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We study finite-dimensional open quantum systems in contact with macroscopic equilibrium systems at their
boundaries such that the system density matrix p evolves via a Lindbladian, p = —i[H, p] + Dp. Here H is
the Hamiltonian of the system and D is the dissipator. We consider the case where the system consists of two
parts, the “boundary” A and the “bulk” B, and D acts only on A, so D = D4 ® Iy, where Zj is the identity
superoperator on part B. Let D, be ergodic, so Dymws = 0 only for one unique density matrix 4. We show
that any stationary density matrix p on the full system which commutes with H must be of the product form
p = w4 ® pg for some pp. This rules out finding any D, that has the Gibbs measure ps = e #7/Z(B) as a
stationary state with B # 0, unless there is no interaction between parts A and B. We give criteria for the
uniqueness of the stationary state p for systems with interactions between A and B. Related results for nonergodic

cases are also discussed.
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I. INTRODUCTION

There is much current interest, theoretical and experimen-
tal, in open quantum systems coupled at their boundaries to
macroscopic equilibrium systems; see [1,2] and references
therein. These are often many-body open quantum systems for
which the macroscopic equilibrium systems act as reservoirs,
with energy and/or particles exchanged between the reser-
voirs and the boundaries of the open system, and transported
through the system. Since the quantities of interest are the
time-evolution and stationary states of the open quantum sys-
tem, its interaction with the reservoirs is commonly idealized
by saying that they cause the system to evolve under the
influence of a stochastic quantum process [3]. This leads to
a Markovian master equation for the system’s density matrix
p(t). The requirement of complete positivity of the evolution
then restricts the form of this equation to a Lindbladian form,

dp

E=—i[H, pl+Dp, 1

where H is the Hamiltonian of the isolated system, and Dp is
the “dissipation” caused by its interactions with the reservoirs.
By a theorem of Lindblad [4] and Gorini, Kossakowski, and
Sudarshan [5], the generator D (a superoperator) has the form

“ PR
Dp = —ilK, p] + ) (LapL; -5 lleLa, p}), )
a=1

where K is a self-adjoint operator, often called the Lamb
shift Hamiltonian [3], because it can be seen as adjusting the
system’s energy levels due to interaction with the reservoirs.
K could be combined with H, but for our purposes, it is
convenient to keep the effect of the reservoirs on the dynamics
clearly separated from the dynamics of the isolated system.
As in [1,2,6] and the references therein, the Hilbert
space of the system has the form H = H, ® Hp where Hp
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corresponds to the “bulk” of the system and /{4 corresponds
to the part coupled to the reservoirs (the boundary). The Lind-
bladian generators we consider have the form

D = D4 ® Ip, 3)

where the superoperator D4 acts only on operators on subsys-
tem A, and Zp denotes the identity superoperator on subsystem
B. Then with 1 denoting the identity operator on A, this
means that the jump operators in (2) all can be written as

Ly =Lsy ®1p, “4)

in terms of Ly , that act only on Hy4, and similarly the Lamb
shift Hamiltonian can be written as

K =K; ® 13. @)

We shall not discuss here the derivation of K and the “jump
operators” {L,} from the interactions with the reservoirs.
There are various ways that such generators arise in physical
models. The most commonly discussed is the weak coupling
limit studied by Davies [7]. An alternative is the singular
coupling limit studied in Gorini and Kossakowski [8]. (See
[9] for a treatment of both of these limits limits in a common
framework.) The weak coupling limit leads to a special class
of Lindbladian generators for which the Gibbs state of the
system Hamiltonian (at a temperature and chemical potential
set by the reservoir) is always a steady state. In general, in the
weak coupling limit, even if the coupling to the heat bath is
local, acting only on H 4, the jump operators will not have the
local form (4). However, the singular coupling limit is more
flexible, and the parameters can be adjusted to produce any
desired Lindbladian [8].

As in [2], we focus instead on the relations between the
properties of Dy ® Zp and H and the stationary state(s) p of
(1). These stationary states are the nonequilibrium analog of

©2025 American Physical Society
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the equilibrium Gibbs states, and they determine the prop-
erties of the system in the steady state. However, when the
dimension Hp is large, it is impossible to exactly solve for
steady states in all but the simplest settings. Even the question
of existence and uniqueness is not entirely trivial, but our goal
is to go beyond this and to deduce properties of the steady
states from the specified dynamics.

It follows from general results that there is always at least
one stationary state p. (See, e.g., [10] and Sec. IV of this
paper.) The question of uniqueness of such steady states is
closely connected with the existence of a positive definite
steady state [11,12] and is discussed below in Sec. V.

As discussed in [1,2] and references therein, there are two
desiderata for the dissipator D: (i) we would like D to act only
on the “boundary” degrees of freedom of the system, as do the
reservoirs in certain situations of interest, and (ii) we would
like the stationary state p to be unique and to be that of thermal
equilibrium at a finite temperature 1/8 set by the reservoir
when the system is interacting with only one such reservoir,
ie., b= g5 0xp (=BH), or p = 755 exp[—B(H — uN)]
if the reservoir also sets a chemical potential for total particle
(or excitation) number N. Note that for quantum systems this
N is an operator. These two desired properties are readily
realizable for classical systems [13] but seem incompatible
for quantum systems in the particular cases investigated in
[1,2]. Here we prove a “no go” theorem showing that this
incompatibility is indeed the case quite generally. However,
infinite temperature (8 — 0) steady states of this form with
Bu finite do occur (and are unique) for some such models
when [H, N] = 0, as we show.

II. LOCAL LINDBLADIANS

As explained in the introduction, we consider a general
setup where the system of interest can be divided into two
parts, A and B. The Lindbladian dissipator will couple only
to part A, which we can consider to be the boundary of the
system, while part B is the bulk of the system. For example,
if our system is a finite spin chain, part A could be the first m
spins at one or both ends of the chain (e.g., m could be one
or two spins), while part B is all the remaining spins. This
type of “local coupling” has been discussed in some detail
for various systems, such as the well-known XXZ or XYZ
spin chain models with D acting on the spins at the ends of
the chain [1,2,6,12]. A particular such spin chain example is
discussed below.

The Hilbert space H of the full system is the direct product
of the Hilbert spaces H4 and Hp, each assumed to be of finite
dimension more than one. (We are particularly interested in
cases where B, although finite, is large.) The Hamiltonian of
the system is assumed to be finite and traceless. Then defining
Hy = trg{H} and Hg = try,{H}, H can be written as

H=Hy®1p+ Hyp + 14 ® Hp, (6)

which defines Hyp, the part of the Hamiltonian producing
interaction between subsystems A and B. Then automatically,
Tra{Hap} = Trp{Hsp} = 0. Hyp then describes the dynamics
of separately isolated A and B systems.

As explained in the introduction, the dissipators D with
which we are concerned have the form (3); thatis, D = Dy ®

Tp. We assume further (for the moment) that Dy is ergodic on
subsystem A, i.e., that there exists a unique density matrix
on H4 such that

DAﬂA =0. (7)

(We also discuss the case where D4 is nonergodic in the
Appendix.)
An example of such a D is given by

1
Dp = ;[HA ® traf{p(r)} — p(1)]. ®)

The solution of %p = Dp with initial state pg is

o) = (1 —eMmy @ tralpo} + e/ po, 9)

so that the dynamics described by this D is replacement of
p(t) by ma @ tra{p(t)} at rate 1/7. [This dissipator can be
written in the form (2) and (3), using the jump operators
L= n/i/zli) (j| ® 13 where |j) runs over an orthonormal
basis of Hy.]

The question we now investigate is: Given a Lindbladian
dissipator of the form (3) that acts only on part A (the bound-
ary) of our system, what can we say about a stationary density
matrix of the full system, p? We first restrict our attention to
cases where there is a steady state p that is a “generalized
Gibbs state,” meaning that it commutes with the Hamiltonian
H: [p, H] = 0. This ensures that p is also a stationary state
of the system if we set D = 0. It includes the standard Gibbs
state pg = e PH/Z(B) as a special case. We will show later
that in some cases such a stationary state is unique. Our main
theorems and a corollary are the following.

Theorem 1. Let D have the form (3). We further assume
that D, is ergodic, so on H, there is a unique density ma-
trix mu satisfying Damy = 0. Let p be a steady-state solution
of (1).

Assume that p commutes with H. Then there exists a
density matrix pg on Hp such that

0 =174 Q pp. (10)

In particular, such a steady state p always satisfies trg{p} =
m4. If we further assume that p is positive definite, then this
implies that

[ma, Hal1 =0, [pp,Hpl=0, and [p,Hsp]l=0. (11)

Conversely if [p, H] # 0, then p # w4 ® pp for any pp.
Corollary 1. Under the same assumptions made in Theo-
rem 1, suppose that for some finite 8 > 0, the Gibbs state

L 4n

P2 (12
is a steady-state solution of (1). Then necessarily Hap = 0,
and for any density matrix pp on Hp such that [pp, Hp] =
0, ms ® pp is a steady-state solution of (1). The dissipator
relaxes A to its unique steady state ws. However, due to
Hup = 0, subsystem B remains isolated and autonomous so
has many possible steady states.

We next turn to uniqueness and positivity. As already
noted, the uniqueness of steady states is closely connected
with the existence of positive definite steady states, as we
recall below. In our setting, in which the Lindbladian acting
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at the boundary has a unique positive definite steady state, a
simple algebraic condition on the Hamiltonian H is necessary
and sufficient for any steady state p that commutes with H to
be the unique steady state, and in this case p is necessarily
positive definite.

Theorem 2. Let D be a Lindbladian dissipator of the form
(2) and (3) and suppose that Dy is ergodic with a positive
definite steady state w4 on H4. Suppose that p is a steady state
for (1) that commutes with H.

Then p is the unique steady state of (1) if and only if the
only traceless self-adjoint operator X acting on Hp such that
[H, 14 ® Xg] = 0 is Xz = 0, and moreover, in this case p is
positive definite.

Furthermore, if there is a traceless operator Xz on Hp so
that [H, 14 ® Xg] = 0 and thus the steady state is not unique,
this also implies [Hg, Xg] = 0 and [Hap, 14 ® Xz] = 0.

The proofs will follow below, after the following discus-
sion.

There are many examples, one of which we discuss below,
for which both (10) and (11) hold. These include cases for
which

p=¢" =e"@e%, 13)

where V = AN + al, where N = Ny ® 13 + 14 ® Nj is the
number operator for the number of particles in the system,
which is conserved by H but is not conserved by D. 1 =14 ®
15 is the identity operator on the full system, V4 = AN, + aly
and Vg = ANp + alp. These “particles” can be the z compo-
nent of the magnetization for the spin chain examples [1,2].
In [14] they are the excitations in a system of oscillators.
In these cases we have p ~ ¢V, which is the equilibrium
Gibbs ensemble in the limit of infinite temperature, where the
reduced chemical potential A = Su remains finite in the limit.
In order for p to be the unique steady state in these cases,
we need Vg to be unique, which requires that Hyp # 0 and
that the only operator acting on B that commutes with H is
the identity, as in Theorem 2. Thus, [Hap, 14 ® V] # 0: Hap
moves particles between A and B.

We define the inner product between two operators V and
W that act on some Hilbert space H as (V|W) = tr{V'W},
which is known as the Hilbert-Schmidt inner product. This
makes the space of operators on H into a Hilbert space
denoted H. Operators on H are superoperators. If D is an
operator on H, we write D' to denote its adjoint with respect
to the Hilbert-Schmidt inner product. If p is a density matrix
on H, then p is a vector in H, and it will be convenient to use
the Dirac notation such as D|p) = |Dp).

Proof of Theorem 1. Suppose that p is a steady state of
(1). Then since [H, p] = 0, Dp = 0. Since D, is ergodic, the
nullspace of Dy is spanned by m4. Since (pA|D/§DA,0A) =
(DapalDapa) for any ps, w4 also spans the nullspace of
D! Dy. The operator DD is positive semidefinnite, and its
nullspace is spanned by m. Let d4 be the dimension of H,,
and let

di
DiDa= ) jIX))(X;|
j=1
be an eigenfunction expansion of the superoperator D, in
which X; is a multiple of 7, so that A; =0, but A; > 0 for

Jj = 2. Then {Xi, ...,Xdﬁ} is a complete orthonormal basis,

with respect to the Hilbert-Schmidt inner product, of the op-

erators acting on #4, consisting of eigenvectors of ’D);DA.
Then the startionary state p has the expansion

4
p=> X;®W, (14)
j=1

where each W; acts on Hp. Since Dp =0and D = Dy ® Ip
we have

@
0= Z(DAXj)@)Wj. (15)

j=2
For j > 1, define ¥; := AITIDAXj. Note that
tra [YJT(DAXk)] = (A';lpAva DXy

= A, (DIDaX;, Xi) = 8.

Therefore, for each k > 1,

M
0= twal(¥] ® 15)(DaX)) @ W)l =Wi.  (16)
j=2

The conclusion is that for some normalization constant c,
P =cmy @W, (17)

where trg[cW;] = 1 and cW; > 0. Defining pp := cW;, we see
that p = w4 ® pp, which proves (10). Note that the assump-
tion that p (and thus also 7,) is positive definite was not used
yet, so this part of the theorem [unlike (11)] is also true even if
p has null eigenvectors, as can occur when D is approximating
a zero-temperature bath.

On the other hand, if p = 74 ® pp then using (7) the r.h.s.
of (1) is just —i[H, p] which would have to be zero if p is
stationary.

Now, to prove (11), we assume that p is positive definite, so
we can define V4 = Inm, and V3 = In pp. Since H commutes
with p = e ® €', it commutes withlnp =V, @ 1; + 14, ®
Vg = V. Therefore

0=[Va®1p+ 14 ® Vs, Hy ® 15 + 14 ® Hp + Hagl
= [Va, Hal ® 15 + 14 ® [V, Hp]
+[Va® 15 + 14 ® Vp, Hapl. (18)
Apply the partial trace trp to each term on the r.h.s. First,
trp{[Va, Hal ® 1} = [Va, Hal dim(Hp). (19)

We claim that trp of all other terms in (18) are zero so that
[Va, Ha] = 0. To see this, trg{l4 ® [V, Hg]} = 0 since it is
the trace of a commutator on Hp. Next, trp{[Va ® 15, Hapl} =
[Va, trg{Hap}] = O by our convention that trg{Hsg} = 0. Fi-
nally, trp{[14 ® Vi, Hagl} = O by the partial cyclicity of the
partial trace; that is, trg{VgHsp} = trg{HspVs}. This proves
that [V4, Hy] = 0, and the same reasoning using instead try
shows that [V, Hg] = 0. Then (18) simplifies to [V, Hyp] = 0.
For each of these vanishing commutators, we then use the fact
that [C, D] = 0 implies [¢¢, D] = 0 for any two operators C,
D, to prove (11). [ |

012210-3



CARLEN, HUSE, AND LEBOWITZ

PHYSICAL REVIEW A 111, 012210 (2025)

Proof of Corollary 1. By (12), pg is of the form (10) if and
only if Hyp = 0, given that try{Hsp} = 0 and trg{Hs5} = 0. R

Before proving Theorem 2 we recall a theorem of Frigerio
[11] that we will use.

Theorem 3 (Frigerio’s Theorem). Suppose that the equa-
tion ‘Zl—t = Dp for density matrices on H with D given by (2)
has at least one positive definite steady state. Then there is a
unique steady-state density matrix p with Dp = 0 if and only
if K and {L,, ..., L,} are such that any operator X on H that
satisfies

[K,X]=0 andforall o, [L,X]=I[L),X]=0

(20)

is a multiple of the identity. This is equivalent to saying that
{K, L, L;} generate all operators on H.

Note that Eq. (1) has the form considered in Frigerio’s The-
orem if we simply replace K by (K + H), so that Frigerio’s
Theorem may also be applied to Eq. (1).

Proof of Theorem 2. Let A be an operator on Ha ® Hp
such that [K ® 13, A] = O and forall a: [L, ® 13, A] = [L] ®
15,A] =0, where Ly, and K4 are defined in (4) and (5).
Expand A = ) W, ® E, where the W, are operators on ,
and the E,, are an orthonormal basis for operators on Hp. Then
[Ly ® 15, A] = 0 becomes

D L, Wyl ®E, =0, 1)
Y

and since the E,, are orthonormal, [ﬁa, W,] = 0foreacha, y.
A similar argument shows that [ﬁ;, W, 1 =0 for each o, y,
and that [K, W, ] = 0 for each y.

Since Dy is ergodic on Hy, by Theorem 3, the only op-
erators on H, that commute with K, L,, and L] for all &
are multiples of the identity. Hence each W, is of the form
W, = ¢, 14 for some constant c,,. It follows that

A=1,®X where X = ZCVE,,. (22)
Y

Therefore, the only operators A on H ® Hp that satisfy (20)
of Theorem 3 are operators of the form 14 ® X such that
[H,1,®X]=0.

Now suppose that the only operators of the form 14 ® X
such that [H, 14 ® X] = 0 are multiples of the identity. Let o
denote a steady state that has maximal support, which exists
by Theorem 4. If p is positive definite, then by Frigerio’s
Theorem, 7 is the unique steady state, and so p = p, which
is positive definite.

On the other hand, if p is not positive definite, then neither
is any other steady state, including our steady state p that
commutes with H. We claim that in this case, there would
exist self-adjoint operators X on Hp other than multiples
of the identity such that [H, 14 ® X] = 0. Hence under our
assumption on operators satisfying [H, 14 ® X] = 0, p must
be positive definite, and must be the unique steady state by
Frigerio’s Theorem, and hence equals p.

To see this, note that by Theorem 1, p has the form p =
w4 ® pp. Since we assumed that w4 is positive definite, the
projector P onto the null space of p has the form 14 ® Pg
where Pg is the projector onto the null space of pp. By hy-
pothesis, [H, p] = 0. Then since all of the spectral projections

of p are polynomials in p, 14 ® Pg is can be written as a
polynomial, and hence it commutes with H. But then Xp :=
Pg — c1p, where c is chosen to make Xp traceless, is a nonzero
traceless self-adjoint operator such that 14 ® Xz commutes
with H, and therefore, if p is a degenerate (i.e., not positive
definite) steady state commuting with H, it is not the unique
steady state.

To simplify the condition on solutions of [H, 14 ® X] =0,
observe, that since H is self adjoint, [H, 14 ® X] = 0 if and
only if [H,14 ® X 1 =0, and hence it suffices to consider
self-adjoint X . Finally since 14 ® X commutes with H if and
only if 14 ® (X — tr[X]15) commutes with H, we may freely
assume X to be traceless. Thus, the steady state is unique if
and only if the only traceless self-adjoint operator X on Hp
such that [H,1, ® X] =0is X =0.

Now suppose that the stationary state is not unique, so
that there exists a nontrivial operator X on Hjp such that
[H,14 ® X] =0. Then [Hp + Hup, 14 ® X] =0, and since
tra[Hap] =0,

0 = tra[Hyp, 14 ® X| = [Hp, X], (23)

from which the rest follows. |

III. SPIN CHAIN EXAMPLE

The boundary-driven XX (or XY) spin model on a chain of
£ sites for which the dissipator is of the form (8) is exactly
solvable, and the unique p is of the form (13). This model,
and close relatives of it, are also presented in [1,6,15] and
references therein to illustrate various theorems discussed in
those papers. In this section we discuss this model as an
illustration of Theorem 2 for a D4 of the form (8).

After the Jordan-Wigner (JW) transformation its Hamilto-
nian has the form [cf. Eq. (15) in [1]]

-1
H = Z(ajaj+1 +al,,a)). (24)
j=1
where a;, a; are the usual annihilation and creation operators

of the JW fermions at site j. As is well known, the particle
number operator

4
N =Y dla; (25)
j=1

commutes with H.
Let A be the first site of this chain, j = 1, while B is all the
remaining sites. Fix 8 > 0 and define

= “BI1Y (1[4 4 |0)(0[4) = —Bajar,
Ta = 1@ I+ 10)0L) = ==

(26)

Let D = D4 ® Zp and let Dy be the dissipator defined as
in (8) by

Dap = €[ma @ tralp(®)] — p(0)] 27

in terms of 74 as in (26). Let £ > 2, and let H be the Hamilto-
nian defined in (24). Define p to be the £-fold tensor product
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state

1 ;s ®t
p = (1 g (eI (1] + |0)<0|)) (28)
acting on Ha ® Hp so that p = (1) e PV,

Note that p has the form w4 ® pg, so that Dp = 0. More-
over, since H commutes with NV, and since p is a function of
N, [H, p] = 0. Therefore p is a steady state of (1). Since p is
positive definite, one could apply Frigerio’s Theorem to prove
that p is the unique steady state—there are many ways to treat
this simple model. However, the work is especially simple
using Theorem 2 since we need only concern ourselves with
H and not the operators L, and L in the Lindblad description
of DA .

Proof that p is the unique steady state via Theorem 2: Since
{n,a,a’, 1 — n}is an orthonormal basis for operators on Hg4,
we may expand

H=K 1®n+Ko®a+Ky ®a" +Koo® (1—n)
(29)

and then write H in the block matrix form
K; K
H— 1,1 1,0 (30)
Ko,1 Koo
with operators K ; on Hp.
We will proceed by induction on ¢. For £ =2, (30)

reduces to H = [a0¢ g]. Likewise, the block form of
1®X is 1@ X =[} . Then [H,1®X]=0 becomes

[[X,Oa*] [X(’)a]], which reduces to [a, X] =0 and [a, X] = 0.

Any operator that commutes with both @ and a' also com-
mutes with n and 1 — n, and hence with everything. Therefore,
any such operator X is a multiple of the identity. Since tr[X] =
0, X = 0. This proves uniqueness for N = 2.

For N > 2, let X be self-adjoint on Hp and such that [1 ®
X,H] =0. We claim that then X has the form X =1Q 7Y
corresponding to the decomposition Hpz = H ® HEV 2.

To see this, again write H in the block form (30) with
operators on Hp as entries

K a®1
H=| . , (€1}
ad®1 K

where a ® 1, a” ® 1 act on Hp through its identification with
HQ H® 2 and where K := ZIJL}] Hjj+1. Then [H,1®
X1 = 01is equivalent to

[K.X]1=0, [@®1,X]=0, and [¢'®1,X]=0.
(32)
Now let {Ej, ..., Ex-1} be an orthonormal basis of op-

erators on H®¥~2 Then X has a unique expansion
X = Z?: W; ® E; where each W, is an operator on H. Then
0=[a®1X]=Y" [aW,]®E and 0=[a’ ®1,X] =
Z?:ll [a", W;1® E;. It follows that for each j [a, W] =
[aT, W;] = 0, and then W; = ¢;1 for some constant c;. There-
fore X = ZfN:_ll 1®¢;E;=1QY whereY = Zf:] c;E;j.

Now make the inductive assumption that this has been
proved for N < M; we shall show it is then true for N =
M+ 1.

Let X be traceless and self-adjoint on Hp = HOM and
suppose that 1 ® X commutes with H = Z?’I: 1 Hjjy1. By
what we proved just above, X =1Q®Y, where Y is trace-
less and self-adjoint on the last M — 1 factors of H in Hgp.
Then 1® X =1®1®Y, which evidently commutes with
Hy,. Therefore [1 ® X, H] = 0 becomes

M
[1®Y,H]1=0 where H/:ZH,-,M. (33)

J=2

By the inductive hypothesis, Y = 0. ]

Remark 1. Note that the form p = w4 ® pp of the unique
steady state is independent of the parameter €, and this proves
analytically that, as a function of e, the steady state does not
converge to the Gibbs state as € converges to zero, an issue
discussed in [2].

IV. EXISTENCE OF STEADY STATES
WITH MAXIMAL SUPPORT

We give a simple proof of the existence of a stationary state
of (1) which yields some additional information that is used
here. Many proofs of existence of steady states invoke fixed
point theorems, e.g., the Markov-Kakutani Fixed Point Theo-
rem in [10] in a general infinite-dimensional setting, and the
Brower Fixed Point Theorem in [15] in a finite-dimensional
setting. The mean ergodic theorem provides a more construc-
tive approach and additional information.

Theorem 4. For a d-dimensional Hilbert space H, Eq. (1)
has at least one steady-state solution. Moreover, there exists a
steady-state solution p that has maximal support in the sense
that if p is any steady-state solution, then

p < dp. (34)

Proof. Let Lp := —i[H, p] + Dp as in (1). Then each ¢'~,
t > 0 is completely positive and trace preserving. As a con-
sequence, by a mean ergodic theorem of Lance [16], for any
operator A on H, the limit

T
lim il / éF(A)dr = Pr(A) (35)
T Jo

exists. (In our finite-dimensional setting, all topologies are
equivalent, so the sense of convergence is immaterial.) It is
clear from the definition that for all ¢, ¢'“*P,(A) = P,(A).
Furthermore, since P, preserves positivity and traces, if A
is any density matrix, then P, (A) is a density matrix. This
proves existence.

Next, define the density matrix py by pg := %17.[, and
define

P :="Prlpo). (36)

Then p is a steady state. Now let p be any other steady state.
Since p < 1y, p < dpo, and then for each 7, p = ¢'£p <
de'“ py so that (34) is satisfied. [ ]

We remark that in our finite-dimensional setting, the the-
orem of Lance has an elementary proof using the Jordan
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canonical form and a well-known contractive property of trace
preserving completely positive operators.

V. UNIQUENESS

Frigerio’s theorem (4) [11] gives a general if and only if
result for uniqueness of the stationary solution p of (1) once
we know the existence of a positive definite p. The latter re-
quirement is essential, as pointed out in [15]. An avoidance of
this requirement is given by Yoshida [12,15] who proved that a
sufficient condition for uniqueness of p is that the Lindbladian
L is such that all operators in H are linear combinations of
products of the operators in the set {H — é > L;La, Ly} (all
«). This set generally contains fewer operators than the set
used by Frigerio.

Theorem (3) gives necessary and sufficient conditions for
uniqueness for the case when the dissipator D has the form (3)
and Dy is ergodic. We do not require the a priori existence of
a positive definite p but find the conditions for uniqueness and
strict positivity of a p of the form 74 ® pp which commutes
with H. Our conditions also ensure that when there exists a
unique p then it is positive definite.

VI. DISCUSSION

The Gibbs measure, pg = e PH /Z(B), is the standard ther-
mal equilibrium state of a system with Hamiltonian H at
inverse temperature 8. For an open quantum system coupled
to a Lindbladian dissipator that acts only on part A of the
system (the system is otherwise fully isolated), one might
have naively thought that one could choose a dissipator acting
on part A that produces the Gibbs measure as the resulting
exact steady state of the full system. In this paper we have
shown that this is not possible when BHup # 0, where Hyp is
the part of the Hamiltonian that is the interactions between
part A of the system and the rest of the system (part B).
Why is this not possible? An informal justification of our
result is: For BHyp # 0 the Gibbs measure contains specific
detailed correlations between parts A and B of the system.
The dissipator acts only on A without being able to use any
“information” about part B, so it cannot produce these correct
correlations between A and B. On the contrary, it necessarily
will disrupt those correlations by dissipating part A in a way
that is independent of the state of part B.
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APPENDIX: NONERGODIC D4

In this Appendix, we explain how quantum ergodic decom-
positions may be used to extend Theorem 1 to the case in
which D, is not assumed to be ergodic

Let  be a finite-dimensional Hilbert space and let £ be the
generator of a quantum dynamical semigroup e'~ on operators

on # so that each ¢/~ is completely positive and trace preserv-
ing. Then LT is the generator of a quantum Markov semigroup
(¢'£)T := ¢'£". That is, for each ¢, ¢'“" is completely positive
with the property that ' £t T3 = Ty Because of this last prop-
erty, LT3, = 0.

Let C denote the null space of L. Suppose that there
exists at least one positive definite steady state; that is, at least
one positive definite density matrix such that Lp = 0. Then
Frigerio’s Theorem [11] says that C is not just a vector space
of operators on H; it is also closed under multiplcation and
taking Hermitian adjoints, and evidently it contains Z3 . This
makes it a a von Neumann algebra. Let Z denote C N C’ where
C’ is the commutant of C. This is a commutative von Neumann
algebra callled the center of C.

Every commutative von Neumann algebra on a finite-
dimensional Hilbert space H has the following simple
structure (see, e.g., [17]): There is a set {Py, ..., P,} of mu-
tually orthogonal projections summing to Z3; whose complex
span is the algebra.

The projectors {Py, ..., P,} provide the basis for an er-
godic decomposition of €'~ . Let H, denote the range of P
so that

(AL)

The following theorem is proved in [17,18]: Each of the
Hilbert spaces H) has a factorization H\/) = ICEJ )@ KWV,
determined by the generator £, where either of these factors
may be, but neither need be, one-dimensional. There is a set
of m density matrices on the “right” factors ICﬁ" ), {w, ..., oy}
such that a density matrix p on H satisfies Lo = 0 if and only
if it has the form

p=) pip;®wj (A2)

J=1

where each p; is any density matrix on ICY ) and the p/j are
probabilities.

The ergodic case is that in which m = 1 and ICEI) is one
dimensional so that H = K" and then w, is the unique steady
state.

If we relax the assumption that D, is ergodic with a pos-
itive definite steady state to only the assumption that D, has
at least one positive definite steady state, so that every steady
state for D4 has the form (A2), then the method of proof of
Theorem 1 can be used to prove that every steady state p
of (1) that commutes with H has an expansion of the form
(A2) where now p; is a density matrix on K @ Hp: In this
nonergodic case, the steady states that commute with H are a
direct sum of components that again factor as tensor products.
Finally, if D4 does not have any positive definite steady state,
let pa be a steady state of maximal support, as in Theorem 4,
and let ICy be the subspace of H, that supports ps. (That is,
K4 is the orthogonal complement of the null spaces of p,.)
Let P4 be the orthogonal projection onto 4. Then for any
operator X on Ha

e'E(PyX Py) = Pye'“(PyXPy)Py, (A3)
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so that the Lindbladian evolution may be restricted to op-
erators on K4, and then it has a positive definite steady
state (but a different Lindbladian description in terms of
operators L, now acting on /C, instead of 7). The

above consideration apply to this reduced system, in which
a “transient part” has been discarded. The transient part
is irrelevant as far the the structure of steady states is
concerned.
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