better
performance than the arbitrarily chosen ones
studied in this work. These three questions
form the basis for a practical implementa-
tion of the stacked model and are the focus
of future work [17].

Several decoders for HGP codes including be-
lief propagation [31] and ordered statistic decod-
ing [30, 44] have been shown to perform better
than the SSF decoder. An interesting question
is whether these decoders work as well with the
addition of masked generators. Further improve-
ments to the simulation can be gained by using
a more realistic fault-tolerance model; in general,
the error correction itself can be noisy and re-
sult in errors on the qubits and syndrome. Ul-
timately, performing noisy, circuit-level simula-
tions of the syndrome extraction similar to those
done in Ref. [16] will determine whether this pro-
tocol is possible as a whole.
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