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Stationary states of boundary-driven quantum systems: Some exact results
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We study finite-dimensional open quantum systems in contact with macroscopic equilibrium systems at their
boundaries such that the system density matrix ρ evolves via a Lindbladian, ρ̇ = −i[H, ρ] + Dρ. Here H is
the Hamiltonian of the system and D is the dissipator. We consider the case where the system consists of two
parts, the “boundary” A and the “bulk” B, and D acts only on A, so D = DA ⊗ IB, where IB is the identity
superoperator on part B. Let DA be ergodic, so DAπA = 0 only for one unique density matrix πA. We show
that any stationary density matrix ρ̄ on the full system which commutes with H must be of the product form
ρ̄ = πA ⊗ ρB for some ρB. This rules out finding any DA that has the Gibbs measure ρβ = e−βH/Z (β ) as a
stationary state with β �= 0, unless there is no interaction between parts A and B. We give criteria for the
uniqueness of the stationary state ρ̄ for systems with interactions between A and B. Related results for nonergodic
cases are also discussed.
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I. INTRODUCTION

There is much current interest, theoretical and experimen-
tal, in open quantum systems coupled at their boundaries to
macroscopic equilibrium systems; see [1,2] and references
therein. These are often many-body open quantum systems for
which the macroscopic equilibrium systems act as reservoirs,
with energy and/or particles exchanged between the reser-
voirs and the boundaries of the open system, and transported
through the system. Since the quantities of interest are the
time-evolution and stationary states of the open quantum sys-
tem, its interaction with the reservoirs is commonly idealized
by saying that they cause the system to evolve under the
influence of a stochastic quantum process [3]. This leads to
a Markovian master equation for the system’s density matrix
ρ(t ). The requirement of complete positivity of the evolution
then restricts the form of this equation to a Lindbladian form,

∂ρ

∂t
= −i[H, ρ] + Dρ, (1)

where H is the Hamiltonian of the isolated system, and Dρ is
the “dissipation” caused by its interactions with the reservoirs.
By a theorem of Lindblad [4] and Gorini, Kossakowski, and
Sudarshan [5], the generator D (a superoperator) has the form

Dρ = −i[K, ρ] +
n∑

α=1

(
LαρL†

α − 1

2
{L†

αLα, ρ}
)

, (2)

where K is a self-adjoint operator, often called the Lamb
shift Hamiltonian [3], because it can be seen as adjusting the
system’s energy levels due to interaction with the reservoirs.
K could be combined with H , but for our purposes, it is
convenient to keep the effect of the reservoirs on the dynamics
clearly separated from the dynamics of the isolated system.

As in [1,2,6] and the references therein, the Hilbert
space of the system has the form H = HA ⊗ HB where HB

corresponds to the “bulk” of the system and HA corresponds
to the part coupled to the reservoirs (the boundary). The Lind-
bladian generators we consider have the form

D = DA ⊗ IB, (3)

where the superoperator DA acts only on operators on subsys-
tem A, and IB denotes the identity superoperator on subsystem
B. Then with 1B denoting the identity operator on A, this
means that the jump operators in (2) all can be written as

Lα = LA,α ⊗ 1B, (4)

in terms of LA,α that act only on HA, and similarly the Lamb
shift Hamiltonian can be written as

K = KA ⊗ 1B. (5)

We shall not discuss here the derivation of K and the “jump
operators” {Lα} from the interactions with the reservoirs.
There are various ways that such generators arise in physical
models. The most commonly discussed is the weak coupling
limit studied by Davies [7]. An alternative is the singular
coupling limit studied in Gorini and Kossakowski [8]. (See
[9] for a treatment of both of these limits limits in a common
framework.) The weak coupling limit leads to a special class
of Lindbladian generators for which the Gibbs state of the
system Hamiltonian (at a temperature and chemical potential
set by the reservoir) is always a steady state. In general, in the
weak coupling limit, even if the coupling to the heat bath is
local, acting only onHA, the jump operators will not have the
local form (4). However, the singular coupling limit is more
flexible, and the parameters can be adjusted to produce any
desired Lindbladian [8].

As in [2], we focus instead on the relations between the
properties of DA ⊗ IB and H and the stationary state(s) ρ̄ of
(1). These stationary states are the nonequilibrium analog of
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the equilibrium Gibbs states, and they determine the prop-
erties of the system in the steady state. However, when the
dimension HB is large, it is impossible to exactly solve for
steady states in all but the simplest settings. Even the question
of existence and uniqueness is not entirely trivial, but our goal
is to go beyond this and to deduce properties of the steady
states from the specified dynamics.

It follows from general results that there is always at least
one stationary state ρ̄. (See, e.g., [10] and Sec. IV of this
paper.) The question of uniqueness of such steady states is
closely connected with the existence of a positive definite
steady state [11,12] and is discussed below in Sec. V.

As discussed in [1,2] and references therein, there are two
desiderata for the dissipatorD: (i) we would likeD to act only
on the “boundary” degrees of freedom of the system, as do the
reservoirs in certain situations of interest, and (ii) we would
like the stationary state ρ̄ to be unique and to be that of thermal
equilibrium at a finite temperature 1/β set by the reservoir
when the system is interacting with only one such reservoir,
i.e., ρ̄ = 1

Z (β ) exp (−βH ), or ρ̄ = 1
Z (β,μ) exp [−β(H − μN )]

if the reservoir also sets a chemical potential for total particle
(or excitation) number N . Note that for quantum systems this
N is an operator. These two desired properties are readily
realizable for classical systems [13] but seem incompatible
for quantum systems in the particular cases investigated in
[1,2]. Here we prove a “no go” theorem showing that this
incompatibility is indeed the case quite generally. However,
infinite temperature (β → 0) steady states of this form with
βμ finite do occur (and are unique) for some such models
when [H,N] = 0, as we show.

II. LOCAL LINDBLADIANS

As explained in the introduction, we consider a general
setup where the system of interest can be divided into two
parts, A and B. The Lindbladian dissipator will couple only
to part A, which we can consider to be the boundary of the
system, while part B is the bulk of the system. For example,
if our system is a finite spin chain, part A could be the first m
spins at one or both ends of the chain (e.g., m could be one
or two spins), while part B is all the remaining spins. This
type of “local coupling” has been discussed in some detail
for various systems, such as the well-known XXZ or XYZ
spin chain models with D acting on the spins at the ends of
the chain [1,2,6,12]. A particular such spin chain example is
discussed below.

The Hilbert spaceH of the full system is the direct product
of the Hilbert spacesHA andHB, each assumed to be of finite
dimension more than one. (We are particularly interested in
cases where B, although finite, is large.) The Hamiltonian of
the system is assumed to be finite and traceless. Then defining
HA = trB{H} and HB = trA{H}, H can be written as

H = HA ⊗ 1B + HAB + 1A ⊗ HB, (6)

which defines HAB, the part of the Hamiltonian producing
interaction between subsystems A and B. Then automatically,
TrA{HAB} = TrB{HAB} = 0. HAB then describes the dynamics
of separately isolated A and B systems.

As explained in the introduction, the dissipators D with
which we are concerned have the form (3); that is, D = DA ⊗

IB. We assume further (for the moment) that DA is ergodic on
subsystem A, i.e., that there exists a unique density matrix πA

on HA such that

DAπA = 0. (7)

(We also discuss the case where DA is nonergodic in the
Appendix.)

An example of such a D is given by

Dρ = 1

τ
[πA ⊗ trA{ρ(t )} − ρ(t )]. (8)

The solution of ∂
∂t ρ = Dρ with initial state ρ0 is

ρ(t ) = (1 − e−t/τ )πA ⊗ trA{ρ0} + e−t/τ ρ0, (9)

so that the dynamics described by this D is replacement of
ρ(t ) by πA ⊗ trA{ρ(t )} at rate 1/τ . [This dissipator can be
written in the form (2) and (3), using the jump operators
Li, j = π

1/2
A |i〉〈 j| ⊗ 1B where | j〉 runs over an orthonormal

basis of HA.]
The question we now investigate is: Given a Lindbladian

dissipator of the form (3) that acts only on part A (the bound-
ary) of our system, what can we say about a stationary density
matrix of the full system, ρ̄? We first restrict our attention to
cases where there is a steady state ρ̄ that is a “generalized
Gibbs state,” meaning that it commutes with the Hamiltonian
H : [ρ̄,H] = 0. This ensures that ρ̄ is also a stationary state
of the system if we set D = 0. It includes the standard Gibbs
state ρβ = e−βH/Z (β ) as a special case. We will show later
that in some cases such a stationary state is unique. Our main
theorems and a corollary are the following.

Theorem 1. Let D have the form (3). We further assume
that DA is ergodic, so on HA there is a unique density ma-
trix πA satisfying DAπA = 0. Let ρ be a steady-state solution
of (1).

Assume that ρ̄ commutes with H . Then there exists a
density matrix ρB on HB such that

ρ = πA ⊗ ρB. (10)

In particular, such a steady state ρ always satisfies trB{ρ} =
πA. If we further assume that ρ̄ is positive definite, then this
implies that

[πA,HA] = 0, [ρB,HB] = 0, and [ρ̄,HAB] = 0. (11)

Conversely if [ρ̄,H] �= 0, then ρ̄ �= πA ⊗ ρB for any ρB.
Corollary 1. Under the same assumptions made in Theo-

rem 1, suppose that for some finite β > 0, the Gibbs state

ρβ = 1

Z (β )
e−βH (12)

is a steady-state solution of (1). Then necessarily HAB = 0,
and for any density matrix ρB on HB such that [ρB,HB] =
0, πA ⊗ ρB is a steady-state solution of (1). The dissipator
relaxes A to its unique steady state πA. However, due to
HAB = 0, subsystem B remains isolated and autonomous so
has many possible steady states.

We next turn to uniqueness and positivity. As already
noted, the uniqueness of steady states is closely connected
with the existence of positive definite steady states, as we
recall below. In our setting, in which the Lindbladian acting
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at the boundary has a unique positive definite steady state, a
simple algebraic condition on the Hamiltonian H is necessary
and sufficient for any steady state ρ̄ that commutes with H to
be the unique steady state, and in this case ρ̄ is necessarily
positive definite.

Theorem 2. Let D be a Lindbladian dissipator of the form
(2) and (3) and suppose that DA is ergodic with a positive
definite steady state πA onHA. Suppose that ρ̄ is a steady state
for (1) that commutes with H .

Then ρ̄ is the unique steady state of (1) if and only if the
only traceless self-adjoint operator XB acting on HB such that
[H, 1A ⊗ XB] = 0 is XB = 0, and moreover, in this case ρ̄ is
positive definite.

Furthermore, if there is a traceless operator XB on HB so
that [H, 1A ⊗ XB] = 0 and thus the steady state is not unique,
this also implies [HB,XB] = 0 and [HAB, 1A ⊗ XB] = 0.

The proofs will follow below, after the following discus-
sion.

There are many examples, one of which we discuss below,
for which both (10) and (11) hold. These include cases for
which

ρ̄ = eV = eVA ⊗ eVB , (13)

where V = λN + a1, where N = NA ⊗ 1B + 1A ⊗ NB is the
number operator for the number of particles in the system,
which is conserved by H but is not conserved byD. 1 = 1A ⊗
1B is the identity operator on the full system,VA = λNA + a1A
and VB = λNB + a1B. These “particles” can be the z compo-
nent of the magnetization for the spin chain examples [1,2].
In [14] they are the excitations in a system of oscillators.
In these cases we have ρ̄ ∼ eλN , which is the equilibrium
Gibbs ensemble in the limit of infinite temperature, where the
reduced chemical potential λ = βμ remains finite in the limit.
In order for ρ̄ to be the unique steady state in these cases,
we need VB to be unique, which requires that HAB �= 0 and
that the only operator acting on B that commutes with H is
the identity, as in Theorem 2. Thus, [HAB, 1A ⊗VB] �= 0: HAB

moves particles between A and B.
We define the inner product between two operators V and

W that act on some Hilbert space H as 〈V |W 〉 = tr{V †W },
which is known as the Hilbert-Schmidt inner product. This
makes the space of operators on H into a Hilbert space
denoted Ĥ. Operators on Ĥ are superoperators. If D is an
operator on Ĥ, we write D† to denote its adjoint with respect
to the Hilbert-Schmidt inner product. If ρ is a density matrix
onH, then ρ is a vector in Ĥ, and it will be convenient to use
the Dirac notation such as D|ρ〉 = |Dρ〉.

Proof of Theorem 1. Suppose that ρ is a steady state of
(1). Then since [H, ρ] = 0, Dρ = 0. Since DA is ergodic, the
nullspace of DA is spanned by πA. Since 〈ρA|D†

ADAρA〉 =
〈DAρA|DAρA〉 for any ρA, πA also spans the nullspace of
D†

ADA. The operator D†
AD is positive semidefinnite, and its

nullspace is spanned by π . Let dA be the dimension of HA,
and let

D†
ADA =

d2
A∑

j=1

λ j |Xj〉〈Xj |

be an eigenfunction expansion of the superoperator DA in
which X1 is a multiple of π , so that λ1 = 0, but λ j > 0 for

j � 2. Then {X1, . . . ,Xd2
A
} is a complete orthonormal basis,

with respect to the Hilbert-Schmidt inner product, of the op-
erators acting onHA, consisting of eigenvectors of D†

ADA.
Then the startionary state ρ has the expansion

ρ =
d2
A∑

j=1

Xj ⊗Wj, (14)

where eachWj acts on HB. Since Dρ = 0 and D = DA ⊗ IB
we have

0 =
d2
A∑

j=2

(DAXj ) ⊗Wj . (15)

For j > 1, define Yj := λ−1
j DAXj . Note that

trA[Y
†
j (DAXk )] = 〈

λ−1
j DAXj,DAXk

〉
= λ−1

j 〈D†
ADAXj,Xk〉 = δ j,k .

Therefore, for each k > 1,

0 =
M∑
j=2

trA[(Y
†
k ⊗ 1B)((DAXj ) ⊗Wj )] = Wk. (16)

The conclusion is that for some normalization constant c,

ρ = cπA ⊗W1, (17)

where trB[cW1] = 1 and cW1 � 0. Defining ρB := cW1, we see
that ρ = πA ⊗ ρB, which proves (10). Note that the assump-
tion that ρ̄ (and thus also πA) is positive definite was not used
yet, so this part of the theorem [unlike (11)] is also true even if
ρ̄ has null eigenvectors, as can occur whenD is approximating
a zero-temperature bath.

On the other hand, if ρ̄ = πA ⊗ ρB then using (7) the r.h.s.
of (1) is just −i[H, ρ̄] which would have to be zero if ρ̄ is
stationary.

Now, to prove (11), we assume that ρ̄ is positive definite, so
we can define VA = ln πA and VB = ln ρB. Since H commutes
with ρ̄ = eVA ⊗ eVB , it commutes with ln ρ̄ = VA ⊗ 1B + 1A ⊗
VB = V . Therefore

0 = [VA ⊗ 1B + 1A ⊗VB,HA ⊗ 1B + 1A ⊗ HB + HAB]

= [VA,HA] ⊗ 1B + 1A ⊗ [VB,HB]

+ [VA ⊗ 1B + 1A ⊗VB,HAB]. (18)

Apply the partial trace trB to each term on the r.h.s. First,

trB{[VA,HA] ⊗ 1B} = [VA,HA] dim(HB). (19)

We claim that trB of all other terms in (18) are zero so that
[VA,HA] = 0. To see this, trB{1A ⊗ [VB,HB]} = 0 since it is
the trace of a commutator onHB. Next, trB{[VA ⊗ 1B,HAB]} =
[VA, trB{HAB}] = 0 by our convention that trB{HAB} = 0. Fi-
nally, trB{[1A ⊗VB,HAB]} = 0 by the partial cyclicity of the
partial trace; that is, trB{VBHAB} = trB{HABVB}. This proves
that [VA,HA] = 0, and the same reasoning using instead trA
shows that [VB,HB] = 0. Then (18) simplifies to [V,HAB] = 0.
For each of these vanishing commutators, we then use the fact
that [C,D] = 0 implies [eC,D] = 0 for any two operators C,
D, to prove (11). �
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Proof of Corollary 1. By (12), ρβ is of the form (10) if and
only ifHAB = 0, given that trA{HAB} = 0 and trB{HAB} = 0.�

Before proving Theorem 2 we recall a theorem of Frigerio
[11] that we will use.

Theorem 3 (Frigerio’s Theorem). Suppose that the equa-
tion dρ

dt = Dρ for density matrices on H with D given by (2)
has at least one positive definite steady state. Then there is a
unique steady-state density matrix ρ̄ with Dρ̄ = 0 if and only
if K and {L1, . . . ,Ln} are such that any operator X on H that
satisfies

[K,X ] = 0 and for all α, [Lα,X ] = [L†
α,X ] = 0

(20)

is a multiple of the identity. This is equivalent to saying that
{K,Lα,L†

α} generate all operators onH.
Note that Eq. (1) has the form considered in Frigerio’s The-

orem if we simply replace K by (K + H ), so that Frigerio’s
Theorem may also be applied to Eq. (1).

Proof of Theorem 2. Let A be an operator on HA ⊗ HB

such that [K̂ ⊗ 1B,A] = 0 and for all α: [L̂α ⊗ 1B,A] = [L̂†
α ⊗

1B,A] = 0, where LA,α and KA are defined in (4) and (5).
Expand A = ∑

γ Wγ ⊗ Eγ where theWγ are operators on HA

and the Eγ are an orthonormal basis for operators onHB. Then
[L̂α ⊗ 1B,A] = 0 becomes∑

γ

[L̂α,Wγ ] ⊗ Eγ = 0, (21)

and since the Eγ are orthonormal, [L̂α,Wγ ] = 0 for each α, γ .
A similar argument shows that [L̂†

α,Wγ ] = 0 for each α, γ ,
and that [K̂,Wγ ] = 0 for each γ .

Since DA is ergodic on HA, by Theorem 3, the only op-
erators on HA that commute with K̂ , L̂α , and L̂†

α for all α

are multiples of the identity. Hence each Wγ is of the form
Wγ = cγ 1A for some constant cγ . It follows that

A = 1A ⊗ X where X =
∑

γ

cγEγ . (22)

Therefore, the only operators A on HA ⊗ HB that satisfy (20)
of Theorem 3 are operators of the form 1A ⊗ X such that
[H, 1A ⊗ X ] = 0.

Now suppose that the only operators of the form 1A ⊗ X
such that [H, 1A ⊗ X ] = 0 are multiples of the identity. Let ρ̃

denote a steady state that has maximal support, which exists
by Theorem 4. If ρ̃ is positive definite, then by Frigerio’s
Theorem, ρ̃ is the unique steady state, and so ρ̄ = ρ̃, which
is positive definite.

On the other hand, if ρ̃ is not positive definite, then neither
is any other steady state, including our steady state ρ̄ that
commutes with H . We claim that in this case, there would
exist self-adjoint operators X on HB other than multiples
of the identity such that [H, 1A ⊗ X ] = 0. Hence under our
assumption on operators satisfying [H, 1A ⊗ X ] = 0, ρ̃ must
be positive definite, and must be the unique steady state by
Frigerio’s Theorem, and hence equals ρ̄.

To see this, note that by Theorem 1, ρ̄ has the form ρ̄ =
πA ⊗ ρB. Since we assumed that πA is positive definite, the
projector P onto the null space of ρ̄ has the form 1A ⊗ PB
where PB is the projector onto the null space of ρB. By hy-
pothesis, [H, ρ̄] = 0. Then since all of the spectral projections

of ρ̄ are polynomials in ρ̄, 1A ⊗ PB is can be written as a
polynomial, and hence it commutes with H . But then XB :=
PB − c1B, where c is chosen to make XB traceless, is a nonzero
traceless self-adjoint operator such that 1A ⊗ XB commutes
with H , and therefore, if ρ̄ is a degenerate (i.e., not positive
definite) steady state commuting with H , it is not the unique
steady state.

To simplify the condition on solutions of [H, 1A ⊗ X ] = 0,
observe, that since H is self adjoint, [H, 1A ⊗ X ] = 0 if and
only if [H, 1A ⊗ X †] = 0, and hence it suffices to consider
self-adjoint X . Finally since 1A ⊗ X commutes with H if and
only if 1A ⊗ (X − tr[X ]1B) commutes with H , we may freely
assume X to be traceless. Thus, the steady state is unique if
and only if the only traceless self-adjoint operator X on HB

such that [H, 1A ⊗ X ] = 0 is X = 0.
Now suppose that the stationary state is not unique, so

that there exists a nontrivial operator X on HB such that
[H, 1A ⊗ X ] = 0. Then [HB + HAB, 1A ⊗ X ] = 0, and since
trA[HAB]= 0,

0 = trA[HAB, 1A ⊗ X ] = [HB,X ], (23)

from which the rest follows. �

III. SPIN CHAIN EXAMPLE

The boundary-driven XX (or XY) spin model on a chain of
� sites for which the dissipator is of the form (8) is exactly
solvable, and the unique ρ̄ is of the form (13). This model,
and close relatives of it, are also presented in [1,6,15] and
references therein to illustrate various theorems discussed in
those papers. In this section we discuss this model as an
illustration of Theorem 2 for a DA of the form (8).

After the Jordan-Wigner (JW) transformation its Hamilto-
nian has the form [cf. Eq. (15) in [1]]

H =
�−1∑
j=1

(a†j a j+1 + a†j+1a j ), (24)

where a j , a
†
j are the usual annihilation and creation operators

of the JW fermions at site j. As is well known, the particle
number operator

N =
�∑
j=1

a†j a j (25)

commutes with H .
Let A be the first site of this chain, j = 1, while B is all the

remaining sites. Fix β > 0 and define

πA := 1

1 + e−β
(e−β |1〉〈1|A + |0〉〈0|A) = 1

1 + e−β
e−βa†1a1 .

(26)

Let D = DA ⊗ IB and let DA be the dissipator defined as
in (8) by

DAρ = ε[πA ⊗ trA[ρ(t )] − ρ(t )] (27)

in terms of πA as in (26). Let � � 2, and let H be the Hamilto-
nian defined in (24). Define ρ̄ to be the �-fold tensor product
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state

ρ̄ :=
(

1

1 + e−β
(e−β |1〉〈1| + |0〉〈0|)

)⊗�

(28)

acting onHA ⊗ HB so that ρ̄ = ( 1
1+e−β )�e−βN .

Note that ρ̄ has the form πA ⊗ ρB, so that Dρ̄ = 0. More-
over, since H commutes with N , and since ρ̄ is a function of
N , [H, ρ̄] = 0. Therefore ρ̄ is a steady state of (1). Since ρ̄ is
positive definite, one could apply Frigerio’s Theorem to prove
that ρ̄ is the unique steady state—there are many ways to treat
this simple model. However, the work is especially simple
using Theorem 2 since we need only concern ourselves with
H and not the operators Lα and L†

α in the Lindblad description
of DA.

Proof that ρ̄ is the unique steady state via Theorem 2: Since
{n, a, a†, 1 − n} is an orthonormal basis for operators on HA,
we may expand

H = K1,1 ⊗ n + K1,0 ⊗ a + K0,1 ⊗ a† + K0,0 ⊗ (1 − n)

(29)

and then write H in the block matrix form

H =
[
K1,1 K1,0

K0,1 K0,0

]
(30)

with operators Ki, j on HB.
We will proceed by induction on �. For � = 2, (30)

reduces to H = [ 0 a
a† 0]. Likewise, the block form of

1 ⊗ X is 1 ⊗ X = [X 0
0 X]. Then [H, 1 ⊗ X ] = 0 becomes

[ 0 [X, a]
[X, a†] 0 ], which reduces to [a,X ] = 0 and [a†,X ] = 0.

Any operator that commutes with both a and a† also com-
mutes with n and 1 − n, and hence with everything. Therefore,
any such operator X is a multiple of the identity. Since tr[X ] =
0, X = 0. This proves uniqueness for N = 2.

For N > 2, let X be self-adjoint on HB and such that [1 ⊗
X,H] = 0. We claim that then X has the form X = 1 ⊗ Y
corresponding to the decomposition HB = H ⊗ H⊗N−2.

To see this, again write H in the block form (30) with
operators on HB as entries

H =
[

K a ⊗ 1

a† ⊗ 1 K

]
, (31)

where a ⊗ 1, a† ⊗ 1 act on HB through its identification with
H ⊗ H⊗N−2, and where K := ∑N−1

j=2 Hj, j+1. Then [H, 1 ⊗
X ] = 0 is equivalent to

[K,X ] = 0 , [a ⊗ 1,X ] = 0, and [a† ⊗ 1,X ] = 0.

(32)

Now let {E1, . . . ,E2N−1} be an orthonormal basis of op-
erators on H⊗N−2. Then X has a unique expansion
X = ∑2N−1

j=1 Wj ⊗ Ej where eachWj is an operator onH. Then

0 = [a ⊗ 1,X ] = ∑2N−1

j=1 [a,Wj] ⊗ Ej and 0 = [a† ⊗ 1,X ] =∑2N−1

j=1 [a
†,Wj] ⊗ Ej . It follows that for each j [a,Wj] =

[a†,Wj] = 0, and thenWj = c j1 for some constant c j . There-

fore X = ∑2N−1

j=1 1 ⊗ c jE j = 1 ⊗ Y where Y = ∑2N−1

j=1 c jE j .

Now make the inductive assumption that this has been
proved for N � M; we shall show it is then true for N =
M + 1.

Let X be traceless and self-adjoint on HB = H⊗M , and
suppose that 1 ⊗ X commutes with H = ∑M

j=1 Hj, j+1. By
what we proved just above, X = 1 ⊗ Y , where Y is trace-
less and self-adjoint on the last M − 1 factors of H in HB.
Then 1 ⊗ X = 1 ⊗ 1 ⊗ Y , which evidently commutes with
H12. Therefore [1 ⊗ X,H] = 0 becomes

[1 ⊗ Y,H ′] = 0 where H ′ =
M∑
j=2

Hj, j+1. (33)

By the inductive hypothesis, Y = 0. �
Remark 1. Note that the form ρ̄ = πA ⊗ ρB of the unique

steady state is independent of the parameter ε, and this proves
analytically that, as a function of ε, the steady state does not
converge to the Gibbs state as ε converges to zero, an issue
discussed in [2].

IV. EXISTENCE OF STEADY STATES
WITH MAXIMAL SUPPORT

We give a simple proof of the existence of a stationary state
of (1) which yields some additional information that is used
here. Many proofs of existence of steady states invoke fixed
point theorems, e.g., the Markov-Kakutani Fixed Point Theo-
rem in [10] in a general infinite-dimensional setting, and the
Brower Fixed Point Theorem in [15] in a finite-dimensional
setting. The mean ergodic theorem provides a more construc-
tive approach and additional information.

Theorem 4. For a d-dimensional Hilbert space H, Eq. (1)
has at least one steady-state solution. Moreover, there exists a
steady-state solution ρ̄ that has maximal support in the sense
that if ρ is any steady-state solution, then

ρ � dρ̄. (34)

Proof. Let Lρ := −i[H, ρ] + Dρ as in (1). Then each etL,
t > 0 is completely positive and trace preserving. As a con-
sequence, by a mean ergodic theorem of Lance [16], for any
operator A onH, the limit

lim
T→∞

1

T

∫ T

0
etL(A) dt := PL(A) (35)

exists. (In our finite-dimensional setting, all topologies are
equivalent, so the sense of convergence is immaterial.) It is
clear from the definition that for all t , etLPL(A) = PL(A).
Furthermore, since PL preserves positivity and traces, if A
is any density matrix, then PL(A) is a density matrix. This
proves existence.

Next, define the density matrix ρ0 by ρ0 := 1
d 1H, and

define

ρ := PL(ρ0). (36)

Then ρ̄ is a steady state. Now let ρ be any other steady state.
Since ρ � 1H, ρ � dρ0, and then for each t , ρ = etLρ �
detLρ0 so that (34) is satisfied. �

We remark that in our finite-dimensional setting, the the-
orem of Lance has an elementary proof using the Jordan
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canonical form and a well-known contractive property of trace
preserving completely positive operators.

V. UNIQUENESS

Frigerio’s theorem (4) [11] gives a general if and only if
result for uniqueness of the stationary solution ρ̄ of (1) once
we know the existence of a positive definite ρ̄. The latter re-
quirement is essential, as pointed out in [15]. An avoidance of
this requirement is given by Yoshida [12,15] who proved that a
sufficient condition for uniqueness of ρ̄ is that the Lindbladian
L is such that all operators in H are linear combinations of
products of the operators in the set {H − i

2

∑
α L

†
αLα,Lα} (all

α). This set generally contains fewer operators than the set
used by Frigerio.

Theorem (3) gives necessary and sufficient conditions for
uniqueness for the case when the dissipatorD has the form (3)
and DA is ergodic. We do not require the a priori existence of
a positive definite ρ̄ but find the conditions for uniqueness and
strict positivity of a ρ̄ of the form πA ⊗ ρB which commutes
with H . Our conditions also ensure that when there exists a
unique ρ̄ then it is positive definite.

VI. DISCUSSION

The Gibbs measure, ρβ = e−βH/Z (β ), is the standard ther-
mal equilibrium state of a system with Hamiltonian H at
inverse temperature β. For an open quantum system coupled
to a Lindbladian dissipator that acts only on part A of the
system (the system is otherwise fully isolated), one might
have naively thought that one could choose a dissipator acting
on part A that produces the Gibbs measure as the resulting
exact steady state of the full system. In this paper we have
shown that this is not possible when βHAB �= 0, where HAB is
the part of the Hamiltonian that is the interactions between
part A of the system and the rest of the system (part B).
Why is this not possible? An informal justification of our
result is: For βHAB �= 0 the Gibbs measure contains specific
detailed correlations between parts A and B of the system.
The dissipator acts only on A without being able to use any
“information” about part B, so it cannot produce these correct
correlations between A and B. On the contrary, it necessarily
will disrupt those correlations by dissipating part A in a way
that is independent of the state of part B.
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APPENDIX: NONERGODIC DA

In this Appendix, we explain how quantum ergodic decom-
positions may be used to extend Theorem 1 to the case in
which DA is not assumed to be ergodic

LetH be a finite-dimensional Hilbert space and letL be the
generator of a quantum dynamical semigroup etL on operators

onH so that each etL is completely positive and trace preserv-
ing. Then L† is the generator of a quantumMarkov semigroup
(etL)† := etL

†
. That is, for each t , etL

†
is completely positive

with the property that etL
†IH = IH. Because of this last prop-

erty, L†IH = 0.
Let C denote the null space of L†. Suppose that there

exists at least one positive definite steady state; that is, at least
one positive definite density matrix such that Lρ = 0. Then
Frigerio’s Theorem [11] says that C is not just a vector space
of operators on H; it is also closed under multiplcation and
taking Hermitian adjoints, and evidently it contains IH. This
makes it a a von Neumann algebra. LetZ denote C ∩ C ′ where
C ′ is the commutant of C. This is a commutative von Neumann
algebra callled the center of C.

Every commutative von Neumann algebra on a finite-
dimensional Hilbert space H has the following simple
structure (see, e.g., [17]): There is a set {P1, . . . ,Pm} of mu-
tually orthogonal projections summing to IH whose complex
span is the algebra.

The projectors {P1, . . . ,Pm} provide the basis for an er-
godic decomposition of etL

†
. Let H j denote the range of Pj

so that

H =
m⊕
j=1

H j . (A1)

The following theorem is proved in [17,18]: Each of the
Hilbert spaces H ( j) has a factorization H( j) = K( j)

� ⊗ K( j)
r ,

determined by the generator L, where either of these factors
may be, but neither need be, one-dimensional. There is a set
ofm density matrices on the “right” factorsK( j)

r , {ω1, . . . , ωm}
such that a density matrix ρ onH satisfies Lρ = 0 if and only
if it has the form

ρ =
m∑
j=1

p jρ j ⊗ ω j, (A2)

where each ρ j is any density matrix on K( j)
1 and the p′

j are
probabilities.

The ergodic case is that in which m = 1 and K(1)
� is one

dimensional so thatH = K(1)
r and then ω1 is the unique steady

state.
If we relax the assumption that DA is ergodic with a pos-

itive definite steady state to only the assumption that DA has
at least one positive definite steady state, so that every steady
state for DA has the form (A2), then the method of proof of
Theorem 1 can be used to prove that every steady state ρ̄

of (1) that commutes with H has an expansion of the form
(A2) where now ρ j is a density matrix on K( j)

r ⊗ HB: In this
nonergodic case, the steady states that commute with H are a
direct sum of components that again factor as tensor products.
Finally, if DA does not have any positive definite steady state,
let ρ̄A be a steady state of maximal support, as in Theorem 4,
and let KA be the subspace of HA that supports ρ̄A. (That is,
KA is the orthogonal complement of the null spaces of ρ̄A.)
Let PA be the orthogonal projection onto KA. Then for any
operator X on HA

etL(PAXPA) = PAe
tL(PAXPA)PA, (A3)
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so that the Lindbladian evolution may be restricted to op-
erators on KA, and then it has a positive definite steady
state (but a different Lindbladian description in terms of
operators Lα now acting on KA instead of HA). The

above consideration apply to this reduced system, in which
a “transient part” has been discarded. The transient part
is irrelevant as far the the structure of steady states is
concerned.
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