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Abstract—This paper presents a new distributed algorithm that
leverages heavy-ball momentum and a consensus-based gradient
method to find a Nash equilibrium (NE) in a class of non-
cooperative convex games with unconstrained action sets. In
this approach, each agent in the game has access to its own
smooth local cost function and can exchange information with
its neighbors over a communication network. The main novelty
of our work is the incorporation of heavy-ball momentum in
the context of non-cooperative games that operate on fully-
decentralized, directed, and time-varying communication graphs,
while also accommodating non-identical step-sizes and momen-
tum parameters. Overcoming technical challenges arising from
the dynamic and asymmetric nature of mixing matrices and the
presence of an additional momentum term, we provide a rigorous
proof of the geometric convergence to the NE. Moreover, we
establish explicit bounds for the step-size values and momentum
parameters based on the characteristics of the cost functions,
mixing matrices, and graph connectivity structures. We perform
numerical simulations on a Nash-Cournot game to demonstrate
accelerated convergence of the proposed algorithm compared to
that of the existing methods.

I. INTRODUCTION

Nash equilibrium (NE) computation is essential for exam-
ining decision-making and strategic behavior in multi-agent
systems, especially in non-cooperative games. These games
have applications in numerous engineering domains, including
electricity markets, power systems, flow control, and crowd-
sourcing [1], [2]. In non-cooperative games, each agent has
their own goals and seeks to maximize their payoff, without
coordinating with other agents. Classical complete information
game theory typically employs best-response or gradient-based
methods to find an NE, but these approaches necessitate each
agent having complete information regarding the actions of its
competitors [3], [4], which can be unrealistic in many practical
engineering systems.

Extensive research has been conducted to develop efficient
distributed methods for seeking NE in the settings with
partial information available to the agents. These methods
are primarily built upon projected gradient and consensus
dynamics approaches, and they have been studied in both
continuous-time [5] and discrete-time [6], [7] domains. Early
works only consider time-invariant undirected networks, such
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as for example [8], which develops an algorithm within the
framework of an inexact-ADMM. The accelerated gradient
play algorithm (Acc-GRANE) presented in [9] is based on
the strong monotonicity of an augmented mapping and is
applicable to a subclass of games. Reference [10] extends the
applicability of the Acc-GRANE algorithm to a broader class
of games by assuming the restricted strong monotonicity of
the augmented mapping. Based on the contraction properties of
doubly stochastic matrices, reference [7] develops a distributed
gradient method whose convergence properties do not depend
on an augmented mapping.

There has been a growing interest in studying NE compu-
tation in communication networks with switching topologies.
Early work [6] focuses on aggregative games over undirected
graphs, while [11] extends the study to games with cou-
pling constraints. Reference [12] proposes an asynchronous
gossip algorithm for a directed graph, assuming each agent
can update all estimates of the agents who interfere with
its cost function. In [13], a projected pseudo-gradient-based
algorithm is proposed for time-varying directed graphs that are
weight-balanced, while [14] relaxes the weight-balancedness
assumption for a static directed graph, assuming complete
knowledge of the underlying communication graph. In [15],
these assumptions are further relaxed, and a condition is
established to address the loss of monotonicity with weighted
norms, which is a commonly encountered issue. In [16], a
robust algorithm is proposed that utilizes an observation graph
allowing for direct observation of actions and, thus, making it
immune to tampering by adversarial agents.

Most of the above mentioned works deal with gradient-
based methods. The heavy-ball method, introduced in [17], has
been widely used as an acceleration technique for gradient-
based methods to achieve faster convergence [18]. In the
context of aggregative games, the heavy-ball method has
been employed in algorithms for both undirected [19] and
directed [20] graphs, achieving convergence for diminishing
step-sizes. It has also been employed in semi-decentralized
communication architectures, where a central coordinator col-
lects and transmits aggregative signals to the agents in the
system [21]. Reference [22] considers games over undirected
graphs with affine coupling constraints and introduces ac-
celeration schemes for the proximal-point algorithm, such as
(alternated) inertia and overrelaxation.

Contributions. Motivated by the potential benefits of
the heavy-ball method in accelerating convergence, this pa-



per presents a novel distributed, discrete-time algorithm for
NE seeking by integrating the heavy-ball momentum and
consensus-based gradient method. The proposed algorithm
is designed to work on a general sequence of time-varying
directed graphs, without requiring any coordination among
agents for the weights. It also allows for non-identical step-
sizes and momentum parameters. The incorporation of agent-
based heavy-ball momentum terms introduces additional tech-
nical complexity in the convergence analysis of the algorithm.
The main challenge is in ensuring the contraction properties
of a recurrence relation due to the presence of the additional
momentum terms, especially when dealing with time-varying
asymmetric mixing matrices. Prior heavy-ball algorithms, such
as those presented in [19] and [20] for aggregative games, uti-
lize diminishing step-sizes to demonstrate that the state differ-
ence resulting from the additional momentum term converges
to zero. Unfortunately, this approach is not applicable to this
work since our algorithm employs a constant step-size rule. To
overcome this technical challenge, we analyze three distinct
quantities: the consensus error, the NE gap, and consecutive
states difference. By establishing a composite relation for the
vector comprising these quantities, we rigorously prove the
linear convergence of the algorithm to the NE under strong
monotonicity and Lipschitz continuity assumptions. We also
provide explicit bounds for the constant step-size values and
momentum terms based on the properties of the cost functions,
mixing matrices, and graph connectivity structures.

This paper is structured as follows. Section II presents the
problem formulation. In Section III, the distributed algorithm
is introduced. Section IV provides convergence analysis and
Section V numerically evaluates the performance of the pro-
posed algorithm. Section VI concludes with key points.

Notations. All vectors are column vectors unless otherwise
stated. We write u' for the transpose of a vector u € R"™. We
use 0 and 1 to denote the vector with all entries equal to 0
and 1, respectively. The i-th entry of a vector u is denoted
by w;, while it is denoted by [uy]; for a time-varying vector
ug. We denote min(u) = min; u; and max(u) = max; u;.
Given a vector u, Diag(u) denotes the diagonal matrix whose
diagonal entries correspond to the entries of u. A nonnegative
vector is called stochastic if its entries sum up to 1.

We use A;; to denote the ij-th entry of a matrix A,
and [Ay];; when the matrix is time-dependent. The notation
A < Bisused when A;; < B;; for all 4, j, where A and B are
matrices of the same dimension. A matrix A is nonnegative
if all its entries are nonnegative and min™(A) denotes the
smallest positive entry of A. A nonnegative matrix A € R?*"
is row-stochastic if A1 = 1. A consensual matrix has equal
row vectors. The identity matrix is denoted by I. Given a
vector m € R™ with positive entries, we denote

(u,v), = >0 milug, v;) and [ullz = /30070 mllugl]?,

where U := [ug,..., U],V = [v1,...,0,]" € R™*" and
u;, v; €ER™. When 7 = 1, we write (u,v) and ||u||. We have

< Jull < =

\/ﬁ(ﬂ)ﬂuﬂw W”“Hm (1)

and (u,v)_ < ||ul/«||v]|x (Cauchy—Schwarz inequality).

We let [m] = {1,...,m} for an integer m > 1. Given a
directed graph G = ([m], E), specified by the set of edges
E C [m] x [m] of ordered pairs of nodes, the in-neighbor and
out-neighbor set for every agent ¢ are defined, as follows:

N = {j€m]|(j,i) €E} and N = {£€ [m]|(i, ) €E}.

A directed graph G is strongly connected if there is a directed
path from any node to all other nodes in G. We use D(G) and
K(G) to denote the diameter and the maximal edge-utility of a
strongly connected directed graph G, respectively, as defined
in Definition 2.1 and Definition 2.2 in [23].

II. PROBLEM FORMULATION

We study a non-cooperative game with m agents, where
each agent has an unconstrained action set X; = R"¢, for
i € [m]. Each agent 7 has a cost function J;(x;,x_;) that
depends on its own action z; € X; and the joint action of
all other agents except itself, x_; € X_; = R®~ ™. The joint
action vector of all agents has size n = Y., n; and belongs
to the joint action set X = X; X --- x X, = R". We assume
that the cost function J;(z;, z_;) is continuously differentiable
in z; for any fixed x_; € X_;, for all i € [m].

Denote the game by T' = ([m], {J;}, {X;}). A vector 2* =
[z%,...,2%]7 € X is a NE to the game T if, for every agent
i € [m], the condition below is satisfied:

Ji(x],xt ) < Ji(xg,xt), forall z; € X;. 2)

We define the game mapping F'(z) : X — R™ as
F(-T) é [vlJl (]:1; x—l)a ey V’m,J'rn(xmv x—m)]T ) (3)

where V;J;(x;,x—;) =V, Ji(x;,x_;) for all i € [m].

We make the following assumptions.

Assumption 1: The game mapping F'(z) is strongly mono-
tone on X with the constant p > 0.

Assumption 2: Consider the game I' = ([m], {J;}, {X}),
assume for all 7 € [m]:
(a) The mapping V;J;(x;,-) is Lipschitz continuous on X _;
for every fixed z; € X; with a uniform constant L_,; > 0.
(b) The mapping V;J;(-,z_;) is Lipschitz continuous on X
for every fixed x_; € X_; with a uniform constant L; > 0.

Remark 1: Assumption 1 implies strong convexity of each
cost function J;(z;,x_;) on X; for every x_; € X_; with
the constant p, as noted in Remark 1 of [9]. The existence
and uniqueness of a NE for the game I' = ([m], J;, X;) is
also guaranteed by Assumption 1. This result is established in
Theorem 2.3.3 of [24]. Moreover, as X; = R™ for all i € [m],
x* € X is the NE if and only if F'(z*) = 0.

III. DISTRIBUTED NASH EQUILIBRIUM SEEKING

Consider a game I' = ([m], J;, X;) where agents interact
through a sequence of time-varying communication graphs
Gr = ([m],E) at time k. Each link (j,¢) in Ej indicates
that agent ¢ receives information from agent j. The graph is
assumed to have self-loops for every node in each Gy, ensuring
that Vi and N3¢ always contain agent i. The details are
outlined in the following assumption.



Algorithm 1: DNE-HB
Every agent 7 € [m] selects a local stepsize «; > 0, a
local momentum parameter 5; > 0 and initializes with
arbitrary initial vectors z{ _; € R"~™ 29 x;7 " € R™.
for k=0,1,..., every agent i € [m] does the following:
Receives zf from in-neighbors j € ii,’;‘;
Sends z¥ to out-neighbors ¢ € N1,
Chooses the weights [Wy];;, 7 € [m];

Updates the action 27! and estimates szi by

2 = S Wizt — Vs (S, Wil 24
I
A= T Wiyt Bk D)
end for

Assumption 3: Each graph G, = ([m],Ex) is strongly
connected and has a self-loop at every node i € [m].

Remark 2: Assumption 3 can be relaxed by considering B-
strongly-connected graph sequence, i.e., when an integer B >
1 exists such that the graph with edge set EZ = UEkZEB 'E;
is strongly connected for every k > 0.

To deal with the partial information available to agents, each
agent 7 maintains a local variable zF = (25 ,... 2k )T e R",
where zfj is agent ¢’s estimate of the decision :cf for agent
j # i, while zF = z¥. The estimate of agent j without the
i-th block-component is defined as

k

_ (K k k k \T n—n;
2] i = (2 2 i1y g1 e Zim) . € RITTL

Given the constraints on agents’ access to others’ actions
in game I', we propose a fully-distributed algorithm that
respects the information access as dictated by the commu-
nication graphs Gy. The approach, outlined in Algorithm 1,
incorporates a gradient method with heavy-ball momentum.
At each time k, each agent ¢ sends its estimate zf to its out-
neighbors ¢ € N out and receives estimates zk from its in-
neighbors j € Agent 1 then updates its own action ka
and local estimate 2 k1 using the received information.

We make the following assumption on the matrices W.

Assumption 4: For each k > 0, the weight matrix Wy is
row-stochastic and compatible with the graph Gy, i.e.,

{[Wk]“ > 0,
(Wi]ij =0,

when j € NI,
“)

otherwise.

There exist a scalar w >0 such that min™(W}) > w, Yk > 0.

IV. GEOMETRIC CONVERGENCE OF DNE-HB
A. Preliminaries

We outline basic results on norm of linear combinations of
vectors, graphs, stochastic matrices, and gradient method.

Lemma 1 ([15], Corollary 5.2): Consider a vector collec-
tion {u;, ¢ € [n]} C RP, and a scalar collection {~;, i €
[n]} C R of scalars such that Y., v; = 1. For all u € R?,

we have the following relation:
n 2
W—(§:ww>.
=1

2 n n
= villui—ul* >
i=1 1=1

iW; — U

Lemma 2 ([15], Lemma 5.4): Under Assumption 3, when
Wi, satisfies Assumption 4, we have for all k£ > 0:

(a) There exists a sequence {ry} of stochastic vectors such
that 71, W), = 7.
(b) The entries of each 7 have a uniform lower bound, i.e.,
[mk]i > % for all 4 € [m] and all k£ > 0.
Using the stochastic vectors 7 described in Lemma 2, we can
define an appropriate Lyapunov function for the method.
Lemma 3 ([15], Lemma 6.1): Let G = ([m],E) be a
strongly connected directed graph, and let W be an m x m
row-stochastic matrix that is compatible with the graph and has
positive diagonal entries. Also, let 7w be a stochastic vector and
let ¢ be a nonnegative vector such that ¢" W = 7'. Consider a
collection of vectors z1, ..., z,, € R™ and consider the vectors
= Y5 Wijzj, for all i € [m], and let 2, = 337" | miz;,
for all u€R"™, we have

m m

2
> billri—ul® < Z%‘sz —ul?
=1 7

min (¢ ) min
- Z%H% 2|1,

max? ()

Let z;. be the vector in the ith row of matrix z € R™*",
We define a mapping F,,(-) where the ith row is given by

[Fo(2))i:=(0],...,0%, ,i(ViJi(2:), 0], ,...0% ). (5)

nyet n;—1’ Mi417""
Lemma 4 ([15], Lemma 5.6): Let Assumptions 2 hold and
L.= \/ m{ax}{a? (L2 ,4+L?)}. For any stochastic vector 7> 0,
i€[m

IFa(z) — Fay))lz < Lallz —yl7 for all z,y € R™*".

Lemma 5 ([17]): For a p-strongly convex function f
with L-Lipschitz continuous gradients, at the point x* =
argmin, f(x), for all @ with 0 < o < 2L~1, we have

|z —2* —aVf(z)] < qla)||lz—z*|| forall z,

where ¢(«) = max{|1 — au|,|1 — aL|} < 1.

B. Convergence Results

Consider the sequence of time-varying directed graphs
Gy, = ([m], Eg). Under assumptions 1-4, we provide a proof
demonstrating that the iterate sequence x* generated by DNE-
HB exhibit geometric convergence towards the NE.

Let zF = (2F,...,28 )T € R" for all k& > 0, and let
{7} denote the sequence of stochastic vectors satisfying
T Wk = 7, with 7, > 0. We define matrices

F—2h 20T 2P =17

Y ml

where 28 = > [mg];2F and 2* is an NE point of the game.
Then, the local update in compact form is as follows

T =Wizk — Fo(Wi2¥) + 82" —2"71), (D)

where 8= (B1,...,3m)" and B = Diag(f).
Let IT;, = 1,7, for all k > 0. The weighted average z*
evolves according to the following relation

— I} F o (Wiz®) + I, B(2F

z X =1n(a*)} (6)

2k+1 _ ik

-z, (®)



We denote the following bounds:
& = max o;, @ = min oy, 8 = max ;. )
1€[m] i€[m] i€[m]
Let Assumption 1-4 hold. Consider Algorithm DNE-HB
and the notations in (6), (9). We have the following results:

1— min(my 1 )w?
max? (7 )D(Gr)K(Gg)?

Proposition 1: Let cp= we have

25 — 2F L < (14 La)eg 2" — 25|,

+ Lo ||2" — x* ||, + B||2" — 2" forall &> 0.
Proof: Using the update formulations in (7) and (8),

k ok
i z +1||7"k+1

|z
:||szk—ik—|—(]l—l_[k+1) (ﬂ(zk—zk_l)—
<|[Wiz" = 2%,y + [|(I — Tiq1)Fq
+ /(I = TLy)B(2" — 2" 1) (10)

To evaluate the first term on the right-hand side (RHS) of
(10), we utilize Lemma 3 with W = W, z; = zk u = 3k,
and the stochastic vectors ¢ = 741 and ™ = 7y, to obtain

[Wiz" — 27|, < cklz" —2"||r, forall k>0. (11)

FO&(Wka)) ||ﬂ'k+1
(szk)||7rk+1

||7Tk+1’

Consider the second term on the RHS of (10). Let gf
Ji([Wxz*]; ). Since mj41 is a stochastic vector, we obtain
IITrk+1

I(I = My 11)F o (Wiz")
+ [l Y Il >||gf||2

m
< E [(Thop)i (1= [Ths1 )i
J=1,j#i

m
< 2 _lmeali (= [megali) lef|* < Zﬂk-i-l gt

INgERD

Il
—

Notice that |F(Wyz* )||m+1 = > [mk+1]i]lgF]|?. Hence,
(1= 1) Fo (Wiz")lrysy < [Fa(Wiz®)|my,
=|[Fa(Wiz") ~Fa(x")mer < LalWaz" =% |n.,,, (12)

where we use F,(x*) = 0 and Lemma 4.
Furthermore, we apply Lemma 3 with W = Wy, z; = zf s

u = x*, and stochastic vectors ¢ = 41, ™ = 7, to obtain
k k N
Wiz —x*|2, | < |l2°=x"|2, — (1= ) ||z"—2"|2,. (13)
By Lemma 1, with v; = [m];, u; = zF and v = 2*, and
observing that [|2% — z*||? = ||2F — x*||2 , yields
2" —x*|2, = ||2" = 2"|2, + 2" —x"[2,. (14
Combining the relations in (13) and (14), it follows that
”szk - X*”ﬂ'k+1 < ||2k - X*Hﬂ'k + ck”zk - ikllﬂk' (15)
Combining the previous relation with (12), we have
([T 1) F o (Wi2®) |z,
< Lo||2" — x*|Ir, + Lackllz® — 2|1, . (16)

For the last term on the RHS of (10), let u® = z* — zF—1,
using Lemma 1 with 4; = [mg41]:, vector u; as the ith row

of the matrix u (i.e., u; = uf:), and u = 0, it follows that

u;. —E 7Tk+1

m

(1= Tegr)Bu®|2, =D [meialiB]

i=1

< B2 meaalillufl® = B, < BP AT
i=1

The desired relation follows from (10), (11), (16), (17). |
Proposition 2: With o; € (0,2L7") for all i €[m], we have

% s < (@V2La + 1)) 2 = x|,
+V2Lgcp||2" — 255, + Bl2" — 2" for all k>0,

” sk+1

where g (a) = ,fg[axlﬂl— [Mhalicipil, 1= [mea]ici Lal } <1,

Ly =max L; and Lo = max L_;.
i€[m] i€[m]

Proof: Using the compact form for 2*1 in (8),

||zk+1 *H
Tk+1

SHZ _X*_Hk+1FOZ(W/€Zk) ||7Tk+1+ HHk+1ﬂ(Zk_Zk_l

<[ =X T Fo (2,5, 4 [ T B =2

Mlssa
+ ||Hk+1F0(2k>X*) - Hk-‘-lFa(szk)”ﬂ‘kJrlv

)||7rk+l

(18)
where the matrix Fo (2", x*) has ith row, [Fo (2", x*)];., equals

(OT 0;;71, Oéi(ViJi(ZA’f, l‘il)) OT cey Olm).

ny o

19)

ni+17 "

For the first term on the RHS of (18), since the matrices
are consensual and 74 is a stochastic vector, we have

||2k—X* — Hk+1F0(ik7x )||7rk+1

m
=Y N8F = 27 = [mepaliea Vii (3,27,

i=1
Applying Lemma 5, for all a; such that 0<[m1];a;<2L; '

128 — 2} = [menliaVidi (2, 22| < giel@)l|2F — a7,

i,k (@) =max{|1—[mpy1]scpil, [1—=[mpy1]s0s Li| . Hence,
m
2" — x* — T Fo (25, x) |12, < qi(e) Y [12F — a|)?
i=1
= g (@))|2* — 2*|* = gi(a)]|2" — x*||2, (20)

Regarding the second term on the RHS of (18), the matrix
I, 1 B(z" —2z*~1) is consensual. For stochastic vectors 7, 1,

using the notation u* = z* — z*~!, we have
m
[T Bub(2, =1 [mesaiBiud < 52 e )il ]|
i=1
< Bllu¥|]? = Bz* — 2"~ 1||27 1)
where we use Lemma 1 with v; = [m41]i» u; = uf, and

u=0. For the last term in (18), from Assumption 2 we obtain

I TTy 41 Fo (2", x*) —

m

=0 [me|fIVidi(2F, 2% ,) —

%

41 Fo(Wiz)| 2

H71'1s-,+1

Vidi((Wiz"]:)|1?

Il
-

<a® Y [melf @IVidi(27,) = Vidi((WazHis, 27) )1
=1
+2/|Vidi(Wiz"lii, a*) = Vidi((Wiz"]:)|?)
S@2(21/%||Z - szk||7rk+1 + 2L%HX szk“ﬂk+1



Combining the relations in (11) and (15) with the preceding
relation and using va+b<+/a++/b,Va,b>0, yields
Iy 1Fo(2",x*) — Mgy Fo(Wiz") ||
< aV2Ls||z* — x*|| 5, + V2Lack|2" — 2|4, (22)
where we use the relation @L;v/2 + @L2v/2 < v/2L,, by the
Cauchy—Schwarz inequality, to obtain the last term.

The desired relation follows from (18) and (20)-(22). [ |
Proposition 3: Let ¢, = m We then have

2| < @1 (14 La)er[|z* — 2" x,
k—lH

sz-',-l _

+ orr1La||2F — x||xp + Bll2" — 2 for all k& > 0.

Proof: Using the update formulation in (7), we obtain

125 — 2*|| < [[Wyz" — Fo(Wyz*) + B(z" — 2 1)~ 2"
< [[Wiz® — 2" + [[Fo(Wiz") | + [18(z" — 2" )| (23)
Using the relations in (1) and (11), we have:
Wiz" — 2" < prrrcel|2” — 2", 24)
From relations (1) and since F,(x*) = 0, we see that
IEa(Wiz")|| < orri1|[Fa(Wiz") — Fa(x)|l,,,
< Lot (1" = x| +cillz" = 2%[lm) @29

where we use Lemma 4 and relation (15). For the last term
on the RHS of (23), we have

18(z" — 2"~ 1)|| < Bll2* — 2", (26)
The desired relation follows from (23)-(26). Tl
Define Vi, = (2" —2"|x,.[|2" — x*||,. [2* —2"1]) .

we have the following composite relation:

Proposition 4: With o; € (0,2L7") for all i €[m], we have
Vier1 < My(a, B)Vi for all £ > 0,
(1+La)ck L, B
with My (o, 8)= V2L, ¢k av2Ls + qp(a) B,
rr1(1+ La)cy ¢r+1La p

where L, defined as in Lemma 4, gip(«) defined as in
Proposition 2, and ¢y defined as in Proposition 3.
Proof: The relation follows from Propositions 1-3. ]
In view of Proposition 4, to prove that V, — 0 at a
geometric rate, it suffices to show that My (a, 8) < M («, ),
for some matrix M («, 3). Then, we select appropriate step-
size and the momentum parameter such that the spectral
radius pps of M(a, B) is less than 1, as follows. We have
L, < aL, where L = \/L? + L3 with L; and Ly as in
Proposition 2. Additionally, for & € (0,2(L; + u)™1), we
obtain gi(o) = 1 — amin(m,)u < 1. We let o > 0 be such
that ¢ < ming>o min(7m) (see Lemma 2). Thus, we have

<1- < <. 27
rlggqu(a)f aop, maxcy < ¢, maxgp < ¢ (27)

Using the bounds in (9) and (27), for a € (0,2(Lq + p)~ 1),

we have My (a, 8) < M(«, ) for all k£ > 0, with
(1+al)e al B
M(a,B)=| V2aLec 11— (aop—av2Ly) B|. (28)
p(l+al)c pal B

We now provide the main convergence result.

Theorem 1: Let Assumptions 1-4 hold, and assume that
o > /2Ly, For all i € [m)], let the step-size a; > 0 and
the acceleration parameter 3; > 0 be such that

l—c m av/2Ls —c)
Li+p? Lc"qg} a> op ’ﬂ<(2 c)(r]-i-L)’

a< min{ (29)
where na = aop—av/2La, 1 = n(1—c) — B(2—c)(n+L) >0,
and 1p = v/2Lc(148(p—c) HBen(p— )%77>0 Then, ppr < 1,
thus, limy, o ||2¥ —x*|| = 0 and limy_, o ||2* —2*|| = 0 with
a linear convergence rate of the order of O( p%, ).
Proof: By Lemma 8 in [25], we obtain py; <1 if det(I—
M (e, 8)) > 0 and the diagonal entries of M (v, 3) are less
than 1. Solving the resulting inequalities yields (29). [ |
Remark 3: The assumption ou > /2L, is equivalent to
the condition that 8, > 0 in [15], establishing when F, ()
is strongly monotone. This assumption is akin to those in
Proposition 7 of [26], Lemma 2 of [9], and Assumption 5
in [10]. Essentially, it entails that the strong monotonicity of
each agent’s local objective is sufficiently strong compared to
its dependence on the actions of other agents or the coupling
of the agents’ optimization problems, to guarantee the strong
monotonicity of the game mapping. In Section VI of [26],
this assumption has a compelling physical interpretation in
the context of power control in cognitive radio networks.

V. NUMERICAL RESULTS

We evaluate the performance of the proposed approach
for a Nash-Cournot game, as described in [15]. Consider
m = 20 firms competing in N = 7 markets, denoted as
M, ..., My. Each firm i € [m] competes in n; < N markets
by determining the quantity of the homogeneous commodity
x; € Q; = R™ to be produced and delivered, as illustrated
in Figure 1 of [15]. Firm ¢ has a local matrix B; € RN
with [B;]p; = 1 if agent i delivers [z;]; to M}, h € [N], and
0 otherwise. Let n = > | n; = 32, © = [2i];e[m) € R™, and
B = [By, -+, By] € RVN*" Then, given an action profile
x of all the firms, the vector of the total product supplied to
the markets can be expressed as Bx = »1", Bx; € RY.
The commodity’s price in M}, is pr(z) = P — Xh[Bx]h,
Vh, where P, > 0 and x, > 0. Let P = [Py],_iv € RY
and = = diag([xn],_77) € RV*". Then, the price vector
function P = [Ph]h:ﬁ has the form: P = P — 2Bz, and
PTB;z; is the payoff of firm i obtained by selling z; to
the markets that it connects with. Firm ¢’s production cost
is ¢i(r;) = =] Qiz; + q] x;, with Q; € R™*" symmetric
and Q; > 0, and ¢; € R™. The objective function of
firm 7 is Ji(l‘i,l‘,i) = ci(xi) — (]3 — EB,%)TBZ.%‘z In our
simulations, we use directed time-varying graphs with self-
loops and establish a directed cycle linking all agents at each
iteration. We define the row-stochastic weight matrix W, as in
[15], generate the diagonal matrix (); with entries uniformly
distributed in [5, 8], draw ¢; uniformly from the interval [1, 2]
and select P, randomly from [10, 20]. We choose Y}, such that
ou > V2L, for example, 0.01 < xp < 0.02 yields g around
11 and L5 around 0.03, indicating that the strong monotonicity
of the local objective is significantly strong in comparison to
its dependence on other agents’ actions.
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Fig. 2: Effects of varying the momentum parameter.

Stepsize Avg. # Iterations Avg. Running Time (s)
DNE DNE-HB DNE DNE-HB

a; = 0.005 | 3667.52 | 1826.44 | 1.0703 0.5984

o; = 0.01 | 2032.25 | 1006.56 | 0.6702 0.3502

TABLE I: Average performance over 1000 simulations.

To demonstrate the accelerated convergence of DNE-HB,
we compare it with existing agorithms including DNE (i.e.
Algo. 1 of [15]) and Algo. 1 of [14]. We conduct 1000 simu-
lations with a; = 0.01, 5; = 0.5 and terminate the algorithms
if the consensus error max;c(m jeml i |[Zk]i: — [Zk];:]loo
is less than 10~° or the iteration limit of 10° is reached.
Figure 1 shows the convergence for a game instance. Figure 2
illustrates the effect of momentum parameter on convergence
rate. These results suggest that the algorithm converges faster
with larger momentum parameter values satisfying the range
in (29). Table I further compares the average performance
of the algorithms over 1000 simulations. Overall, the results
demonstrate that the proposed algorithm with the heavy-ball
acceleration significantly improves the convergence rate.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed an accelerated distributed algo-
rithm that incorporates heavy-ball acceleration to improve
the performance of the gradient-based distributed NE-seeking
algorithm for games over time-varying directed networks. A
geometric convergence rate of the algorithm is shown with
explicit bounds for the non-identical step-sizes and momentum
parameters based on the properties of the cost functions
and network structure. Our numerical results illustrate the
effectiveness of the proposed method. In future, we will study
its convergence for games with constrained action sets.
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